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Abstract— Recognizing and manipulating objects is an im-
portant task for mobile robots performing useful services in
everyday environments. In this paper, we develop a system that
enables a robot to grasp an object and to move it in front
of its depth camera so as to build a 3D surface model of the
object. We derive an information gain based variant of the next
best view algorithm in order to determine how the manipulator
should move the object in front of the camera. By considering
occlusions caused by the robot manipulator, our technique also
determines when and how the robot should re-grasp the object
in order to build a complete model.

I. INTRODUCTION

The ability to recognize and manipulate objects is impor-

tant for mobile robots performing tasks in everyday envi-

ronments. Over the last years, various research groups have

made substantial progress in recognition and manipulation of

everyday objects [1], [2], [3], [4], [5]. While these techniques

are often able to deal with noisy data and incomplete models,

they still have limitations with respect to their usability in

long term robot deployments because there is no provision

for enabling a robot to learn about novel objects as it operates

in its environment. This is an important limitation since no

matter how extensive the training data, a robot might always

be confronted with an unknown object when operating in

everyday environments.

The goal of our work is to develop techniques that enable

robots to autonomously acquire models of unknown objects.

Ultimately, such a capability will allow robots to actively

investigate their environments and learn about objects in

an incremental way, adding more knowledge over time. In

addition to shape and appearance information, object models

could contain information such as weight, type, typical

location, and grasp properties. Ultimately, such robots could

become experts in their respective environments and share

information with other robots, thereby allowing for rapid

progress in robotic capabilities.

Toward this goal, we previously developed a technique

that uses an RGB-D camera to track a robot’s manipulator

along with an unknown object grasped by the robot [6].

We used a reference design from PrimeSense [7] providing

identical data to the XBox 360 Kinect [8]—640 × 480
registered color and depth at 30Hz. The camera data was
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Fig. 1. Experimental platform. We used a WAM arm with BarrettHand
on a Segway base. Mounted next to the arm on a pan-tilt unit is a depth
camera.

additionally used to generate a 3D surface model of the

object. We showed that this approach can compensate for

noise in manipulator motion and generate accurate models of

household objects. However, this work has the key limitation

that the manipulator motion has to be manually selected.

Therefore, the robot is not able to autonomously build object

models.

In this paper, we overcome these limitations by developing

an information-driven approach to 3D object modeling. Our

system enables a robot to grasp an object and move it in

front of its depth camera so as to build a complete surface

model of the object. By considering occlusions caused by the

robot manipulator, our technique can also determine when

and how the robot has to re-grasp the object in order to

build a complete model.

Our work provides the following contributions:

• We describe a probabilistic surface reconstruction ap-

proach that models the noise and sampling characteris-

tics of depth cameras.

• Based on this reconstruction approach, we introduce an

information gain based variant of the next best view

algorithm that provides guidance for how to move the

manipulator and how to re-grasp the object so as to

minimize uncertainty in object shape.

• We show how to incorporate the effect of the robot

manipulator on the object model and its visibility.

This paper is organized as follows. In the next section, we

discuss related work and briefly review the system on which

our work is based. Then, in Section III, we introduce our

information-driven next best view approach. Our re-grasping

strategy is described in Section IV, followed by experimental



results in Section V. We conclude in Section VI.

II. RELATED WORK

The goal of next best view planning is to automate

the process of view selection. It is a problem that has

been considered by many researchers in the graphics and

robotics communities. Next best view algorithms can be

broadly divided according to the type of reasoning used

(surface, volumetric, or global). We focus our discussion on

volumetric techniques as they are most relevant to our work.

For a good review of approaches, we refer the interested

reader to the overview of Scott et al. [9].

Volumetric next best view algorithms typically involve

some reasoning about which regions of space are empty,

occupied, or unknown. Of particular interest are the bound-

aries between empty and unknown regions; these represent

potentially viewable unknown regions. Connolly introduced

the planetarium algorithm [10], which uses an octree to mark

regions with labels. It simulates viewpoints sampled from the

surface of a sphere and scores the viewpoints based on the

solid angle of unknown area visible in the view. Massios and

Fisher [11] take a similar approach but additionally consider

the impact of new measurements on occupied regions by

means of heuristics in their objective function. Our proposed

algorithm is conceptually similar; however, our probabilistic

and information theoretic interpretations lead us to a different

functional form of the objective function.

Triebel et al. [12] also rely on information gain for next

best view planning but using probabilistic occupancy grids

instead of the signed-distance based grids we use in this

paper. Signed-distance based grids have the advantage of

explicitly constructing a function for use in extracting level

set surface models; probabilistic occupancy grids do not

have as clear a notion for surface reconstruction. Triebel

et al. score viewpoints according to the information that

would be gained during grid cell updates for the most

likely measurement (as a stand-in for expected information

gain, which is computationally prohibitive because it requires

integrating over all possible measurements). Also notable in

this work is that the authors optimize not only over a single

next view location but over views along possible trajectories.

Because next best view planning aims to automate view

selection, it is often used in conjunction with robotics, which

can automate actuation to the viewpoint. In most cases, this

takes the form of a robot moving itself to change the pose of

a sensor [12], [13]. One exception is the in-hand modeling

done by Zha et al. [14]. They use a robotic manipulator to

move the object to the desired relative object-camera pose.

In-hand modeling has the advantage of allowing the robot

to explore areas of an object otherwise hidden by the table

surface. However, Zha et al. do not consider the problem of

changing grasp points to fill in holes left by the manipulator.

Performing object modeling requires knowing the aligning

transformations between different sensor poses. The manipu-

lator’s pose should also be known for subtracting the manip-

ulator from range images and for reasoning about potential

occlusions. In previous work [6], we developed a system

for articulated pose tracking and in-hand object modeling.

The articulated pose estimation is essential because our

manipulator can experience end-effector errors of multiple

centimeters caused by cable stretch. The tracking is also

important if such techniques are to be used in robots priced

for consumer use. In this work, we use the Kalman-filter

based tracking algorithm developed in [6] to provide hand

and object poses.

III. SINGLE GRASP VIEW GENERATION

The problem of generating views of objects held in

a robotic manipulator differs from the typical next best

view problem primarily in two ways. First, typical next best

view scenarios involve an object resting on a surface such

as a table with no other obstructing objects [11], [15]. The

only hidden surfaces are those blocked by the table. During

in-hand modeling, however, the manipulator may occlude

substantial portions of the object in complex ways. There will

be hand contacts that obstruct the scanner at all viewpoints

and portions of the arm such as the wrist that block the object

in view-dependent ways.

The second difference is the space of legal camera poses.

Often in the next best view literature, the camera poses

are pre-constrained based on the construction of a scanning

rig [11], [16], or they are unconstrained by hardware but

artificially constrained to lie on a surface such as a sphere

for simplicity [10], [14]. In contrast, in-hand scanning lends

itself to a more complex search space. Not all camera poses

will lend themselves to inverse kinematics solutions or legal

paths to those solutions. We therefore need to reason about

the paths the manipulator might take.

In this section, we will assume the robot can achieve a

first grasp of the object (for details, see Section V). We also

assume that we have access to the relative poses of the object

from frame-to-frame as well the poses, joint angles, and a 3D

model of the manipulator. We use the output of a tracking and

modeling system described in [6] to provide the necessary

pose and joint angle estimates.

A. Algorithm overview

Under the categories described in [9], our proposed next

best view algorithm is a volumetric, generate and test ap-

proach. The volume we maintain stores weighted, signed-

distance functions in voxels. At any point in time a maximum

likelihood surface can be extracted via level sets. Addition-

ally, voxels may be marked as unknown or empty, and the

boundaries between them can be used for filling holes in the

extracted surface.

We use the procedure in Alg. 1 to select new camera poses

for partially modeled objects. Shown in line 1, the inputs are:

• V , the volumetric model of the object

• Thand, the pose of the manipulator in the coordinate

system of V
• θ, the joint angles of the manipulator

In line 2, a mesh is extracted from the volume V . Each

vertex in the mesh has associated with it a confidence (or

precision), the origins and usefulness of which are discussed



Algorithm 1 Next best view of a grasped object

1: procedure SELECTVIEW(V, Thand, θ)

2: Sobj = ExtractMesh(V)

3: Shand = GetHandModel(Thand, θ)

4: xobj = GetObjectCenter(Sobj)

5: dirs = GetPossibleViewingDirections()

6: for dir in dirs do

7: range, roll, cost = SelectFreeDOFs(dir,xobj)

8: if range, roll 6= ∅ then

9: xcam = xobj − range ∗ dir
10: Tcam = (xcam, dir, roll)

11: q = GetPoseQuality(Tcam, Sobj , Shand)

12: score = q − αcost ∗ cost
13: if q ≥ tq and score > score∗ then

14: T ∗
cam, q∗, score∗ = Tcam, q, score

15: return T ∗
cam, q∗

below. In line 3, the manipulator model is set to the appro-

priate joint angles θ and is also transformed into the object’s

coordinate frame. These two lines produce the object and

hand meshes Sobj and Shand shown at the center of Fig. 2.

The next line determines the (approximate) center of the

object. When planning views, we constrain the center of the

object to lie in the center of the range image. This removes

two translational degrees of freedom at very little cost. For

the ranges at which our sensor operates (around 0.5 to 5

meters), objects held by the robot only take up a small

fraction of the range image, so there is no concern of regions

of interest being out of frame.

In line 5, possible viewing directions of the camera are

selected. This results in a list of points on the unit 2-sphere

(see Fig. 2 for an example) with some minimum angle tθ
to any previously used viewpoint. The role of tθ is both to

skip quality evaluations for previously used viewpoints and

to allow view selection to “move on” if certain regions of

the object cannot be imaged by the sensor due to properties

of the material or geometry.

A viewing direction defines two of the rotational degrees

of freedom of the sensor, and two of the translational degrees

of freedom are constrained by the object center (in line 4).

It remains to choose a distance from the object center and

a roll about the viewing direction. While we could sample

these degrees of freedom as well, that would greatly increase

the number of pose quality computations we need to perform.

Instead, we note that measurement qualities are typically

better at shorter ranges and fix the range to a value around

0.7 meters unless no valid IK solutions can be found at

this range. The roll, while relevant for stereo-shadow type

effects, plays only a relatively minor role in the quality of a

viewpoint. We therefore (in line 7) iterate through possible

roll values and select the one with the lowest IK cost for

some cost function on manipulator trajectories. In line 8, if

no IK solution exists, the sample is discarded. The process

of discarding non-achievable viewpoints is similar to the

process used by Massios and Fisher [11].

Fig. 2. Conceptual illustration of the view selection process. Viewpoints
are sampled around the hand and object models. Each candidate camera
pose is evaluated in terms of the view quality and the actuation cost.

In contrast to some existing next best view techniques [14],

[16], [13], we do not require new views to overlap with ex-

isting ones. We receive sensor data along the entire trajectory

and can perform registration and model update at multiple

frames per second.

Given an achievable camera pose, as in line 10, defined

by the camera location, the viewing direction, and the roll

about the viewing direction, it remains to score the pose.

GetPoseQuality in line 11 assigns a view quality to the pose

according to the measure described below in Section III-B.

Finally, in lines 12–14, we select the best camera pose ac-

cording to a trade-off between view quality and motion cost

among poses with quality above the termination threshold

tq . This encourages examining “nearby” regions first.

B. Statistical measure of pose quality

We choose the volumetric method of Curless and

Levoy [17] for representing knowledge, or lack of knowl-

edge, about the object being scanned. This method is widely

known as a tool for surface reconstruction. However, it

also encodes statistical information about the uncertainty of

each reconstructed surface point. We formulate a measure

for viewpoints that will help in planning to minimize this

uncertainty by approximately maximizing information gain.

First, we describe the probabilistic formulation for the

volumetric method based on [18]. During scanning, we accu-

mulate a set of registered depth maps {d1, ..., dt}. From these

measurements, we can formulate a conditional probability

given a possible reconstructed surface S,

p(d1, ..., dt|S), (1)

and solve for the maximum likelihood surface. Under the as-

sumption that depth samples are independent of one another,

we can write the conditional probability as:

p(d1, ..., dt|S) =
∏

i

∏

{j,k}

p(di[j, k]|S) (2)



where i indexes over depth maps, and {j, k} index over

pixels in a given depth map di. We assume that the uncer-

tainty associated with a given depth sample di[j, k] is one-

dimensional and distributed along the line of sight for pixel

[j, k] in depth map i. Further assuming a Gaussian noise

model, we set the per-pixel conditional probability to be:

p(di[j, k]|S) =
1

√

2πσ2
i [j, k]

e
−

(Si[j,k]−di[j,k])2

2σ2
i
[j,k] (3)

where σ2
i [j, k] is the variance along the line of sight of the

pixel in depth map di and Si[j, k] is the intersection of that

line of sight with surface S. We can now formulate the

negative log-likelihood function that is to be minimized:

L(S|d1, ..., dt) =
∑

i

∑

j,k

(Si[j, k]− di[j, k])
2

2σ2
i [j, k]

(4)

where we have omitted terms that do not depend on S and

thus do not affect estimation of the maximum likelihood

surface. Given the density of measurements within a depth

map, we can convert the pixel summation into an integral:

L(S|d1, ..., dt) =
∑

i

∫ ∫

(Si(u, v)− di(u, v))
2

2σ2
i (u, v)

dudv (5)

where (u, v) is the continuous image domain for each depth

map. This objective can be minimized through the corre-

sponding Euler-Lagrange equations. The maximum likeli-

hood surface S∗ turns out to be the zero-crossing of the

sum of signed-distance functions within a volume, where the

signed-distance functions are distances from measurements

along their lines of sight, weighted by the reciprocals of their

variances.1 See [18] for a detailed proof.

With this as motivation, we follow the method of Curless

and Levoy [17] and construct a volume that stores sums of

weighted signed-distances, as well as sums of weights. When

extracting the surface corresponding to the zero level set, we

also recover the weights across the surface. These weights,

corresponding to the reciprocals of accumulated variances

σ2
t (v), provide a measure of uncertainty over the surface at

time t, stored at vertices {v}. The signed-distance functions

in the volume are confined near the surface; behind them,

the volume is marked unknown, and in front, along sensor

lines of sight, the volume is marked empty. Extending the

zero level set to include the boundaries between empty and

unknown results in a complete surface, spanning measure-

ment gaps. These added portions of the surface are assigned

high variance, given that they are very uncertain, encoding

only a bound on the surface and strongly indicating where

more certainty is desired.

Given the current surface reconstruction, including empty-

unknown boundaries, we can now formulate a metric for

scoring potential new views of the surface in terms of reduc-

tion of uncertainty. Consider a new viewpoint, indexed by z.

We can simulate the variance σ2
z [j, k] of a new measurement

1In practice, the weights reflect greater uncertainty where range sensors
return data that is typically poorest in approximating the surface: near depth
discontinuities and along grazing angle views of surfaces.

along line of sight [j, k] by sampling the current surface

estimate S∗ (generating a virtual depth map dz) and comput-

ing per-pixel variance for this virtual view [18]. To measure

the reduction in uncertainty, we also require the probability

distribution along the hypothesized sensor line of sight for

the current surface reconstruction. We approximate that the

uncertainty in the reconstruction along the hypothesized line

of sight [j, k] is Gaussian with variance σ2
t [j, k].

We can now model the information gain of this mea-

surement in terms of entropy reduction. We first note that

updating accumulated variance from t to t+ 1 given a new

measurement z takes the form:

(σ2
t+1)

−1 = (σ2
t )

−1 + (σ2
z)

−1 (6)

The entropy of a univariate Gaussian distribution is
1
2 ln(2πeσ

2), which yields an information gain (difference

of entropy for Bayesian updates):

Gt+1 =
1

2
ln(2πeσ2

t )−
1

2
ln(2πeσ2

t+1) (7)

=
1

2
ln

(

σ2
t

σ2
t+1

)

(6)
=

1

2
ln

(

1 +
σ2
t

σ2
z

)

(8)

In the context of information gain of a new viewpoint z

relative to the current reconstruction S∗, we sum over the

information gains across all lines of sight:

Gt+1(z) =
1

2

∑

j,k

ln

(

1 +
σ2
t [j, k]

σ2
z [j, k]

)

d2z[j, k]

f2|nz[j, k]|
(9)

where dz[j, k] is the depth for pixel (j, k) in the virtual depth

map from viewpoint z, f is the focal length of the sensor, and

nz[j, k] is the z-component of the normal at that pixel. The

factor
d2
z [j,k]

f2|nz [j,k]|
is the differential area on the surface of the

model; this factor is needed for the summation in depth map

space to correspond to area-proportional summation over the

surface S∗.

We do not include any pixel (with corresponding ray) that

meets any one of the following criteria:

• The ray does not intersect Sobj .

• The ray intersects Shand before reaching Sobj .

• The intersection with Sobj occurs within a distance of

thand to Shand (would not be used for model update).

• The angle between the intersection’s normal and the ray

is too large (the sensor would not get a measurement).

• A ray from the projector component of our sensor [7] to

the first ray’s intersection is occluded or at too large an

angle to the surface (accounts for some stereo effects).

The function GetPoseQuality in line 11 of Alg. 1 then

simply returns Gt+1(z) from (9).2 In line 15, SelectView

returns a camera pose and a quality. If the quality is below

the threshold tq , then the imaging is deemed complete for the

current grasp, and the object is set back down. Otherwise,

the robot moves to its IK solution for the best view and

2Although the quality computation is performed on a mesh, we still
consider the algorithm to be a volumetric next best view algorithm because
the underlying structure is a voxel grid, and operations on the mesh could
equivalently be done using volumetric rendering techniques.



(a) (b) (c)

Fig. 3. (a) Pill bottle when all measurements are used for reconstruction;
(b) hand measurements used for carving only, not for adding signed-distance
functions; (c) carving only for hand measurements and explicitly marking
voxels within the hand as empty. Grey for high confidence, red for unknown
boundary, and shades inbetween for low confidence.

updates the object model with range images from along the

trajectory. The cycle continues until the threshold is reached.

IV. MULTIPLE GRASPS

After the object is placed back on the table the robot

must decide whether and where to grasp the object to

observe still unknown regions. Two necessary components

for this reasoning are the identification of which object

regions require more sensing and a model suitable for grasp

planning. To achieve these goals, the object model must

express uncertainty about any unknown regions under the

hand and be free of protrusions where the hand was grasping.

Naı̈vely including all measurements in the depth maps

into the volumetric model results in the manipulator surfaces

becoming part of the object model (see Fig. 3(a)), which is

unsuitable both for reasoning about uncertainty below the

fingers and for grasping. To address these problems, we

first use the known manipulator configuration to exclude

measurements near the hand from adding surfaces to the

object. That is, we use measurements within thand of the

manipulator only for marking voxels empty, not for adding

signed-distance functions. The result (Fig. 3(b)) expresses

uncertainty about regions hidden by the hand surfaces, but

contains protrusions unsuitable for grasp planning. We addi-

tionally mark any voxels within the known hand volume as

empty resulting in Fig. 3(c).

Grasp generation now becomes quite straight-forward. We

require a grasp planner that given a mesh model can produce

multiple stable candidate grasps. In our implementation, we

generate candidate grasps using OpenRAVE [19]. We then

run the procedure in Alg. 1 separately on multiple candidate

grasps and select the grasp with highest quality. If no grasp

has quality at least tq , the procedure terminates. If a good

grasp stability metric is available, one could instead select

the grasp based on a weighted sum of quality and stability.

This algorithm has the benefit that it requires very little

beyond what has already been proposed in Section III. By

requiring the new grasp to have a high-quality view, we

guarantee that the model will be more complete after the

grasp. As future work, we also wish to explore approaches

that explicitly attempt to minimize the number of grasps

needed for complete coverage.

(a) Doll. (b) Spray Bottle. (c) Shoe.

(d) Orange Juice. (e) Pill Bottle. (f) Pretzel Box.

Fig. 4. Reconstructed models of objects grasped only once. For each object
(a)-(f), we show the model after an initial trajectory only (top) and after the
next best view procedure (bottom).

V. RESULTS

For generating initial grasps we make use of a heuristic

grasp planner written by Peter Brook, based on the findings

of [20]. The object grasp point and approach direction are

determined by first subtracting the table plane from the depth

camera data and then computing the principal components

of the point cloud representing the object. The approach is

taken perpendicular to the principal axis.

Our next best view algorithm requires a few parameters.

We set the confidences of hole-filled regions to correspond

to a standard deviation of 5 cm. For termination of the

procedure, we use a threshold of tq = 0.005, and we use

an angular threshold of tθ = 10◦. We implement cost in

Alg. 1, line 7 as the estimated time for the trajectory and

use αcost = 0.0005. To generate the models shown in the

next subsection, we start with a simple initial trajectory and

then compute views until tq is reached.

In all of the results that follow, red areas indicate

empty/unknown boundaries; no observations of these sur-

faces have been made. Grey regions have high confidence,

which occurs only after many observations. Shades inbe-

tween indicate surfaces which have been observed but are

of lower confidence.
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Fig. 5. Per-vertex entropy after each view selection for the orange juice
bottle in Fig. 4(d).

A. View Selection

Fig. 4 illustrates the results of our next best view algorithm

for a single grasp on multiple objects. Next best view plan-

ning covers more of the empty/unknown boundary, resulting

in more complete models. In Fig. 5, we take a more detailed

look at the orange juice bottle example from Fig. 4(d). This

figure plots the average per-vertex entropy of the model as a

function of number of views used. The entropy decreases as

the low confidence regions (red in Fig. 4) are replaced with

higher confidence regions (grey).

As currently implemented viewpoint evaluations can be

performed around three times per second on an Intel Core

i7 processor. The bulk of this time is spent in GetPoseQual-

ity (Alg. 1, line 11), which performs software ray-casting

sequentially per pixel. A more optimized implementation

would instead implement GetPoseQuality using shaders, al-

lowing for parallel evaluations of per-pixel information gain.

B. Grasp Selection

We start by demonstrating how the grasp selection pro-

cedure applies in an example using a cracker box. After

performing the next best view procedure for a single grasp,

we apply the grasp selection procedure to the model, which

is shown in Fig. 6(a). Note the regions of low confidence

shown in red. We generate a grasp table using OpenRAVE

and evaluate the top 10 legal grasps that it finds; generating

these candidate grasps takes approximately one minute. The

resulting grasps are shown in Fig. 6(b) sorted according to

the view quality. Notice that the first grasps leave visible

much of the region previously under the fingers and palm.

The later grasps cover up much of this area.

In Fig. 7 we show examples of objects after two grasps.

The next best view regrasping procedure allows previously

occluded surfaces to be observed; however, more than two

grasps may be required for complete coverage as there can

be overlap of the occluded regions.

The process of regrasping introduces possible failure cases

in the forms of tracking failures and grasping failures. The

first case occurs if there is some large, unexpected motion of

the object (e.g., falling over). While the tracking algorithm

can handle smaller motions such as wobble, these larger

motions still cause problems. The second case occurs if the

grasp is not sufficiently stable. The problems of tracking

(a) Orange Juice. (b) Coffee Can. (c) Pill Bottle.

Fig. 7. Object models after one grasp (top) and two grasps (bottom).

(a) Three grasps used to model a cracker box.

(b) Corresponding confidences after each grasp.

(c) Resulting meshed surfel model.

Fig. 8. Complete object model generated using three separate grasps.

and stable grasp generation are far from solved, but as they

improve, so will our system.

Because of the potential problems that can occur during

regrasping, we have mainly demonstrated our next best

view algorithm with either one or two grasps, but holes may

still exist. Fig. 8 shows a box modeled using three grasps,

resulting in a complete model (up to the threshold tq). We

chose a box for this example because it is an easy object to

grasp and is unlikely to fall over.

To see further information about this project including

example 3D models and videos, visit our webpage at

http://www.cs.uw.edu/robotics/3d-in-hand



(a) Box after one grasp. (b) Candidate grasps from by OpenRAVE, in descending order by view quality (top left to bottom right).

Fig. 6. Regrasp planning for a cracker box. Grasps having less overlap with previously occluded regions tend to score higher.

VI. CONCLUSIONS AND FUTURE WORK

We developed a system that enables a robot to grasp an

object and to move it in front of its depth camera so as

to build a complete surface model of the object. To guide

manipulator motion, we derived an information gain based

variant of the next best view algorithm. By maximizing

information gain, the manipulator moves the object so that

the most uncertain surface areas come into the view of the

depth camera. By incorporating occlusions caused by the

manipulator, our technique can also determine when and

how the robot has to re-grasp the object in order to build

a complete model.

The experiments demonstrate that our approach can guide

a manipulator such that it generates object models that are

as complete as possible, given manipulator occlusions. Once

the information gain falls below a threshold, the robot places

the object back on the table and starts a grasp planner to

generate possible grasp samples for the partially complete

model. We show that our information based approach can

naturally generate a ranking of the proposed grasps so as to

minimally occlude still uncertain object surfaces.

Our current system has several limitations. Thus far, we

have relied on external grasping techniques. In future work,

we intend to learn better grasp strategies from experience,

where a robot repeatedly tries to grasp objects and, once

it succeeds, builds 3D models of them. These 3D models

can then be used as repositories and training data for later

grasping. Another interesting direction for future work is to

use the modeled objects for object recognition and detection,

thereby enabling a robot to learn novel objects and then find

and effectively manipulate them once they are seen again in

an environment.
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