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Because of its nonequilibrium character, active matter in a steady state can drive engines that
autonomously deliver work against a constant mechanical force or torque. As a generic model for such
an engine, we consider systems that contain one or several active components and a single passive one that
is asymmetric in its geometrical shape or its interactions. Generally, one expects that such an asymmetry
leads to a persistent, directed current in the passive component, which can be used for the extraction of
work. We validate this expectation for a minimal model consisting of an active and a passive particle on a
one-dimensional lattice. It leads us to identify thermodynamically consistent measures for the efficiency of
the conversion of isotropic activity to directed work. For systems with continuous degrees of freedom, work
cannot be extracted using a one-dimensional geometry under quite general conditions. In contrast, we put
forward two-dimensional shapes of a movable passive obstacle that are best suited for the extraction of
work, which we compare with analytical results for an idealized work-extraction mechanism. For a setting
with many noninteracting active particles, we use a mean-field approach to calculate the power and the
efficiency, which we validate by simulations. Surprisingly, this approach reveals that the interaction with
the passive obstacle can mediate cooperativity between otherwise noninteracting active particles, which
enhances the extracted power per active particle significantly.
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I. INTRODUCTION

The concept of thermal equilibrium allows for a com-
prehensive characterization of passive many-body systems
in terms of thermodynamic key quantities such as entropy
and temperature. Through the second law of thermody-
namics, changes in these quantities constrain the amount
of work an external operator can extract when forcing
the system to undergo a transformation [1]. In contrast,
active matter offers a class of systems that goes beyond
the scope of these well-established concepts. Such
systems typically comprise an assembly of self-driven
components which operate far from thermal equilibrium
by extracting energy from their environment [2–6].
Experimental realizations range from swarms of bacteria
[7–9] and assemblies of motile filaments [10,11] and of
living cells [12,13] to interacting Janus particles in a fuel
bath [14–16]. Phenomenological properties of active mat-
ter, such as the emergence of clustering [17,18], have been
reproduced with simple mathematical models, which can

be either particle-based descriptions [19–21] or active field
theories [22–25].
Historically, key quantities of equilibrium thermody-

namics had been identified operationally through the
interaction of the system with embedded probes such as
barometers and thermometers. For a thermodynamic char-
acterization of active matter, several works have followed
this strategy. Extended definitions of pressure [26–30] and
of chemical potential [31,32] have been proposed in active
matter; moreover, a frequency-dependent temperature has
been introduced based on the violation of equilibrium
relations [33–38].
An important quest in the development of classical

thermodynamics was the formulation of fundamental
design principles for heat engines, which led to Carnot’s
statement of the second law of thermodynamics [39]. For
systems on small scales, which are affected by ubiquitous
thermal noise, stochastic energetics [40] and stochastic
thermodynamics [41] provide a consistent framework for
the generalization of thermodynamic concepts, such as the
work that is either transferred to or extracted from a
nonequilibrium system.
Inspired by colloidal heat engines in a thermal bath

[42–44], the work delivered by cyclic engines in contact
with active baths has recently been investigated both
experimentally [45] and theoretically [46,47]. Such cyclic
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engines require an external operator applying transforma-
tions according to some time-periodic protocol. An even
simpler setting for nonequilibrium systems that deliver
work autonomously builds on ratchet models [48,49]. They
produce a persistent current in one degree of freedom
(d.o.f.) by rectifying fluctuations with some asymmetric
potential. In recent years, such ratchet models have been
used to illustrate nonequilibrium aspects of active matter
[5,50–61]. Particularly inspiring are experiments where
asymmetric cog-shaped obstacles immersed in a bacterial
bath autonomously undergo persistent rotation [62–64]—
an observation that would be prohibited in an equilibrium
system due to time-reversal symmetry. By applying a
sufficiently small countertorque to the rotor, its rotation
can be exploited for the extraction of mechanical work, as
illustrated in Fig. 1.
Despite the increasing development of such experiments,

it remains to evaluate and to rationalize the efficiency of
such autonomous engines, which should properly compare
the extracted work with the dissipated heat. In that respect,
several studies strive to identify and to quantify dissipation
in simple models of active particles [65–69], in relation
with entropy production and the irreversibility of the
dynamics [70–73]. These recent advances motivate a
systematic study of the performances of engines that extract
work from an active bath. What is the best shape of
obstacles for delivering optimal performance as an engine?
How does one tune the properties of the bath to extract
maximum work? Answering such questions promises to
reveal new links between macroscopic observables and the
nonequilibrium character of active matter.
In this paper, we propose a consistent thermodynamic

framework for engines delivering work while being pow-
ered by active matter. En route, we relate the extracted

power to the energetics of the self-propulsion of active
particles. In defining the efficiency of the work extraction,
we distinguish between a fully detailed, microscopic
viewpoint and a more practical, coarse-grained viewpoint.
The relevant thermodynamic quantities can be identified
in a simple lattice model as well as in a general Langevin
description of active Brownian particles in continuous
space.
We consider specific realizations of models for one or

several active particles interacting with a passive asym-
metric obstacle that can move in one linear direction against
an external force. In each of these models, we evaluate
the power and efficiency of work extraction. In a two-
dimensional setting, the optimization of these quantities
leads to nontrivial shapes of passive obstacles, which
perform significantly better than a simple chevron shape
that has so far been a popular model for ratchet effects in
active matter [50–54,56,57,60]. For the case of many
noninteracting active particles, we devise a dynamical
mean-field approach. It reveals, somewhat surprisingly,
that the extracted power per active particle is larger for
many active particles than for a single active particle.
Numerical simulations of the full many-body dynamics
confirm these theoretical predictions.
The paper is organized as follows. In Sec. II, we begin

with a simple lattice model and set up definitions con-
cerning the energetics, which are illustrated on the basis of
exact results. Section III introduces the energetics for a
general Langevin description of active particles interacting
with each other and with a passive obstacle. Moreover, we
derive a no-go theorem, which excludes the possibility to
extract work for an overly simple class of obstacles. In
Sec. IV, we calculate the power and efficiency for a single
active particle and discuss design principles for the shape
of a passive obstacle. Section V generalizes to many
noninteracting active particles, introducing our dynamic
mean-field theory, which is validated using numerical
simulations. We conclude in Sec. VI.

II. MINIMAL LATTICE MODEL

A. Setup

Lattice models have repeatedly been used as minimal
models for the analysis of various aspects of active matter
[66,74–77]. For our purpose of studying the extraction of
work, we consider a one-dimensional lattice with L sites,
periodic boundary conditions, and one active and one
passive particle, as shown in Fig. 2(a). Both particles
can hop to unoccupied neighboring lattice sites. The
positions of the particles at time t are denoted as iaðtÞ
and ipðtÞ for the active and passive particle, respectively.
We define the signed distance between the two particles as

iðtÞ≡ ½iaðtÞ − ipðtÞ� mod L; ð1Þ

FIG. 1. Schematic representation of an autonomous engine
driven by active matter. An asymmetric cog-shaped passive
obstacle (gray) rotates persistently in contact with a bath of
active particles (dark blue). Applying an external load opposed to
the spontaneous rotation, for instance, by connecting the rotation
axis to an external weight, the system produces work by lifting
the weight. Besides, both the obstacle and the active particles are
in contact with a thermostat at fixed temperature T, so that heat is
constantly dissipated in the energy reservoir (light blue).
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where the modulo operation is due to the periodic boun-
daries and is applied such that 1 ≤ iðtÞ < L. The free active
particle is modeled as a run-and-tumble particle that has an
internal d.o.f. nðtÞ that switches stochastically between þ1

and −1 at a Markovian rate γ. The inverse of this rate 1=γ
quantifies the persistence time of the active particle.
According to the state of the variable n, the particle hops
preferentially to the right or to the left, as detailed below. The
free passive particle has hopping rates that are biased in the
direction of the applied external force. In order to obtain a
persistent, directed current even in the absence of the external
force, the left-right symmetry of the system needs to be
broken. In the setting we ultimately have in mind, this
symmetry breaking would be achieved by giving the passive
particle some asymmetric shape, which, however, is not
possible in one dimension. As a simple way to still break the
symmetry while preserving the dynamics of the free par-
ticles, we introduce, in addition to the hard-core exclusion of
the particles, an asymmetric short-range interaction potential

Vi ≡ −εðδi;1 − δi;L−1Þ ð2Þ

for 1 ≤ i < L, as shown in Fig. 2(b). Thus, the passive
particle attracts the active one, if the latter is one lattice site to

the right. Conversely, the passive particle repels the active
one, if the latter is one lattice site to the left. This local
interaction mimics the effect that some notch in the shape of
the passive obstacle would have, which traps the active
particle on one side but not on the other one.
The dynamics of the system is modeled as a continuous-

time Markov process. For the identification of physical
heat, we require this process to be thermodynamically
consistent, which constrains the transition rates depending
on the driving forces and the potential [41]. The passive
particle hops to the right or left at rates wþ

i and w−
i ,

respectively, which depend on the distance iðtÞ. In contact
with a heat bath at a constant temperature, these rates
are constrained by the local detailed balance condition
wþ
i =w

−
i−1 ¼ expð−fex þ Vi − Vi−1Þ, with the external force

fex acting on the passive particle in the negative direction.
In this section, we set the lattice spacing, the temperature,
and Boltzmann’s constant to one. The local detailed
balance condition is satisfied by setting

w�
i ¼ w0e

ð∓fexþVi−Vi∓1Þ=2 ð3Þ

for all transitions that do not lead to an overlap of the
particles. The prefactor w0 is a rate of reference that is not
constrained by thermodynamics, determining the diffusiv-
ity of the passive particle. The hard-core exclusion is
accounted for by setting all rates involving the state i ¼ 0

(or, equivalently, i ¼ Lþ 1) to zero.
The active particle is endowed with a self-propulsion

mechanism that allows for chemically driven translational
transitions biased toward the direction given by the internal
d.o.f. nðtÞ. Nonetheless, the transitions can also be induced
by the passive influence of thermal noise and potential
forces. A minimal thermodynamically consistent model
accounts for both types of transition [66]. It ascribes to the
thermal transitions of the active particle the transition rates

k�i;th ¼ k0;the
ðVi−Vi�1Þ=2 ð4Þ

with a rate of reference k0;th. The chemically driven
transitions occur at rates

k�i;n;ch ¼ k0;che
ð�nΔμþVi−Vi�1Þ=2 ð5Þ

with another rate of reference k0;ch and the chemical free
energy Δμ that is transduced in a transition parallel to the
preferred (active) jump direction n. On a mesoscopic scale,
where information on the microscopic chemical process
is not accessible, the two types of transition cannot be
distinguished, leading to the combined rates

k�i;n ≡ k�i;th þ k�i;n;ch ð6aÞ

¼ k0e
ð�nfacþVi−Vi�1Þ=2: ð6bÞ

(a)

(b)

(c)

FIG. 2. (a) Setup for the lattice model of an active particle (blue)
interacting with a passive one (gray) in a periodic geometry.
(b) The particles interact via on-site exclusion and via an
asymmetric potential ranging to the next lattice site. (c) Sample
trajectories for the passive particle (black line) and the active
particle (green or red line, depending on the internal d.o.f.). The
active particle first pushes the passive one from behind, until its
internal d.o.f. changes direction at t ≃ 120. Then, after circuiting
once around the ring, it hits the passive particle on the attractive
other side and sticks to it for the remainder of the shown time
interval. Parameters: L ¼ 25, k0 ¼ 1, fac ¼ 1, w0 ¼ 1, γ ¼ 0.03,
ε ¼ 5, and fex ¼ 0.1.
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In Eq. (6b), we have brought these combined rates to the
form of a local detailed balance relation, with an effective,
“active” force

fac ≡ ln
k0;th þ k0;che

Δμ=2

k0;th þ k0;che
−Δμ=2

ð7Þ

and

k0 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20;th þ k20;ch þ 2k0;thk0;ch coshðΔμ=2Þ
q

: ð8Þ

Even though the active force does not enter the microscopic
rates (4), it emerges as a useful quantity for a dynamical,
mesoscopic description of the active particle as being
pulled by a fictitious external force fac acting in the
direction of nðtÞ. Unlike the microscopic parameter Δμ,
the active force can be inferred on a mesoscopic scale, for
example, through the force that is required to stall an active
particle with persistently positive n. This property allows us
to define the active force independently of the microscopic
dynamics, which would typically be much more complex
than what is captured by the minimal model used here.
In the state space spanned by the variables ðip; ia; nÞ, the

transition rates (3), (6), and γ give rise to a stochastic
dynamics, that is illustrated in Fig. 2(c) with a sample
trajectory. The corresponding master equation leads to a
stationary probability distribution pðip; ia; nÞ. Because of
the translational symmetry of the total system, this dis-
tribution can be written as

pðip; ia; nÞ ¼ pði; nÞ=L; ð9Þ

where pði; nÞ is the stationary distribution on the state
space spanned by n and the relative coordinate (1).
Combining the transition rates that increase and decrease
i, we find for this distribution the reduced stationary master
equation

0 ¼ dpði; nÞ=dt
¼ ½wþ

iþ1 þ k−iþ1;n�pðiþ 1; nÞ þ ½w−
i−1 þ kþi−1;n�pði − 1; nÞ

þ γpði;−nÞ − ½wþ
i þ w−

i þ kþi;n þ k−i;n þ γ�pði; nÞ:
ð10Þ

For finite L, this system of equations with 2ðL − 1Þ
unknowns can be solved using linear algebra.

B. Energetics

With the steady-state distribution pði; nÞ at hand, the
total particle current J, or average velocity of the particles,
is given by

J ¼
X

i;n

pði; nÞ½wþ
i − w−

i � ¼
X

i;n

pði; nÞ½kþi;n − k−i;n�: ð11Þ

Since the particles cannot pass through each other, the
average velocities of the passive and the active particle must
be the same, which leads to the second equality.
The extracted power is the rate of work performed

against the force fex:

Pex ≡ Jfex: ð12Þ

This power is positive when the external force acts in the
direction opposite to the current, while Pex < 0 means that
work is performed on the system. To extract positive work,
the external force must be nonzero and opposite to the
direction of the current at zero force, and its absolute value
must be smaller than the stall force fstall at which the
current vanishes.
The input of chemical work into the total system stems

from the chemically powered, active transitions of the
active particle

Pch ≡
X

i;n

Δμ npði; nÞ½kþi;n;ch − k−i;n;ch�: ð13Þ

On the other hand, the total rate of entropy production
follows from its standard definition [78] as

σtot ≡
X

i;n

½pði; nÞkþi;n;ch − pðiþ 1; nÞk−iþ1;n;ch� ln
kþi;n;ch
k−iþ1;n;ch

þ
X

i;n

½pði; nÞkþi;th − pðiþ 1; nÞk−iþ1;th� ln
kþi;th
k−iþ1;th

þ
X

i;n

½pði; nÞwþ
i − pði − 1; nÞw−

i−1� ln
wþ
i

w−
i−1

¼ Pch − Pex ≥ 0: ð14Þ

Thus, the chemical power Pch ¼ Pex þ σtot is transferred to
both extracted power Pex and dissipated power σtot [79].
The latter is essentially the heat that is dissipated into the
environment but may also include the change of entropy in
chemical reservoirs [80]. The thermodynamic efficiency
associated with the extraction of work can be defined as

ηtd ≡
Pex

Pch
: ð15Þ

On the mesoscopic scale, where active and passive
transitions of the active particle are typically indistinguish-
able, an exact evaluation of σtot based on observations is
not possible. Hence, a coarse-grained thermodynamic
approach is necessary to evaluate the performance of the
engine. Applying the concepts of stochastic thermodynam-
ics to the coarse-grained model involving the combined
transition rates k�i;n yields the coarse-grained entropy
production rate
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Σ≡
X

i;n

½pði; nÞkþi;n − pðiþ 1; nÞk−iþ1;n� ln
kþi;n
k−iþ1;n

þ
X

i;n

½pði; nÞwþ
i − pði − 1; nÞw−

i−1� ln
wþ
i

w−
i−1

¼ Pac − Pex: ð16Þ

This rate of entropy production is also obtained by
comparing the forward and time-reversed path probabilities
for ip and ia without taking into account the types of
transition for ia. We identify the “active power”

Pac ≡
X

i;n

facnpði; nÞ½kþi;n − k−i;n� ð17Þ

as the rate of work performed by the fictitious active force
fac. Since the coarse-grained entropy production satisfies
0 ≤ Σ ≤ σtot, we find

Pch ≥ Pac ≥ Pex: ð18Þ

Hence, the active power gives a stronger bound on the
extracted power than the full chemical power. Since this
inequality shows that the difference between Pch and Pac is
inevitably dissipated into the environment, we ask in the
following how much of Pac can be extracted as useful work
Pex and define the “active efficiency”

η≡
Pex

Pac
¼ Pex

Σþ Pex
¼ fex

fac

P

i;npði; nÞ½kþi;n − k−i;n�
P

i;nnpði; nÞ½kþi;n − k−i;n�
: ð19Þ

The identification of Pex and Pac and their relation to Pch
constitute the first main result of this paper. Importantly, the
former two are accessible on a mesoscopic scale and, thus,
retain their significance beyond our specific minimal model
for the chemical driving process, as shown below for a
description with continuous d.o.f. Consequently, we use
Pex and η as the main quantities of interest to characterize
the performance of an engine.
We now explore the dependence of the power and

efficiency of work extraction on the various parameters
of the lattice model. For this purpose, the stationary master
equation (10) is solved numerically. As the main parameter
of interest, we choose the interaction strength ε, which
represents a measure for the asymmetry of the passive
work-extraction mechanism and which is dimensionless in
our units with kBT ¼ 1. For each combination of param-
eters shown in Fig. 3, we optimize the extracted power with
respect to the external force fex and the passive diffusivity
w0, leading to optimal parameters f�ex and w�

0. Evaluating η
at these parameters gives the active efficiency at maximum
output power η�. In addition, we calculate the global
maximum of the efficiency ηmax over all values of fex
and w0, which turns out to be only slightly larger than η�.

In the Appendix A, we present analytical calculations
for various limiting cases of the model. In particular, we
find that, in the high persistence regime for γ ≪ w0, k0, the
power and efficiency of work extraction generally become
highest. The corresponding curves in Fig. 3 saturate in the
limit γ → 0. In contrast to that, the regime where the
orientation of the active particle switches very quickly
resembles an equilibrium system, where work cannot be
extracted. Finally, another analytically tractable limiting
case is the one where the interaction is strong, ε → ∞. By
adjusting the active and external forces, the active effi-
ciency can get arbitrarily close to one, showing that there
is no universal upper bound on the efficiency smaller than
the trivial bound η ≤ 1.

III. GENERAL THEORY FOR CONTINUOUS

DEGREES OF FREEDOM

A. Setting and energetics

In a general context, we consider a set of N active
particles in a two- or three-dimensional channel or box with
periodic boundary conditions. These particles interact
with each other and with a passive object serving as the
work extractor. The interactions are mediated by pair
potentials, and, for simplicity, we neglect hydrodynamic
interactions. The passive object, in the following referred
to as the “obstacle,” has a fixed shape and is constrained
to move along a single d.o.f. against an external force.

10–3

10–2

0

=0.01

=0.1

=1

0 2 4 6 8 10

10 –2

10 –1

FIG. 3. Numerical evaluation of the engine performance in the
lattice model with L ¼ 10 sites. Top: The maximum extractable
power as a function of the dimensionless interaction strength ε.
The parameters of the active particle, k0 ¼ 1, fac ¼ 1, and
selected values of γ are kept fixed, while the extracted power
Pex is optimized with respect to w0 and fex. The limit of small
tumbling rate γ → 0 (orange) is evaluated using the effective
potential (A1). Bottom: The active efficiency η� at maximum
power (solid lines) and the maximal active efficiency ηmax (dotted
lines) optimized again with respect to w0 and fex.
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For notational simplicity, we take this d.o.f. to be the
translational one associated with the direction ex and keep
the orientation of the particle fixed. Thus, while the active
particles are a priori free to move and rotate in any
direction, we keep the obstacle effectively fixed to a
one-dimensional “railway line.” The formulation of the
model for a rotating obstacle at a fixed position and subject
to an external torque, as illustrated in Fig. 1, would be
analogous.
We denote the positions of the active particles as ria, with

i labeling the particle index, and the position of the passive
obstacle as rp. The dynamics of the latter is modeled
through the overdamped Langevin equation

_rp ¼ (μp½−fex þ
X

i

∇Vðria − rpÞ · ex� þ ζp)ex: ð20Þ

Here, μp is the mobility of the passive obstacle (in the ex
direction), fex is the external force applied in the negative
ex direction, and VðrÞ is the interaction pair potential
between the obstacle and each of the active particles, with
∇ acting on the distance vector r ¼ ria − rp. The term ζp is
Gaussian white noise with correlations hζpðtÞζpðt0Þi ¼
2Dpδðt − t0Þ and the diffusion coefficient Dp ¼ μpkBT

at temperature T.
The active particles are chemically driven in the direction

of their internal orientation vectors ni. Their positions
evolve according to the overdamped Langevin equation

_ria ¼ uacn
i þ μia f

i
pot þ ζ ia ð21Þ

with an active velocity uac and the potential force

f ipot ≡ −∇Vðria − rpÞ −
X

j≠i

∇Uðria − r
j
aÞ: ð22Þ

Here, UðrÞ is the pair potential for interactions between
active particles, with ∇ acting on the distance vector
r ¼ ria − r

j
a. We consider two microscopic origins of the

noise term, which we decompose as ζ ia ¼ ζ ith þ ζichn
i. As

described in Ref. [66], these two terms arise in the
continuum limit of a lattice model analogous to the one
in Sec. II. First, the thermally induced translational Brownian
motion of the active particle is modeled with an isotropic
noise term ζ ith with correlations hζ ithðtÞ ⊗ ζ

j
thðt0Þi ¼

2Dthδðt − t0Þδij1. Second, the noise in the chemical reaction
couples to the driven motion of the particle in the direction
ni, which is reflected in the one-component noise term ζich
with correlations hζichðtÞζ

j
chðt0Þi ¼ 2Dchδðt − t0Þδij. The

fluctuation-dissipation theorem requires the mobility tensor
to have two components μia ¼ μth1þ μchn

i ⊗ ni, according
to the diffusion coefficients Dth ¼ μthkBT and Dch ¼
μchkBT. The thermal mobility μth is given by the inverse
of the Stokes friction of the particle in the surrounding fluid.

The chemical mobility μch depends on the details of the self-
propulsion mechanism. For example, the continuum limit of
the discrete microscopic model discussed in Sec. II yields
μch ¼ uacd=Δμ for a small driving affinity Δμ ≪ kBT of a
reaction event that comes with the displacement d.
The vectors ni perform isotropic rotational Brownian

motion on the unit circle or unit sphere with rotational
diffusion coefficient Dr. We take this rotational diffusion
to be independent of the position of the particles; i.e., we
assume that there are no alignment interactions among
active particles or between active particles and the obstacle.
This aspect of the model has been validated experimentally
for at least one class of autophoretic Janus colloids, whose
orientation is indeed left unaffected upon contact with an
obstacle [81]. However, for rod-shaped active particles or
pusher- or puller-type microswimmers, steric or hydro-
dynamic alignment interactions are present [63,82] and
need to be included in a more complex dynamics for ni.
Moreover, we note that active Ornstein-Uhlenbeck particles
[70] can formally be implemented in the present formalism
by allowing the length of ni to fluctuate as well, such that ni

performs an Ornstein-Uhlenbeck process. Finally, a setting
with fixed obstacle positions, commonly considered as
active ratchets [5,50–61], can also be used to extract
mechanical work by applying the external force directly
to the active particles rather than to a passive tracer. Our
discussion of the thermodynamics and the design principles
below can straightforwardly be extended to this case
through a change of the reference frame.
The dynamics described by the Langevin equations

leads to a stationary distribution pðfriag; fnig; rpÞ. The
mean velocity of the obstacle can be expressed as an
average with respect to this distribution as

J ≡ h_rp · exi ¼ −μpfex þ μp

X

i

h∇Vðria − rpÞ · exi; ð23Þ

which leads to the extracted power Pex ¼ fexJ. The rate of
total thermodynamic entropy production in the steady state
follows through the same steps as in Ref. [66] as

σtot ¼ ðPch − PexÞ=T ≥ 0; ð24Þ

with the chemical power

Pch ¼ Nu2ac=μch þ uac
X

i

hni · f ipoti: ð25Þ

Equation (24) is analogous to Eq. (14) for the discrete
model, where T is set to 1.
On a mesoscopic scale, only the dynamics of rp, ria, and

ni can be observed, while the two sources of the noise
become indistinguishable. While this fact prohibits an exact
evaluation of the chemical power, we can, as before for the
lattice model, identify an active power as a coarse-grained

PATRICK PIETZONKA et al. PHYS. REV. X 9, 041032 (2019)

041032-6



quantification of the input of energy. It can be defined
model independently as the rate of work

Pac ≡ fac
X

i

hni · _riai ð26Þ

that is performed by an effective active force apparently
providing propulsion in the direction of ni [70,83–85].
Such an active force is commonly used ad hoc in theoretical
models for active particles that discard the details of the
self-propulsion mechanism [19,20,86–89]. It can be deter-
mined phenomenologically as the force required to stall an
active particle with persistent director n. Experimentally,
the active force can also be measured for a single free active
particle that undergoes rotational and translational diffu-
sion. For this purpose, one applies an external force and
evaluates the velocity of the active particle at times when
the director n is antiparallel to the external force. When this
velocity reaches zero on average, the absolute value of the
external force matches that of the active force. For the
specific model at hand, we have fac ≡ uac=ðμth þ μchÞ, and
the active power can be written using Eq. (21) as

Pac ¼ Nu2ac=ðμth þ μchÞ þ uac
X

i

hni · f ipoti: ð27Þ

The difference between the effective input Pac and the
actual output power Pex leads to the definition of the
coarse-grained entropy production Σ≡ ðPac − PexÞ=T.
Several recent works quantify irreversibility in active
matter in terms of the ratio of forward and backward path
probabilities [65,69–73]. The same entropy production Σ

emerges in such a framework by applying the standard
principles of stochastic thermodynamics to the joint tra-
jectory of friag, fnig, and rp and considering both fnig and
fex as even under time reversal. Other choices for the set of
variables and time reversal are conceivable and have indeed
been explored as characterizations for the irreversibility, yet
only this choice yields the connection to the active power
Pac that is useful in the context of work extraction. The
ensuing entropy production Σ is positive and, as a result of
the coarse-graining procedure, smaller than the full entropy
production σtot, yielding again the order (18) for the
chemical, active, and extracted power.
In the following, we assume that the chemical contri-

bution to the mobility μch is much smaller than the thermal
contribution μth. This assumption is justified from a micro-
scopic perspective, if the displacement d of the active
particle associated with an individual reaction event is
sufficiently small, such that, for external or potential forces
f that lead to velocities μthf of the order of uac, we have
μch=μth ∼ fd=Δμ ≪ 1 (see also Ref. [68]). In fact, μch
might even be on the order of magnitude of a slight
geometric anisotropy of the thermal mobility tensor itself,
prohibiting the inference of μch on a mesoscopic scale.
Under the assumption of small μch, the chemical power (25)

is much larger than the active power (26). Since the latter
bounds the extracted power Pex from above, the thermo-
dynamic efficiency ηtd ¼ Pex=Pch is small. With the domi-
nating first term in Eq. (25) being constant, maximizing Pex
for fixed uac and μch leads also to maximal ηtd.
Alternatively, we consider analogously to Eq. (19) the

active efficiency η ¼ Pex=Pac as a mesoscopically acces-
sible characterization of the performance of a work extrac-
tor after subtracting the inevitable chemical losses. For the
remainder of the paper, we focus on the model of active
particles with an isotropic mobility tensor μa ¼ μa1 and
diffusion coefficient Da ¼ μakBT, which reproduces the
dynamics of the model considered above up to corrections
of the order of μch=μth. The active force is then simply given
by fac ¼ uac=μa, where both the speed uac and the mobility
μa are straightforward to determine experimentally. This
“active Brownian particle” model, which discards the
chemical noise in the self-propelled motion but keeps
thermal diffusive noise in both the translational and angular
sectors, is standard in the literature, as reviewed, e.g.,
in Ref. [5].

B. A no-go theorem

We first consider a single passive particle, serving as
an obstacle, and a single active particle along a one-
dimensional continuous coordinate. The active particle
has a director n that jumps between �1 at a position-
independent rate γ. The Langevin equations (20) and (21)
then reduce to

_xp ¼ μp½−fex þ V 0ðxa − xpÞ� þ ζp; ð28aÞ

_xa ¼ μa½nfac − V 0ðxa − xpÞ� þ ζa ð28bÞ

for the respective positions xa and xp of the active and
passive particles on a ring with xa, xp ∈ ½0; 1Þ with
periodic boundary conditions and with independent one-
dimensional noise terms ζa;p. The interaction potential
VðxÞ is a function of the relative coordinate x ¼ xa − xp
(with the prime denoting the derivative with respect to x),
which consists of a hard-core exclusion and an additional,
asymmetric interaction. Despite the similarity to the lattice
model considered in Sec. II, it is not possible to produce
a persistent current against the external force for any
potential VðxÞ, as we now show.
Because of the hard-core exclusion, the mean velocities

of the active and the passive particle are both equal to the
overall current J ¼ h_xai ¼ h_xpi. By rescaling the Langevin
equations (28b) and (28a) with the respective mobilities
and adding them up, the potential term drops out, and we
end up with

Jð1=μa þ 1=μpÞ ¼ h_xai=μa þ h_xpi=μp ¼ −fex; ð29Þ
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because the averages of ζa, ζp, and n are zero. Thus, the
current J is always in the same direction as the external
force, such that work cannot be extracted. Notably, for
fex ¼ 0, there is no persistent current J. This result is fairly
remarkable, since, according to Pierre Curie’s principle
[40,90], the asymmetry of the potential and the nonequili-
brium driving would generally be sufficient conditions for
the emergence of a persistent current.
This result can be generalized to a setting with N

interacting active Brownian particles and one passive
obstacle described by the Langevin equations (21) and
(20) in two or three dimensions with an isotropic mobility
tensor μa ¼ μa1. The resulting mean velocities of the active
particles Ja ≡ h_xiai and of the obstacle Jp ≡ h_xpi satisfy
NJa=μa þ Jp=μp ¼ −fex. If VðrÞ is an exclusion potential
that stretches over the whole cross section of the channel or
box, such that the active particles cannot overtake the
obstacle, we have again J ¼ Jp ¼ Ja, prohibiting a positive
output power.
Nonetheless, a nonzero current Jp at zero external force,

and thus positive extracted power under a sufficiently small
counterforce, is achievable in several ways. First, one can
choose the potential VðrÞ in a way that active particles can
pass by or through the obstacle, such that the currents Ja
and Jp are no longer constrained to be equal. Second, one
can add in Eqs. (28a) and (28b) an external potential that
depends explicitly on the absolute coordinates of the
particles, thus breaking the translational invariance of the
system as a whole. For instance, a periodic potential with
well-separated minima mimics the discrete lattice analyzed
above, showing that the lack of a continuous translational
invariance is ultimately the reason why discrete models
evade the no-go theorem. Third, one can introduce an
anisotropy in the rotational motion or a coupling or
feedback between the rotational and translational motion.
Notably, this possibility easily allows for a lossless con-
version of the active power into extracted power by fully
polarizing the active particles and tightly coupling them
to the obstacle. Fourth, an anisotropic mobility tensor μa,
for example, due to a non-negligible μch, can also lead to a
nonvanishing current against the external force.
In the following, we focus on the first possibility and

consider a hard-core interaction between the active particles
and the obstacle that does not cover the whole channel,
such that active particles can pass by the obstacle.

IV. SINGLE ACTIVE PARTICLE

IN CONTINUOUS SPACE

A. General formalism

In preparation for the many-particle case, we now study
the extraction of work in a two-dimensional setting with
a single active particle that interacts with an obstacle.
Because of the periodic boundary conditions, this setting is
equivalent to an active particle interacting with a periodic

array of obstacles. For the case of spatially fixed obstacles,
experimental [81] and theoretical [59,91] work has revealed
a rich dynamics.
As a general consideration, we notice that, for an efficient

extraction of work, the sizeL of the obstaclemust be smaller
than or at most comparable to the persistence length l≡

uac=Dr of the active particle. Otherwise, unless the inter-
action with the obstacle affects the orientation of the active
particles (not true here with our chosen potential interac-
tion), the active particle behaves just like a passiveBrownian
particle in its interaction with the obstacle, which cannot
produce any current. Likewise, the box length, i.e., the
distance between repeated instances of the obstacle, should
not exceed the persistence length. In reduced units, where
the length scale of the obstacle and uac are kept fixed, the
regime of high persistence corresponds to small Dr, which
we focus on in the following. In analogy to the dependence
of the one-dimensional system on the switching rate γ, we
expect both the power and the efficiency of the work
extraction to decrease with increasing Dr.
The timescale separation that ensues for small Dr facil-

itates the computation of the relevant currents. In two
dimensions, we first keep the vector n ¼ ðcos θ; sin θÞT
fixed and determine the mean velocities of the active particle
and the obstacle as a function of the angle θ. Next, we
account for the slow, autonomous rotational diffusion of the
active particle by averaging these currents over θ with a
uniform distribution.
We consider again the relative coordinate r≡ ra − rp,

for which the Langevin equation follows from Eqs. (20)
and (21) as

_r ¼ v0ðθÞ − ðμa1þ μpex ⊗ exÞ∇VðrÞ þ ζa − ζpex: ð30Þ

It is solved with the same periodic boundary conditions as
for the absolute coordinates. The drift terms of the active
particle and the obstacle are combined to

v0ðθÞ≡ uacnþ μpfexex: ð31Þ

The steady-state solution of the Langevin equation (30)
leads to a mean velocity

vðθÞ≡ h_riθ ¼ v0ðθÞ − ðμa1þ μpex ⊗ exÞh∇VðrÞiθ; ð32Þ

where the index θ indicates the ensemble average of
trajectories with fixed n. This relation allows one to express
the components of the average interaction force between
the particles in terms of the components of their relative
velocity:

h∂xViθ ¼
v0xðθÞ − vxðθÞ

μa þ μp
; h∂yViθ ¼

v0yðθÞ − vyðθÞ
μa

:

ð33Þ
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This average interaction force then yields expressions for
the average absolute velocities:

h_raiθ ¼ uacn − μah∇VðrÞiθ; ð34Þ

h_rpiθ ¼ μp½−fex þ h∂xVðrÞiθ�ex ð35Þ

of the individual particles. Averaging with a uniform
distribution over θ then leads to the mean velocity of the
obstacle (23):

J ¼ 1

2π

Z

dθh_xpiθ

¼ −
μaμp

μa þ μp
fex −

μp

μa þ μp

1

2π

Z

dθvxðθÞ ð36Þ

and the extracted power Pex ¼ fexJ. The active power (27)
is given by

Pac ¼
fac

2π

Z

dθhn · _raiθ

¼ 1

2

μaμp

μa þ μp
f2ac þ

μafac

μa þ μp

1

2π

Z

dθ cos θ vxðθÞ

þ fac

2π

Z

dθ sin θ vyðθÞ; ð37Þ

which is used as a reference for the active efficiency
η ¼ Pex=Pac. Crucially, the geometric shape of the inter-
action potential enters into these expressions for the
conversion of power only via the two functions vx;yðθÞ
for the relative velocity determined by the Langevin
equation (30).

B. Idealized velocity filter

With the above results at hand, we can now discuss
possible shapes of the function vx;yðθÞ to compare different
mechanisms that extract work through the interaction of
the translational d.o.f. of the active particles and the
obstacle. To generate a large positive current J, the integral
of vxðθÞ in Eq. (36) should be negative with a large absolute
value. Without any interaction, the relative velocity in the x
direction is given by v0xðθÞ ¼ uac cos θ þ μpfex, leading
consistently to J ¼ −μpfex. Broadly speaking, a well-
designed mechanism for the extraction of work should
have two crucial properties: On the one hand, when θ is
such that v0xðθÞ > 0, the activity of the active particle is
harnessed, for example, by trapping it in some notch of the
obstacle and thereby reducing the relative velocity to
vðθÞ ¼ 0. On the other hand, when v0xðθÞ < 0, the active
particle should interact with the obstacle as little as
possible. If they do not interact at all, the resulting relative
velocity remains vðθÞ ¼ v0ðθÞ.

Without yet considering realizations of the interaction
potential that yield these properties, we can discuss the
effect of an idealized velocity filter that is accordingly
modeled by vðθÞ ¼ v0ðθÞχðθÞ. The function χðθÞ is set
to one for θc < θ < 2π − θc, when the active particle is
free, and zero otherwise, when the particle is trapped.
The critical angle for which vxðθÞ ¼ 0 is given by
θc ≡ arccosð−μpfex=uacÞ. We assume that the external
force is not exceedingly large, such that jμpfexj ≤ uac still
holds—otherwise, the active particle would be either
trapped or free independently of θ, prohibiting a positive
output power. Plugging the model function for vxðθÞ into
Eq. (36) yields the resulting current J. It can conveniently
be written as

J ¼ μpðfint − fexÞ ð38Þ

with the average interaction force exerted by the active
particle

fint ¼
uac

μa þ μp

1

π

h
ffiffiffiffiffiffiffiffiffiffiffiffi

1 − z2
p

− z arccosðzÞ
i

: ð39Þ

The dimensionless parameter

z≡ −μpfex=uac ð40Þ

compares the velocity of the free obstacle to the active
speed. The active power (37) follows as

Pac ¼ μaf
2
ac þ

μaf
2
ac

2π

2μa þ μp

μa þ μp

h

z
ffiffiffiffiffiffiffiffiffiffiffiffi

1 − z2
p

− arccosðzÞ
i

:

ð41Þ

From Eqs. (38) and (41), we finally obtain the expressions
for the extracted power and active efficiency of the
idealized velocity filter, based only on general geometric
arguments.

C. Design principles

With the idealized velocity filter as a benchmark, we now
consider specific realizations of the interaction potential.
The optimization of the power and efficiency amounts to
finding good designs for isothermal engines driven by
active matter. This task is related to, but quite distinct
from, the work of Ref. [92], which studies design principles
for ratchets driven by passive particles at two different
temperatures.
In order to keep the setting simple, we focus on hard-core

interactions and set the noise terms in the Langevin
equation (30) to zero, pertaining to a regime where the
timescale L=jv0j of the drift process is fast compared to
the diffusion on the longer timescale L2=Da;p. Ensemble
averages of the type h·iθ then reduce to an average over a
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single periodic trajectory. These trajectories can be calcu-
lated in a simple numerical scheme, where the hard-core
interaction is realized through constraint forces, as detailed
in Appendix B. For a zero external force, as explored in
Fig. 4, the idealized velocity filter leads to vxðθÞ ¼
uac cos θ for 90° < θ < 270° and vxðθÞ ¼ 0 otherwise. In
Fig. 4(a), we compare this function to the numerical results
for vxðθÞ for two selected geometries of the obstacle [93].
A shape of obstacles that is often used to illustrate

nonequilibrium aspects of active matter is a simple V shape
or “chevron” [50–54,56,57,60]. We model this type of
obstacle as two straight lines with a fixed opening angle and
a hard-core exclusion for the active particles. Figure 4(b)
shows this shape along with selected trajectories of the
relative coordinate r. The symmetry of this setting allows
us to restrict the discussion to angles 0 ≤ θ ≤ 180°. The
chevron of the chosen geometry is indeed capable of
entrapping the active particles for positive relative velocity
v0xðθÞ and letting it pass otherwise. Nonetheless, the
resulting function vxðθÞ differs from the one for the
idealized velocity filter in two obvious ways. First, for
angles below but close to 90° (e.g., θ ¼ 75°), the active
particle cannot be trapped; instead, it repeatedly slides
along the outer side of the arms of the chevron.
Accordingly, for the chosen geometry, the function vxðθÞ
is positive for 70°≲ θ < 90°. Second, for angles larger than
90°, the interaction between the active particle and the
obstacle reduces the absolute value of their relative velocity.
Notably, for 90° < θ ≲ 110°, the repeated interaction due to
the periodic boundary conditions leads to vanishing vxðθÞ.
In total, the function vxðθÞ for the chevron-shaped obstacle
is for all angles θ larger than or equal to the one for the
idealized velocity filter. Accordingly, the resulting current J
in Eq. (36) becomes reduced compared to Eq. (38), for the

chosen geometry and parameters of Fig. 4, to approxi-
mately 72% of the filter value.
In principle, the output current for a chevronlike particle

can be maximized using a delicate limiting procedure. First,
the opening angle of the arms of the chevrons must be
decreased to almost zero, such that the active particle can be
trapped for all angles θ < 90°. Second, the overall size of
the chevron must be decreased, such that the interaction
between the active particle and the obstacle for all other
angles is decreased. In this limit, the function vxðθÞ and
the current J approach the values for the ideal velocity
filter. However, the small size of the chevron and its
opening lead to further limitations. When the condition
L2=Da;p ≫ L=jv0j is no longer met, translational noise
becomes relevant, such that the active particle can be
trapped only transiently. Indeed, the small cross section
of the obstacle increases the time until the particle is
trapped again, and this time may even be comparable to the
timescale set by the rotational diffusion. It is therefore
essential to first let the observation time tend to infinity,
then let the thermal noise and the rotational diffusion
coefficient tend to zero, and at the very last let the size and
the opening angle of the chevron vanish. It should be noted
that, in this limit, increasing the number of obstacles per
unit area does not increase the extracted power: All
instances of the active particle with v0xðθÞ > 0 are ulti-
mately trapped even in a scarce array of obstacles, whereas
it is essential that all instances with v0xðθÞ < 0 interact as
little as possible with the obstacles.
Given these observations, one may be tempted to

conclude that the idealized velocity filter provides a general
upper bound on the current J that can be approached only
in extreme limiting cases. Nonetheless, for more sophis-
ticated shapes and arrangements of the obstacle and its
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FIG. 4. Angular dependence of the relative velocity of the active particle and the obstacle. (a) shows the velocity in the x direction for
the chevron particle shown in (b) (red line) and for the kitelike particle shown in (c) (orange line) along with the curves for the ideal
velocity filter (black dashed line) and the completely interaction-free particle (black dotted line). For angles beyond 180°, these curves
extend symmetrically. (b) and (c) show trajectories of the relative coordinate for selected angles θ to the x axis. Except for θ ¼ 50°,
where particles get trapped, we show only the periodic part of trajectories, discarding the initial, transient dynamics. Parameters are
μp=μa ¼ 0.1 and fex ¼ 0 throughout.
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repeated instances, it is possible to exceed this apparent
bound. In Fig. 4(c), we show a kitelike shape with hooks at
the upper and lower vertices. This shape is repeated
periodically along a square lattice that is diagonal to the
direction of motion ex of the obstacle. We impose the
constraint that the distances to all the repeated instances of
the obstacle are kept fixed over time, such that it is still
sufficient to describe the position of the ensuing array of
obstacles with a single variable xp.
The hooks at the upper and lower vertices of the kite-

shaped particle take over the role of the chevrons in
trapping the active particle for angles in the region around
θ ¼ 0. For the chosen geometry, this trapping ensues for
angles jθj ≲ 80°. Crucially, for angles somewhat above this
threshold, the elongated rear shape of the kites and the
pattern in which they are arranged force the coordinate r on
a trajectory whose general direction is ð−1; 1Þ, thus
reversing the sign of vxðθÞ compared to v0xðθÞ. As visible
in Fig. 4(a), this effect persists for all angles up to
approximately 135°, leading to negative velocities vxðθÞ
below the curve for the idealized velocity filter. For even
larger values of θ, an interaction between the active particle
and the obstacle leading to vxðθÞ > v0xðθÞ cannot be
avoided. Nonetheless, when averaging over all θ, a positive
effect prevails. The width and length of the kite shown in
Fig. 4(c) are optimized to yield a current that is approx-
imately 5% larger than that of the idealized velocity
filter (with fixed μp=μa ¼ 0.1 and fex ¼ 0). The overall
proximity between the functions vxðθÞ for the kite-shaped
particle and the velocity filter justifies the role of the latter
as an analytically tractable model for the thermodynamics
of a well-designed work extractor.
Next, we explore the dependence of the current J on the

external force fex. For this purpose, we make use of the fact
that a change of fex in Eq. (31) has the same effect as a
change of the angle θ and the speed uac. Making explicit
the dependence of v on θ, fex, the potential, and the noise,
this correspondence can be expressed as

vðθ; fex; V; ζa; ζpÞ ¼ αvðθ̃; 0; V=α; ζa=α; ζp=αÞ; ð42Þ

with

tan θ̃ ¼ sin θ
cos θ − z

; α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2θ þ ðcos θ − zÞ2
q

; ð43Þ

and the scaled external force z as above. In particular, for a
hard-core interaction and in the absence of noise, as
discussed above, the knowledge of the function vðθÞ at a
zero external force is sufficient to calculate the integrals in
Eqs. (36) and (37) for arbitrary fex. The loading curves in
Fig. 5 show the results for the extracted power and the
active efficiency for the chevron and kitelike shapes from
Fig. 4, which are compared to the analytical expressions for
the idealized velocity filter derived from Eqs. (38) and (41).

We observe that the extracted power is rather small.
Taking the active power of a free particle μaf

2
ac as a

reference, the scaled extracted power Pex=μaf
2
ac does not

exceed 0.0025 for μp=μa ¼ 0.1 as chosen in Fig. 5. For the
velocity filter, a global maximization yields the bound
Pex ≲ 0.0089μaf2ac, which is reached for μp=μa ≃ 1.48 and
fex=fac ≃ 0.094. The values for the active efficiency are
larger than Pex=μaf

2
ac, because the interaction between the

particles reduces the active power compared to the free
active particle. The superiority of the kite-shaped work
extractor persists for all external forces, producing a larger
current, power, and efficiency than the velocity filter.

V. MANY ACTIVE PARTICLES

A. Mean-field theory

Building on the results for the single active particle, we
next study the extraction of work in a setting with a large
number N of active particles. We focus on the dilute limit,
where the size of the active particles is assumed to be
sufficiently small compared to the typical interparticle
distances. The direct interactions among the active particles
can then be neglected. Nonetheless, the small active
particles still interact with a large obstacle. Naively, one
might expect that this interaction is simply additive in the
number of active particles. However, we have to take into
account that each active particle affects the motion of the
obstacle, which has, in turn, some effect on its interaction
with all other active particles.
Focusing on noninteracting active particles, the number

density of obstacles plays only a subordinate role. Since
an obstacle can, in principle, trap arbitrarily many active
particles, it is irrelevant whether a single obstacle extracts
power from all active particles together or whether several
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FIG. 5. Output power (solid curves) and active efficiency
(dashed curves) as a function of the external force fex for the
velocity filter (black curves), chevron (red curves), and kite
(orange curves) from Fig. 4 for a single active particle. The ratio
of mobilities is kept fixed at μp=μa ¼ 0.1.
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obstacles each extract only a fraction of the power. The only
requirement, as before for the single-particle case, is that
the distance between obstacles does not exceed the per-
sistence length of the active particles.
In order to derive the key quantities, we use a mean-field

approach, focusing first on the interaction between a
representative active particle and the obstacle, where the
influence from all other active particles is subsumed with
the external force. A posteriori, this influence is determined
self-consistently.
We start with some general considerations for the

dynamics of the obstacle interacting with a background
of many small active particles and producing work against
a counterforce. First, we notice that the velocity of the
obstacle cannot persistently exceed the velocity uac of the
individual active particles; otherwise, all interactions would
be directed against the direction of motion of the obstacle.
Thus, one can only hope to increase the extracted power
with the number of active particles by simultaneously
increasing the external force.
Second, the obstacle and the many active particles

currently pushing it are in close contact, such that they
may be regarded as a single complex. Since we neglect
hydrodynamic interactions, the friction coefficients of the
objects forming such a complex are additive. As the
number of active particles in this complex increases linearly
with N, we can assign to the interacting obstacle an
effective friction coefficient, or inverse mobility, that scales
also linearly in N. This scaling later turns out to be self
consistent in the mean-field analysis. Since the forces
acting on the complex of obstacle and active particles also
scale linearly in N, the resulting average velocity J can still
remain nonzero.
Third, we expect that fluctuations in the dynamics of the

obstacle vanish in the limit of many active particles. Such
fluctuations have two sources: The thermal noise acting on
the complex of the obstacle and trapped active particles
scales according to the effective mobility like 1=

ffiffiffiffi

N
p

. The
other contribution stems from fluctuations of the force
exerted by all the active particles. Being the sum of N
independent random variables, the fluctuations in the result-
ing force scale like

ffiffiffiffi

N
p

. Multiplication by the effective
mobility shows that the impact of these fluctuations on the
velocity of the obstacle vanishes also like 1=

ffiffiffiffi

N
p

.
As a result of the above considerations, we can replace

the Langevin equation (20) for the obstacle in the mean-
field limit by a simple motion _rp ¼ Jex with a constant, yet-
to-be-determined velocity J. The form of the Langevin
equation (21) for a representative active particle, with the
interaction term U set to zero, is unaffected by the presence
of the other active particles. The many-body dynamics then
reduces to an effective two-body problem analogous to the
one in Sec. IV. The Langevin equation for the relative
coordinate r between the representative active particle and
the obstacle follows as

_r ¼ ṽ0ðθÞ − μa∇VðrÞ þ ζa: ð44Þ

It has the same form as Eq. (30) for the single active
particle, but with μp and, thus, ζp set to zero and the drift
term redefined as

ṽ0ðθ; JÞ≡ uacn − Jex: ð45Þ

The solution of the Langevin equation (44) leads to the
stationary relative velocity vðJÞ ¼ h_ri, where we make the
dependence on J explicit.
We stress that our mean-field approach is not limited

to persistent active particles with a timescale separation
between translational and rotational motion, as considered
in Sec. IV. In general, Eq. (44) is to be solved with
rotational diffusion in the angle θ, which is thereby
averaged over in the computation of vðJÞ. In case we do
have very persistent active particles, we can use the same
strategies as before for the single-particle case, starting with
a model function or explicit results for vðθÞ, obtaining the
dependence on J through the transformation (42) with
z ¼ J=uac, and then integrating out θ.
The interaction force exerted by the representative active

particle in the x direction on the obstacle follows from
Eq. (44) as

fintðJÞ≡ h∂xVðrÞi ¼ −½J þ vxðJÞ�=μa: ð46Þ

In the mean-field solution, this force is exerted by each of
the active particles, which together yield the total force
acting on the bare obstacle. Consistency with the generally
valid relation (23) therefore requires

J ¼ μp½−fex þ NfintðJÞ�; ð47Þ

which finally relates J to the corresponding external force
fex and yields the extracted power

Pex ¼ fexJ ¼ ½NfintðJÞ − J=μp�J: ð48Þ

Moreover, consistently with what we have assumed before,
the effective mobility of the obstacle in contact with the
active particles scales like

μp;eff ≡ −
dJ

dfex
¼

�

1

μp
− Nf0intðJÞ

�

−1

∼ 1=N: ð49Þ

On the other hand, the total active power, as defined in
Eq. (27), is given in the mean-field limit from the N
independent contributions of all active particles as

Pac ¼ Nfachn · ½Jex þ _r�i ¼ Nfachn · _ri; ð50Þ

PATRICK PIETZONKA et al. PHYS. REV. X 9, 041032 (2019)

041032-12



where the averages are computed from the Langevin
equation (44) and run over all angles θ, such that
hn · exi ¼ 0.
For the idealized velocity filter, we focus again on

persistent active particles and calculate

vðJÞ ¼ 1

2π

Z

2π−θc

θc

dθ v0ðθ; JÞ; ð51Þ

where the critical angle is defined through v0xðθcÞ ¼
uac cos θc − J ¼ 0. Carrying out the integration, we obtain

fint ¼
uac

μaπ

h
ffiffiffiffiffiffiffiffiffiffiffiffi

1 − z2
p

− z arccosðzÞ
i

; ð52Þ

which is similar to Eq. (39) for the single-particle case but
with a redefined dimensionless parameter z≡ J=uac.
Again, we focus on jzj ≤ 1, corresponding to the region
of interest where jJj ≤ uac. Rather then solving the ensuing
transcendental equation for J [Eq. (47)], we can analyze the
dependence of the extracted and active power on the
external force in terms of parametric plots defined by

fexðzÞ ¼
Nfac

π

�

ffiffiffiffiffiffiffiffiffiffiffiffi

1 − z2
p

− z arccosðzÞ − πμa

Nμp
z

�

; ð53aÞ

PexðzÞ ¼ uaczfexðzÞ; ð53bÞ

PacðzÞ ¼
Nμaf

2
ac

π

h

π þ z
ffiffiffiffiffiffiffiffiffiffiffiffi

1 − z2
p

− arccosðzÞ
i

; ð53cÞ

see Fig. 6.
The only parameter that does not amount to a mere

overall scaling of the above equations is λ≡ μa=ðNμpÞ.

Note that μp is here the bare mobility entering through
Eq. (47) and not the vanishing effective one. Provided that
the ratio of bare mobilities μa=μp is not of the order ofN, we
can set λ ¼ 0, leaving us with a parameter-free representa-
tion. Otherwise, for a large obstacle that is much less mobile
than the active particles, an ensuing positive value of λ

reduces PexðzÞ for all z, leading to a smaller maximal
extracted power. The extracted power is maximized for
z� ¼ cosðy�Þ ≃ 0.394, where y� is the smallest positive
solution of 2y ¼ tan y. The external force corresponding
to z� is given by fexðz�Þ ¼ ðNfac=2πÞ sin y� ≃ 0.146Nfac.
The maximal extracted power itself is Pexðz�Þ ¼
ðNμaf

2
ac=2πÞz� sin y� ≃ 0.0577Nμaf

2
ac, and the active

power is Pacðz�Þ ≃ 0.744Nμaf
2
ac, leading to an active

efficiency at a maximum power of η� ≃ 7.74%. This result
is only little below the maximal active efficiency ηmax ≃

7.99% that is reached for fex ≃ 0.175Nfac and λ ¼ 0, for
which the active power is Pac ≃ 0.0559Nμaf

2
ac.

We recall that in Sec. IV the power extracted from a
single active particle is rather small, amounting to roughly
1% of the active power expended by the active particle.
Naively, one may have expected that by using N non-
interacting active particles both the extracted and the
expended power increase linearly, leading to a similarly
small efficiency. Surprisingly, however, as summarized in
Table I, we find analytically for the idealized velocity filter
that the extractable power per active particle and the
characteristic efficiencies are consistently higher by nearly
one order of magnitude in the setting with many active
particles than in the one with a single active particle. This
increase is an important result of our paper, which could not
have been anticipated a priori.
The joint interaction with the obstacle mediates some

kind of cooperativity between the otherwise noninteracting
active particles. For an intuitive understanding of this
behavior, consider the reaction of the obstacle to the
detachment of a previously trapped active particle. If there
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FIG. 6. Output power (solid curves) and active efficiency
(dashed curves) as a function of the external force fex for the
velocity filter (black curves), chevron (red curves), and kite
(orange curves) from Fig. 4 in the mean-field limit of many active
particles with large persistence.

TABLE I. Thermodynamic characterization of the extraction of
work for the idealized velocity filter in a setting with a single
active particle (N ¼ 1) and in the limit of many active particles.
Listed are the maximal extracted power per active particle (along
with the maximizing parameters fex and μp), the active efficiency
at maximum power η�, and the maximal active efficiency ηmax.
Note that, in the mean-field theory, the maximum power is
independent of the mobilities μp;a, as long as their ratio is well
above 1=N.

N 1 Many

Pex;max=ðNμaf
2
acÞ 0.0089 0.058

f�ex=ðNfacÞ 0.094 0.15

ðμp=μaÞ� 1.5 >Oð1=NÞ
η� 1.5% 7.7%
ηmax 1.5% 8.0%
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are no other active particles, the obstacle is then surren-
dered completely to the external force pulling it backwards.
Such negative contributions to the extracted power are
prevented when the presence of many more trapped active
particles stabilizes the forward motion of the obstacle.
Beyond active matter, the collective effects observed here
are somewhat reminiscent of the ones observed in coupled
molecular motors [94] and, more recently, in coupled heat
engines [95] and power converters [96].
As before, the idealized velocity filter serves as a

benchmark for the performance of work extractors based
on suitably shaped obstacles. In Fig. 6, we compare its
power and efficiency to that of the chevron and kite-shaped
particles in the mean-field limit. For this purpose, we solve
Eq. (44) for the two geometries shown in Figs. 4(b) and 4(c)
and with the noise term set to zero. These solutions yield
velocity profiles similar to the ones in Fig. 4(a), which can
be used to compute vðJÞ along with the relevant thermo-
dynamic quantities.
For the chevron particle, the mean relative velocity

vxðJÞ is always larger than for the idealized velocity filter.
Hence, the interaction force (46) is below that of the
velocity filter for any given current J. In Eq. (47), this
difference leads to a smaller corresponding external force
fex and, thus, a smaller extracted power Pex ¼ fexJ. In
contrast, the kite-shaped particle has a somewhat higher
maximal extracted power than the velocity filter. For small
external forces, though, the extracted power is somewhat
smaller. This regime corresponds to large currents J, where
the kite-shaped particle, unlike the idealized velocity filter,
experiences strong “headwind” from surrounding active
particles. In comparison to Fig. 5, we stress that for both
designs of the obstacle the attained efficiency and power
per active particle are larger than in the case with a single
active particle.

B. Numerical simulations

To test our design principles in actual many-particle
settings, we now turn to the numerical study of autonomous
engines driven by a bath of active particles. We consider a
set of noninteracting active Brownian particles in two
dimensions with position dynamics given by Eq. (21).
As usual for this type of model, the translational noise ζ ia is
assumed to have isotropic Gaussian correlations, which
amounts to neglecting the chemical mobility compared to
the thermal one (μch ≪ μth). We allow the angular direction
ni ¼ ðcos θi; sin θiÞ to fluctuate in time following an
independent dynamics for each particle:

_θ
i ¼

ffiffiffiffiffiffiffiffi

2Dr

p

ξi; ð54Þ

where Dr is the rotational diffusion coefficient. The noise
term ξi has Gaussian statistics with a zero mean and variance
given by hξiðtÞξjðt0Þi ¼ δijδðt − t0Þ. We recall the definition
of the according persistence length l ¼ uac=Dr as the

typical distance covered by a particle, in the absence of
an obstacle, before changing its orientation.
We now model each obstacle by an assembly of soft

rods which interact repulsively with the surrounding active
particles. The potential between a particle i and a rod j is
taken as short ranged of the form VðrijÞ ¼ V0ð1 − rij=aÞ2
for rij < a, where rij is the minimal distance between the
particle center and the points on the line segment of the rod.
In practice, we use a ¼ 1 in what follows, so that all length
scales are expressed in units of the particle-rod interaction
length. Besides, the energy scale V0 is always large
compared with the ones of thermal fluctuations kBT and
the active force afac, so that the rods effectively act as hard
walls. Following the geometry introduced in Sec. IV, we
can then form two types of obstacle, either chevrons or
kites, as shown in Figs. 7(a) and 7(b). The arrangement of
the obstacles is directly inspired by the periodic structures
in Sec. IV, namely, a simple square lattice for chevrons
and a two-lane arrangement for kites, and it is kept fixed
throughout the simulations. The displacement of all rods
forming the obstacles is synchronized and restricted to the
x direction with dynamics given by Eq. (20). Finally, we
use biperiodic boundary conditions, so that the obstacles
follow a perpetual directed motion toward x > 0 in the
absence of external force (fex ¼ 0) (See Supplemental
Material [97]).
We measure the extracted power per active particle and

the efficiency as functions of the external force for both
chevrons and kites, as reported in Figs. 7(c)–7(f). At a given
value of the persistence length l, the loading curves
extracted from various numbers of active particles N fall
onto a master curve, in agreement with the mean-field
regime considered in Sec. VA. When increasing the
persistence length l, the stall force, the maximum power
and efficiency, as well as the corresponding force values
increase. These data corroborate that the regime of large
persistence is indeed optimal, as we assume in Sec. IV. In
practice, the orange curves corresponding in Fig. 7 to the
largest persistence coincide with the ones for infinite
persistence, namely, when Dr ¼ 0. The translational dif-
fusion coefficients Da and Dp have only little influence on
the loading curve, as long as the thermal energy is small
compared to the energy required for a particle to leave a
trapped state. Moreover, the peak values of power and
efficiency are systematically higher for kites compared with
chevrons. This difference shows that the kites achieve
better performances not only at a large persistence, but also
for intermediate regimes. In short, these numerical results
demonstrate that the design principles we put forward
indeed allow one to delineate the optimal geometry for
autonomous engines in a fluctuating active bath.
Comparing the loading curves in Figs. 7(c)–7(f) with

the corresponding analytic predictions in Fig. 6, the peak
values extracted from numerical simulations turn out to be
smaller. Two reasons account for this difference. First, our
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FIG. 7. Performances of autonomous engines in a bath of active particles. The engines are made of a series of asymmetric obstacles,
either (a) chevrons or (b) kites, with a large axis denoted by L. The displacement of all obstacles is synchronized and restricted to the x
axis. Active particles, shown as blue circles, interact only with the obstacles. Using a biperiodic box with size Lx × Ly and given the
shape asymmetry, the obstacles follow a perpetual directed motion toward x > 0. To extract work, the operator applies a constant force
fex toward x < 0 on the obstacles. The extracted power Pex and the efficiency η are, respectively, shown for (c),(e) chevrons and (d),(f)
kites as functions of the applied force. The shapes of the symbols refer to particle density ρ accounting for the excluded obstacle area:
ρ ¼ 0.23 (triangles), 0.46 (circles), and 0.68 (diamonds). The color code corresponds to persistence lengths l ¼ μafac=Dr of the active
particles. Chevrons: l=L ¼ 3.3 (black), 6.6 (red), and 66 (orange). Kites: l=L ¼ 2.2 (black), 4.4 (red), and 44 (orange). Solid curves are
the predictions of the mean-field theory, obtained from simulations for a single active particle. Other parameters: Dp ¼ 10−2 ¼ Da

(except for chevrons at l=L ¼ 66, where Dp ¼ 1 ¼ Da), fac ¼ 1, μp ¼ 1 ¼ μa, V0 ¼ 102, and Lx × Ly ¼ 52 × 52 (chevrons) and
52 × 25 (kites).
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simulations include explicit fluctuations, which are
neglected in the previous analytic treatment and which
lower the maxima of the loading curves at intermediate
persistence. Second, the obstacle geometries differ some-
what in the simulations compared with the pictures in
Fig. 4. This difference is due to the finite size of active
particles and finite width of rods, in contrast with the
pointlike and linelike approximation used in Secs. IV C
andVA.While our simulations serve as a proof of principle,
further improvements of the power and efficiency may be
expected for a rigorous optimization of the obstacles’ shape
and arrangement under the constraints set by such a more
realistic setting.
For a quantitative verification of the mean-field

approach, we evaluate the single-particle dynamics by
numerically integrating the Langevin equation (44) spe-
cifically for the geometry and diffusion coefficients used in
the simulation and for a finely discretized set of values
for J. The force, extracted power, and efficiency in the
mean-field limit of many active particles then follow
from Eqs. (47), (48), and (50). The loading curves resulting
as parametric plots are shown as solid curves in
Figs. 7(c)–7(f). They agree well with the results of the
simulation, indicating that the particle densities used in the
simulation are already sufficiently large to justify the mean-
field assumptions. In particular, since the mean-field theory
works even for the lowest density used in the simulations,
one can expect that the enhancement of the power and
efficiency are observable even in a dilute realization of a
model with interactions between active particles, before
clogging effects decrease the power again at very high
densities [98].

VI. CONCLUSIONS

In this work, we have analyzed the dynamics and
energetics of asymmetrically shaped passive obstacles
immersed in active baths. The interaction with active
particles propels the obstacles such that they can deliver
work against a mechanical counterforce. In such a setting,
thanks to the simultaneous breaking of spatial and time-
reversal symmetries, the obstacles act as autonomous
engines driven by active matter. This type of setting is
minimal for an engine driven by an active bath; in stark
contrast to classical heat engines, it requires neither a second
bath nor any cyclic manipulation of system parameters.
In a general approach, we have identified the quantities

that are relevant for a characterization of the thermody-
namics of active engines. An obvious quantity to consider
is the extracted work, defined as the external counterforce
times the displacement of the obstacle. For a quantification
of the efficiency of an engine, this work is to be compared
to the input of energy. Yet, the total rate at which chemical
energy is supplied to maintain the active particles’ self-
propulsion is hard to assess, as it typically involves many
unresolved microscopic processes. Moreover, most of this

chemical energy is typically dissipated on a microscopic
scale and can, therefore, fundamentally not be extracted by
any mechanism that operates on a mesoscopic scale. In
contrast, the active work we have considered here is a more
easily assessable quantity at a mesoscopic level, which also
turns out to be more closely related to the extracted work. It
takes into account the displacement of active particles
driven by an effective active force, which can be inferred
phenomenologically from experimental data. Here, we
have shown how the active work can be identified through
coarse-graining from a minimal, microscopic, and thermo-
dynamically consistent model for active particles. As a
result, the commonly used active Brownian particle model
emerges in a way that allows us to disentangle chemical
aspects of entropy production from coarse-grained ones.
We thus have formalized the concept of active force
[19,20,87–89] and work [70,83–85], previously used in
theoretical models, from a thermodynamic perspective.
Moreover, we have shown how the work that can be
extracted on a macroscopic scale is related to the active
work. Since the former is less than the latter, we can define
the active efficiency as the ratio of these two quantities. It is
an upper bound on the “full” thermodynamic efficiency
defined as the ratio of extracted work to the chemical
energy expended microscopically, which is, however,
typically not measurable. In contrast, the active efficiency
allows an experimenter who has access to an active bath to
quantify the performance of an engine built on it, inde-
pendently of mesoscopically irrelevant chemical details of
the particles’ self-propulsion mechanism.
We have investigated the power and efficiency of work

extraction from active matter for minimal examples of
engines in various settings. Common to all of these settings
is the fact that the extracted power increases with the
persistence length of active particles. For a one-
dimensional lattice model with one active particle and
the obstacle represented by a passive particle with asym-
metric interactions, we have calculated the power and
efficiency exactly. In one limiting case, the active efficiency
reaches unity, revealing that there can be no stronger
universal bound on the extracted power.
For a fairly general Langevin model in continuous space,

a no-go theorem shows that power can be extracted only
when active particles have the possibility to pass by the
passive obstacle. Therefore, we have focused on two-
dimensional settings, where such a passing by is possible
even for particles with hard-core interactions.
For the case of a single active particle and a single

passive obstacle, we have considered the effect of the
geometry of the obstacle on the power and efficiency. An
analytically solvable benchmark is given by an obstacle
with the idealized behavior of a velocity filter, trapping
particles moving in one direction and letting pass particles
in the other. Simple chevron-shaped particles cannot
surpass the power and efficiency of such a filter.
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Nonetheless, we have shown that, with a more complex
design of obstacles, it is possible to improve upon this
benchmark by a small margin.
For obstacles immersed in a bath of many active particles

that do not interact with each other, we have calculated the
power and efficiency of the work extraction using a mean-
field approach. It reveals that at high number densities the
efficiency and the power per active particle are enhanced by
one order of magnitude compared to the case of a single
active particle. Numerical simulations for the many-particle
setup validate the mean-field approach.
In this paper, our illustrations of work-extraction mech-

anisms have been focused on highly idealized model
systems. For instance, we have not considered pair inter-
actions between active particles, alignment interactions
between the active particles and the obstacle, or hydro-
dynamic interactions, which would likely all be present in
experimental realizations. These idealizations have allowed
us to obtain analytical results and general design principles.
Nonetheless, one may expect that these results provide
benchmarks for a more general class of models, in which
our idealizations are embedded as limiting cases, in
particular, the dilute limit.
Beyond the paradigm of active Brownian particles with

rotational diffusion in two dimensions, one could also
explore three-dimensional particles, stochastic variations
in the propulsion speed as in active Ornstein-Uhlenbeck
models [70,87,88], or sudden reorientations of the propul-
sion direction as in run-and-tumble models [99,100]. Our
definitions of quantities characterizing the energetic per-
formance of engines apply already to these cases, thus
supporting the generality of our approach. Yet, new design
principles for the optimization of the performance may
emerge in such more complex settings. It will also be
interesting to investigate the universality of the cooperative
enhancement of the performance beyond the mean-field
approach used here. Thanks to modern techniques for the
microfabrication of particles [63,101], the exertion of
forces using optical tweezers [43,45], and the realization
of artificial self-propelled particles [14,81], it should be
possible to address these questions experimentally.
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APPENDIX A: LIMITING CASES FOR

THE LATTICE MODEL

In the limiting case of highly persistent active particles,
γ ≪ w0, k0, there is a timescale separation between the

reorientations and the lateral transitions. Hence, the dis-
tribution pði; nÞ can be written in terms of two effective
Boltzmann distributions pði; nÞ ≈ exp½−Veffði; nÞ�=Zn that
are normalized such that

P

i pði; nÞ ¼ 1=2 for each n. The
effective potential must then obey

Veffði; nÞ − Veffðiþ 1; nÞ ¼ ln
w−
i þ kþi;n

wþ
iþ1 þ k−iþ1;n

ðA1Þ

to restore a detailed balance relation for the combined
transition rates between adjacent states i. Note that even in
this case, where the relative coordinate equilibrates locally,
the total system is nonetheless in a genuine nonequilibrium
state with nonvanishing currents J and Pac. Provided that
the lattice size L is sufficiently large to separate the
attractive site from the repulsive one, lattice sites away
from the passive particle become depleted, such that the
resulting currents no longer depend on L.
In contrast, for γ ≫ w0, k0, the orientation of n equil-

ibrates locally for every i, leading to n-independent,
effective transition rates of the active particle of the form

k�i;eff ≡
1

2
ðk�i;þ1 þ k�i;−1Þ ¼ k0 coshðfacÞ exp½ðVi −Vi�1Þ=2�:

ðA2Þ

Thus, the dynamics of ia and ip becomes equivalent to a
passive system that is driven only by the external force.
Without an external force, the system then reaches an
effective equilibrium state pðiÞ ∝ expð−ViÞ with the actual
interaction potential and vanishing current J, which is
analogous to the small persistence regime in continuous
models, where effective Boltzmann approaches are legiti-
mate [100,102]. As leading-order corrections for fixed k0
and w0, the deviations from the Boltzmann distribution, the
current J in Eq. (11), and the optimal external force all scale
like 1=γ (similar to the case of off-lattice models [103]),
leading to the maximum extracted power scaling like 1=γ2.
Since, nonetheless, the active power (17) remains finite, the
active efficiency vanishes like 1=γ2 as well.
For small external forces, the response in the change

of the current must be linear. For a small asymmetry ε in the
interaction potential or large γ, the stall force fstall is small
as well, such that the linear regime covers fstall. In this case,
the output current is given by J ¼ J0ð1 − fex=fstallÞ þ
Oðf2exÞ with the current J0 at zero force, such that the
maximal extracted power Pmax ¼ J0fstall=4 is attained at
the force f�ex ¼ fstall=2. Figure 8 compares these two
characteristic forces.
Another limiting case that can be understood analytically

is the one for which the interaction potential is strong, i.e.,
ε → ∞. In this limit, the stationary probability is concen-
trated in the state i ¼ 1, which is almost impossible to
leave. Thus, there are almost no transitions, and both the
extracted power and the active power vanish. Nonetheless,
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the active efficiency (19) is well defined in this limit. It can
be calculated from the dominant contributions to the
currents stemming from rare and short-lived excursions
to the state i ¼ 2. Jumps out of this state are highly biased
toward i ¼ 1, such that all other states i > 2 can be
neglected for the calculation of the current. We assume a
timescale separation between the sojourn time in the state
i ¼ 2 and the much larger timescale 1=γ for reorientations.
The steady-state distribution then reads

pð1;�Þ ¼ 1

2

k−2;� þ wþ
2

kþ1;� þ w−
1 þ k−2;� þ w−

1

;

pð2;�Þ ¼ 1

2

kþ1;� þ w−
1

kþ1;� þ w−
1 þ k−2;� þ w−

1

: ðA3Þ

The stationary currents due to jumps of the passive particle
follow as

J� ¼ pð2;�Þwþ
2 −pð1;�Þw−

1 ¼ 1

2

kþ1;�w
þ
2 − k−2;�w

−
1

kþ1;� þw−
1 þ k−2;� þw−

1

;

ðA4Þ

which leads to the output current J ¼ Jþ þ J− and the
active efficiency

η ¼ fex

fac

Jþ þ J−

Jþ − J−
: ðA5Þ

Using the explicit forms for the rates:

w−
1 ¼ w0e

ðfex−εÞ=2; wþ
2 ¼ w0e

−ðfex−εÞ=2;

k−2;� ¼ k0e
−ð�fac−εÞ=2; k−1;� ¼ k0e

ð�fac−εÞ=2; ðA6Þ

we obtain

J� ¼ 1

2

w0k0 sinhð�fac−fex
2

Þ
k0 cosh

�fac−ε
2

þ w0 cosh
fex−ε
2

: ðA7Þ

Thus, as expected, both currents vanish in the limit ε → ∞.
Nonetheless, η remains finite in this limit. Additionally
taking the limit w0 → 0 yields

lim
w0→0

lim
ε→∞

η ¼ fex

fac

cosh fac − exp fex
sinh fac

ðA8Þ

independently of the order in which the limits are taken.
For large fac and fex ∼ fac −

ffiffiffiffiffiffi

fac
p

, this efficiency gets
arbitrarily close to one, showing that there is no universal
upper bound on the efficiency smaller than η ≤ 1.

APPENDIX B: IMPLEMENTATION OF THE

HARD-CORE INTERACTION

We calculate numerical solutions of the Langevin equa-
tion (30) for the relative coordinate r in the limit of vanishing
noise terms ζa and ζp and the interaction potential VðrÞ
being hard core. Away from the obstacle, the equation is
integrated exactly using a simple Euler scheme with time
step δt ¼ 0.01 and zero potential force. If it is detected that
after the next such time step the active particle would
penetrate the obstacle, the equation is modified to

_r ¼ v0ðθÞ þ ðμa1þ μpex ⊗ exÞf c: ðB1Þ

Therein, the effect of the potential force is modeled by the
constraint force f c ¼ fcm, which has to be parallel to the
local normal vector to the surface of the obstacle m.
The absolute value of the constraint force is obtained by
requiring that the resulting velocity is parallel to the surface
(_r ·m ¼ 0), leading to

fc ¼ −
m · v0

μa þ μpðm · exÞ2
: ðB2Þ

If it is detected that the active particle has reached a cusp
node of the obstacle where it gets trapped, the calculation
terminates and the averaged relative velocity vðθÞ is
assigned zero.
We stress that the explicit evaluation of the average

h∇VðrÞiθ of the hard-core potential can be avoided by using
Eq. (33), which uses only average relative velocities.
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Bechinger, and T. Speck, Dynamical Clustering and Phase
Separation in Suspensions of Self-Propelled Colloidal
Particles, Phys. Rev. Lett. 110, 238301 (2013).

[17] J. Tailleur and M. E. Cates, Statistical Mechanics of
Interacting Run-and-Tumble Bacteria, Phys. Rev. Lett.
100, 218103 (2008).

[18] M. E. Cates and J. Tailleur, Motility-Induced Phase Sep-
aration, Annu. Rev. Condens. Matter Phys. 6, 219 (2015).

[19] Y. Fily and M. C. Marchetti, Athermal Phase Separation of
Self-Propelled Particles with No Alignment, Phys. Rev.
Lett. 108, 235702 (2012).

[20] G. S. Redner, M. F. Hagan, and A. Baskaran, Structure and
Dynamics of a Phase-Separating Active Colloidal Fluid,
Phys. Rev. Lett. 110, 055701 (2013).
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