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Abstract

Abandoned mines pose significant threats to society, yet a large fraction of them lack ac-

curate maps. This article discusses the software architecture of an autonomous robotic

system designed to explore and map abandoned mines. We have built a robot capable of au-

tonomously exploring abandoned mines. A new set of software tools is presented, enabling

robots to acquire maps of unprecedented size and accuracy. On May 30, 2003, our robot

“Groundhog” successfully explored and mapped a main corridor of the abandoned Mathies

mine near Courtney, PA. The article also discusses some of the challenges that arise in the

subterraneans environments, and some the difficulties of building truly autonomous robots.

1 Introduction

In recent years, the quest to fi nd and explore new, unexplored terrain has led to the deploy-

ment of more and more sophisticated robotic systems, designed to traverse increasingly remote

locations. Robotic systems have successfully explored volcanoes [5], searched meteorites in

Antarctica [1, 44], traversed deserts [3], explored and mapped the sea bed [12], even explored

other planets [26]. This article presents a robot system designed to explore spaces much closer

to us: abandoned underground mines.

According to a recent survey [6], “tens of thousands, perhaps even hundreds of thousands,

of abandoned mines exist today in the United States. Not even the U.S. Bureau of Mines knows

the exact number, because federal recording of mining claims was not required until 1976.”

Shockingly, we are unaware of the location of many mines—despite the fact that most mines

were built just a few generations ago! A recent near-fatal accident in Somerset, PA, speaks to

this end: When miners in their routine work accidentally breached a nearby abandoned mine,

fi fty million gallons of water poured upon them, cutting off nine miners and almost burying

them alive. The cause of this accident was offi cially determined to be a lack of accurate mine

maps; the breached and flooded mine had been suspected to be several hundred feet away [35].

Even if accurate mine maps exist, those are usually just idealized 2-D drawings. Little can

be inferred from such sketches with regards to critical measures, such as the volume and the
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Figure 1: Left: The Groundhog robot is a 1,500 pound custom-built vehicle equipped with onboard computing,

laser range sensing, gas and sinkage sensors, and video recording equipment. Right: Testing the system inside the

Bruceton Research Mine, a well-maintained mine accessible to research teams.

structural soundness of an abandoned mine. Accurate models of such abandoned mines would

be of great relevance to a number of problems that directly affect the people who live or work

near them. One is subsidence: structural shifts can cause collapse on the surface above. Ground

water contamination is another problem of great importance, and knowing the location, volume,

and condition of an abandoned mine can be highly informative in planning and performing

interventions. Accurate volumetric maps are also of great commercial interest. Knowing the

volume of the material already removed from a mine is of critical interest when assessing the

profi tability of re-mining a previously mined mine.

Abandoned mines are usually not accessible to people. Lack of structural soundness is one

reason; another is the harshness of the environment (e.g., low oxygen levels, flooding) and the

danger of explosion of methane, a gas that frequently accumulates when mines are no longer

ventilated. This makes mine a superb target domain for autonomous robots. However, mapping

a mine with a robotic vehicle is a challenge. The vehicle must be rugged enough to survive

the harsh environmental conditions inside the mine. It must be able to perceive and negotiate

major obstacles. Unfortunately, existing wireless communication techniques are generally unfi t

for mines.

This article reports experiments with a robotic system designed to autonomously explore

and acquire 3-D maps of abandoned mines. The 1,500 pound vehicle, nicknamed “Groundhog”

and shown in Figure 1; a detailed description of the hardware can be found in [2]. Ground-

hog is essentially built out of the front halves of two ATVs, endowing it with identical steering

mechanisms on either end. While the exact confi guration of the robot varied from experiment

to experiment, in its fi nal confi guration Groundhog was essentially symmetrical, enabling it to

retract without having to turn around. For acquiring 3-D maps, Groundhog is equipped with

tiltable SICK laser range fi nders on either end. It also carries two mine-certifi ed portable gas

detectors to enable it to detect methane and other combustible gases. To navigate, Ground-

hog analyzes local 3-D scans with regards to traversibility. A fast C-space planner determines

whether the terrain ahead can be negotiated, and if so, identifi es suitable paths. Those are then
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Figure 2: On October 27, 2002, Groundhog was deployed into the Florence mine near Pittsburgh, PA. This

experiment is a fi rst in a series in which the robot navigates an environment inaccessible to people, but still under

remote control.

executed via PD control, using fast 2-D scan matching to keep the vehicle localized. Failure

to fi nd a suitable path leads Groundhog to retract in reverse motion. Groundhog also acquires

large-scale consistent maps of the voids it explores.

Groundhog’s development began in the Fall of 2002. Approximately a dozen test runs were

carried out in a well-maintained inactive coal mine accessible to people: the Bruceton Research

Mine located near Pittsburgh, PA. Mining was discontinued in the early 1940s, but since that

time the mine had been maintained in a state safe for people to enter. The mine features hallways

several hundred meters long, putting to a test the vehicle’s physical endurance and its ability to

manage large amounts of data. However, this mine is technically not abandoned and therefore

not subject to collapse and deterioration. On October 27, 2002, Groundhog descended for

the fi rst time into an abandoned mine inaccessible to people. This mine, the Florence Mine

near Pittsburgh, PA, had been abandoned and flooded for many decades. Before the robot’s

entry, the mine was mostly drained, leaving behind acidic mud that miners refer to as “yellow

boy.” Figure 2 depicts the vehicle after descending approximately 30 meters into the mine,

here operating on a tether and under remote control. On May 30, 2003, after a long series of

test runs carried out in the Bruceton Research Mine, Groundhog fi nally entered an inaccessible

abandoned mine in fully autonomous mode. The mine is known as the Mathies mine and is

located in the same geographic area as the other mines. The core of this surface-accessible

mine consists of two 1.5-kilometer long corridors which branch into numerous side corridors,

and which are accessible at both ends. This was an important feature of this mine, as it provided

natural ventilation and thereby reduced the chances of encountering combustible gases inside

the mine. Figure 3 depicts both ends of the mine. A map of the mine, provided to us by the Mine

Safety and Health Administation and the mine owner, is shown in Figure 4; apparently this is

the most accurate map on record for this mine. To acquire a more accurate map of one of the

main corridors, the robot was programmed to autonomously navigate through the corridor.308

meters into the mine, the robot encountered a broken ceiling bar draping diagonally across its

path. The robot made the correct decision to retract.

The data acquired on these runs has provided us with models of unprecedented detail and

accuracy, of subterranean spaces that may forever remain off limits for people. This article
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Figure 3: On May 30, 2003, Groundhog enters the Mathies mine near Courtney, PA. For the fi rst time, Groundhog

operates in fully autonomous mode, beyond the reach of our wireless communication link. It autonomously de-

scended 308 meters into the mine before making the correct decision to turn around after sensing a non-negotiable

ceiling beam draped diagonally across the robot’s path. These photographs show the two entrances to the mile-long

corridor system.

provides a comprehensive description of Groundhog’s software architecture. It offers visualiza-

tions of 2-D and 3-D maps of some of the mines mapped by the vehicle. We discuss some of

the shortcomings of the present system and lay out a roadmap to future research based on the

challenges that remain.

2 Chassis and Electronics

Groundhog’s chassis unites the front halves of two all terrain vehicles, allowing all four of

Groundhog’s wheels to be both driven and steered. The two Ackerman steering columns are

linked in opposition, reducing Groundhog’s outside turning radius to approximately 2.44m. A

hydraulic cylinder drives the steering linkage, with potentiometer feedback providing closed-

loop control of wheel angle. Two hydraulic motors coupled into the front and rear stock ATV

differentials via 3:1 chain drives result in a constant 28.5 0.145 m/sec velocity. When in motion,

Ground hog consumes upwards of 1kW, where processing and sensing only draw 25W and

75W respectively. Therefore, time spent sensing and processing has minimal impact on the

operational range of the robot. The high power throughput combined with the low speed of the

robot means that Groundhog has the torque necessary to overcome the railways, fallen timbers,

and other rubble commonly found in abandoned mines. Equipped with six deep-cycle lead-acid

batteries, and in later experiments with eight such battereis, Groundhog has a locomotive range

greater than 3km.

Mine safety regulations require that all electronics either be intrinsically safe or be encased

in an explosion proof enclosure. An intrinsically safe device may not, through capacitance or in-

ductance, discharge enough energy into a spark to ignite an explosive atmosphere. Groundhog’s

enclosure is designed to prevent an interior explosion from transferring enough energy to the

external environment to trigger an explosion of that environment. To satisfy this requirement,

Groundhog was fi tted with a 225kg steel enclosure. To compensate for this load and keep the

ground clearance of the robot above 25cm, the suspension was re-mounted in a precompressed

confi guration.

4



Figure 4: The best existing map on recrd of the Mathies mine. It shows at the center two parallel vertical corridors,

of which the robot entered the left corridor from the supply yard end shown towards the bottom. This map is

obviously incorrect: the two corridors do not connect properly towards the top of this map.

The explosion-proof enclosure houses a 24 VDC, 90 Amp electric motor that drives the

pump for the hydraulic system. The 300 MHz PC/104+ CPU and associated I/O electronics

also occupy the enclosure along with the hydraulic manifold and its six solenoid actuators.

All outgoing power lines are computer-controlled and individually fused on both the positive

and negative terminals. In addition to being able to explicitly cut power to external devices

Groundhog’s CPU is equipped with a watchdog timer that automatically disables external power

in the event of a computer failure.

Coal mine corridors average 1–2, tall and 3–6m wide. At 1m tall and 1.2m wide, Ground-

hog is able to operate in all but the shortest of coal mines with room to maneuver in all but

the thinnest. The original dimensions of Groundhog were engineered to accommodate the con-

straints at the breach between the Quecreek and Saxman mines. This breach was 2m wide by

1.2m tall, 1.2m deep, with a 30cm step on either side. While Groundhog was denied the chance

to explore this breach, the confi guration and dimensions chosen have proven effective in the

experiments reported here.

In groundhig’s landmark exploration of the Matthies mine—which was our only experiment

so far in which the robot was truly autonomous, the worst-case scenario was for Groundhog to

traverse almost the whole 1.5km, then have to traverse an additional 1.5km back out of the

mine, for a total of 3km, which was determined to be within the operational range of the robot.
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Periodic messages were sent to the base of operations via a simple UDP broadcast message over

an 802.11 wireless link, indicating that the robot was alive and working.

3 Simultaneous Localization and Mapping

The core of the Groundhog navigation system is comprised of a software package that solves

the SLAM problem by acquiring 2-D maps. The SLAM problem—which is short for simul-

taneous localization and mapping [11]—arises when a vehicle attempts to build a map while

simultaneously localizing itself relative to this map. On the surface, mobile robots can often

utilize GPS to acquire absolute position information. Underground, we do not have the luxury

of GPS localization.

At the lowest level of processing, Groundhog’s mapping system utilizes a real-time scan

matching technique for registering consecutive scans [16, 19]. Scans are acquired using laser

range fi nder pointed forward. As is common in the scan registration literature, our algorithm

aligns scans by iteratively identifying nearby points in pairs of consecutive range scans. It then

calculates the relative displacement and orientation of these scans by minimizing the quadratic

distance of all pairs of points [7]. In our implementation, all calculations are carried out in

real-time at 75 Hertz, the data rate of the SICK scanner (see [19]).

The scan matcher enables Groundhog to recover two quantities: locally consistent maps

and an estimate of the robot’s own motion. Figure 5a shows a 2-D map obtained using our scan

matching algorithm from a data set lacking any odometry information. It is well-understood that

local scan matching is incapable of achieving global consistency [8, 16, 40]. This is because of

the residual error in scan matching, which accumulates over time.

The limitation is apparent in the 2-D map of the Bruceton Research Mine shown in Fig-

ure 5a. This map is the result of applying local scan matching in a mine that is approximately

250 by 180 meters in size. While parts of this map are locally consistent, the map is globally

inconsistent: Several of the hallways traversed more than once have falsely been mapped into

parallel corridors. A consistent map is shown in Figure 5b and its creation will be described in

turn.

Our approach addressing the SLAM problem is described in depth in [14], with a previous

versions descibed in [42]. It is in many ways similar to a seminal paper by Lu and Milios [24]

and research in [31, 43], in that essential map information is represented by relative constraints.

In particular, every fi ve meters of consecutive robot motion, the data gathered during this period

is mapped into a local map, just as in [8]. Figure 6a shows such a local map, along with a range

scan.

As common in the literature, let us denote the absolute location and orientation of the k-th

map by ξk = ( xk yk θk )T ; here x and y are the Cartesian coordinates of the map and θ

is its orientation. The set of coordinates for all local maps will be denoted X = {ξ1, ξ2, . . .}.

The graph of these local coordinates as obtained from the scan matcher is shown in Figure 6b.

Clearly, if only we knew the correct coordinates X of all local maps, it would be straightfor-

ward to paste them together into a single global mine map using, for example, occupancy grid

mapping techniques [28]. However, the true values of ξk are not known known.

What we do know, however, is the approximate relative displacement between consecutive
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(a)

(b)

Figure 5: Map of the Bruceton Research mine, obtained via incremental scan matching (left) and using our lazy

data association approach (right). The map is approximately 250 by 180 meters in size.
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(a) (b)

Figure 6: (a) Example of a local map and a single 2-D range scan. (b) The resulting Markov random fi eld: Each

node is the center of a local map, acquired when traversing the Bruceton Research Mine near Pittsburgh, PA.

maps ξk and ξk−1. This information is recovered from the scan matcher. It is of the form

δk,k−1 = ( ∆xk,k−1 ∆yk,k−1 ∆θk,k−1 )T , where the individual delta values measure the relative

displacement along the coordinate axes. The ∆-values map coordinates ξk−1 into ξk via the

obvious trigonotetric function ξk = f(ξk−1, δk,k−1). If scan matching was free of errors, this

recursion would enable us to recover absolute information via the following recursion, assuming

we know the initial coordinate ξ0. However, scan matching is not without errors. To account for

those errors, our approach generalizes this recursion into a sequence of soft “rubber-band”-type

constraints that assumes Gaussian error. More specifi cally, ξk−1 and δk,k−1 induce a Gaussian

probability distribution over ξk with covariance Σ: f(ξk−1, δk,k−1)

φ(ξk, ξk−1) = |πΣ|−
1

2 exp−1

2
(ξk − f(ξk−1, δk,k−1))

T Σ−1(ξk − f(ξk−1, δk,k−1)) (1)

Functions like φ are often called potential in the statistical literature. Potentials link together

consecutive local maps in a soft way: They expectation of the pose ξk is equivalent to the

result of the scan matcher, but the potential allows for deviations from this expectation. Such a

rubber-band representation is known as Markov random fi elds (MRF) [36, 46]. It is reminiscent

of information fi lters, as previously used for SLAM in [31, 43].

Recovering the global map is equivalent to fi nding the sequence of map coordinates X that

minimizes the product of potentials
∏

k φ(ξk, ξk−1), or the sum of the logs
∑

k log φ(ξk, ξk−1).

The key advantage of the MRF representation is that it encompasses the residual uncertainty

in local scan matching. This enables us to alter the shape of the map in accordance with global

consistency constraints. Suppose we know that the k-th map overlaps with some map j < k−1

acquired at an earlier point in time, and suppose we have a good estimate of the relative dis-

placement between these maps. To incorporate this into the global map defi nition, we defi ne a

potential φ(ξk, ξj) between the coordinates of those maps ξk and ξj . This potential, or consis-

tency constraint, is of the same form as the local constraints in (1), but usually with a tighter

covariance Σ. By adding this potential φ(ξk, ξj) to the set of potentials, we softly enforce the

known displacement between ξk and ξj . Thus, the language of potentials is rich enough to add

additional non-local constraints that can improve the global consistency of the map.

For any fi xed set of potentials Φ = {φ(ξk, ξj)}, which includes both the original potentials

between consecutive maps and the new potentials, the resulting MRF is described through the
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(a)

(b)

✛
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direction of travel

direction of travel

1 (start)
❅

❅■

2 (cycle)

�
�✠

3 (conflict)
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map after adjustment

Figure 7: Example of our data association technique: When closing a large loop, the robot fi rst erroneously

assumes the existence of a second, parallel hallway. However, this model leads to a gross inconsistency as the

robot encounters a corridor at a right angle. At this point, our approach recursively searches for improved data

association decisions, arriving at the map shown on the bottom.

following function. This function can be thought of as a non-normalized probability over the

joint global locations of all submaps:

p(X ) ∝
∏

k,j

exp−1

2
(ξk − f(ξj, δk,j))

T Σ−1 (ξk − f(ξj, δk,j)) (2)

where X = ξ1, ξ2, . . . is the set of all map poses. The global map is now recovered by min-

imizing this expression over the the locations X of all submaps. The negative log-likelihood

− log p(X ) is quadratic in the ξ and f -values, but the fact that f is non-linear makes it impos-

sible to minimize this expression in closed form. The classical approach to minimizing such

functions is to approximate f by its Taylor expansion. This turns − log p(X ) into a quadratic

function over the variables X . Setting the fi rst derivative to zero yields the desired minimum in

closed form, as described in more detail in [17] for details. We also note that there are a number

of alternative techniques for minimizing − log p(X ), some of which exploit the sparse nature of

the potentials [15, 30, 45]
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(a)

(b)

(c)

Figure 8: Searching the data association tree: (a) shows the tree and a path chosen by locally determining the most

likely data association. (b) shows the associated log-likelihoods. The arrow indicates an opportunity to increase

the log-likelihood by revising past data association decisions. (c) shows the result of the search for an improved

data association, which provides a map of increased likelihood.
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4 Data Association

The remaining question for building consistent maps is: Where do the consistency constraints

come from? Clearly, the approach described thus far leads only to a consistent global map when

the constraints φ(ξk, ξj), obtained after loop closure, are qualitatively correct.

Finding the “correct” consistency constraints is an instance of a more general problem

known as the data association problem [4, 10]. The data association problem comes about

when a robot has to decide whether two measurements, taken at different points in time, cor-

respond to the same object. The scan matcher already addresses the data association problems

when aligning scans. However, here the spatial error between consecutive scans is typically

small, and simple heuristics such as nearest neighbor work well [7]. When closing loops, how-

ever, the error may be large, and nearest neighbor may be misleading. Such a situation is shown

in Figure 7a, where a localization error induces a data association error which, in turn, leads to

a broken map. The importance of this problem has been pointed out by a number of authors,

who have proposed a flurry of techniques for handling them [8, 13, 18, 27, 38]. The importance

of robust data association cannot be overemphasized. Mines often contain numerous loops.

Mismapping even a single loop can have a devastating effect on the overall map, and as a result

the vehicle may get lost in the mine and never return.

Our approach performs likelihood maximization through a lazy search of the data associa-

tion tree. The data association tree is a tree of all discrete data association decisions that can be

made when building a global map; its size is exponential on the length of the data sequence. An

example tree is visualized in Figure 8a, which depicts the sequential data association process as

new local maps are being acquired. For each new map, a decision is to be weather to introduce a

consistency constraint, and what the value of this constrain may be. A consistency constraint is

introduced if the map overlaps with suffi cient probability with a previously acquired local map.

Localizing this the new local map relative to this previous map, however, may yield more than

just one possible alignment, and each such alignment may give rise to a different value for the

relative displacement between the corresponding maps. In Figure 8a, such a decision is made

for map ξ4, and then again for map ξ6. The map ξ4 overlaps with map ξ1, and localizing ξ4 rel-

ative to ξ1 leads to two possible displacements, labeled a and b in this diagram. The constraint

that maximizes the log-likelihood function happens to be b in this example, so the correspond-

ing constraints φ(ξ1, ξ4) = b is added to the set of constraints. Similarly, ξ6 overlaps with ξ2,

and d appears to be the more likely value of the resulting constraint. The gray path in Figure 8a

illustrates the resulting sequence of data association decisions and the affi liated potentials.

However, maximum likelihood data association is prone to errors, and sometimes such er-

rors become only evident in retrospect. An example of this, taken from actual mine data, is

depicted in Figure 7a: The misalignment happens when the cycle is fi rst closed, at the loca-

tion labeled “2’ in Figure 7a. However, the inconsistency caused by this misalignment is not

detected until the robot reaches the end of the corridor, labeled “3” in that fi gure. Figure 8b

illustrates such a situation in the data association tree: For each node in the tree, it depicts the

log-likelihood of the map (the sum of log-potentials and all log-probabilities obtained by match-

ing maps). When adding the map ξ8, the log-likelihood takes a dip, indicating that the map is

perceptually highly inconsistent. The key idea for recovering from our situation is to memorize
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(a)

(b) (c)

Figure 9: (a) A local 3-D model of the mine corridor, obtained by a scanning laser range fi nder. (b) The corre-

sponding 2 1

2
-D terrain map extracted from this 3-D snapshot: the brighter a location, the easier it is to navigate.

(c) Kernels for generating directional C-space maps from the 2 1

2
-D terrain map. The two black bars in each ker-

nel correspond to the vehicle’s tires. Planning in these C-space maps ensures that the terrain under the tires is

maximally navigable.

not only the log-likelihood along the chosen path, but also for the entire frontier of the tree. The

frontier is the set of all leaf nodes of the tree at the present state of expansion: Frontiers nodes

are shaded gray in Figure 8b. If the log-likelihood of a node on the frontier is larger than the

log-likelihood of presently chosen leaf in the tree—which happens to be the case for the left

branch in Figure 8b—a revision of past data association decisions may potentially increase the

overall log-likelihood, thereby improving the map. Our approach then simply starts expanding

all nodes on the frontiers whose log-likelihood exceeds the log-likelihood of the chosen leaf. If

a new leaf yields a higher likelihood, this leaf is chosen and the consistency constraints are mod-

ifi ed accordingly. Figure 8c illustrates the potential outcome of this approach: in this example,

a different sequence of data association decisions yields a better map. As described in detail

in [17], adding and removing consistency constraints can be done effi ciently, and calculating

the resulting confi guration X does not require a full solution of the optimization problem.

Our approach is guaranteed to fi nd the best data association sequence. Most of the time, it

simply follows the locally best strategy; however, once in a while it is forced to backtrack. Fig-

ure 7 illustrates such a situation: Here the initial mine map is false, in that the robot erroneously

assumes that the bottom area of the map consists of two parallel hallways. This decision, whose

fallacy is not obvious at the time of loop closure, leads to a gross inconsistency later on, as

indicated in Figure 7. Our approach then revises its data associations and yields the map shown

in Figure 7b. This map is part of the larger map shown in Figure 5b.

5 Configuration Space Models

To make navigation decisions, the robot maps its sensor data into a confi guration space repre-

sentation [23], in which planning amounts to fi nding a trajectory for a point object. In indoor

mobile robotics, it is common to navigate using 2-D maps [21], a strategy that has been re-

ported to work even for active underground mines [25]. In abandoned mines, however, the

robot needs richer information than the 2-D information used for acquiring large-scale maps.
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(a) (b)

Figure 10: (a) A small 2-D map acquired by Groundhog in the Florence Mine near Burgettstown, PA. This

remotely-controlled mission was aborted when the robot’s computer was flooded by water and mud in the mine.

(b) View of a local 3-D map of the ceiling.

This is because holes and debris on the ground may easily create insurmountable obstacles.

Other obstacles may reduce the freespace above the ground, such as low-hanging wires and

partially collapsed roof structures. These challenges tend not to pose problems in active mines,

which are typically kept free of debris. They are, however, paramount in abandoned mines.

For exploring abandoned mines it is therefore imperative that the vehicle analyzes the full 3-D

structure of what lies ahead.

Our solution to this problem is based on the growing literature on rough terrain naviga-

tion [20]. In periodic intervals, Groundhog employs its tilting mechanism to acquire 3-D range

scans of the area ahead of the robot. The resulting 3-D scans are transformed into a 3-D point

cloud, of the type shown in Figure 9a. The point cloud captures the ground surface, the ceiling

and—most importantly—the free-space in between. Groundhog then transforms these point

clouds into 2 1

2
-D terrain maps. The 2 1

2
-D map captures the traversibility of the local area: the

lower the value (cost) at an (x, y) position, the easier it is to navigate. Figure 9b shows an exam-

ple terrain map. The gray-level in this map illustrates the degree at which the map is traversable:

the brighter a 2-D location, the lower its terrain cost, and the better suited it is for navigation.

The terrain map is obtained by analyzing all measurements 〈x, y, z〉 in the 3-D scan (where

z is the vertical dimension). For each rectangular surface region {xmin; xmax}×{ymin; ymax}, it

identifi es the minimum z-value, denoted z. It then searches for the largest z value in this region

whose distance to z does not exceed the vehicle’s height (plus a safety margin); this value will

be called z̄. The difference z̄ − z is the navigational coeffi cient: it loosely corresponds to the

ruggedness of the terrain under the height of the robot. If no measurement is available for the

target region {xmin; xmax}×{ymin; ymax}, the region is marked as unknown. For safety reasons,

multiple regions {xmin; xmax} × {ymin; ymax} overlap when building the terrain map. Features

like railway lines represent sharp changes in height between two potentially flat surfaces (the

rail and the adjacent floor) and without incorporating overlap between regions it is possible to

produce terrain maps oblivious to these artifacts.

Finally, the 2 1

2
-D map is mapped into a confi guration space representation that permits for

effi cient path planning and robot control. The confi guration space, or C-space, is the three-

dimensional space of poses that the vehicle can assume; it comprises the vehicle’s x-y location

along with the vehicle’s orientation θ. Groundhog obtains its C-space maps by convolving the

terrain map with oriented kernels that describe the robot’s footprint. Figure 9c shows some of
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Figure 11: Camera images recorded while autonomously exploring the Mathies mine. Both image shows signs of

degradation characteristic of abandoned mines, enabling mine safety personnel to assess the degree of deterioration.

these kernels: they consist of two rectangular region of high cost, which enclose a rectangular

region with lower costs. The intuition behind this approach is quite straightforward: the robot

is composed of two pairs of wheels on each side. Clearly, the ruggedness of the terrain matters

the most under the wheels, since this is the place where the robot establishes ground contact.

However, in between the wheels there is a good chance the robot may touch tall obstacles;

hence the convolution kernel also incorporates the ruggedness of the terrain in between. This

kernel has the nice property that it makes the robot avoid small obstacles, such as railroad

tracks. Abandoned mines often possess an abundance of railroad tracks. While it is perfectly

acceptable to navigate with a track between the wheels, traversing or riding these tracks causes

unnecessary damage to the tires and increase the overall energy consumption.

The result of the convolution is a 3-D representation of the C-space, where two coordinates

correspond to the robot’s x-y location relative to its environment, the third to its orientation.

Each point in the space measures the “costs” of assuming the corresponding coordinates with

the robot. The C-space representation enables us to solve all planning and control problems by

treating the robot as a point object.

6 Navigation

The remaining major software component pertains to the problem of navigation. The task here

is to make control decisions so as to best explore and map an abandoned mine. Most of our

expeditions involved a remotely controlled robot; hence all navigation decisions were made

by the human operator. In our fi nal experiment on May 30, 2003, in which Groundhog ex-

plored the Mathies Mine near Pittsburgh, PA, the robot made all navigation decisions by itself,

and navigated truly autonomously. In this case, however, the exploration involved following

essentially a straight corridor with a slight right bent, which is signifi cantly simpler than the

general exploration problem of exploring many different hallways. Literature on the latter is

manifold [9, 22, 37, 39, 47].

Our fi rst processing step pertained to fi nding a path through C-space. For that, the robot

devises a goal function whose center is a location in the desired travel direction (e.g., 5 meters

straight ahead in the mine). Because even roughly straight passages in mines can have several

cross-cuts, it is important for the robot to be able to distinguish the current corridor from a side-

hall. This can be diffi cult if only the current sensor information is taken into account, since the
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(a)

(b)

Figure 12: (a) 2-D map of the Mathies mine. This 308-meters long map has been acquired autonomously: A

world’s fi rst in successful autonomous mine exploration. (b) The fi nal few meters of this map, with the vantage

points at which the robot chose to acquire a 3-D scan. The protruding obstacle, which ultimately led the robot to

back up, shows up as a small dot-like obstacle in the 2-D map.

robot may be angled relative to the current corridor (as a result of avoiding an obstacle, etc). So

a number of previous robot positions are combined in a linear estimator to produce an estimate

of the general direction of the mine corridor.

Once the goal region has been determined, control is generated by applying the A* algo-

rithm [34] in C-space. Initially, the goal region is kept small; however, if planning fails to fi nd a

path below a certain cost threshold, the goal region is gradually increased. In this way, Ground-

hog favors trajectories that go through the center of the mine corridor; however if the center is

not navigable, the robot is able to take local detours around possible obstacles. If no navigable

path can be found to any of the goal points. The robot concludes that the corridor is unnavigable

and initiates a high-level decision to reverse. On the reverse journey, the robot uses the exact

same navigation routines, exploiting the fact that from a navigational standpoint of view, the

robot is symmetric. However, to avoid getting stuck on its journey back, the safety diameter is

reduced. The path found by A* is executed using a PD controller.

7 Results and Lessons Learned

Groundhog was tested in a number of experiments, some taking place in laboratory settings,

others in actual mines. As described in the introduction to this article, Groundhog navigated and

mapped three different mines, all with vastly different characteristics. The Bruceton research

mine enabled us to perform large-scale experiments, testing the vehicle’s endurance and ability

to acquire large mine maps with many cycles. However, our tests in this mine focused on the

ability to acquire large-scale maps, not on autonomous navigation. The Florence mine enabled

us, for the fi rst time, to acquire a 3-D map of an environment truly inaccessible to people. The

fact that is was partially flooded limited the operational range of the robot. So far, our only

autonomous run was performed in the Mathies mine, where the robot operated partially outside
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Figure 13: (a) Local 3-D map and (b) image of a broken ceiling bar that renders the corridor segment unnavigable.

This obstacle was encountered 308 meters into the abandoned Mathies mine. It led Groundhog to the correct

decision to retract.

the range of our wireless communication link.

Figure 10 depicts the map of the Florence mine (see Figure 2). Here the robot’s confi gura-

tion involved a forward-pointed laser for 2-D mapping, and an upwards pointed laser to map the

ceiling structure; no sensor was available to map the ground. While this confi guration is insuffi -

cient for autonomous navigation, it has the nice advantage that the 3-D map can be constructed

easily from the 2-D map as the robot moves [41].

Groundhog entered the Mathies mine autonomously on May 30, 2003 at 10:55 AM, EST.

Shortly thereafter, it lost radio contact with the gronud station. One hour and 308m into the

mine, the robot encountered a roof-fall, including a steel support beam that draped diagonally

across the corridor and blocked further progress. The machine made the appropriate decision

to retract and begun to back out of the mine at approximately 12:00 PM, but encountered soft-

ware diffi culties starting at approximately 12:20 PM. After another 30 minutes, the system had

not resolved its problems, and it was decided to try to intervene over the weak wireless link

at 12:56 PM Under the strain of teleoperation, the wireless link locked up shortly thereafter,

stranding the robot an estimated 200 meters inside the mine at 1:04 PM. Subsequent efforts to

re-establish the link failed, and at 3:30 PM, two mine safety inspectors received permission to

suit up and proceed into the mine to try to manually reset Groundhog’s wireless link. The link

was successfully reestablished at 3:50 PM and the robot exited the mine under manual control

at 4:02 PM.

Figure 11 depicts imagery acquired inside the Mathies mine. These images were recorded

with a low-light camera, using the robot’s active IR light source for illumination. The 2-D map

of the Mathies mine is shown in Figure 12. This 308 meter-long map shows the obstruction

on its right end. In 2-D, the obstruction appears to be small and navigable. In 3-D, however,

it becomes apparent that the obstacle is not navigable. The robot’s 3-D map of the situation is

shown in Figure 13, along with the image.

The resulting 2-D map and the corresponding 3-D maps were found to provided an un-

precedented glimpse into the interior of this quickly deteriorating environment. A subsequent

debrief with members of mine safety and environmental protection agencies confi rmed that the

level of detail provided by these models opens up unprecedented opportunities to understand

the situation inside an abandoned mine, and to target corrective actions.
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8 Shortcomings and Future Challenges

We have described the software architecture of a deployed system for robotic mine mapping.

The most important algorithmic innovations of our approach are new, lazy techniques for data

association, and a fast technique for navigating rugged terrain. The system has been tested under

extreme conditions, and generated accurate maps of abandoned mines that are inaccessible to

people. Our research demonstrates that the autonomous acquisition of maps of abandoned

mines is indeed feasible with autonomous robotic systems.

Our extensive experimentation with the Groundhog system suggests a number of opportu-

nities for further research. Chief among them is to develop systems that can autonomously map

entire mines, not just fractions thereof. Diffi culties in this task arise from the fact that side-

corridors were frequently closed before miners abandoned them, to stop the flow of gases from

inactive into the active parts of a mine. Such closures pose insurmountable obstacles to our

present system, but might be surmountable given appropriate means of environment modifi ca-

tion. In a parallel effort, we have investigated the feasibility of building borehole-deployable

robotic systems [29], which can be placed in deep mines from the surface. However, the small

radii of conventional boreholes makes it diffi cult to lower a vehicle large enough to negotiate

the rough ground terrain.

A second limitation of the present system is its inability to negotiate water and heavy mud. A

good fraction of mines in the U.S. is flooded. This creates an opportunity to build submersible

mine mapping robots, which would have the advantage of not being forced to the ground of

a mine. Another possibility would be an amphibious vehicle for exploring partially flooded

mines.

Finally, being able to communicate with a robot while inside a mine would have great op-

erational benefi ts, both with regards to trouble shooting and for assisting the robot in its ex-

ploration decisions. At present, there are only low-bandwidth technologies for communicating

directly through solid matter. Establishing a network of wireless repeater stations, as proposed

in [32, 33], would be a viable extension to mine mapping robots, which could critically enhance

the operational capabilities of future mine-exploring robots.

Despite these limitations, Groundhog’s success in exploring and mapping abandoned mines

opens a world of opportunities for subterranean robotic exploration. While the surface of the

Planet has been mapped with great detail, most underground voids lack accurate maps, often to

the detriment of the people who live or work nearby. This applies not just to man-made voids,

such as mines. It equally applies to natural voids such as caves. For the fi rst time in history, we

now begin to have means to explore and map voids inaccessible to people.
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