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Mapping a river’s geometry provides valuable information to help understand the topology and health of
an environment and deduce other attributes such as which types of surface vessels could traverse the river.
While many rivers can be mapped from satellite imagery, smaller rivers that pass through dense vegetation
are occluded. We develop a micro air vehicle (MAV) that operates beneath the tree line, detects and maps the
river, and plans paths around three-dimensional (3D) obstacles (such as overhanging tree branches) to navigate
rivers purely with onboard sensing, with no GPS and no prior map. We present the two enabling algorithms for
exploration and for 3D motion planning. We extract high-level goal-points using a novel exploration algorithm
that uses multiple layers of information to maximize the length of the river that is explored during a mission. We
also present an efficient modification to the SPARTAN (Sparse Tangential Network) algorithm called SPARTAN-
lite, which exploits geodesic properties on smooth manifolds of a tangential surface around obstacles to plan
rapidly through free space. Using limited onboard resources, the exploration and planning algorithms together
compute trajectories through complex unstructured and unknown terrain, a capability rarely demonstrated by
flying vehicles operating over rivers or over ground. We evaluate our approach against commonly employed
algorithms and compare guidance decisions made by our system to those made by a human piloting a boat
carrying our system over multiple kilometers. We also present fully autonomous flights on riverine environments
generating 3D maps over several hundred-meter stretches of tight winding rivers. C© 2015 Wiley Periodicals, Inc.

1. INTRODUCTION

Riverine applications are an increasingly important focus
for many tasks, such as mapping, monitoring, and surveil-
lance, for which it is desirable to use autonomous explo-
ration to traverse the river and collect up-to-date informa-
tion. A small lightweight system that can travel below the
tree line to sense the river width, the river direction, and
canopy clearance is advantageous since this information of-
ten cannot be measured from satellite imagery because tree
canopy cover occludes the river from above. Furthermore,
narrow densely forested rivers are difficult to navigate by
surface craft because of submerged and semisubmerged ob-
stacles; therefore, we develop a micro aerial vehicle (MAV)
that is small and nimble and can traverse the difficult
terrain.
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Existing applications for autonomous river operations
focus on collecting information from robotic boats navigat-
ing based on stored directions. Existing platforms have used
predetermined GPS waypoints as a navigation guide. Often
riverine systems are densely overgrown with vegetation,
and autonomous exploration cannot depend on the irreg-
ular and erroneous GPS measurements in these surround-
ings. Due to their dense canopy, estimating an initial map
of the waterways from satellite images is also not a viable
option. Furthermore, riverine environments are also contin-
uously evolving, and current information on the width and
course is often not available. For all of these reasons, riverine
environments must be explored without relying on prede-
termined maps or waypoints. To date, there have been few,
if any, truly autonomous exploration systems demonstrated
in a riverine environment. We present what we believe is the
first such system that can explore a river solely from local
sensing, and our vehicle is the first that can fly through river
environments to quickly explore while avoiding submerged
and semisubmerged obstacles.
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This paper builds on our existing work in river environ-
ments for autonomous perception, positioning, and obstacle
avoidance work (Achar, Sankaran, Nuske, Scherer, & Singh,
2011; Chambers et al., 2011; Cover, Choudhury, Scherer, &
Singh, 2013; Rehder, Gupta, Nuske, & Singh, 2012; Scherer
et al., 2012) and extends to contribute the key capabilities of
the following:

1. A modified low-level motion planning algorithm called
SPARTAN-lite (where SPARTAN denotes Sparse Tan-
gential Network) that exploits geodesic properties on
smooth tangential manifolds around obstacles.

2. A novel exploration algorithm [originally presented in
Jain et al. (2013)] that enables truly autonomous explo-
ration of rivers using a multivariate cost map.

The motion-planning algorithm, called SPARTAN-lite,
enables autonomous flight in the unstructured riverine en-
vironment. The task intrinsically demands consistently de-
livering safe, feasible paths in real time. Such environments
tend to have clusters of cluttered objects separated by large
segments of empty space. Standard motion-planning ap-
proaches distribute computational effort evenly between
free space and obstacle-dense regions. There is a need for
a lightweight planner that computes only when it needs
to and sits idle otherwise. We present a motion planner
that leverages the intermittent sparsity of its environment
and creates plans several times faster than the state-of-the-
art (Chambers et al., 2011). The planner constructs a graph
wrapped in a tangential surface around obstacles. The large
speedups have been achieved by creating vertices during
the obstacle cost update process as well as by creating
careful graph construction rules to remove redundancies.
Using limited onboard resources, SPARTAN has flown au-
tonomously along rivers, around trees, under bridges and
power lines, and over changing terrain. Here we present an
updated version of SPARTAN, called SPARTAN-lite, which
exploits smooth manifolds around obstacles.

The exploration algorithm provides high-level goal
points for the motion-planning algorithm. We use two
sensor modalities: a three-dimensional (3D) spinning laser
scanner and an RGB stereo camera pair. For the laser scan-
ner, we develop an approach to identify the river., that mod-
els both laser beams that return as specular reflections from
the river surface and those that are scattered and absorbed
by the river. For the camera, we use a self-supervised river
segmentation method that we presented in a prior publica-
tion (Achar et al., 2011; Scherer et al., 2012). Both sensors
provide a map of the river extent and the bank of the river,
which we use as input to the exploration algorithm. From
the river and bank environment model, we extract three
forms of information relating to free-space, time since ob-
servation, and distance of observation from vehicle. These
combine into a fused cost map from which a goal-point is
robustly extracted. We demonstrate that our method is more

adept than traditional exploration algorithms that often fo-
cus solely on detecting the frontier between free-space and
unknown areas. Our approach demonstrates an increased
amount of information of the river gathered during a mis-
sion. The output of the system is a map of the course and
width of a river, internally when evaluating the exploration
algorithm, and we define a metric of success as increasing
the length of the riverbank observed.

Results are collected from both simulation and real-
world experiments. The simulations evaluate the algo-
rithms against implementations of other commonly de-
ployed approaches. The real-world experiments include a
boat manually driven down a river with the sensor mounted
onboard and also fully autonomous flights with the mi-
cro unmanned aerial vehicle (UAV) navigating several hun-
dred meters of lakes and rivers without GPS and without
any prior map (see a video of the autonomous flight at
https://www.youtube.com/watch?v=vaKNbzYSK6U).

2. RELATED WORK

Much work has been put into the development of au-
tonomous vehicles for navigating waterways, using a va-
riety of different types of craft such as automated cata-
marans (Dunbabin, Grinham, & Udy, 2009; Pradalier,
Posch, Pernthaler, & Siegwart, 2012), small lightweight fan-
boats (Valada et al., 2012), kayaks (Leedekerken, Fallon, &
Leonard, 2010), or small inflatable craft (Gadre, Du, & Stil-
well, 2012). Existing waterway navigation systems rely on
predefined GPS-waypoints (Valada et al., 2012), or a prede-
fined map generated from satellite imagery (Gadre et al.,
2012). In contrast, our work is focused on autonomous ex-
ploration, where the environment is perceived by onboard
sensors and the vehicle reacts by planning routes that nav-
igate the vehicle along the waterway and mapping the di-
rection and width of the riverbank.

We achieve this with a spinning 3D laser scanner, which
has also been demonstrated for local obstacle avoidance
(Dunbabin et al., 2009; Gadre et al., 2012) to navigate around
obstacles discovered above the water surface. However, we
do not use any prior information, and we rely on intelli-
gent path and goal planning based on the information re-
ceived by our local sensing. In one somewhat related work
(Rathinam et al., 2007), rivers are detected and tracked from
aerial vehicles, although unlike our work these are higher-
flying vehicles, making them as unsuitable as satellite im-
ages, whereas our system operates beneath the tree-line.

In terms of exploration strategies, a common approach
is to optimize the robot pose accuracy and the accuracy
of the resulting map (Amigoni & Caglioti, 2010; Kollar &
Roy, 2008). In contrast, we rely on separate positioning al-
gorithms (Rehder et al., 2012) for pose accuracy, and we
focus our exploration algorithm to maximize the length of
riverbank discovered. In some exploration strategies, infor-
mation maximization is focused on reducing uncertainty in
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the pose and likelihood of map cells being an obstacle or
free space (Amigoni & Caglioti, 2010; Kollar & Roy, 2008).
Other approaches more closely related to ours define explo-
ration goals that select viewpoints that are expected to yield
the highest increase in entropy (Moorehead, Simmons, &
Whittaker, 2001; Stachniss & Burgard, 2003) resulting in the
robot seeking out regions that have not yet been explored.
Overall, these strategies are closely related to the standard
frontier exploration systems (Yamauchi, 1997). Our method
is similar in nature, although we introduce a multivariate
cost-map, which finds trajectories that maximize the length
of a river explored for a given mission time by specifically
trying to increase the amount of the riverbank observed.

The survey by Kendoul (2012) classifies most practical
planning approaches for UAVs in outdoor environments,
while Goerzen, Kong, & Mettler (2010) make a more broad
classification. SPARTAN falls in the category of generating
a roadmap for free space using a representation such as a
visibility-graph and searching over this roadmap.

The most popular approach to planning in 3D spaces is
by performing a Heuristic Graph Search as summarized by
Ferguson, Likhachev, & Stentz (2005). This search can be per-
formed over a generic roadmap or over regularly connected
grids. Even though the latter is more popular because the
graph is easier to construct, it becomes very computation-
ally heavy for fine resolutions (submeter). Multiresolution
methods have effectively overcome this problem. For ex-
ample, unmanned helicopters have been flown by Tsenkov
et al. (2008) and Whalley, Tsenkov, Takahashi, Schulein, &
Goerzen (2009) using a quad-tree grid representation and
performing an A* search. However, such methods still incur
discretization errors and produce unnatural oblique paths.

Probabilistic methods allow solutions of arbitrary com-
plexity and resolution and probabilistically converge on a
solution. By sampling uniformly in free space, probabilistic
roadmaps (Kavraki, Svestka, Latombe, & Overmars, 1996)
can be generated for graph search, or rapidly exploring ran-
dom trees (LaValle, 1998) for faster solutions. However, the
convergence of these methods is slow, the plans found are
not optimal, and no performance bounds can be claimed
about them. More recently, the introduction of the Rapidly-
exploring Random Trees – Star (RRT*) by Karaman &
Frazzoli (2010) improves the performance by bringing
asymptotic optimality to sampling-based planners.

Visibility graphs and their reduced forms have been
analyzed in detail by LaValle (2006). Despite the compu-
tational complexity, it has been used for navigation in an
outdoor scenario by Wooden & Egerstedt (2006). In UAV
planning, visibility graphs have been used by Hoffmann,
Waslander, & Tomlin (2008a) to generate a 2D initial guess
to navigate within a polygonal environment. It also has been
used to plan in a limited horizon by Kuwata & How (2004).
However, these methods project real data into a polygo-
nal environment and plan in a geometric space, thus mak-
ing the method sensitive to sensor noise. Similar in nature

to visibility methods, the tactic of staying close to an ob-
stacle and moving tangentially to it is present in reactive
planning techniques (Hrabar, 2011). This algorithm checks
collisions within a cylindrical safety volume, and finds an
escape point. The 3D Dodger approach by Scherer, Singh,
Chamberlain, & Elgersma (2008) also results in trajectories
lying on a tangent from obstacles.

2.1. System Overview

Earlier incarnations of our system were described in Cham-
bers et al. (2011) and Scherer et al. (2012). These were partial
descriptions, and in some cases the descriptions now do not
reflect the current state of the system. In Figure 2, we present
the current details of the system implementation.

A picture of our system can be seen in Figure 1(b).
It is an eight-rotor, battery-powered micro UAV. The base
platform is a Mikrokoptor bought off-the-shelf, and, retrofit
with our own sensors and computing payload and interface
to provide autonomous commands.

Sensor Suite: Figure 1(b) highlights the two main sen-
sors, namely a color camera and a custom-built 3D spinning
laser range scanner. We also carry our own inertial measure-
ment unit (IMU) and barometric sensor to help estimate the
pose of the vehicle.

We mount the sensors on a lightweight, carbon-fiber
mount, which we custom-build. The carbon-fiber mount is
attached via shock isolating gel mounts to reduce vibrations
from the main platform.

Stereo-Camera: For six-degrees-of-freedom (6-DOF) rel-
ative motion and for detecting the river extent, we use a
stereo-camera that is comprised of two IDS UI-1240SE-C-
HQ cameras with Lensagon BM4018S118 4 mm 1/1.8 in. for-
mat wide field-of-view lenses. The stereo-pair is mounted
on the lightweight carbon-fiber mount at about a 400 mm
baseline.

Custom 3D Spinning Laser Scanner: For robust and accu-
rate obstacle sensing, we have developed a 3D spinning
mechanism for a 2D laser scanner. The scanner is a 2D
Hokuyo UTM-30LX-EW that is actuated to provide a 3D
scan pattern using a custom-built rotating mechanism. The
scanner is described in detail in Chambers et al. (2011) and
Scherer et al. (2012).

IMU: We use a Microstrain 3DM-GX3-45 integrated
IMU/GPS unit, although for these experiments we explic-
itly do not use the GPS measurements and operate com-
pletely GPS-denied. We do use the IMU measurements for
high-frequency, low latency positioning updates for our
state filter.

Stereo Visual Odometry: We implement a version of Lib-
viso2 (Geiger, Ziegler, & Stiller, 2011) with custom im-
age matching software implemented and distributed on
a custom processor board with four Logic PD Torpedo
Computer on Modules (COMs). Each COM has a 1 GHz
ARM Cortex-A8 processor with a TMS320C64x+ DSP
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Figure 1. A micro aerial vehicle is used to autonomously explore and map the river environment. The information of interest is
the intersection between bank and river. The vehicle is lightweight and agile and not susceptible to submerged and semisubmerged
obstacles such as would be hazardous to an aquatic surface vessel. To avoid obstacles and to perceive the extent and course of the
river, the vehicle is fitted with a spinning 3D laser scanner and RGB stereo camera pair.

coprocessor. We have also developed an algorithm to correct
for bias in visual odometry occurring from tracking distant
features (Rehder et al., 2012).

Height Above River Estimation: We maintain a coordi-
nate frame relative to the river, and to keep track of the
height above the river we use specular laser returns directly
beneath the vehicle.

Barometric: For situations in which the vehicle is not
above a river, we use an onboard barometric sensor
(Weather Board - USB, SEN-10586, sparkfun.com) for mea-
suring altitude changes.

State Estimation (UKF): We fuse stereo visual odometry,
IMU measurements, and altitude measurements with an
unscented Kalman filter. This approach is presented in detail
in Chambers et al. (2014).

3D Obstacle Mapping: We use efficient algorithms for
taking 3D spinning laser data and producing online 3D ob-
stacle maps that are used for online motion planning; details
are presented in Scherer et al. (2012).

2D River Mapping: We use camera and lidar data
to generate river maps to be used by the explo-
ration algorithm. The initial version of the approach
to generate the river maps was presented in Cham-
bers et al. (2011), and current details are presented in
Section 3.1.

Exploration Algorithm: To generate goal points to enable
the vehicle to explore the river, we have developed an ex-
ploration algorithm, presented in Section 3.

Motion Planning: The goals for the vehicle are then
passed to a local motion planner that efficiently generates
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3D trajectories for the vehicle, described later in Sections 4,
5, and 6.

Flight Control: The trajectories are provided to a trajec-
tory controller that minimizes cross-track and along-track
error to produce a desired attitude and acceleration.

This paper proceeds in the following sections to de-
scribe the exploration and motion planning algorithms in
detail.

3. EXPLORATION ALGORITHM

The key aim of our exploration algorithm [originally pre-
sented in Jain et al. (2013)] is to find goal points to pass to
the motion planning algorithm (SPARTAN-lite—Section 6)
for the vehicle to execute trajectories to realize the following
behaviors:

� Follow river, while maintaining stable flight and avoid-
ing obstacles.

� Maximize the information collected over the course of
the river.

3.1. Environment Modeling and Sensing for Goal
Planning

The exploration algorithm needs to consider the river extent
to derive goals that maximize the length of the river that is
explored. We specifically decide to consider the amount of
the riverbank explored. The alternative would be also to try
to maximize the river width observed as well, but we have
chosen not to because when we are in wide rivers we do
not want to zigzag back and forth across the river, thus we
prefer to navigate as far down wide rivers as possible. Here,
the riverine system is modeled as a planar grid (χ ). Each cell
χ i in the grid represents a cell in the world at location xi, yi ,
and the rivermap values of this cell in the grid are as follows:

χ i
r = χ xi ,yi

r =

⎧

⎨

⎩

1 if the cell is part of the river,
−1 if the cell is part of the bank,

0 if the cell has not been observed.

(1)

Taking χ , we form a function that defines the current
information that we have about the river. We define the in-
tersection between river and bank as the pertinent informa-
tion for our algorithm, and we use these cells as a measure
of information. To achieve this, we form a new information
map as follows to search for discontinuities in the current
river model:

I (xi ,yi ) =
u=xi+1
∑

u=xi−1

v=yi+1
∑

v=yi−1

[sgn(χ (xi ,yi )
r ) �= sgn(χ (u,v)

r )]. (2)

Our exploration algorithm seeks to extract desirable trajec-
tories for the vehicle that will maximize the entropy in I .

3.2. Laser Classification

The above formulation is derived from data collected from
local sensing mounted onboard the vehicle; see Figure 1(c).
The laser scanner and the camera onboard generate envi-
ronment maps that are used for goal planning.

We use a lightweight spinning laser range scanner to
create a 3D scan of the environment [see Figures 1(c) and 3
and Scherer et al. (2012)]. The maximum range of this scan-
ner depends on ambient illumination and reflectance char-
acteristics of objects, but in typical outdoor environments
we observe maximum ranges of approximately 15 m. We
use this range to determine which laser missed returns are
due to limited range and which are due to water absorption,
i.e., we can detect the river from these laser misses. The laser
range measurements are converted into a 3D point cloud in
the world frame using an accurate positioning system that
operates in GPS-denied environments (Rehder et al., 2012;
Scherer et al., 2012). We measure the current height above
the river surface, which cannot be derived purely from the
global frame, since the height will vary according to the cur-
rent water level. To achieve this, we extract specular returns
from the water surface in a tight cone directly below the
vehicle.

Once the global position and relative height above the
surface are known, we can then proceed to use the laser
measurements to form our environment map. In particular,
the following rules are applied:

� All missed laser returns (those with the maximum laser
range) that pass through the river plane are considered
as river cells at the intersection of the ray and the river
plane {χ i

r = 1 }.
� All laser hits less than maximum range are projected on

the environment grid, and based on the density of these
projected hits in a cell, the cell is classified as part of the
river bank {χ i

r = −1 }.

3.3. Visual River/Bank Classification

Classification of the environment into river and bank
through vision is done by performing self-supervised river-
bank segmentation on the image captured by the camera
onboard the vehicle (Achar et al., 2011).

Figure 4(b) illustrates the precision rates of a cell be-
ing classified as river/bank by comparing the segmentation
output to an offline map of the environment. The visual clas-
sification is less reliable short ranges in comparison to the
laser scanner. However, the range of the camera is much
greater than the laser, and with a precision of river classifi-
cation it is 80%, which is satisfactory to enable longer-range
exploration decisions to be made. The performances of the
visual and laser scanner river sensing approaches are eval-
uated against each other against a human operator in the
results section (Fig. 14).

Journal of Field Robotics DOI 10.1002/rob



6 • Journal of Field Robotics—2015

Figure 2. Overview of the entire autonomous system. In this paper, we focus on the exploration and planning algorithms; here
we seek to highlight how these algorithms fit into the system at large.

Figure 3. Diagram depicting a spinning laser scanner used for detecting the river, estimating the height above the river, and
detecting obstacles on the riverbank. Laser returns are recorded from the water surface in a cone directly beneath the vehicle from
specular reflections, which can be used to estimate the height above the river. Few, or no, laser returns are recorded from the river
outside of a cone directly beneath the vehicle since the laser scatters and absorbs into the water surface. We infer the presence of
the river from this lack of returns. Laser returns recorded from obstacles within range on the riverbank (approximately 15 m for
Hokuyo in an outdoor environment).

3.4. Goal-point Extraction for River Exploration

The main task in autonomous exploration is to take a local
perception of the environment and to extract goals for the
vehicle to traverse toward. The goals are then fed in as input

to the low-level motion planning algorithm presented in
Section 5. The exploration algorithm we present here sets
goals that seek to maximize the information gained during the
mission.

Journal of Field Robotics DOI 10.1002/rob
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Figure 4. Left: example of a self-supervised segmentation algorithm detecting the river within camera images. Pixels with a
probability greater than 0.5 after river segmentation are classified as river and marked with a white contour (Achar et al., 2011).
They are then projected onto the river plane to create an initial map of the environment. This image is from a dataset taken from the
McCarthy river, Mississippi. Right: visual River/Bank Classification. These results are collected from a 1-km-long run on a winding
river. The precision rate of approximately 80% at long distance from the vehicle indicates the usefulness of visual classification for
making long-range exploration decisions.

To achieve the desired behaviors, we introduce mul-
tivariate cost maps that respect the characteristics of the
sensing and extend the abilities of more simplistic tradi-
tional frontier exploration algorithms (Yamauchi, 1997). In
particular, the costs we derive enable the vehicle to observe
the maximum length of the riverbank while following the
course of the river, and where possible avoid returning to
unexplored portions of the river that are behind the vehi-
cle. Frontier that is not observed as the vehicle passes by
initially may be larger in size than a narrow passage that
the vehicle encounters directly ahead, however it is subop-
timal to return to these locations as little new information is
collected on the journey back to previously explored areas.

We develop a riverbank-hugging behavior that uses a
distance transform-based cost function, Cd (·), that aims to
keep the vehicle away from but near enough to the riverbank
to both assist the 3D mapping of the bank and to ensure the
local motion estimation is functional. This range is designed
to result in maximal information gain of the riverbank. To
arrive at CD(i), we compute a distance transform fD(i) that
returns the distance to the nearest obstacle (χ j

r < 0). We
efficiently compute this distance cost as described in detail
(including timing information) in Scherer et al. (2012). After
calculating the distance transform, we apply a function to
penalize goals very close to obstacles, and we also penalize
goals far away from obstacles using a desired distance κD

as follows:

CD(i) = 1 − exp

(

kD[fD(i) − κD]2 + 1

fD(i)

)

, (3)

fD(i) = argmin
j = 1 : N

χ
j
r < 0

||(xi, yi) − (xj , yj )||, (4)

where kd is a tuning constant. The resulting functional is
depicted in Figure 5(a), where the cost is high near the ob-
stacles and descends to a minima at κD . The behavior is to
keep following clear passages in the river ahead, keeping a
safe distance from the bank, and generally only in the case
in which an obstacle blocks the entire river will the vehicle
come to a stop.

The next cost we introduce is designed to avoid re-
tracing steps. In particular, we assign cells that have been
observed more recently with lower cost than those behind
the vehicle, which were observed further in the past. We
take the elapsed time since the ith cell was last observed as
χ i

t , and we use it to penalize retracing through cells seen
previously as follows:

CT (i) = t − χ i
t . (5)

Figure 5(b) visualizes this temporal observation cost. An
important cost we introduce is CR(i). The range the cell
is from the current vehicle-location, which is designed to
maximize the distance traversed along the river:

CR(i) = ||(xi, yi) − (xt , yt )||, (6)

where (xt , yt ) is the current position of the vehicle; see
Figure 5(c).

Next we introduce a cost to favor the vehicle continuing
on its current course to avoid the issue of isotropic sensor

Journal of Field Robotics DOI 10.1002/rob
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Figure 5. Visualizations of the multivariate cost functions. Obstacles are highlighted by lines, and the cells observed as the river
are rendered a shade from white to blue (dark), where deep blue represents low cost to go. Cells with lowest cost in a map represent
the next goal point for navigation. For the combined cost functions, we indicate the cluster of lowest cost cells in green in (d).

input that typically occurs at the commencement of a mis-
sion when no obstacles are within range, and the aforemen-
tioned costs are at an equilibrium and do not return stable
goals,

CH (i) = expκH (θv
z −�θ ), (7)

�θ = arctan

[

(

xt − xi

yt − yi

)2
]

, (8)

where kH and κH are constants that are empirically de-
termined to create a dip in cost around zero heading in
body-frame coordinates, to enable the vehicle to maintain
its course when the sensory inputs do not provide stable
goals, such as in open water.

Finally, an obstacle path cost CO (i) is derived from the
set of cells (P ) connecting the vehicle position with cell i:

CO (i) = argmax
p∈P

(fO (p)), (9)

fO (p) =
{

0 if χp
r = 1,

κO otherwise,
(10)

where κO is a suitably large constant to avoid obstacles. In-
dividually these costs do not produce desirable behavior,
however when correctly fused together, the vehicle main-
tains course. Therefore, the final objective of the goal plan-
ning algorithm is to combine the costs and extract the re-
sulting goal χG that is to be passed to the motion planning
algorithm.

Then to extract goals, we compile a set � that contains
the cells with the lowest n% cost, then find a weighted mean
over this set:

G = argmin
ψ∈�

( �
i=1:N

[||(xψ , yψ ) − (xi, yi)|| · C(ψ)]). (11)

4. MOTION PLANNING PROBLEM DEFINITION

To reach the goal points generated by the online exploration
algorithm, the robot must be able to plan a collision-free
path to it. This can be formulated as a motion planning
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Figure 6. (a) A tangent visibility graph. The optimal solution to the shortest path that does not intersect O1 and O2 lies on the
graph joining the start x0 and end xf to the surface ∂O1,∂O2 and the interconnected tangential plane ∂O1O2. (b) Samples on a
tangential surface. The surface is at a distance of r from obstacles. The normal to the surface is n̂. Samples on this surface are at
least a distance of ρ from each other.

problem to compute the shortest feasible geometric path
from start to goal. A velocity profile satisfying decelera-
tion constraints is then assigned to this path to derive a
trajectory. This is then given to a trajectory controller sim-
ilar to that in Hoffmann, Wasl, & Tomlin (2008b). To en-
sure bounded tracking error, the path is expected to have
bounded smoothness.

Let W ⊂ R
3 be the robot workspace. Let O ⊂ W be the

space where the robot is considered to be in collision. This
is the Minkowski sum of the set of obstacles with a sphere
of radius of the largest required clearance, robs . Let a tra-
jectory ζ : [0, 1] → W be a well-defined function mapping
time to workspace locations. Let the start and goal location
be defined as x0, xf ∈ W \ O. x0 is the current pose of the
robot, while xf is the goal point generated by the explo-
ration algorithm. If xf is outside the valid workspace, it is
projected back on to W \ O. Then the planning problem can
be formulated as

minimize
ζ

∫ 1

0

‖ζ̇ (t)‖dt,

subject to ζ (0) = x0,

ζ (1) = xf ,

ζ (t) ∈ W \ O,
∣

∣ζ̇ (t)
∣

∣ < εsmooth. (12)

We expand on the nature of W and O for this applica-
tion. The environment is being updated online by a range-
limited sensor. A scrolling grid that is approximately four
times larger than the sensor range is maintained. Thus the
workspace W is limited to this size. The workspace is an
unstructured outdoors environment with varying obstacle
density appearing in clusters. The online aspect of the prob-

lem requires rapid replanning at a frequency of approxi-
mately 10 Hz.

The need for rapid online planning and the clustered
distribution of obstacles motivates approaches that sample
around obstacles instead of free space. In the next section,
we describe an approach that solves the aforementioned
problem by constructing a visibility graph around obstacles.

5. MOTION PLANNING ALGORITHM : SPARTAN

SPARTAN (Sparse Tangential Network), which was origi-
nally presented in Cover et al. (2013), is a planning approach
that creates a sparse graph from vertices that lie on the sur-
face of the collision space O. The optimal path between any
two states in the workspace is constrained to lie on ∂O,
which is the surface of O, and the tangential plane ∂OiOj ,
which connects Oi and Oj (proof in Section 6.3) as shown
in Figure 6(a). Thus valid edges for the SPARTAN graph
are required to satisfy the property of being approximately
tangential to ∂O.

SPARTAN is a heuristic driven approximate 3D visibil-
ity graph construction technique that solves Eq. (12). Visi-
bility graphs in 3D are NP-hard (Canny, 1988). However,
by choosing to accept approximate solutions, SPARTAN
samples on the 2D tangential surface and converts the
problem to a graph search on a sparse graph. Furthermore,
the interleaving of the search and the graph constructions
also allows solutions to be computed efficiently.

5.1. Planning Setup

The vertices of the graph constructed by SPARTAN are
points sampled on a surface, ideally ∂O. The samples are
at least at a distance of ρ from each other, as shown in
Figure 6(b). As a result of this discretization, a relaxation
of the tangential constraints is required. The edges of the
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Figure 7. (a) A valid edge between two samples on a surface in the SPARTAN graph is tangent to the surface with a tolerance
of ǫ. (b) An edge between adjacent samples on the surface of radius r should at least be at a distance of robs from the center. The
samples are at least at a distance of ρ from each other.

SPARTAN graph are required to be approximately tangent
to a tolerance of ǫ, as shown in Figure 7(a).

This relaxation violates the constraint ζ (t) ∈ W \ O. To
alleviate this problem, the surface to be sampled is inflated
to encapsulate ∂O. It is defined as the Minkowski sum of
the original obstacle set with a sphere of radius r . Edges ap-
proximately ǫ-tangential on this surface do not necessarily
violate the obstacle constraints. To constrain the size of the
graph, a minimum vertex separation of ρ is ensured. The re-
lation between the resolution ρ, radius of clearance robs , and
the radius of the SPARTAN surface r is such that a connec-
tion of adjacent samples does not penetrate O. From Figure
7(b) it can be trivially shown that to satisfy this constraint,

the expanded radius r >

√

r2
obs + ρ2

4
.

The primary optimization objective is to minimize the
sum of edge lengths, subject to obstacle constraints. Since
the solution path is not smooth, the derivative constraint is
translated to a cost function penalizing the angular devia-
tion between consecutive edges. Let the solution be a set of
edges 	ei . Then the objective can be expressed as

minimize
	ei

m
∑

i=0

‖	ei‖ + μ(1 − 	ei+1 · 	ei),

subject to 	ei ∈ W \ O. (13)

5.2. Main Algorithm

The notations used in the algorithm are enlisted in
Table I. SPARTAN uses A* as the underlying search algo-
rithm. However, since the objective function depends on the
dot product between consecutive edges, SPARTAN has to
plan in the configuration space. An element of the config-
uration space vc ∈ R

3 × R
3 is defined by a workspace ver-

Table I. Notations used in SPARTAN.

Description Notation

Set of workspace vertices �

Tangential tolerance ǫ

Priority queue of open configuration space nodes open
Set of closed configuration space nodes closed
Flag indicating expansion of workspace node visited
Set of neighbors to a workspace node neighbours
Parent of a configuration space node parent
Cost of a configuration space node g

Cost of an edge from a configuration space node c

Heuristic of a workspace node h

Start configuration space vertex v0

Goal configuration space vertex vf

tex and its parent vertex. This creates an additional burden
on the size of the priority queue open and on the number
of possible updates to it. Section 6 presents a method of
overcoming this problem, an approach that we have named
SPARTAN-lite.

Algorithm 1 explains the SPARTAN process. It follows
the same flow as that of A* and only differs in how it ef-
ficiently deals with configuration space vertices. It does so
by decoupling the cost function into two sections—the part
dealing with workspace information and the part dealing
with configuration space information. The length and colli-
sion checking depend on workspace information. The angle
change cost depends on configuration space information.

Lines 14–25 deal with the first visit to a workspace ver-
tex when a configuration space belonging to it is expanded.
In this step, tangential and collision checks are performed to
determine neighbors to this workspace vertex. Subsequent
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visits to this workspace vertex for other configuration space
expansions use this information.

Algorithm 1 SPARTAN algorithm

1: procedure SPARTANv0, vf , �

2: g(v0) = 0
3: parent(v0) = ∅
4: open = ∅
5: open.insert(v0, g(v0) + h(v0))
6: while open �= ∅ do

7: vc ← open.pop()
8: closed ← closed ∪ vc

9: vw ← EXTRACTWORKSPACE (vc)
10: if vw = vf then

11: return BuildPath(vc)
12: if ¬visited(vw) then

13: visited(vw) ← true

14: for σ ∈ � do

15: if ISTANGENTIAL(vw, σ, ǫ) then

16: if ISCOLLISIONFREE(vw, σ ) then

17: vnew ← (σ, vw)
18: g(vnew) = g(vc) + c(vc, vnew)
19: parent(vnew) = vc

20: neighbours(vw) ← neighbours(vw) ∪ vnew

21: open.insert(vnew, g(vnew) + h(vnew))
22: else

23: for γ ∈ neighbours(vw) do

24: if γ /∈ closed then

25: if g(vc) + c(vc, γ ) < g(γ ) then

26: open.remove(γ )
27: g(γ ) = g(vc) + c(vc, γ )
28: parent(γ ) = vc

29: open.insert(γ, g(γ ) + h(γ ))
30: return ∅
31: end procedure

32: function ISTANGENTIAL(vw, σ, ε)
33: 	e = σ − vw

34: if |GetNormal(vw).	e| < ε and |GetNormal(σ ).	e| < ε then

35: return true
36: else

37: return false
38: end function

5.3. Implementation Details

The performance of the algorithm is coupled with the ability
to sample the vertices on the obstacle surface. The obstacle
is represented by a voxel grid that is updated online. The
vertex sampling is then done in an efficient way using a
modification of incremental distance transform (Cover et al.,
2013). The end result is that the surface O is represented in
a way that allows efficient collision checking in addition to
having vertices on a desired surface. Figure 8(a) shows the

distance transform and vertex sampling for a 2D example
for ease of visualization. Figure 8(b) shows a 3D planning
instance.

5.4. Algorithm Properties

SPARTAN is consistently able to produce high-quality tra-
jectories within a specified computation budget for our use
case. In this subsection, we investigate the algorithm prop-
erties that explain this performance, and we also shed light
on cases that might deter performance.

5.4.1. Completeness

Combinatorial motion planning algorithms are complete
because no approximation is made. SPARTAN plans over
sampled vertices on the tangential surface, and this approx-
imation prevents it from inheriting the completeness prop-
erty of the 3D visibility graph. Since SPARTAN imposes an
ǫ-tangential criteria on edge connections, resolution com-
pleteness is conditioned on ǫ and the SPARTAN planning
radius r .

Theorem 5.1. SPARTAN is resolution complete if ǫ > cos−1 robs

r
.

Proof: For resolution completeness, if there exists only one
valid sequence of edges 	ei on � joining start and goal, then
it must also exist in the SPARTAN graph. In other words,
| ni · 	ei |< ǫ, where ni is the normal at the vertices of the
path. The limiting case is where ei activates the feasibility
constraint and is tangential to ∂O. To allow this edge, ǫ >

cos−1 robs

r
.

5.4.2. Optimality

Since SPARTAN uses an admissible heuristic, to ensure res-
olution optimality, we are only required to show that an
optimal path will always be contained in the SPARTAN
graph. The following theorem expands on this.

Theorem 5.2. SPARTAN is resolution optimal if ǫ > cos−1 robs

r
.

Proof: This will be proved by negation. Let us assume that
the optimal path p is not contained in SPARTAN. Vertices
are removed from � until p is the only feasible path. SPAR-
TAN is guaranteed to contain p if it is resolution complete.
Hence the condition for resolution optimality follows from
resolution completeness.
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Figure 8. (a) SPARTAN generates a sparse graph. The obstacles are shown as red (gray scale: dark) squares, the collision space
O is colored from red to green (gray scale: dark to light) with decreasing penetration depth, vertices are shown as solid circles,
and edges expanded during graph search are shown as lines. (b) SPARTAN creates a sparse graph in three dimensions. The world
is represented as a 3D voxel grid. SPARTAN plans on vertices (red dots). The expanded configuration vertices are shown as the
connected graph, and the optimal path is shown as a solid green line.

5.4.3. Complexity

Let η(ǫ) ∈ [0, 1] be the largest fraction of vertices tangential
to any given vertex. Let the number of configuration space
vertices be M = η(ǫ)N2. Let |G| be the size of the voxel
grid used for collision checking. The complexity for the
main procedures of SPARTAN is shown in Table II. The
total complexity is O[η2(ǫ)N 3 log N ]. The maintenance of
configuration space nodes plays a major role.

Table II. Complexity analysis for SPARTAN.

Procedure Complexity

Addition to Queue M log M

Tangential Check N2

Collision Check
√

3|G|M
Analytic Cost Calculations η(ǫ)NM

Queue Update η(ǫ)NM log M

6. COMPLEXITY REDUCTIONS IN MOTION
PLANNING: SPARTAN-LITE

The major roadblocks in the performance of SPARTAN
are due to two main reasons. First, the SPARTAN graph
can have dense connectivity when a large tangential sur-
face occurs on which all vertices are interconnected. Sec-
ond, the maintenance of configuration space vertices leads
to a large number of cost function evaluations and queue
reordering.

In this section, we will show that both problems can
be mediated by exploiting the nature of a geodesic on a
smooth manifold. The central idea is that the optimal path
on the manifold will not have any deviations—this limits
the expansion size of a vertex. This, combined with the fact
that the path is constrained to lie on a radius r , implies that
optimizing the length is sufficient to ensure that the optimal
path has bounded angular deviations. SPARTAN-lite uses
these facts to achieve a significant speedup over SPARTAN
for difficult planning problem instances.
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6.1 Properties of Geodesics and Optimal Path

A geodesic path is a locally optimal path and cannot be short-
ened by slight perturbations. We also define the notion of
a plane segment on the tangential surface associated with
a vertex as the perpendicular plane to the normal at the
vertex and having other plane segments as boundaries.
As a result, the plane segments tessellate the tangential
surface.

We borrow the definition of planar unfolding from
Mitchell, Mount, & Papadimitriou (1987). If the path p

connects a sequence of plane segments P := {P1, . . . ,Pk},
then the planar unfolding of p along P rotates the plane
segments so as to represent the points of p on P1, . . . ,Pk−1

in the coordinate frame of Pk .

Theorem 6.1. If p is a geodesic path which connects the plane
segment sequence P , then the planar unfolding of p along P is a
straight line segment.

Proof: Let αx, xα′ be segments on p such that ∠αxα′ �= π .
Then there exists a shortcut ββ ′ for p, with β ∈ αx, β ′ ∈ xα′,
and the segment ββ ′ lies entirely on the plane sequence P .
This contradicts the local optimality property of p. �

Since the edges of the graphs are constrained to pass
through the vertices of the plane segment, a relaxation of
the straight line criteria is required.

Lemma 6.2. If p is a geodesic path that connects the plane
sequence P and is constrained to pass through the vertex of the
plane sequence, then the angular deviation of a segment on a
plane Pi is bounded as δ ≤ sin−1 ρ

l
, where l is the length of the

segment. �

Proof: Figure 9(a) shows an illustration of the problem. Let
α be the projection of ei+1 on ei and � be the perpendicular
deviation. If � > ρ, then there exists v such that ‖v − α‖ < ρ.
This removes the need for ei+1 to exist. Hence the angular
deviation is bounded as δ ≤ sin−1 ρ

l
, where l = ‖ei+1‖. �

The optimal path also satisfies properties on the plane
on which the normal lies.

Theorem 6.3. If p is an optimal path that connects the differ-
entiable surface sequence ∂S, then p is always tangential to the
surface.

Proof: If p penetrates the surface ∂Si , then it violates the
planning constraints. If p departs from the surface ∂Si at x,
let αx, xα′ be segments on p such that xα′ · ∂Si �= 0. Then
there exists a shortcut ββ ′ for p, with β ∈ αx, β ′ ∈ xα′, and
the segment ββ ′ lies in valid free space. This contradicts the
local optimality property of p. �

This exact tangential criterion does not occur for ap-
proximations of the tangential surface. In addition to the ǫ-
tangential criteria, the optimal geodesic can be constrained
further.

Lemma 6.4. If p is an optimal path that connects the plane
sequence P and is constrained to pass through the vertex of the
plane sequence, then the outgoing segment angle subtended with
the normal at Pi is greater than or equal to the incoming segment
angle, subject to relaxation of the obstacle constraint.

Proof: Figure 9(b) illustrates the problem. Let αx = ei ,
xα′ = ei+1 be segments and n̂ be the normal at x such that
ei · n̂ < ei+1 · n̂. Then the segment αα′ is a shortcut that does
not have a deeper penetration of the plane segment. If αα′ in-
tersects with other plane segments, then there exists a feasi-
ble path p′ approximately tangential to it that is shorter than
αxα′. �

A further reduction can be applied to constrain the
incidence angle.

Lemma 6.5. If p is an optimal path that connects the plane
sequence P and is constrained to pass through the vertex of the
plane sequence, then the incoming segment angle subtended with
the normal at Pi is acute.

Proof: Figure 9(b) indicates ei making an acute angle with the
normal. Let αx = ei , xα′ = ei+1 be segments such that ei · n̂ =
0. If α′ is an adjacent vertex to x, then ‖α′ − x‖ < 2ρ. Since
the graph will not contain αx as an edge (angle not acute),
the feasibility of αα′ should be examined. As ‖α − x‖ → ∞,
the penetration depth is bounded by r cos(2 sin−1 ρ

r
). �

6.2. SPARTAN-lite Algorithm

The SPARTAN-lite algorithm adapts SPARTAN to plan in
the workspace and use the geodesic properties in the expan-
sion step. The property of the optimal path to have bounded
angular deviation removes the need for a smoothness cost
in Eq. (13). This allows planning in the workspace (R3) in
place of the configuration space (R3 × R

3). The SPARTAN
expansion step only checked for tangential connections. By
applying a constraint on the tangent plane, SPARTAN-lite
reduces the connectivity of the graph.

Algorithm 2 shows the main procedure of SPARTAN-
lite. It is identical to an A* where the expansion step is
defined in line 13.
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Figure 9. (a) On the surface of the tangential plane, angular deviation δ is bounded if the edge sequences ei and ei+1 are part of
the optimal path. � is the perpendicular deviation of ei+1 from ei . (b) An incident ray on the tangential plane bends away from the
normal n̂ for a geodesic. ei is the incoming edge and ei+1 is the outgoing edge. ǫ is the tangential tolerance.

Algorithm 2 SPARTAN-lite algorithm

1: procedure SPARTAN-litev0, vf , �

2: g(v0) = 0
3: parent(v0) = ∅
4: open = ∅
5: open.insert(v0, g(v0) + h(v0))
6: while open �= ∅ do

7: vw ← open.pop()
8: closed ← closed ∪ vw

9: if vw = vf

10: return BUILDPATH(vw)
11: for σ ∈ � do

12: if ISGEODESIC(vw, σ, ρ) then

13: if σ �∈ closed then

14: if σ �∈ open then

15: g(σ ) = ∞
16: parent(σ ) = ∅
17: if g(vw) + c(vw, σ ) < g(σ ) then

18: g(σ ) = g(vw) + c(vw, σ )
19: parent(σ ) = vc

20: if σ ∈ open then

21: open.remove(σ )
22: open.insert(σ, g(σ ) + h(σ ))
23: return ∅
24: end procedure

6.3. Complexity

The complexity analysis is captured in Table III. The to-
tal complexity cost for SPARTAN-lite is O[ξ (ρ)N2 log N ],
as compared with the original SPARTAN complexity
O[η2(ǫ)N 3 log N ].

Table III. Complexity analysis for SPARTAN-lite.

Procedure Complexity

Addition to Queue N log N

Tangential Check N2

Collision Check
√

3|G|ξ (ρ)N2

Analytic Cost Calculations ξ (ρ)N2

Queue Update ξ (ρ)N2 log N

7. EXPERIMENTS

We validate our method in a set of experiments, beginning
with controlled simulations executed within maps of arti-
ficially engineered examples and real-world data. We con-
tinue with results from autonomous flights over rivers and
waterways, and we also present an open-loop comparison
with a human operator based on real-world data.

7.1. Motion Planning Simulation Experiments

The objective of the first set of experiments was to compare
SPARTAN to a state-of-the-art motion planner on the plan-
ning problems that are likely to occur for river exploration.
Given the requirement of producing a smooth 3D path, a
generic RRT* was chosen for comparison. A recorded laser
scan of an environment was revealed to both planners. The
planners were required to plan to a goal point with an av-
erage distance of roughly 30 m from the vehicle. Different
goal points were used as the vehicle moved through the en-
vironment. These goal points were chosen manually with
the aim of creating interesting planning problems. Cases
with trivial solutions were ignored. Figure 10(a) shows an
example of a planning scenario passing through a bridge.
The RRT* path was observed to have a low quality in
the same planning time as SPARTAN. When running until
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Figure 10. (a) SPARTAN computes a higher-quality path in a smaller time period than RRT*. The environment is an occupancy
map from a scanned bridge colored by height above the ground [pink cells are low z and light blue cells are high z (gray scale: dark
is low z, light is high z)]. The SPARTAN solution is shown in solid thick red—it has an acceptable path quality and is computed
within 0.55 s. SPARTAN-lite computes the same path in 0.38 s. The RRT* solution after 0.55 s is shown in thick dotted blue—the path
is of poor quality with large angular deviations. The RRT* path after 400 s is shown in solid thin green—the quality of the path is
not significantly different from that of SPARTAN. (b) SPARTAN-lite maintains a sparse graph even in a complicated environment.
Then the environment is a Poisson forest of cylinder obstacles whose surface is densely sampled.

Table IV. Comparison for 116 planning problems chosen in
an environment constructed from laser scans of an outdoor
environment.

Algorithm Success Average Cost Average Time (s)

SPARTAN 100% 2878 (±950) 0.071 (±0.087)
RRT* 76.72% 3472 (±1240) 0.102 (±0.003)

convergence, the path quality did not improve significantly
from SPARTAN’s output, demonstrating the near optimal-
ity of SPARTAN’s plan. To analyze the impact of the result
in a realistic scenario, both planners are judged on their
path quality after 0.1 s (planning cycle of 10 Hz). Table IV
shows that SPARTAN always found a solution in the al-
lowed time budget of 0.1 s, while RRT* had a lower success
rate. Moreover, SPARTAN’s paths have a lower average cost
and standard deviation.

The second set of experiments were performed to ex-
amine the scenarios in which SPARTAN had a poor perfor-
mance. Figure 11(a) shows an example in which SPARTAN
has an order-of-magnitude slowdown. This is because of
the large tangential surface of a concave environment where
none of the tangential edges make any progress toward the
goal. SPARTAN-lite, in such situations, uses the geodesic
properties to create a very sparse graph and is able to find
the optimal path approximately 50 times faster.

Figure 11. A 3D environment trap where the planners have
to plan around a large concave surface. (a) SPARTAN creates a
dense graph as many edges are tangential. The planning time
is 24.97 s. (b) SPARTAN-lite has a sparse graph due to geodesic
constraints. The planning time is 0.476 s.

A benchmark test is run to compare SPARTAN and
SPARTAN-lite in a randomly generated environment as
shown in Figure 10(b). The environment has a density
of λ = 0.00004, the obstacles are cylinders of radius 5 m
and height 20 m, and the goal is chosen at a distance of
141.7 m away. Table V summarizes the results from the test.
SPARTAN-lite is on average 2.5 times faster while having a
suboptimality bound of 0.02% over SPARTAN.
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Table V. Comparison of 100 trials of planning in a Poisson random forest of cylinder obstacles.

Algorithm Planning Time (s) Speedup Path Cost Suboptimality Bound

SPARTAN 4.066 (±4.642) 141.968 (±2.921)
SPARTAN-lite 1.716 (±2.074) 2.503 (±1.179) 142.004 (±2.949) 2e-4 (±4.6e-4)

Figure 12. (a) An autonomous outdoor flight stress-testing
the motion planner. The environment is an unstructured one
with trees and buildings. The robot was given random goals
to emulate an exploration algorithm. The robot explored an
area of 1.7 km from takeoff to touchdown. SPARTAN-lite was
able to produce collision-free paths while the system flew at an
average speed of 1.4 m/s. (b) A particular planning instance
during the autonomous stress test run. SPARTAN-lite plans
through a clearing in the trees. The search graph is relatively
sparse compared to the number of potential edges.

Table VI. Autonomous flight with online motion planning us-
ing SPARTAN-lite in a real unstructured outdoor environment.

Planning Vertex Total Speed
Time (s) Computation (s) Distance (m) (m/s)

0.175 (±0.199) 0.785 (±0.661) 1744.8 1.395 (±0.431)

7.2. Motion Planning Autonomous Flight Stress
Test Experiments

In preparation for full closed-loop autonomy tests, the mo-
tion planner was first stress tested for robustness in a real
outdoor unstructured environment. The planner was con-
figured to run online on the robot. Figure 12(a) shows the
entire experimental run. To emulate the exploration goal
planner, pseudorandom goals were provided to the robot
as it was flying. The goals were changed every 5 s. The
mission speed was on average 1.395 m/s. The entire run
spanned 1.7448 km, where the planner was able to always
have a collision-free path within a specified planning time.
Table VI summarizes the results from the run.

7.3. Exploration Algorithm Simulation Experiments

We evaluate our exploration algorithm in simulation us-
ing an environment model generated from data collected
over a section of the McCarthy River in Mississippi. A 3D
point cloud registered in world coordinates is generated
from data collected through the sensor suite carried on a
boat traversing the river. From this point cloud, we can sim-
ulate the laser measurements given a particular pose of the
robot and the known characteristics of our laser scanner.
This gives us the means to evaluate our autonomous explo-
ration algorithm based on multivariate cost maps against a
traditional frontier exploration algorithm.

We use planning cycles executed every 10 s. Each al-
gorithm is given the same initial conditions and we mea-
sure the information gained at each time step during the
simulated mission. We repeat the simulation adjusting the
virtual sensing range. In Figure 13, the information gained
with each approach is plotted against time, where clearly the
more traditional frontier approach has difficulties maintain-
ing advantageous trajectories for mapping the riverbank.
When narrow passages appear in the river, the frontier al-
gorithm oscillates between returning to explore the earlier
unexplored frontier segments and returning to the narrow
passages. Our method maintains an optimal distance from
the riverbank to avoid suboptimal trajectories, and it also
selects trajectories with a higher probability of maintaining
course along the river and avoid backtracking down the
river to observe portions of the bank.

7.4. Exploration Algorithm Open-loop Comparison

In this section, we compare the exploration algorithm us-
ing the vision and laser sensors against a human operator,
whom we consider to make expert decisions on how to nav-
igate along the river. Human decisions are either left or right
turn decisions that are measured from heading changes in
pose estimate. We perform an open-loop comparison of the
sensors and human operator on data collected by the robot
platform fixed on a boat driven along the McCarthy River.

We compare the decisions made by the human oper-
ator against the turn decisions made based on goal points
received from the multi variate exploration algorithm using
laser as well as vision sensing.

Since the laser scanner has a short range, laser-based
navigation follows the contours of a bank closely making
more reactive decisions. The vehicle is able to look further
ahead using vision to make intelligent and time-efficient
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Figure 13. Simulation of autonomous exploration comparing our method using multivariate cost maps against a more traditional
frontier exploration algorithm (Yamauchi, 1997). The simulation is given the same initial conditions but varying sensor ranges
within an environment model formed from real data collected from a section of the McCarthy River in Mississippi. Left: The
information gained using each algorithm is compared using four different sensor ranges. Right: Our algorithm demonstrates more
consistent behavior over the different sensor ranges as compared to the frontier exploration algorithm, which oscillates between
different unexplored segments of the river. The exploration behavior uniformly degrades with shorter sensor horizons.

decisions. This difference is emphasized in a wide river,
where vision will lead the vehicle down the river following
its general course, but laser navigation will stick to the bank
and follow its contours, which is time-inefficient and in
contradiction to what a human operator would do. After an
initial 50 m, the next 150 m stretch is more than 25 m wide,
and vision performs much better than laser for this stretch;
see Figures 14(b) and 14(c).

7.5. Autonomous Flights

After demonstrating in simulation that our motion planning
and exploration algorithms are more optimal at returning
favorable trajectories, we now proceed to evaluate our ap-
proach in real-world truly autonomous flights over rivers
and waterways. We manually bring our system into a hover
over a river and switch into autonomous mode, and from
there we let the vehicle explore the river autonomously at a
velocity of 1 m/s with no further human input.

We conduct these autonomous tests in tight and
densely vegetated sections of rivers (see Figures 15, 16, and
18) and also on semi-open-water flights conducted along
the bank of a lake (see Figure 17).

The flights on tight and densely vegetated sections of
a river demonstrate the complete system for planning tra-
jectories that avoid overhanging tree obstacles and main-
taining course along the river. The algorithm is able to plan
trajectories that enable the system to stay in range of both

riverbanks where possible, resulting in an optimal trajectory
for maximizing information.

Figure 15 shows an example of the cluttered river en-
vironment through which the robot is flying during an au-
tonomous 100 m flight. The canopy and the river/bank clas-
sification map from this flight are shown in Figure 16. This
experiment demonstrates the advantage of our algorithm
against getting information from satellite images, as we are
able to classify the areas lying underneath the canopy as
river or bank.

We demonstrate the ability of the system to navigate a
river over long distances. In the longest autonomous run on
a river, the robot flew for about 450 m along the length of
a narrow river. The limiting factor in the distance covered
during this test was the battery life of the vehicle.

This experiment was conducted on a very shallow river
about 10–15 m in width with dense vegetation on both
banks. The robot localized itself without any GPS input and
was able to classify the cluttered environment into river and
obstacles to explore and plan through it. There were some
pauses in robot trajectory in some sections of the river due
to trees with branches hanging over the river blocking the
path for the robot. Shallow areas in the river made the prob-
lem harder as they would be classified as obstacles due to
the large number of laser returns. Wind was also a chal-
lenge as a slight drift from the trajectory would take the
robot too close to an obstacle. The final map of the bank and
the trajectory of the vehicle during this experiment is dis-
played in Figure 18. The system operates without manual
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Figure 14. (a) Automatically extracted turn commands compared against a human operator. Vision commands are more stable
and do not require the vehicle to change directions unnecessarily. The laser scanner is much shorter-ranged and the commands are
more jittery as they consider a much smaller environment while planning, and they react suddenly to any changes in the shape of
the shoreline. (b) % accuracy of vision and laser turn requests by comparing them to the ground truth. Results from the 50–200 m
wide stretch show a larger difference in vision and laser accuracies. (c) The 1.5 km path followed on the McCarthy river.

intervention successfully exploring the river and turning
according to the river direction.

Longer autonomous flights were conducted on a 600 m
stretch of a lake, see Figure 17, where the robot was left
to explore the lake bank without any intervention. Fron-
tier exploration algorithms, without any modifications, will
lead the vehicle off into the center of the lake, continuously
moving toward the largest (or nearest) section of unex-

plored frontier. Our approach using a variety of costs will
enable the vehicle to seek to maximize the length of the bank
explored.

Autonomous flights in both tight and open water sit-
uations highlight the ability of our algorithm to maintain
desirable behaviors in a variety of conditions. Dense over-
hanging trees demonstrate the fast motion 3D planning al-
gorithm ability to rapidly replan paths around 3D obstacles.
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Figure 15. (a) Laser point cloud collected from the autonomous flight through the densely forested river environment. The
detected river extent is shown in grid cells, and the bank and overhanging trees are colored by height above the river surface. (b)
Environment where we test the system’s ability to fly autonomously through a densely forested river.

Figure 16. Map generated from autonomous flight through a narrow and densely vegetated river-segment. Top: satellite view of
the river segment. Left: map of the river, where the river extent is shown in gridded cells. Overhanging trees and bank detected
by the laser scanner are shown as a point cloud. Right: traversable river extent detected by the laser scanner. Notice that the
overhanging trees in the middle of the segment are removed, and a clear and traversable path is discovered underneath by the
flying vehicle. The traversable river map, for example, could be used by a surface craft following the flying vehicle, enabling it to
have knowledge of where it is safe to travel.

The exploration algorithm was seen to stay an optimal dis-
tance from the bank to maintain good coverage with the
laser scan pattern, and it did not wonder away exploring
the large internal area of the lake.

7.6. Video

A video of the longest flight (450 m) on a tight passage of
a bending river can be seen at https://www.youtube.com/
watch?v=vaKNbzYSK6U.
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Figure 17. Satellite image with overlaid flight trajectory (white) and bank map (green point cloud) collected from a 660 m
autonomous flight over water along the bank of a lake.

Figure 18. Autonomous flight: (a) Satellite image with overlaid flight trajectory and (b) the river/bank map (blue) and canopy
map (green) generated by the robot from data collected in a 450 m autonomous flight along a river. (c) SPARTAN-lite planning
around a tree. The exploration algorithm commands a goal at a point beyond the tree. The robot has to plan a safe trajectory between
the canopy on either side of the bank. (d) The occupancy grid view of the scenario in (c). Due to the resolution of the obstacle map,
SPARTAN-lite has to plan through a narrow space. A large tangential space is present, however SPARTAN-lite creates edges in its
graph that can only be a part of the optimal solution. This results in the creation of a very sparse graph, and the planner is able to
compute a solution quickly.

8. LESSONS LEARNED

A three-year program with adventurous goals taught our
team many lessons.

Early in the program, we realized frequent field testing
in candidate environments was essential to discover the core
problems quickly, iterate on the weaknesses of the system,
and arrive at a successful demonstration of a GPS-denied
river-exploring robot. Our field work began with data col-
lection with one or two key sensors to initiate development
of the core perception system. Once initial perception de-
sign was finalized, the sensor hardware was iterated to a
full sensor prototype. Then full data collection was con-

ducted with realistic traverses of riverways, after which the
sensor payload was miniaturized and mounted onto the
micro air vehicle frame such that data collection could be
done with manually piloted flights. After manual flights,
we progressed to autonomous flights over land. Finally,
once the system was reliable over land, we progressed to
autonomous flights over water.

We discovered through the program that high perfor-
mance could be achieved by taking advantage of the seman-
tics of the environment where necessary. For example, the
laser response characteristics could be used with the river
surface to estimate the height above the river using specular
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returns, and to detect the presence of the river extent. In
addition, we exploited the horizon line for the self-
supervised segmentation algorithm by identifying known
nonriver regions of the image and using the slightly differ-
ent color and texture of the river in the camera image.

The exploration algorithm began with some simple re-
quirements that were intended to maximize the length of the
river bank that was explored with a fixed, battery-limited
mission duration. This led to insights into what pieces of
information should be considered by the algorithm. In our
case, we discovered that the algorithm should use time,
distance from vehicle, and distance from obstacles simulta-
neously.

We have found that online 3D trajectories could be
computed in real time by exploiting smoothness in the
obstacle distance transform to drastically reduced search
space.

In terms of hardware, the larger frame vehicle of the
Oktokoptor enabled a generous 1 kg payload, which made
it possible to carry larger processing hardware that sub-
stantially simplified real-time algorithm development. The
larger payload also enabled the miniature spinning 3D spin-
ning laser scanner to be carried on a micro air vehicle, which
may well be the first example of a 3D laser scanner carried
on such a vehicle.

We have found that even with drifting odometry that
had substantial latency (about 200 ms), the combination
of using an effective UKF filter and a somewhat local and
reactive exploration approach produced a compelling and
successful autonomous demonstration in a challenging and
risky environment.

9. CONCLUSION

Our work demonstrates that autonomous exploration is
possible in river environments and that neither GPS way-
points nor prior maps are necessary. Such an autonomous
system necessitated that all parts of the system meet all
requirements for weight, efficiency, and robustness. In sev-
eral of the system components, this required state-of-the-art
development, including the miniature 3D laser scanner, the
river detection algorithms, the positioning system and plan-
ning, and exploration algorithms. A key outcome, and the
focus of this paper, was the development and demonstra-
tion of the two algorithms to robustly extract goal points,
and efficiently planning 3D trajectories in challenging un-
structured terrain. Results indicate that the two algorithms
surpass the performance of other commonly deployed tech-
niques. While there is much work in autonomous explo-
ration for ground-vehicles, these algorithms do not directly
translate to river environments. Our system is developed
to respect the specific physical layout and properties of the
river and bank and the behavior of the sensors and percep-
tion algorithms in these environments.

In future work, we still see challenges to increase the op-
erating velocity in a safe manner. One avenue to explore is to
predict the course of the river to forecast which directions
the river will follow when turns, dead-ends, or forks are
likely to appear. We also see persistent monitoring of a wa-
terway as an important means to detect pertinent changes
to the environment. Further, we see that, when combined
with a supporting surface vehicle that is larger and trails be-
hind, the flying vehicle has the ability to return for landing
and recharging. These nonhomogeneous teams of vehicles
pose many interesting research challenges, such as high-
fidelity localization and tracking and with relative motion
planning for high-speed takeoffs and landings, in addition
to information sharing to exploit the different sensing char-
acteristics and viewing perspectives of the vehicles.
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