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Abstract— Most of the existing demand side management
programs focus primarily on the interactions between a utility
company and its customers/users. In this paper, we present an
autonomous and distributed demand side energy management
system among users that takes advantage of a two-way digital
communication infrastructure which is envisioned in the future
smart grid. We use game theory and formulate an energy
consumption scheduling game, where the players are the users
and their strategies are the daily schedules of their household
appliances and loads. It is assumed that the utility company can
adopt adequate pricing tariffs that differentiate the energy usage
in time and level. We show that for a common scenario, with
a single utility company serving multiple customers, the global
optimal performance in terms of minimizing the energy costs
is achieved at the Nash equilibrium of the formulated energy
consumption scheduling game. The proposed distributed demand
side energy management strategy requires each user to simply
apply its best response strategy to the current total load and
tariffs in the power distribution system. The users can maintain
privacy and do not need to reveal the details on their energy
consumption schedules to other users. We also show that users
will have the incentives to participate in the energy consumption
scheduling game and subscribing to such services. Simulation
results confirm that the proposed approach can reduce the peak-
to-average ratio of the total energy demand, the total energy
costs, as well as each user’s individual daily electricity charges.

Index Terms— Demand side management, distributed algo-
rithms, energy consumption scheduling, energy pricing, game
theory, market incentives, smart grid, smart meter.

I. INTRODUCTION

Demand side management (DSM) commonly refers to
programs implemented by utility companies to control the
energy consumption at the customer side of the meter [1].
These programs are employed to use the available energy
more efficiently without installing new generation and trans-
mission infrastructure. DSM programs include conservation
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and energy efficiency programs, fuel substitution programs,
demand response programs, and residential or commercial load
management programs [2]–[4]. Residential load management
programs usually aim at one or both of the following design
objectives: reducing consumption and shifting consumption
[5]. The former can be achieved among users by encouraging
energy-aware consumption patterns and by constructing more
energy efficient buildings. However, there is also a need for
practical solutions to shift the high-power household appli-
ances to off-peak hours to reduce the peak-to-average ratio
(PAR) in load demand. Appropriate load-shifting is foreseen
to become even more crucial as plug-in hybrid electric vehicles
(PHEVs) become popular. Most PHEVs need 0.2 - 0.3 KWh of
charging power for one mile of driving [6]. This will represent
a significant new load on the existing distribution system. In
particular, during the charging time, the PHEVs can almost
double the average household load and drastically exacerbate
the already high PAR. Moreover, unbalanced conditions re-
sulting from an increasing number of PHEVs may lead to
further degradation of the power quality, voltage problems,
and even potential damage to utility and consumer equipment
if the system is not properly reinforced [6].

One approach in residential load management is direct
load control (DLC) [7]–[10]. In DLC programs, based on an
agreement between the utility company and the customers,
the utility or an aggregator, which is managed by the utility,
can remotely control the operations and energy consumption
of certain appliances in a household. For example, it may
control lighting, thermal comfort equipment (i.e., heating,
ventilating, and air conditioning), refrigerators, and pumps.
However, when it comes to residential load control and home
automation, users privacy can be a major concern and even a
barrier in implementing DLC programs [11].

An alternative for DLC is smart pricing, where users are
encouraged to individually and voluntarily manage their loads,
e.g., by reducing their consumption at peak hours [12]–[14].
In this regard, critical-peak pricing (CPP), time-of-use pricing
(ToUP), and real-time pricing (RTP) are among the popular
options. For example, in RTP tariffs, the price of electricity
varies at different hours of the day. The prices are usually
higher during the afternoon, on hot days in the summer, and
on cold days in the winter [15]. RTP programs have been
adopted in some places in North America, e.g., by the Illinois
Power Company in Chicago [15]. While it is usually difficult
and confusing for the users to manually respond to prices that
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Fig. 1. A demand side management (DSM) strategy focused on individual
interactions between the utility and each user.

are changing every hour [16], [17], another problem that RTP
may face is load synchronization, where a large portion of
load is shifted from a typical peak hour to a typical non-peak
hour, without significantly reducing the PAR [18].

In most of the DSM programs that have been deployed over
the past three decades (e.g., in [7]–[14]), the key focus has
been on interactions between the utility company and each end
user. For example, in RTP programs, each user is expected
to individually respond to the time-differentiated prices by
shifting its own load from the high price hours to the low price
hours. Under this paradigm, each customer communicates with
the energy source individually as depicted in Fig. 1. However,
we argue in this paper that such an approach to the residential
load control may not always achieve the best solution to the
energy consumption problem. Instead, rather than focusing
only on how each user behaves individually, a good DSM
program should have the objective that the aggregate load
satisfies some desired properties. For example, only the total
load at each hour is important when it comes to solving the
economic dispatching problem [19]. Also the PAR depends
only on the total load demand. Therefore, while it is useful
to employ aggregator units for load shaping [20], it is also
important to design more efficient residential load management
strategies that work by enabling interactions among users via
message exchange as depicted in Fig. 2. If the users are
provided with sufficient incentives, they can coordinate their
usage to reduce the PAR or minimize the energy cost. Due to
the recent advancements in smart grid technologies [21]–[24],
the interactions between users do not have to be manual, but
can be automatic through two-way digital communication.

In this paper, we propose an incentive-based energy con-
sumption scheduling scheme for the future smart grid. We
consider a scenario where a source of energy (e.g., a generator
or a step-down substation transformer which is connected to
the grid) is shared by several customers, each one of which
is equipped with an automatic energy consumption scheduler
(ECS). The ECS functionality is deployed inside the smart
meters that are connected to not only the power line, but
also to a communication network. The smart meters with
ECS functions interact automatically by running a distributed
algorithm to find the optimal energy consumption schedule
for each user. The optimization objective is to minimize
the energy cost in the system. As can be shown with a
game-theoretic analysis [25], a simple pricing mechanism can
provide the users with the incentives to cooperate. The overall
system performance is improved. Each user also pays less.
In other words, through an appropriate pricing scheme, the
Nash equilibrium of the energy consumption game among the
participating users who share the same energy source is the
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Fig. 2. A demand side management strategy for the smart grid with enabled
interactions among the users/customers and the utility company.

optimal solution of a system-wide optimization problem.
The discussions and analysis in this paper extend the

preliminary results in our earlier conference paper in [26] in
various directions. First, here we consider not only the energy
cost minimization problem but also the problem of minimizing
the PAR in the total load. In this regard, we also explain the
relationship between the two problems. Second, our game-
theoretic analysis in this paper is more elaborate and includes
new discussions on strategy-proof properties of the proposed
algorithm, i.e., the ability to prevent users from cheating and
misleading during their interactions with each other. Finally,
the simulation results in this paper are more extensive and
further include a detailed assessment of the convergence and
optimality properties of our proposed algorithm, enable a
better understanding of the relationship between PAR in the
total load demand and the PAR in each user’s individual
load, and highlight the impact of changes in the number of
appliances to energy consumption scheduling.

The rest of this paper is organized as follows. We introduce
the system model in Section II. The PAR and energy cost min-
imization problems are formulated in Section III. The energy
consumption games are introduced in Section IV. A distributed
DSM algorithm is presented in Section V. Simulation results
are given in Section VI. The paper is concluded in Section VII.
All analytical proofs are summarized in Appendices A-D.

II. SYSTEM MODEL

In this section, we provide analytical descriptions for the
representation of the power system, the energy cost, and
residential load control. Based on these definitions, we will
formulate two design optimization problems in Section III.

A. Power System

Consider a smart power system with multiple load cus-
tomers and one energy source, e.g., a generator or a step-down
substation transformer connected to the electric grid. The block
diagram of such a power distribution system is shown in Fig.
3. We assume that each customer is equipped with a smart
meter that has an ECS capability for scheduling the household
energy consumption. The smart meters are all connected to
the power line coming from the energy source. They are also
connected to each other and to the energy source through
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Fig. 3. Block diagram of smart grid system composed of an energy source,
users, a distribution power line, and a local area communication network.

a local area network (LAN). All communications between
the utility and the customers’ smart meters and all message
exchanges among the smart meters are done through the LAN
by using appropriate communication protocols.

Throughout the paper, let N denote the set of users, where
the number of users is N , |N |. For each customer n ∈ N ,
let lhn denote the total load at hour h ∈ H , {1, . . . ,H},
where H = 24. Without loss of generality, we assume that
time granularity is one hour. The daily load for user n is
denoted by ln , [l1n, . . . , l

H
n ]. Based on these definitions, the

total load across all users at each hour of the day h ∈ H can
be calculated as

Lh ,
∑
n∈N

lhn. (1)

The daily peak and average load levels are calculated as

Lpeak = max
h∈H

Lh (2)

and

Lavg =
1

H

∑
h∈H

Lh, (3)

respectively. Therefore, the PAR in load demand is

PAR =
Lpeak
Lavg

=
H maxh∈H Lh∑

h∈H Lh
. (4)

B. Energy Cost Model

We define a cost function Ch(Lh) indicating the cost of
generating or distributing electricity by the energy source at
each hour h ∈ H. In general, the cost of the same load can be
different at different times of the day. In particular, the cost
can be less at night compared to the day time. In addition, we
make the following assumptions throughout this paper.

Assumption 1: The cost functions are increasing. That is,
for each h ∈ H, the following inequality holds:

Ch(L̂h) < Ch(L̃h), ∀ L̂h < L̃h. (5)

From (5), energy cost increases if the total load increases.

Assumption 2: The cost functions are strictly convex. That
is, for each h ∈ H, any real number L̂h, L̃h ≥ 0, and any real
number 0 < θ < 1, we have [27]

Ch(θL̂h + (1− θ)L̃h) < θCh(L̂h) + (1− θ)Ch(L̃h). (6)
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Fig. 4. Two sample convex and increasing cost functions: (a) Two-step
conservation rate model used by BC Hydro [28]; (b) A quadratic cost function.

An interesting example for a class of actual energy cost
functions that satisfy Assumptions 1 and 2 is the quadratic
cost function for thermal generators with [19]:

Ch(Lh) = ah L
2
h + bh Lh + ch, (7)

where ah > 0 and bh, ch ≥ 0 at each hour h ∈ H.
Note that the cost functions that we consider in this paper

can represent either the actual energy cost as for thermal
generators or simply artificial cost tariffs which are used by
the utility to impose a proper load control. For example, British
Columbia (BC) Hydro in Canada adopts a convex price model
in form of a two-step piecewise linear function to encourage
energy conservation as shown in Fig. 4(a) [28]. A smoother
quadratic cost function is also shown in Fig. 4(b) which is
more tractable for the purpose of optimization.

C. Residential Load Control

For each user n ∈ N , let An denote the set of household
appliances such as washer and dryer, refrigerator, dishwasher,
air conditioner, PHEV, etc. For each appliance a ∈ An, we
define an energy consumption scheduling vector

xn,a , [x1
n,a, . . . , x

H
n,a], (8)

where scalar xhn,a denotes the corresponding one-hour energy
consumption that is scheduled for appliance a by user n at
hour h. Clearly, the total load of the n-th user is obtained as

lhn =
∑
a∈An

xhn,a, h ∈ H. (9)

In our design, as illustrated in Fig. 5, the task of the ECS func-
tion in user n’s smart meter is to determine the optimal choice
of the energy consumption vector xn,a for each appliance a.
This will shape user n’s daily load profile due to (9). Next,
we identify the feasible choices of the energy consumption
scheduling vectors based on users’ energy needs.

For each user n ∈ N and each appliance a ∈ An, we
denote the pre-determined total daily energy consumption as
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Fig. 5. The operation of the smart meter with ECS capability in our design.

En,a. For example, En,a = 16 kWh for a PHEV for a 40-
mile daily driving range [6]. In this paper, our designed energy
consumption scheduler does not aim to change the amount of
energy consumption, but instead to systematically manage and
shift it, e.g., in order to reduce the PAR or minimize the energy
cost. In this case, the user needs to select the beginning αn,a ∈
H and the end βn,a ∈ H of a time interval that appliance a can
be scheduled. Clearly, αn,a < βn,a. For example, a user may
select αn,a = 11 PM and βn,a = 8 AM for its PHEV to have
it ready before going to work. This imposes certain constraints
on vector xn,a. In fact, the time interval for which appliance
a can be scheduled equals its required pre-determined daily
consumption, that is

βn,a∑
h=αn,a

xhn,a = En,a, (10)

and
xhn,a = 0, ∀ h ∈ H\Hn,a, (11)

where Hn,a , {αn,a, . . . , βn,a}. For each appliance, the time
interval provided by the user needs to be larger than or equal to
the time interval needed to finish the operation. For example,
for a PHEV the normal charging time is 3 hours [6]; therefore,
it is required that βn,a−αn,a ≥ 3. We also note that from (10)
and (11), the total energy consumed by all appliances in the
system over 24 hours is equal to the sum of the daily energy
consumption of all loads/appliances. That is, we always have
the following energy balance relationship:∑

h∈H

Lh =
∑
n∈N

∑
a∈An

En,a. (12)

In general, the operation of some appliances may not be
time shiftable and they may have strict energy consumption
scheduling constraints. For example, a refrigerator may have
to be on all the time. In that case, αn,a = 1 and βn,a =
24. As shown in Fig. 5, the ECS function in the smart
meter essentially has no impact on the energy consumption
scheduling for non-shiftable household appliances.

We define the minimum standby power level γmin
n,a and the

maximum power level γmax
n,a for each appliance a ∈ An for

each user n ∈ N . Standby power refers to the electric power
consumed by each appliance while it is switched off or it is
in a standby mode. We assume that

γmin
n,a ≤ xhn,a ≤ γmax

n,a , ∀ h ∈ Hn,a. (13)

For notational simplicity, for each user n, we introduce vector
xn, which is formed by stacking up energy consumption
scheduling vectors xn,a for all appliances a ∈ An. In this
regard, we can define a feasible energy consumption schedul-
ing set corresponding to user n as follows:

Xn = {xn |
∑βn,a

h=αn,a
xhn,a = En,a,

xhn,a = 0, ∀ h ∈ H\Hn,a,
γmin
n,a ≤ xhn,a ≤ γmax

n,a , ∀ h ∈ Hn,a} .

(14)

An energy consumption schedule calculated by the ECS unit
in user n’s smart meter is valid only if we have xn ∈ Xn.
We are now ready to formulate various energy consumption
scheduling optimization problems in a smart grid.

III. PROBLEM FORMULATION

In this section, we formulate two optimization problems
based on two common design objectives in a power distribu-
tion system: PAR minimization and energy cost minimization.
We show that these two problems can be related to each other
depending on the choice of the energy cost function.

A. Peak-to-average Ratio Minimization

By using the expressions in (1), (9), (10), and (11) in
(4), we can rewrite the PAR in terms of energy consumption
scheduling vectors x1, . . . ,xN as

H max
h∈H

(∑
n∈N

∑
a∈An

xhn,a

)
∑
n∈N

∑
a∈An

En,a
. (15)

In general, a low PAR is preferred [19]. Therefore, given
complete knowledge about the users’ needs and the smart grid
depicted in Fig. 3, an efficient energy consumption scheduling
can be characterized as the solution to the following problem:

minimize
xn∈Xn, ∀ n∈N

H max
h∈H

(∑
n∈N

∑
a∈An

xhn,a

)
∑
n∈N

∑
a∈An

En,a
. (16)

Next, we note that since H and
∑
n∈N

∑
a∈An

En,a are fixed
as far as the optimization variables x1, . . . ,xN are concerned,
they can be removed from the objective function and we can
rewrite problem (16) as the following equivalent problem:

minimize
xn∈Xn, ∀ n∈N

max
h∈H

(∑
n∈N

∑
a∈An

xhn,a

)
. (17)

However, problem (17) is still difficult to solve in its current
form due to the max term in the objective function. This can
be resolved by introducing a new auxiliary variable Γ and
rewriting problem (17) in equivalent form as

minimize
Γ, xn∈Xn, ∀n∈N

Γ

subject to Γ ≥
∑
n∈N

∑
a∈An

xhn,a, ∀ h ∈ H. (18)



Problem (18) is a linear program. It can be solved in a
centralized fashion by using either the simplex method or the
interior point method (IPM) [27], [29]. We also note that
problem (18) may have more than one optimal solution. That
is, the same minimum PAR in the total load demand can be
achieved through different energy consumption schedules.

B. Energy Cost Minimization
An efficient energy consumption scheduling can also be

formulated in terms of minimizing the energy costs to all users,
which can be expressed as the following optimization problem:

minimize
xn∈Xn, ∀n∈N

H∑
h=1

Ch

(∑
n∈N

∑
a∈An

xhn,a

)
. (19)

Optimization problem (19) is convex and can be solved in
a centralized fashion using convex programming techniques
such as IPM [27], [29]. Since the cost functions are assumed
to be strictly convex, minimization problem (19) always has
a unique solution, given the choices of the cost functions
[27]. This is one of the differences between the energy cost
minimization problem and the PAR minimization problem.
Recall that the latter could have multiple optimal solutions.

IV. ENERGY CONSUMPTION GAME

Although the optimization problems defined in the previous
section can be solved in a centralized fashion to obtain an
optimal solution for a given configuration of the users and their
energy schedules, it is more advantageous to define a solution
approach that can be implemented and updated autonomously
to accommodate the changes within the system. For these rea-
sons, we are interested in solving problem (19) in a distributed
way at the level of the smart meter using it’s ECS functionality,
and with a minimum amount of information exchanges among
the smart meters and the energy source. In particular, the goal
is to let each smart meter with ECS functionality schedule
the energy consumption of the household according to the
individual needs of the users. It is also important to make
sure that the users have an incentive to actually use the ECS
features and to follow the schedules they determine. We focus
on the energy cost minimization problem. Nevertheless, we
will see in Section VI that by achieving the minimum cost,
we also achieve a low PAR in the total load demand.

A. Pricing and Billing Tariffs
For each user n ∈ N , let bn denote the daily billing amount

in dollars to be charged to user n by the utility at the end of
each day. The prices should reflect the users’ total daily energy
consumption and relate it to the total energy cost of the system.
It is reasonable to assume that∑

n∈N
bn ≥

H∑
h=1

Ch

(∑
n∈N

lhn

)
, (20)

where the left hand side in (20) denotes the total daily charge
to the users and the right hand side denotes the total daily
cost. For notational simplicity we define

κ ,

∑
n∈N bn∑H

h=1 Ch
(∑

n∈N l
h
n

) ≥ 1. (21)

If κ = 1, then the billing system is budget-balanced and the
utility company charges the users only with the same amount
that generating/providing energy costs for the utility. On the
other hand, if κ > 1, then the difference between the total
charges to the users and the total energy cost would indicate
the profit made by the utility company. We further assume that

bn
bm

=

∑H
h=1 l

h
n∑H

h=1 l
h
m

, ∀n,m ∈ N . (22)

That is, users are charged proportional to their total daily
energy consumption. For example, if user n consumes twice
as much energy as user m, then he/she will be charged twice
as much as user m. The exact amount of the charge depends
on the cost of energy at each hour of the day, which itself
results from a strictly convex function C(·) such as the one
shown in Fig. 4. While the assumption in (22) helps in keeping
our analysis tractable by directly relating every user’s total
payment to the total energy cost in the system, it is also
consistent with the existing residential metering models. We
are now ready to introduce an efficient energy pricing model
which satisfies both assumptions (20) and (22).

After summing up the two sides of the equality in (22)
across all users m ∈ N , for each n ∈ N , we have∑

m∈N
bm =

∑
m∈N

(
bn

∑H
h=1 l

h
m∑H

h=1 l
h
n

)

= bn

∑
m∈N

∑H
h=1 l

h
m∑H

h=1 l
h
n

.

(23)

Together from (9), (10), (21), and (23) and after reordering
the terms we can show that for each user n ∈ N we have

bn =

∑H
h=1 l

h
n∑

m∈N
∑H
h=1 l

h
m

(∑
m∈N

bm

)

=
κ
∑H
h=1 l

h
n∑

m∈N
∑H
h=1 l

h
m

(
H∑
h=1

Ch

(∑
m∈N

lhm

))

= Ωn

H∑
h=1

Ch

(∑
m∈N

∑
a∈Am

xhm,a

)
,

(24)

where

Ωn ,
κ
∑
a∈An

En,a∑
m∈N

∑
a∈Am

Em,a
. (25)

Next, we study the behavior of the users when they are charged
according to (24) by using techniques from game theory.

B. Game Model

From (24), the charge on each user depends on how he
and all other users schedule their consumptions. This naturally
leads to the following game among users:

Game 1 (Energy Consumption Game Among Users):

• Players: Registered users in set N .
• Strategies: Each user n ∈ N selects its energy consump-

tion scheduling vector xn to maximize its payoff.



• Payoffs: Pn(xn; x−n) for each user n∈N , where

Pn(xn; x−n) = −bn

= −Ωn ×

(
H∑
h=1

Ch

(∑
m∈N

∑
a∈Am

xhm,a

))
.

Here, x−n , [x1, . . . ,xn−1,xn+1, . . . ,xN ] denotes the
vector containing the energy consumption schedules of
all users other than end user n.

Based on the definitions of the payoffs and strategies in
Game 1, the users try to select their energy consumption
schedule to minimize their payments to the utility company.

Theorem 1: Suppose Assumptions 1 and 2 hold. The Nash
equilibrium of Game 1 always exists and is unique.

The proof of Theorem 1 is given in Appendix A. Note that
Nash equilibrium is a solution concept in game theory that
characterizes how the players play a game [25]. The energy
consumption scheduling variables (x∗n, ∀ n ∈ N ) form a Nash
equilibrium for Game 1 if and only if we have

Pn(x∗n; x∗−n) ≥ Pn(xn; x∗−n), ∀ n ∈ N , xn ≥ 0. (26)

If the energy consumption game is at its unique Nash equilib-
rium, then no user would benefit by deviating from schedule
(x∗n, ∀ n ∈ N ). Next, we show the following result regarding
the performance at Nash equilibrium of Game 1.

Theorem 2: The unique Nash equilibrium of Game 1 is the
optimal solution of energy cost minimization problem (19).

The proof of Theorem 2 is given in Appendix B. From
Theorems 1 and 2, as long as the cost functions Ch(·) are
increasing and strictly convex for each h ∈ H and also the
price model satisfies the requirements (20) and (22), the users
have an incentive to cooperate with each other to reduce their
own payments by solving problem (19).

V. DISTRIBUTED ALGORITHM

From the results in Section IV, the users would be willing to
cooperate and allow their ECS units to schedule their house-
hold energy consumption to pay less. In particular, we showed
that the unique Nash equilibrium of the energy consumption
game among the users is the same as the global optimal
solution of the energy consumption scheduling problem (19).
In this section, we provide an algorithm to be implemented
in each ECS unit to reach the Nash equilibrium of Game
1 and achieve the optimal system performance. We prove
the convergence and optimality properties of the proposed
algorithm. We also show that it is strategy-proof and users will
not benefit from misleading each other by providing inaccurate
information about their usage during their interactions.

A. Principle of the Algorithm
Consider any user n ∈ N . Given x−n and assuming that all

other users fix their energy consumption schedule according
to x−n, user n’s best response can be determined by solving
the following local optimization problem:

maximize
xn∈Xn

Pn(xn; x−n). (27)

Algorithm 1 : Executed by each user n ∈ N .
1: Randomly initialize ln and l−n.
2: Repeat
3: At random time instances Do
4: Solve local problem (29) using IPM [27].
5: If xn changes compared to current schedule Then
6: Update xn according to the new solution.
7: Broadcast a control message to announce ln to

the other ECS units across the system.
8: End
9: End

10: If a control message is received Then
11: Update l−n accordingly.
12: End
13: Until no ECS unit announces any new schedule.

Notice that we refer to optimization problem (27) as a local
problem for user n because the only optimization variable
is user n’s energy consumption scheduling vector xn. Since
Ωn is fixed and does not depend on the choice of xn, the
maximization in (27) can be replaced by

minimize
xn∈Xn

H∑
h=1

Ch

(∑
m∈N

∑
a∈Am

xhm,a

)
. (28)

After reordering the terms, we can also rewrite (28) as

minimize
xn∈Xn

H∑
h=1

Ch

∑
a∈An

xhn,a +
∑

m∈N\{n}

lhm

 . (29)

We notice that problems (29) and (19) have the same objective
functions. However, problem (29) has only local variables
for user n. Moreover, problem (29) is convex and can be
solved by IPM [27]. User n can solve problem (29) as long
as it knows the cost functions Ch for all h ∈ H as well as
l−n , [l1, . . . , ln−1, ln+1, . . . , lN ], i.e., the vector containing
the scheduled daily energy consumption for all other users.
These observations motivate us to propose Algorithm 1 to
solve problem (19) in a distributed fashion.

Next, we explain how the proposed algorithm works. In
Line 1, each user n ∈ N starts with some random initial
conditions. That is, each user n assumes a random vector lm
for any m ∈ N\{n}. This assumption is required since at the
beginning, user n has no prior information about other users.
Then, the loop in Lines 2 to 13 is executed until the algorithm
converges1. Within this loop, each ECS individually solves its
own version of local optimization problem (29) using IPM
in Line 4. That is, each user simply plays its best response
as discussed in Section V-A. The new schedule is announced
to the other users through broadcasting a control message. In
fact, the message exchange between the users in the general
framework in Fig. 2 are implemented in Algorithm 1 in form
of each user n broadcasting ln over the LAN. Note that
users do not reveal the details about the energy consumption
of their own appliances due to privacy concerns. They only
announce their total hourly usage, which is collected at the

1We will discuss the convergence property of Algorithm 1 in Theorem 3.



energy source for billing purposes anyways. In this setting,
each user also updates its local memory whenever it receives
a control message from other users in Line 11.

The proposed DSM strategy in this section has key dif-
ferences with the existing DSM programs in the literature.
First, unlike DLC, here each user has control over the oper-
ation of its own appliances. Therefore, user privacy is not a
concern. Moreover, the users simply follow what is best for
them in order to decide on their own consumption schedules
while they select the best-response in the energy consumption
game. Different from DLC and RTP which are based on the
framework in Fig. 1, our design is based on the new setting
in Fig. 2 and incorporates the interactions among users.

B. Convergence and Optimality

In this section, we prove the convergence and optimality
properties of the proposed distributed algorithm. The corner-
stone of our assessment is the following theorem.

Theorem 3: If the updates of the individual energy con-
sumption scheduling vectors are asynchronous among the
users, i.e., no two users n,m ∈ N update their energy
consumption scheduling vectors xn and xm at the same time,
then starting from any randomly selected initial conditions,
Algorithm 1 converges to its fixed point, i.e., to the Nash
equilibrium of the energy consumption game.

The proof of Theorem 3 is given in Appendix C. Theorem
3 provides a sufficient condition to guarantee convergence.
This condition only requires the users to update their energy
consumption scheduling vectors sequentially. For example,
this can be achieved if the energy source can determine the
timing when each user should update its energy consumption.
In that case, instead of Line 3 in Algorithm 1, user n would
execute Lines 4 to 7 only if it receives a command from
the energy source telling him/her that it is user n’s turn to
update its energy consumption scheduling vectors. Other turn-
taking scenarios can also be used to coordinate the energy
consumption scheduling updates among the users.

Together, from Theorems 2 and 3, starting from any initial
point, Algorithm 1 automatically converges to the global
optimal solution of energy cost minimization problem (19). We
notice that if all users’ energy consumption needs remain un-
changed within the next 24 hours, then Algorithm 1 becomes a
day-ahead energy consumption scheduling design. However, if
the energy consumption needs for the users change frequently,
then Algorithm 1 will converge to the new optimal energy
consumption schedules in a more real-time fashion (cf. [18]).

C. Strategy-proof Property

In this section, we would like to answer this question: Is it
beneficial for a user or a group of users to cheat and announce
an incorrect energy consumption schedule to the other users?
That is, does it help user n, in terms of increasing its daily
payoff at a fixed point of Algorithm 1, to be untruthful and
set ln 6=

(∑
a∈An

xhn,a
)
? Of course, it is possible to have the

energy source supervise and monitor all message exchanges
among users such that the users’ truthfulness can be enforced.

But it is still interesting to see if Algorithm 1 itself enforces
truthfulness with no extra supervisory effort from the utility.

Theorem 4: When the users are running Algorithm 1, no
user or group of users would benefit from being untruthful.
That is, each user n ∈ N will end up having a higher
electricity payment on its daily bill if he announces its daily
energy consumption schedule ln incorrectly.

The proof of Theorem 4 is given in Appendix D. From
Theorem 4 we can assure that all users release their daily
energy consumption schedule accurately. This includes the
case when a user believes that all other users in the system are
being truthful as well. This implies that an energy consumption
game is not tempting for cheating and is fundamentally
different from some well-known games such as the prisoner’s
dilemma game [25, p. 110] where the users do cheat if they
think that other players are truthful. It is worth clarifying
that the underlying cause for Algorithm 1 to be automatically
strategy-proof is that in our billing model, we have directly
related every user’s payoff to the total energy cost in the
system. In fact, the global and individual cost minimizations
are closely related in our model. Therefore, any behavior by
a user or a group of users which results in deviating from the
optimal system performance will also harm the cheating user
or the group of cheating users in terms of individual payments,
deterring users from any malicious behavior.

VI. SIMULATION RESULTS

In this section, we present simulation results and assess
the performance of our proposed algorithm. In our considered
benchmark smart grid system there are N = 10 customer/users
that subscribe to the ECS services. For the purpose of study,
each user is selected to have between 10 to 20 appliances
with non-shiftable operation, i.e., with strict energy con-
sumption scheduling constraints. Such appliances may include
refrigerator-freezer (daily usage: 1.32 kWh), electric stove
(daily usage: 1.89 kWh for self-cleaning and 2.01 kWh for
regular), lighting (daily usage for 10 standard bulbs: 1.00
kWh), heating (daily usage: 7.1 kWh) [30]. Moreover, each
user is selected to also have between 10 to 20 appliances
with shiftable operation, i.e., with soft energy consumption
scheduling constraints. Recall that the smart meter with ECS
capability may schedule only the appliances with soft energy
consumption scheduling constraints. Such appliances may
include dishwasher (daily usage: 1.44 kWh), washing machine
(daily usage: 1.49 kWh for energy-star, 1.94 kWh for regular),
clothes dryer (daily usage: 2.50 kWh), and PHEV (daily usage:
9.9 kWh). [6], [30]. In our simulation model, we assume
that each user has a randomly selected combination of the
considered shiftable and non-shiftable loads to be used at
different times of the day by taking into account that the load
demand is higher in the evening and lower during the night.
For example, we assumed that when PHEVs become popular
as widely predicted, it is reasonable to assume that most users
(4 out of 5 users in our setting) have electric cars to be charged
some time between the afternoon hours on each day and the
early morning hours on the next day. The energy cost function
is assumed to be quadratic as in (7). For simplicity we assume



that bh = ch = 0 for all h ∈ H. We also have ah = 0.3 cents at
day-time hours, i.e., from 8:00 in the morning to 12:00 at night
and ah = 0.2 cents during the night, i.e., from 12:00 at night to
8:00 AM the day after. The power system is assumed budget-
balanced, i.e., κ = 1 (see (21)). The timing Algorithm 1 works
based on a round-robin scenario which is coordinated by the
energy source. In this scenario, at each user’s turn it will start
its local computation to update its own energy consumption
schedule according to Line 4 in Algorithm 1. Then it will
inform the energy source who will allocate turn to another
randomly selected user and this procedure continues until the
algorithm converges. In this setting, the energy source makes
sure that every user takes a turn once-in-while.

A. Performance Comparison

The simulation results on total scheduled energy consump-
tions and the energy cost for a single scenario are shown in
Figs. 6 and 7, without and with the deployment of the ECS
function in the smart meters, respectively. For the case without
ECS deployment, each appliance a ∈ An for each user n ∈ N
is assumed to start operation right at the beginning of the
time interval [αn,a, βn,a] and at its typical power level. For
the case with ECS deployment, the timing and the power level
for the operation of each household appliance is determined by
Algorithm 1. By comparing the results in Figs. 6 and 7, we can
see that when the ECS functions are not used/implemented,
the PAR is 2.1 and the energy cost is $44.77. At the same
time, when the ECS feature is enabled, the PAR reduces to
1.8 (i.e., 17% less) and the energy cost reduces to $37.90 (i.e.,
18% less). In fact, in the latter case, there is a more evenly
distributed load across different hours of the day. Note that
each user consumes the same amount of energy in the two
cases, but it simply schedules its consumption more efficiently
in the case that the ECS units are used. On the other hand,
the trends of the resulting total energy cost while Algorithm
1 proceeds along its distrbuted iterations are shown in Fig. 8.
We can see that as the users run Algorithm 1, the energy cost
monotonically decreases until the algorithm converges after 22
iterations only, i.e., around 2 iterations per user on average.

B. User Payment

While the proposed distributed DSM strategy leads to less
total energy cost and lower PAR in the aggregate load demand,
it is also beneficial for each individual end user. To see this,
the daily payments for all users are shown in Fig. 9. Here,
the simulation setting is the same as the one in Section VI-
A. We can see that all users would pay significantly less to
the utility company when the ECS is enabled in the smart
meter. Therefore, the users would be willing to participate in
the proposed automatic demand side management system.

Another interesting aspect is shown in Fig. 10. In this figure,
we have plotted the PAR in each user’s load and compared it
with the PAR in the aggregate load across all users. Here, for
each user n ∈ N , the individual PAR is calculated as

PARn ,
H maxh l

h
n∑H

h=1 l
h
n

. (30)
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Fig. 6. Scheduled energy consumption and corresponding cost when ECS
units are not used. In this case, PAR is 2.1 and the total daily cost is $44.77.
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Fig. 7. Scheduled energy consumption and corresponding cost when ECS
units are deployed. In this case, PAR is 1.8 and the total daily cost is $37.90.

We can see in Fig. 10 that the PAR in the aggregate load
is significantly less than the PAR in each user’s individual
load. In fact, for some users, such as user 7 in our example
scenario, the load is quite unbalanced and the PAR is around
4.5. This confirms our discussions in Section I that the utility
company may not necessarily need all users to individually
balance their load, as opposed to the design objective in real-
time pricing tariffs which expect each individual end user to
shift its consumption from peak hours to off-peak hours.

C. Optimal PAR Reduction

Recall from Section III that in order to achieve the minimum
PAR in the total load demand, we can schedule energy
consumption according to the optimal solution of problem
(18). However, our proposed distributed algorithm in this
paper only aims at minimizing the energy cost, i.e., solving
problem (19). In this section, we show that by solving problem
(19), Algorithm 1 results in PAR values which are very close
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Fig. 8. Trend of resulting energy cost along the iterations of Algorithm 1.
We can see that the proposed distributed algorithm converges quickly. Steady
state is reached after only 22 iterations when the energy cost is minimized.
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Fig. 9. Daily charges for each subscriber without and with ECS deployment.

to the PAR values obtained by solving problem (18). In
addition, Algorithm 1 significantly reduces the energy cost.
Corresponding simulation results are shown in Fig. 11. Here,
we simulated 50 different scenarios to have a more accurate
comparison. From the results in Fig. 11(a), we can see that
the PARs achieved by solving the PAR minimization problem
(18) and the energy cost minimization problem (19) are almost
the same. In fact, in 32 out of 50 scenarios, the two PAR
values are identical. In the remaining 18 scenarios, the solution
of the PAR minimization problem results in strictly lower
PAR, e.g., as in scenario number 17. However, even in these
cases, the improvement is minor. On average, the PAR reduces
from 1.8325 to 1.8315 (i.e., only 0.05% improvement). On
the other hand, from Fig. 11(b), we can see that Algorithm
1 significantly outperforms the optimal solution of the PAR
minimization problem in terms of reducing the energy cost.
We notice that while the average energy cost when no ECS
unit is deployed is as high as $51.83, the average energy cost at
the optimal solution of the PAR minimization problem reduces
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Fig. 10. PAR in each end user’s individual daily load and comparison with
the PAR in the aggregate load across all end users.

to $48.04. However, the average energy cost at the optimal
solution of the energy cost minimization problem obtained
by running Algorithm 1 is only $41.65. Therefore, we can
conclude that Algorithm 1, which is designed for energy cost
minimization, also efficiently reduces the PAR in the aggregate
load. Moreover, it can significantly reduce the energy cost.

D. Impact of Amount of Shiftable Load

For the simulation scenarios so far, we have assumed that
around half of the residential load is shiftable while the other
half is not shiftable. Clearly, the ECS units are expected
to have a more significant impact if more appliances have
shiftable operation. To better see this, we have plotted the PAR
in the aggregate load demand when the percentage of shiftable
load varies from 10% to 90% in Fig. 12. In this regard, we
can see that if 9 out of 10 appliances have shiftable operation,
then on average, the PAR in the aggregate load can be reduced
down to only 1.35, indicating almost a flat load.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an optimal, autonomous, and
distributed incentive-based energy consumption scheduling
algorithm in order to minimize the cost of energy and also
to balance the total residential load when multiple users share
a common energy source. Unlike most of the previous DSM
strategies that focus solely on the interactions between the
utility company and each user, the basis of our design are the
interactions among the users. Our proposed distributed algo-
rithm requires only some limited message exchanges between
users when each of them tries to maximize its own benefits
in a game-theoretic setting. In order to encourage users to
behave in a desired way (i.e., to minimize the energy cost) we
proposed a smart pricing tariff such that the interactions among
the users automatically lead to an optimal aggregate load
profile at the equilibrium of an energy consumption scheduling
game. Simulation results confirm that the proposed distributed
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Fig. 11. Comparison between the optimal solution of the PAR minimization
problem (18), the optimal solution of the energy cost minimization problem
(19), and the case with no ECS function deployment in smart meters.

demand side management strategy can reduce the PAR, the
energy cost, and each user’s daily electricity charges.

The results in this paper can be extended in several direc-
tions. First, the proposed distributed DSM strategty can be
modified to address the case when there are multiple energy
sources in the system. In that case, the users need to determine
not only the total amount of their energy consumption at
each hour of the day, but also the portion of the total energy
that they need to obtain from each available energy source.
Second, it is interesting to extend our design to address both
shifting and reducing energy consumption. This can be done
by introducing new energy cost functions which depend on not
only the energy consumption at each hour, but also the total
daily energy consumption. In this regard, the linear billing
model in (22) in Section IV-A can be extended to more
general non-linear models. Third, one may relax the convexity
assumption on the choices of the energy cost functions to
cover a wider range of energy cost models. Of course, this
will introduce optimization problems which are more difficult
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Fig. 12. The PAR in the aggregate load when the percentage of shiftable
load varies from 10% to 90%. In a scenario when most of the residential load
is shiftable, the aggregate load can be flat resulting in a very low PAR.

to solve. Fourth, our system model can be extended to a
scenario where users can store energy at certain hours, e.g.,
in their PHEV batteries during the night. They can then sell
the energy back to the grid at peak hours. This can be done
by allowing our energy consumption scheduling variables to
take negative values for appliances that have energy storage
capability, where a negative value for these variables indicates
providing rather than consuming energy. Finally, while our
analysis focused only on residential load control, similar
techniques can be used to better shape the aggregate profile
of commercial load in an industrial region.

APPENDIX

A. Proof of Theorem 1

We first notice that since Ch(·) is strictly convex for each
h ∈ H, the payoff function Pn(xn; x−n) is strictly concave
with respect to xn. Therefore, Game 1 is a strictly concave N -
person game. In this case, the existence of a Nash equilibrium
directly results from [31, Theorem 1]. Moreover, the Nash
equilibrium is unique due to [31, Theorem 3]. �

B. Proof of Theorem 2

We first show that the global optimal solution of problem
(19) forms a Nash equilibrium for Game 1. For notational
simplicity, let x?1, . . . ,x

?
N denote the optimal solution of

problem (19). We also define

C? ,
H∑
h=1

Ch

(∑
m∈N

∑
a∈Am

xh?m,a

)
. (31)

By definition of optimality, for each subscriber n ∈ N and
for any arbitrary xn ≥ 0, we have

C? ≤
H∑
h=1

Ch

 ∑
m∈N\{n}

∑
a∈Am

xh?m,a +
∑
a∈An

xhn,a

 . (32)



After multiplying both sides in (32) by −Ωn it becomes

Pn(x?n; x?−n) ≥ Pn(xn; x?−n), ∀ xn ≥ 0. (33)

Comparing (33) and (26), we can conclude that the optimal
solution x?1, . . . ,x

?
N forms a Nash equilibrium for Game

1. However, from Theorem 1, Game 1 has a unique Nash
equilibrium. Thus, the optimal solution of problem (19) is
equivalent to the Nash equilibrium of Game 1. �

C. Proof of Theorem 3

Recall that playing the best response for each user n ∈
N would be equivalent to solving optimization problem (29).
Therefore, if users play the best responses sequentially through
running Algorithm 1 in an asynchronous fashion, the energy
cost in the system either decreases or remains unchanged every
time a user updates its energy consumption schedule. Since the
energy cost is bounded below (e.g., the energy cost is always
non-negative), the convergence to some fixed point is evident.
On the other hand, at the fixed point of Algorithm 1, no user
can improve its payoff by deviating from the fixed point when
playing its best response. This directly indicates that the fixed
point is the Nash equilibrium of Game 1 among the users. �

D. Proof of Theorem 4

Let x̄1, . . . , x̄N denote the Nash equilibrium of Game 1
when a non-empty set of users M⊆ N are untruthful, while
all other users N\M are truthful. Also let x?1, . . . ,x

?
N denote

the optimal solution of problem (19). Recall from Theorem 2
that x?1, . . . ,x

?
N is also the Nash equilibrium of Game 1 when

all users are truthful. For each user n ∈ M to benefit from
being untruthful, it is required that we have

Pn(x̄n; x̄−n) ≥ Pn(x?n; x?−n). (34)

By dividing both sides in (34) by −Ωn, we should have
H∑
h=1

Ch

(∑
m∈N

∑
a∈Am

x̄hm,a

)

≤
H∑
h=1

Ch

(∑
m∈N

∑
a∈Am

x? hm,a

)
.

(35)

However, this contradicts the fact that x?1, . . . ,x
?
N is the

optimal solution of problem (19). Therefore, user n does not
benefit from announcing inaccurate information with respect to
its daily energy consumption schedule in Line 7 of Algorithm
1. In fact, since every user’s individual payoff is nothing
but the total energy cost times a negative constant −Ωn, for
each user or a group of users, the only way to increase the
payoff at Nash equilibrium is to reduce the total energy cost.
Therefore, any behavior, such as being untruthful, which leads
to increasing the energy cost from its optimal/minimum value
would harm the cheating users or the group of cheating users
as well as every other user in the system. �
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