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Abstract: Decentralized data processing has the benefit of improving wireless monitoring system scalability, reducing the amount of wire-

less communications, and reducing overall power consumption. In this study, a system identification strategy for single-input multi-output

(SIMO) subspace system identification is proposed based on Markov parameters. The method is specifically customized for embedment

within the decentralized computational framework of a wireless sensor network. By using the computational resources of wireless sensors,

individual sensor nodes perform local data processing to identify the Markov parameters of a structural system. The data storage and wireless

communication requirements of Markov parameters are significantly less than that required by the original raw data, resulting in the

preservation of scarce system resources such as communication bandwidth and battery power. Then, the estimated Markov parameters

are wirelessly communicated to a wireless sensor network base station where the global structural properties are assembled by execution

of the eigensystem realization algorithm, an indirect subspace system identification method. The proposed strategy is evaluated using

input-output and output-only data recorded during dynamic testing of a cantilevered balcony in a historic building (Hill Auditorium,

Ann Arbor, MI). DOI: 10.1061/(ASCE)EM.1943-7889.0000359. © 2012 American Society of Civil Engineers.
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Introduction

The field of system identification has produced a suite of powerful

mathematical tools that can accurately model the dynamic behavior

of a complex engineered structure (Ljung 1999). Identified models

have historically served as the basis for predicting structural re-

sponses to future loads, designing feedback control systems

(Juang 1994) and for estimating the health of a structure (Doebling

et al. 1998). Modal analysis was one of the earliest forms of

frequency-domain system identification with modal parameters

(e.g., modal frequencies, modal damping ratios, and mode shapes)

extracted from measured input-output measurements data

(Ewins 2000). In the system theory community, two time-domain

methods emerged: parameterization-based prediction-error meth-

ods for system identification (Ljung 1999) followed by powerful

parameterization-free (i.e., data-driven) subspace system identifica-

tion methods (Viberg 1995). Subspace system identification for the

estimation of state-space models of dynamic systems has gained

popularity within the engineering community since the 1990s.

Subspace system identification seeks mathematical models that

optimally fit the measurement data available, skipping the need

for parameterization (i.e., a mapping between the mathematical

model and physical parameters). Subspace system identification

finds its origins in the seminal work of Ho and Kalman

(Ho and Kalman 1966), which provided a means of extracting a

minimal realization of a state-space model based on impulse

response functions. Later, stochastic realization (Akaike 1974)

and data-driven subspace identification (Van Overschee and De

Moor 1996) provided the community with additional mathematical

tools for accurate state-space modeling of large, complex dynamic

systems. Today, a number of subspace-based state-space system

identification (4SID) techniques have been successfully applied

for system identification of civil and mechanical dynamic systems,

including reference-based stochastic subspace identification (SSI)

(Peeters and Roeck 1999) and the eigensystem realization

algorithm (ERA) (Juang and Pappa 1985).
Regardless of the system identification technique adopted, the

underlying requirement of all system identification methods is the

availability of data (i.e., measurement of the system input and

output). To collect this data, data acquisition systems are necessary.

The vast majority of systems used in the laboratory and field are

wired-based systems with centralized architectures. Specifically,

sensors installed in the system utilize wires to communicate

measurements to the central data server where data are time-

synchronized, digitized, and stored for off-line analysis. In some

instances, automated data processing occurs in the data server

(i.e., online analysis). Although wires provide a reliable conduit

for the communication of measurement data, the extensive cabling

requirements of permanent data acquisition systems in large civil

structures detracts from their attractiveness. To overcome these

limitations, wireless sensors have been proposed for structural

monitoring (Straser and Kiremidjian 1998; Lynch et al. 2006).

In addition to simplifying the installation of sensors in large struc-

tural systems, wireless sensors also offer on-board computing
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resources that can be used to locally process measurement data

(Lynch et al. 2003; Nagayama and Spencer 2007). On-board

computing reduces the amount of data to be transmitted; hence,

“smart” wireless sensor nodes can utilize the shared communica-

tion channel in a more effective manner. Wireless transceivers

also consume more power than microprocessors. Therefore,

processing data at the node can be more power-efficient than

communicating raw data wirelessly (Lynch et al. 2004), an impor-

tant consideration when powering nodes from battery or power

harvesting sources.
The centralized wired monitoring system architecture is often

defined by a small number of computing nodes (i.e., data servers)

each endowed with large memory and computational throughput

capacity. In stark contrast, the computing environment offered

by wireless sensor networks is highly decentralized with a large

number of lightweight computing nodes (i.e., small memory and

computational throughput capacity). Lynch et al. (2006) first pro-

posed the concept of decentralized computing for structural system

identification. That study aimed to extract mode shapes from

time-synchronized wireless sensor data by having nodes locally

calculate Fourier output spectra followed by peak-picking (PP)

to identify modal frequencies. Mode shapes were then extracted

in the network by having the imaginary component of the Fourier

spectra at modal frequencies wirelessly exchanged. Nagayama and

Spencer (2007) explored the embedment of the output-only natural

excitation technique (NExT) for identification of free decay res-

ponses using system output data from which state-space models

were estimated by the ERA method executed on a centralized

server. More recently, Sim et al. (2010) extended the work of

Nagayama and Spencer (2007) by utilizing the random decrement

technique (RDT) instead of NExT. Zimmerman et al. (2008)

proposed the adoption of a parallel computing paradigm to embed

the frequency-domain decomposition (FDD) method in a wireless

sensor network for automated mode shape extraction.
In this study, a single-input multi-output (SIMO) subspace

system identification strategy ideally suited for the decentralized

computing architecture of a wireless monitoring system is pro-

posed. The low-cost Narada wireless node (Swartz et al. 2005),

a low-power node that is capable of sensing, actuating, computing,

and wireless communication, is adopted as the primary building

block of the wireless monitoring system. The complexity of

the linear time-invariant SIMO problem will be handled by decom-

posing the system analysis into parallel single-input single-output

(SISO) systems that can be embedded within the computational

framework of the wireless sensor network. Specifically, μ-Markov

parameter extraction is embedded in each wireless sensor to extract

SISO system information in a compressed manner (namely, in a

finite number of Markov parameters). After μ-Markov parameter

extraction is completed, nodes then wirelessly transmit their results

to a centralized server in which the global system characteristics

of the SIMO system are identified using the ERA method. The

proposed decentralized system identification method is experimen-

tally verified using input-output and output-only measurements

derived during forced vibration testing of a large cantilevered

auditorium balcony. To validate the accuracy of the wireless

monitoring system, the dynamic system properties (i.e., modal

frequencies, modal damping, and mode shapes) autonomously

extracted are compared with those derived from data-driven

subspace system identification conducted off-line using the same

measurement data.

Realization-Based Subspace System Identification

Subspace system identification of linear time-invariant (LTI) sys-
tems enjoys a long history dating back more than 40 years. Over
that period, a large suite of mathematical tools has been developed
for the identification of state-space models from input and output
data of a dynamic system. The methods associated with subspace-
based state-space system identification (4SID) are generally catego-
rized into one of two groups: realization-based and direct subspace
methods (Viberg 1995). Realization-based 4SID methods find their
origins in the seminal work of Ho and Kalman (Ho and Kalman
1966) and offer a means of estimation of state-space models. At
the core of the realization-based 4SID methods is the need for a
reliable estimate of system impulse responses, often termed the sys-
temMarkov parameters (MP). Because the methods require a priori
system impulse response estimation, the realization-based 4SID
methods are also referred to as indirect 4SID methods. More
recently, direct subspace methods (Van Overschee and De Moor
1994, 1996; Verhaegen 1994) have emerged as the preferred sub-
space approach for system identification because of their improved
performance over realization-based 4SID. Direct 4SID methods,
also referred to as data-driven subspace identification (Peeters
and Ventura 2003), further generalize the realization-based meth-
ods with the state-space representation of a system derived from
the time-history data without requiring the estimation of impulse
response functions. A summary of the subspace-based state-space
system identification methods is presented in Fig. 1.

Although direct 4SID methods are more accurate in estimating
state-space models, their computational requirements exceed the
processing and memory resources available at a wireless sensor
node. In contrast, Markov parameter estimation for realization-
based 4SID methods is computationally less resource-intensive
and naturally decomposes the SIMO system into SISO systems.
Decomposition is an attractive approach in the wireless sensor do-
main because it allows the wireless sensor nodes to be parallelized
for the simultaneous estimation of SISO impulse response func-
tions using a locally collected system output corresponding to a
known system input. Estimation of impulse response functions
can be accomplished by one of three methods: NExT (James
and Carne 1992), observer/Kalman filter identification (OKID)
(Juang et al. 1991), and μ-Markov parameter identification
(μ-MPID) (Van Pelt and Bernstein 1998). The NExT method
has been used for impulse response extraction using wireless sensor
networks engaged in output-only structural monitoring in the study
by Nagayama and Spencer (2007).

In this study, a realization-based 4SID method is embedded in a
wireless sensor network using μ-Markov parameters to extract sys-
tem impulse response functions from input-output data sets. The
μ-Markov parameters compress the original output time-history
data into a small number of parameters that can be wirelessly com-
municated using significantly less energy and communication
bandwidth than by transmitting the original measured time-
histories. Unlike OKID that requires a model order to be estab-
lished a priori, the μ-MPID approach does not. This renders the
method ideal when implemented in an automated monitoring
system. MP sequences collected from each wireless sensor can
be aggregated at a single server in which the state-space realization
of the SIMO system is formed using the eigensystem realization
algorithm (ERA) (Juang and Pappa 1985).

μ-Markov Parameter Estimation Using Input-Output
Data

The μ-Markov parameter estimation technique is a time-domain
technique used for the extraction of system impulse response
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functions (Van Pelt and Bernstein 1998). Compared with more tra-
ditional time-domain techniques such as OKID (Juang et al. 1991),
μ-Markov parameter estimation is conceptually simple and particu-
larly well suited for embedment in fixed point microcontrollers
commonly integrated with low-power wireless sensor nodes.
Furthermore, it does not require a priori selection of the system
model order to extract Markov parameters. This is in stark contrast
to more traditional approaches to Markov parameter estimation
such as the fitting of time-series models (e.g., AR, ARX, ARMA)
and OKID.

Derivation of μ-Markov parameter estimation for a linear time-
invariant SISO system begins with the nth order autoregressive
moving average (ARMA) model:

yðkÞ ¼ �
X

n

j¼1

ajyðk � jÞ þ
X

n

j¼0

bjuðk � jÞ ð1Þ

where k = discrete time step; aj = coefficients on the system output
y; and bj = coefficients on the system input u. If the at-rest system is
excited by an impulse load at k ¼ 0 [i.e., uð0Þ ¼ 1 and uðkÞ ¼ 0
when k ≠ 0], then Eq. (1) at k ¼ 0 simplifies to yð0Þ ¼ b0. Because
the system output at k ¼ 0 is the impulse response function, it can
be extracted from the moving average (MA) part. Then, the ARMA
model at step k to be rewritten

yðkÞ ¼ �
X

n

j¼1

ajyðk � jÞ þ h0uð0Þ þ
X

n

j¼1

bjuðk � jÞ ð2Þ

By inserting the ARMA model at time k � 1 into Eq. (2), another
representation of the model can be derived as

yðkÞ ¼ �
X

n

j¼1

a0jyðk � j� 1Þ þ
X

1

j¼0

hjuðk � jÞ þ
X

n

j¼1

b0juðk � j� 1Þ

ð3Þ

where a0j and b
0
j = modified system coefficients. Repeating this pro-

cedure μ� 1 times, an ARMA equation explicitly displaying the
first μ values of the impulse response function (h0; h1;…hμ�1)
is found:

yðkÞ ¼ �
X

n

j¼1

a
ðμ�1Þ
j yðk � j� μþ 1Þ þ

X

μ�1

j¼0

hjuðk � jÞ

þ
X

n

j¼1

b
ðμ�1Þ
j uðk � j� μþ 1Þ ð4Þ

where h0, h1,…hμ�1 = μ-Markov parameters. The ARMA model
written in Eq. (4) has 2nþ μ unknowns: a

ðμ�1Þ
j , b

ðμ�1Þ
j , and hj.

A least-squares problem can be formulated to determine the
unknowns using the measured input-output sequences of the LTI
system.

Consider the system input and output of Eq. (4) assembled as a
row vector, ϕk , at time step k:

ϕk ¼ f�yðk � μÞ � � � � yðk � n� μþ 1Þ

uðkÞ � � � uðk � n� μþ 1Þg ∈ R1×ð2nþμÞ
ð5Þ

If the input-output response of the system is considered at each time
step from k ¼ 0 to N � 1, then the input-output matrix can be
formed:

Φ ¼ ϕT
0 ϕT

1 � � � ϕT
N�1

� �

T ∈ RN×ð2nþμÞ ð6Þ

Fig. 1. Overview of the family of 4SID methods with the role of MP estimation highlighted
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The system output from k ¼ 0 to N � 1 assembled as a column
vector, y ¼ ½ yð0Þ � � � yðN � 1Þ �T, is linearly related to the
unknown ARMA parameters

θ ¼ ½ a
ðμ�1Þ
1 � � � a

ðμ�1Þ
n h0 � � � hμ�1 b

ðμ�1Þ
1 � � � b

ðμ�1Þ
n �T

∈ Rð2nþμÞ×1 ð7Þ

through the input-output matrix of Eq. (6):

y ¼ Φθ ð8Þ

If the number of observed points, N, is larger than the number of
unknowns (2nþ μ), Eq. (8) represents an overdetermined set of
linear equations in which the unknown ARMA model parameters,
θ, can be found by applying the traditional linear least-squares
solution:

θ ¼ ðΦTΦÞ�1ΦTy ð9Þ

The unknown ARMA parameter vector, θ, of Eq. (9) does not con-
tain any parameterized information of the dynamic system; rather,
the estimation of the finite impulse response function of the system
is derived. This finite impulse response (FIR) model is in contrast
to the infinite impulse response (IIR) model derived by classical
parametric estimation methods.

The paramount benefit of μ-Markov parameter estimation
compared with the direct application of conventional time-series
models, is that the method extracts an accurate representation of
the system impulse response function without requiring a priori
selection of the system model order (e.g., selection of the number
of weighted coefficients in the time-series model). Because system
order is conventionally determined by manual methods, this step is
difficult to reliably implement in an automated system identifica-
tion system. Furthermore, poor model order selection can
adversely affect the quality of the Markov parameters and sub-
sequently degrade the performance of the overall system identifi-
cation strategy. In contrast, estimated impulse responses by the
μ-Markov parameter estimation are consistent regardless of the
system order (Van Pelt and Bernstein 1998). It should be noted
that implementation of the ERA algorithm at the central server does
still require a priori determination of model order (e.g., typically
through the use of stabilization diagrams), but this fact is indepen-
dent of the origin of the Markov parameters extracted. Regardless,
complete automation of the Markov parameter estimation as pro-
posed herein represents a significant advancement over comparable
methods that require a priori model selection for the extraction
of Markov parameters.

Markov Parameter Estimation Using Output-Only Data

Estimation of a system free decay response function from output-
only data by the random decrement technique was proposed by
Ibrahim (Ibrahim 1977). Shortly thereafter, a new version of
the Ibrahim time-domain (ITD) technique was proposed based
on the cross-correlation between multiple system outputs recorded
at different periods in time to extract the modal characteristics of
a dynamic system (Ibrahim and Pappa 1982). The modal charac-
teristics of the system are used to calculate the impulse response
function of the system. A more effective output-only system iden-
tification method termed NExT was proposed by James et al.
(1995). Conceptually, this method is analogous to stochastic
realization-based on canonical correlation analysis (Akaike
1974). The major difference is the use of cross-correlation between
a reference output and other system outputs, resulting in improved

system identification. In this study, the NExT method is adopted to
extract Markov parameters of the dynamic system. However, to be
consistent with the description of the μ-Markov parameter estima-
tion method previously described for the input-output data sets, the
NExT method is described using parametric autoregressive models
to derive the Markov parameters using output-only measurements
of a dynamic system.

First, consider the ARMA model of the system defined in
Eq. (1) for a defined reference output, yrefðkÞ:

yrefðkÞ ¼ �
X

n

j¼1

ajyrefðk � jÞ þ
X

n

j¼0

bjuðk � jÞ ð10Þ

If the lefthand and righthand sides of Eq. (10) are multiplied by
another system output, yiðk � τÞ, shifted in discrete time by τ, then
the expected value of Eq. (10) is

E½yiðk � τÞyrefðkÞ� ¼ �
X

n

j¼1

ajE½yiðk � τÞyrefðk � jÞ�

þ
X

n

j¼0

bjE½yiðk � τÞuðk � jÞ� ð11Þ

The expected value of the product of two time signals time shifted
by τ relative to one another is defined as the cross-correlation
function

Ryiyref
ðτÞ ¼ E½yiðk � τÞyrefðkÞ� ð12Þ

Eq. (12) is therefore rewritten in terms of cross-correlation:

Ryiyref
ðτÞ ¼ �

X

n

j¼1

ajRyiyref
ðτ � jÞ þ

X

n

j¼0

bjRyiu
ðτ � jÞ ð13Þ

The cross-correlation function between a system output and input is
directly related to the autocorrelation of the system input through
convolution:

Ryiu
ðτ � jÞ ¼ h½�ðτ � jÞ� � Ruuðτ � jÞ ð14Þ

where hðtÞ = impulse response of the system. If the input is as-
sumed to be a stationary Gaussian random process, the autocorre-
lation function of the system input, Ruu, reduces to the Kronecker
delta function, δ, scaled by an arbitrary constant, c00 (James et al.
1995). This allows Eq. (13) to be rewritten

Ryiyref
ðτÞ ¼ �

X

n

j¼1

ajRyiyref
ðτ � jÞ þ c00hð0Þδðτ � jÞ ð15Þ

Hence, the cross-correlation between the system outputs is an in-
finite impulse response function with an identical AR model as that
of the original system in Eq. (1).

Eigensystem Realization Algorithm

The eigensystem realization algorithm (ERA) (Juang and Pappa
1985) derives a minimal state-space realization of a linear time-
invariant system using a finite number of Markov parameters as
its input. ERA is therefore used in this study to derive the state-
space model of a global SIMO system using the MP sequences
of the SISO models previously derived from input-output and
output-only measurements. The state-space representation of a
fully controllable and observable system in the discrete time-
domain is described as

xðk þ 1Þ ¼ AxðkÞ þ BuðkÞ yðkÞ ¼ CxðkÞ þ DuðkÞ ð16Þ
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where x = n-dimensional state vector; A ∈ Rn×n = system matrix;
B ∈ Rn×1 = vector relating the state to the single-input u; C ∈ Rl×n

= matrix relating the system observation vector, y, to the state;
and D ∈ Rl×1 = vector relating the l system outputs to the
single-input, u.

The controllability and observability matrices (C andO, respec-
tively) are defined as

C ¼ ½B AB � � � An�1B � ð17Þ

O ¼

C

CA

..

.

CAn�1

2

6

6

4

3

7

7

5

ð18Þ

The SIMO system is fully controllable and observable if, and
only if, C andO are of rank n. If an LTI system is fully controllable
and observable, then the vector of Markov parameters, hðkÞ ¼
fh1ðkÞh2ðkÞ…hlðkÞg

T , can be written as

hðkÞ ¼

8

<

:

0 k < 0

D k ¼ 0

CAk�1B k > 0

ð19Þ

If an infinite sequence of MP are written in block Hankel form:

H ¼

hð1Þ hð2Þ hð3Þ � � �
hð2Þ hð3Þ hð4Þ � � �
hð3Þ hð4Þ hð5Þ � � �

..

. ..
. ..

. . .
.

2

6

6

6

4

3

7

7

7

5

ð20Þ

then Eq. (19) allows the Hankel matrix to be factorized into an
infinite observability and controllability matrix

H ¼

C

CA

CA2

..

.

2

6

6

4

3

7

7

5

½B AB A2B � � � � ¼ OC ð21Þ

This allows the system matrices A, B, and C to be found by
factorization of the Hankel matrix. If the rank of the block Hankel
matrix is identical to the dimension of the system n, then the system
matrices A, B, and C represent the minimal realization of the
system. To achieve a minimal realization, the finite Hankel matrix
can be robustly truncated to rank n through the use of singular value
decomposition (SVD) (Kung 1978).

Implementation of MP System Identification within a
Wireless Sensor Network

Input-output and output-only system identification based on
Markov parameter extraction is ideally suited for implementation
within the distributed computational architecture posed by a wire-
less structural monitoring system. Sensor-level computing is suffi-
cient for the extraction of MPs from raw measurement data
recorded by each wireless sensor node. After all sensor nodes have
performed their MP extractions in parallel, the MPs from each node
can be wirelessly communicated to the remaining nodes. Once
Markov parameters have been collected from all measured degrees
freedom, the eigensystem realization algorithm can be imple-
mented at the network-level to estimate the system matrices A,
B, and C. In this study, system identification based on Markov
parameter extraction is implemented within a wireless structural

monitoring system using three functional components: control
server, local coordinator, and wireless sensor nodes (see Fig. 2).
The control server is a single unit (e.g., a data server or wireless
sensor) responsible for initiating and coordinating the data collec-
tion, communication, and computing tasks of the wireless monitor-
ing system. The local coordinator is responsible for (1) applying a
controlled excitation to the structure based on commands from the
control server or (2) serving as a reference node during output-only
analyses. The wireless sensor nodes are used to collect the accele-
ration response of a structure at their respective locations. In
addition, wireless sensor nodes perform sensor-level computing
when commanded by the local coordinator or control server. In this
study, the Narada wireless sensor platform will serve as the system
wireless sensor node and local coordinator; a standard personal
computer (PC) will serve as the control server.

Narada-Based Wireless Structural Monitoring System

A low-cost wireless sensor previously proposed for monitoring
civil structures is adopted. The wireless sensor platform (Fig. 3),
termed Narada, was first proposed by Swartz et al. (2005) and
has been successfully deployed in a number of full-scale structures
for structural monitoring, including bridges (Kim et al. 2010), wind
turbines (Swartz et al. 2010a), buildings, and naval ships (Swartz
et al. 2010b). As a data acquisition platform, each Narada is capable
of collecting data from transducers interfaced to its four sensing
channels as long as sensor outputs are between 0 and 5 V. Each
sensing channel is capable of digitizing data at a 16-bit resolution,
with sampling rates as high as 100 kHz. In addition to a sensing
interface, Narada also enjoys a two-channel actuation interface that
can command actuators through a 0 to 4 V zero-order hold voltage
signal. In this study, the actuation interface is exploited by the wire-
less monitoring system to apply a controlled excitation to a struc-
ture using an external actuator (e.g., electrodynamic shaker). Once
data are collected, Narada employs a power-amplified IEEE
802.15.4 wireless transceiver (Chipcon CC2420) that can commu-
nicate to ranges well in excess of 100 m (line-of-sight) with over-
the-air data rates of 250 kbp (Kim et al. 2010).

Most relevant to this study is the microcontroller core; this core
allows Narada to process its measurement data locally. The com-
putational core consists of an Atmel ATmega128 microcontroller
operating at 8 MHz and featuring 128 kB of read only flash
memory for the storage of embedded software. An additional
128 kB of random access memory (RAM) is incorporated to the
Narada circuit to provide the microcontroller additional data stor-
age capabilities. An operating system is written to the microcon-
troller flash memory for the automation of the node operation.
The embedded operating system also allows the wireless sensor
to be programmed with data processing algorithms that interrogate
measurement data (Zimmerman et al. 2008; Zimmerman and Lynch
2009). Although Narada will be utilized in this study, it should
be noted that any wireless sensor platform with on-board data
processing capabilities (e.g., MEMSIC iMote2) can be used
without modification to the proposed computational approach.

Input-Output Implementation

In the input-output implementation of the proposed automated sys-
tem identification method [Fig. 2(a)], the control server coordinates
the activities of the wireless monitoring system. The control server
begins by broadcasting a command packet to the wireless sensor
network notifying the local coordinator and the wireless sensor
nodes that a test will begin. Upon receipt of that command packet,
the coordinator and the wireless sensor nodes each acknowledge
the receipt of the command and wait for time synchronization to
occur. The control server then sends a beacon packet upon which
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the local coordinator and wireless sensor nodes initiate their
internal clocks and begin their data collection tasks. This
beacon-based approach to time-synchronization has been experi-
mentally determined to be accurate with synchronization errors
of less than 30 μs (Swartz et al. 2010a).

Upon receipt of the beacon packet from the control server, the
local coordinator will begin the application of a controlled excita-
tion to the structure (e.g., using a shaker) while the wireless sensor
nodes record the structure response. After a number of time steps
(Nacc) have been collected as defined by the control server during
initiation of the network, the local coordinator stops its application
of the excitation while the wireless sensor nodes simultaneously
stop collecting structural response data. Next, the local coordinator
broadcasts its raw excitation time-history record (i.e., in 16 bit

integer format) to the network of wireless sensor nodes using a
send-acknowledge communication protocol that ensures each wire-
less sensor node receives the excitation time-history record. Upon
receipt of the excitation time-history record, each wireless sensor
node converts the raw (16 bit) excitation, u, and acceleration time
histories, yi, into single-precision floating-point representations
(32 bit). Next, each wireless sensor node extracts MPs using LU
decomposition to solve Eq. (9). In total, NMP parameters are esti-
mated by each wireless sensor node.

After the sensor-level computing has been completed, each
wireless sensor node confirms the completion of its computational
task with the local coordinator. The local coordinator then requests
each wireless sensor node to send its single-precision floating-point
MP one at a time by peer-to-peer communication to the control

Fig. 2. Automated system identification by decentralized MP estimation within a wireless structural monitoring system: (a) input-output and

(b) output-only implementations
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server. Upon receipt of all MPs, the control server then assembles
the MPs into an NMP by NMP Hankel matrix [Eq. (20)]. Singular
value decomposition (SVD) of the Hankel matrix is performed by
the central server; the SVD orthogonal matrices are truncated to
rank n from which the system matrices A, B, and C are calculated.

The attraction of embedded μ-MP estimation is that sensor-level
computing (i.e., MP estimation) results in a substantial compres-
sion of the measurement data prior to communication. This com-

pression has two benefits: it preserves wireless bandwidth and can
reduce the overall power consumption of the wireless sensor net-
work. Consider a wireless monitoring system employing 15 Narada
wireless sensor nodes (Nsensors) each collecting 1,200 time samples
(Nacc) of measurement data at any arbitrary sample rate (f ). If
implemented in a centralized monitoring system, all of the wireless
sensor nodes and the local coordinator would be required to com-
municate their raw (16 bit) time-history data to the centralized

control server where system identification would be conducted.
This would result in 38,400 bytes of data to be communicated
(see Table 1). In the decentralized approach advocated herein,
the local coordinator broadcasts its excitation time-history record
(2,400 bytes) to the network so that each wireless sensor node

can extract Markov parameters from their input-output data.

Assuming 105 MPs are extracted with each parameter represented
by a single-precision floating-point number (4 bytes), this generates

420 bytes worth of data to be communicated by each wireless sen-
sor node. If all 15 wireless sensor nodes communicate their MPs to

the control server, a total of 6,300 bytes would be communicated.
Hence, the total number of bytes to be communicated by the decen-

tralized μ-MP approach to system identification is 8,700 bytes (see
Table 1). This represents a compression of more than 77%. If band-

width is limited, this reduction in communicated data will alleviate
demand for the wireless channel and hence, improve the overall

scalability of the wireless sensor network (i.e., a greater number
of nodes could be accommodated in the wireless sensor network).

The amount of battery energy saved through compression is more
difficult to analyze because such analyses are highly dependent

on the wireless sensor hardware used and how that hardware is
operated (i.e., whether portions of the hardware can be placed

in low-power sleep or off states when not in use).

Output-Only Implementation

In the output-only implementation [Fig. 2(b)], the local coordinator
is no longer responsible for the excitation of the structure but rather

represents a reference node at which one additional channel of
structural response is collected by the wireless monitoring system.

Similar to the input-output implementation, the control server
begins by synchronizing the network through the use of a beacon

packet. Upon receipt of the beacon packet, the local coordinator
and wireless sensor nodes reset their internal clocks and begin

to collect structural response data for the prescribed time period.
After Nacc time steps have been collected, the local coordinator

broadcasts its raw (16 bits) time-history response, yref , to the wire-
less sensor nodes. By using Eq. (15), each wireless sensor node

calculates the cross-correlation between its measured response,
yi, and that of the local coordinator’s reference response, yref .

Again, the calculation of the cross-correlation requires the sequen-
tial shifting of one output relative to another as a function of time

offset, τ . The first 105 terms of the single-precision floating-point
cross-correlation function, Ryiyref

ðτÞ, are treated as MP to be com-

municated by each wireless sensor node to the control server for use

in its ERA analysis. Because the communication requirements are
identical to that of the input-output implementation, the amount of

communication reduction (and corresponding savings in battery
power) are the same as that presented in Table 1.

Experimental Validation—Vibration Testing of Hill
Auditorium

Experimental validation of the proposed wireless monitoring sys-

tem is conducted using a cantilevered balcony of Hill Auditorium,
an historic theater on the University of Michigan’s Ann Arbor cam-

pus. Constructed in 1913, the theater has a capacity of 3,500 seats
with its seating distributed between the main floor and two balcony

sections (termed the mezzanine and upper balconies). In this study,
the mezzanine balcony was selected to serve as a demonstration

structure for experimental validation of the decentralized system
identification method embedded within a wireless monitoring sys-

tem. The mezzanine balcony is roughly 42 m wide and is canti-
levered 11 m above the main floor of the theater as shown in

Fig. 4. The plan view presented in Fig. 5(a) reveals the supports
of the balcony: rigid walls on two sides, a rigid wall on the

back of the balcony, and six auxiliary columns distributed along
the rear of the balcony.

Fig. 3. Narada wireless sensing platform with key hardware compo-

nents highlighted

Table 1. Analysis of Communication Requirements of Centralized and
Proposed Decentralized System Identification Methods

Methods Transmission payload byte

Centralized

implementation analysis

performed on control

server after all time-

history records received

Nsensor × Nacc × 2 byte ¼

16 × 1;200 × 2 ¼ 38:4 kbyte

Decentralized

computing MP

estimation conducted on

wireless sensor nodes

with MP communicated

to control server

Nacc × 2 byteþ ðNsensor � 1Þ

× NMP × 4 byte ¼ 1;200 × 2þ 15

×105 × 4 ¼ 8:7 kbyte

∴ Transmission reduction ¼ ∼77%

Note: network size, Nsensor ¼ 16 units; time-history data length, Nacc ¼
1;200 points; number of Markov Parameters, NMP ¼ 105 points.
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Instrumentation Strategy

A total of 15 Narada units is installed on the mezzanine balcony of

Hill Auditorium; the wireless sensor nodes are organized into three

rows of five nodes each as shown in Fig. 5(a). The wireless sensor

nodes are number 1 through 15. Attached to each Narada node is an

accelerometer mounted to the balcony floor to measure its vertical
acceleration response. Two accelerometers are used: Crossbow
CXL02 and PCB Piezotronics 3801D1FB3G. The sensitivity of
the 3801D1FB3G accelerometer is 0.7 V/g, its acceleration range
is �3 g, and its noise floor level is 0.15 mg. The CXL02 acceler-
ometer sensitivity is 1 V/g, its range is �2 g, and its noise floor is
0.5 mg. To improve the signal-to-noise ratio of the accelerometers,
a signal conditioning board designed to band-pass (0.014 to 25 Hz)
and amplify (by 5, 10 or 20 times) sensor signals is utilized as
shown in Fig. 5(d). In this study, an amplification of 20 is used
on each accelerometer output before being digitized by the Narada
analog-to-digital converter (ADC). The wireless sensor network is
controlled by a standard laptop computer configured to act as the
monitoring system’s control server as shown in Fig. 5(b).

In the input-output implementation of system identification, an
electrodynamic shaker (APS Dynamics 400) is used. The shaker
[Fig. 5(c)] is placed at the front edge of the mezzanine balcony
at the end of the third aisle [Fig. 5(a)]. This location is determined
to be optimal for exciting a maximum number of modes of the can-
tilevered balcony. The shaker’s total mass is 90.9 kg but its moving
reaction mass is 20.7 kg. The shaker is controlled by a Narada node
configured as a local coordinator [denoted as node 16 in Fig. 5(a)].
Prior to application of the Narada’s digital-to-analog converter
(DAC) output signal, the signal is boosted by an amplifier (Power
Amplifier Model 124). The local coordinator is programmed to
generate a saw-tooth chirp excitation with a frequency range of
3 to 15 Hz. To measure the motion of the shaker reaction mass,
a Crossbow CXL02 accelerometer is mounted to the reaction mass

Fig. 4. Main floor, mezzanine, and upper balcony sections of the uni-

versity of Michigan’s Hill Auditorium (Ann Arbor, MI)

Fig. 5. Experimental setup of the wireless monitoring system on the mezzanine balcony of Hill Auditorium: (a) sensor and exciter locations; (b) the

control server; (c) electrodynamic shaker driven by Narada; (d) typical Narada wireless sensor node with a MEMS-based accelerometer
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and interfaced to the Narada node. During excitation of the balcony,
five excitation types are utilized, with time of duration the primary
differentiator between excitations. The durations of the chirp exci-

tations are varied from 8 to 24 s in 4-s increments.
To validate the output-only system identification strategy, a

broad-band white excitation source is utilized. Although the imple-
mentation of many output-only system identification methods
record the behavior of the structure to ambient excitations (making
the assumption that the ambient excitation is white and broad-
band), this study utilizes impulsive loads as an equivalent broad-

band excitation source. Toward this end, a soft-tip 5.44-kg (12-lb)
modal hammer (Dytran Instruments 5803A) is used to introduce
an impulse load in the vicinity of the electrodynamic shaker.
Although a load cell is contained in the hammer tip, the measured
force time history is not used during system identification. During
the output-only implementation of the system, wireless sensor
node 8 [Fig. 5(a)] is designated as the local coordinator of the wire-

less monitoring system. This selection is arbitrary with any other
node capable of being the reference node; an investigation of differ-
ent reference nodes reveals the results are relatively insensitive to
which node serves as the reference.

With the first five modes estimated to be below 10 Hz, a
sampling rate of 40 Hz is prescribed for all of the tests conducted
in this study. Each test is conducted for 30 s, resulting in the col-

lection of 1,200 points of data by the local coordinator and wireless
sensor nodes. The input-output and output-only approaches to

MP extraction are conducted autonomously by the wireless mon-
itoring system. Each wireless sensor node is programmed to extract
105 Markov parameters.

Experimental Results

The acceleration of the shaker reaction mass during the application
of the 20-s chirp signal as measured by the local coordinator
(Narada node 16) is presented in Fig. 6(a). Because of the presence
of a back electromagnetic field (EMF), the amplitude of the accel-
eration decreases over the duration of the applied excitation. In
addition, the coupling between the shaker and the balcony is evi-
dent in the measured acceleration toward the end of the time-history
record (i.e., between 16 and 20 s). The Fourier spectrum of the re-
action mass acceleration is presented in Fig. 6(b). The 3- to 15-Hz
frequency band of the applied excitation is confirmed, although the
spectrum amplitude decreases at higher frequencies as a result of
the aforementioned back EMF effect inherent to the excitation
source. The acceleration response of the mezzanine balcony at
the center of the balcony as measured by wireless sensor nodes
7, 8, and 9 is shown in Fig. 7. The acceleration response is less
than 3 mg as measured in the three locations. In addition, resonance
of the lower modes of the mezzanine balcony is evident in the first
10 s of the measured acceleration response. The power spectral
density (PSD) functions corresponding to the response time histor-
ies plotted in Fig. 7 are shown in Fig. 8; the modes of the system are
easy to identify in the PSD plots.

Fig. 6. Controlled excitation of the mezzanine balcony: (a) measured acceleration of the electrodynamic shaker reaction mass; (b) corresponding

Fourier spectrum of the excitation
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The wireless monitoring system automatically extracts the MPs
at each wireless sensor node using the input-output or output-only
data. During the input-output implementation of the decentralized
system identification, perfect communication is experienced with
data never lost during the broadcasting of the excitation force
by the local coordinator and the communication of the MPs from
each wireless sensor node to the control server. Similarly, the
output-only implementation also experiences perfect communica-
tion with 100% data delivery during the broadcasting of the local
coordinator acceleration response and the communication of the
MPs from each wireless sensor node. Figs. 9 and 10 depict the
estimated MPs as calculated by wireless sensor nodes 7, 8, and
9 during the input-output and output-only implementations, respec-
tively. To check the precision of the extracted MPs, off-line sub-
space identification (i.e., direct 4SID in Fig. 1) is conducted
using the excitation and response time-history data collected by
the wireless monitoring system. Then, the MPs are simulated by

applying an impulse input to the state-space model that was esti-
mated using off-line subspace identification. As shown in Figs. 9
and 10, excellent agreement is encountered in the MP time histor-
ies. It should be noted that the decentralized MPs are calculated
from individual parallel SISO systems by μ-MPID. In contrast,
NExT and off-line MPs are calculated from the global SIMO sys-
tem by the direct 4SID method. Thus, small discrepancies between
the two results are found.

After the estimated MPs are communicated to the control server,
the system matrices A, B, C, and D are estimated by ERA. The
modal characteristics of the system (i.e., modal frequencies, mode
shapes, and modal damping ratios) are extracted from the system
matrix A. For example, the first five mode shapes of the mezzanine
balcony as extracted by the input-output and output-only MP es-
timation are presented in Figs. 11(a) and 11(b), respectively. For
comparison, the first five mode shapes of the balcony calculated
off-line by subspace identification are also presented in Fig. 11(c).

Fig. 7.Measured acceleration response of the instrumented mezzanine balcony at node 7 (top), 8 (middle), and 9 (bottom) during the application of a

20-s 3- to 15-Hz chirp signal (Fig. 6)

Fig. 8. Power spectral density functions of the measured acceleration response at sensor node 7 (left), 8 (middle), and 9 (right) during the application

of a 20-s 3- to 15-Hz chirp signal (Fig. 6)
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Strong agreement is visually observed in the mode shapes as esti-
mated by the three independent system identification methods. To
compare the modal characteristics extracted by the input-output and
output-only implementations in a more quantitative manner, Table 2
tabulates the modal frequencies and modal damping ratios ex-
tracted by the three system identification methods (i.e., the
in-network input-output implementation, in-network output-only
implementation, and off-line subspace identification). During the
input-output implementation, the five tests correspond to the same
excitation but of differing duration (i.e., 8, 12, 16, 20, and 24 s).
The five tests corresponding to the output-only implementation are
separate modal hammer blows delivered to the balcony. The first
four modal frequencies (5.6, 6.1, 6.7, and 7.6 Hz) and damping
ratios (1.4, 1.1, 0.8, and 0.8 %) are all in strong agreement between
the three system identification methods. However, the in-network
implementation (both the input-ouput and output-only implemen-
tations) are not as accurate for the fifth mode (9.1 Hz). Compared
with the off-line subspace identification method, the frequency and
damping ratio of the fifth mode for the in-network input-output sys-
tem identification method is in error by 5.5 and 81.6%, respectively.
The modal frequency is more accurate for the output-only imple-
mentation (with an error of less than 1%); however, the estimated
damping ratio is in error by 73.5%. To compare the mode shapes,
the modal assurance criteria (MAC) is adopted (Ewins 2000). The
mode shapes estimated by the wireless monitoring system are com-
pared with the mode shapes extracted off-line. Again, consistent
modes are extracted by the monitoring system as seen by MAC
values close to 1 for the first four modes (which contain the
majority of the response energy of the structure).

A power analysis is performed on the decentralized Markov
parameter extraction process. The Narada wireless sensor has
two major components that consume power: the wireless trans-
ceiver and microcontroller. The wireless transceiver (Chipcon
CC2420) consumes approximately 59 mW (18 mA at 3.3 V) when
transmitting or receiving. The radio can be placed into an idle state
when not in use to preserve power; when idle, the transceiver con-
sumes 1.4 mW (0.43 mA at 3.3 V). The microcontroller (Atmel
ATmega128) consumes 85 mW of power (17 mA at 5 V and
8 MHz) but is constantly consuming power regardless whether
it is computing. If no embedded computing is used (i.e., centralized
implementation), then the 16 Narada nodes (inclusive of the refer-
ence node) each collects 1,200 time samples (40 Hz for 30 s) and
communicates that to the central server (a total of 38,400 bytes
transmitted). In this study’s implementation, the radio is used to
transmit data (raw time-history data and Markov parameters)

Fig. 9. Estimated MPs at wireless sensor node 7 (top), 8 (middle), and

9 (bottom) during controlled excitation of the balcony

Fig. 10. Estimated MPs at wireless sensor node 7 (top), 8 (middle),

and 9 (bottom) during output-only implementation of the decentralized

system identification method

(a)

(b)

(c)

Fig. 11. Estimated five global mode shapes of the Hill Auditoriummezzanine balcony: (a) network-level ERA from sensor-level MP estimations from

input/output data; (b) network-level ERA from sensor-level MP estimations from output-only data; (c) off-line subspace method from input/output data
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and then placed in an idle state after all network transmissions have
been completed. More specific, the radios are kept in active state
even when not transmitting and only go to idle when all of the wire-
less sensors have completed their transfer of data. This is necessary
to ensure all nodes can be commanded by the central coordinator.
Assuming an effective bandwidth of 150 kbp, all of the transceivers
must remain active for 2.05 s, and therefore each consumes 121 mJ.
In the decentralized MP extraction process (both input-output and
output-only), 15 Narada nodes receive 1,200 points (2 bytes per
point) from the reference node. After locally computing Markov
parameters, each node communicates 105 Markov parameters
(each MP is 4 bytes); hence, a total of 6,300 bytes are transmitted.
Again, assuming an effective data rate of 150 kbp, the wireless
transceivers must remain active for 0.46 s. As a result, each trans-
ceiver consumes 27 mJ. Therefore, it can be concluded that each
wireless sensor in the network preserves a total of 93 mJ by locally
computing MPs and communicating the MPs instead of transmit-
ting raw time-history data.

Conclusions

As wireless monitoring systems emerge as a viable alternative to
traditional wired counterparts, scalable approaches to autonomously
processing measurement data in the network are necessary.
Embedded data processing has the benefit of improving system scal-
ability, reducing demand on the wireless communication channel,
and reducing the power consumption of the system battery-operated
nodes. In this study, a decentralized approach to system identifica-
tion was proposed for embedment within a wireless structural moni-
toring system. Specifically, extraction of nonparametric Markov
parameters using input-output and output-only data locally stored

at individual wireless sensor nodes allowed each node to convert

its raw measurement data into a more compact representation prior

to communication to a control server where ERA analysis was per-

formed. The approach was scalable to large nodal densities because

(1) the need for broadcasting data to the entire network was mini-

mized (i.e., only the excitation or reference response time-history

was broadcast) and (2) calculations (i.e., MP extraction) were per-

formed in parallel independently by the pervasive wireless sensor

nodes. By extracting 105 MP from 1,200-point response time-

history records at 15 wireless sensor nodes, over 77% compression

was accomplished. Although significant data compression was at-

tained, system properties were still identified with a high-degree

of accuracy.
For validation, a wireless monitoring system consisting of

Narada nodes was installed on the mezzanine balcony of the Hill

Auditorium. The wireless monitoring system was installed to con-

trol the excitation applied to the balcony, to sense the balcony re-

sponse under the applied load, to communicate data, and to process

measurement data in a scalable and autonomous manner. To vali-

date the input-output MP extraction method embedded in-network,

an electrodynamic shaker was also adopted. The MPs extracted

in-network were found to be in complete agreement with MPs

estimated off-line by a direct subspace identification method. The

wireless monitoring system control server performed an ERA

analysis using the MPs collected from the wireless sensor nodes,

resulting in complete characterization of the system modal proper-

ties. The modal characteristics autonomously extracted by the wire-

less monitoring system using its in-network data processing were

found to be within 2% of those extracted off-line by subspace

identification for the first four modes.

Table 2. Summary of Identified Modal Parameters from the Hill Auditorium Mezzanine Balcony

Input/output analysis Output-only analysis

Frequency (Hz) Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Test 1 5.616 6.052 6.724 7.618 8.606 5.629 6.064 6.731 7.616 9.958

Test 2 5.629 6.046 6.720 7.613 8.591 5.617 6.030 6.727 7.638 8.535

Test 3 5.617 6.047 6.713 7.612 8.642 5.618 6.054 6.720 7.613 10.055

Test 4 5.612 6.047 6.717 7.610 8.663 5.611 6.045 6.718 7.620 8.660

Test 5 5.612 6.047 6.715 7.602 8.596 5.622 6.044 6.716 7.602 8.591

Mean 5.617 6.048 6.718 7.611 8.619 5.619 6.047 6.722 7.618 9.160

Subspace method 5.631 6.056 6.727 7.626 9.116

Damping ratio Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Test 1 0.014 0.011 0.007 0.008 0.011 0.011 0.008 0.007 0.007 0.022

Test 2 0.013 0.011 0.008 0.008 0.009 0.013 0.010 0.009 0.007 0.008

Test 3 0.013 0.012 0.008 0.008 0.005 0.014 0.011 0.007 0.007 0.014

Test 4 0.014 0.012 0.009 0.007 0.010 0.015 0.009 0.008 0.007 0.015

Test 5 0.013 0.012 0.009 0.008 0.008 0.015 0.011 0.008 0.006 0.007

Mean 0.013 0.011 0.008 0.008 0.009 0.013 0.010 0.008 0.007 0.013

Subspace method 0.014 0.011 0.008 0.008 0.049

MAC Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Test 1 0.998 0.969 0.999 0.933 0.480 0.977 0.994 0.992 0.972 0.543

Test 2 0.999 0.989 0.996 0.932 0.598 0.966 0.990 0.984 0.965 0.621

Test 3 0.999 0.983 0.996 0.935 0.495 0.972 0.996 0.994 0.973 0.474

Test 4 0.996 0.986 0.994 0.931 0.710 0.972 0.994 0.991 0.960 0.233

Test 5 0.999 0.982 0.992 0.933 0.455 0.975 0.992 0.990 0.969 0.524

Mean 0.998 0.982 0.995 0.933 0.548 0.973 0.993 0.990 0.968 0.479
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