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Abstract— Image-based navigation paradigms have recently
emerged as an interesting alternative to conventional model-
based methods in mobile robotics. In this paper, we augment
the existing image-based navigation approaches by presenting
a novel image-based exploration algorithm. The algorithm
facilitates a mobile robot equipped only with a monocular
pan-tilt camera to autonomously explore a typical indoor
environment. The algorithm infers frontier information directly
from the images and displaces the robot towards regions that
are informative for navigation. The frontiers are detected using
a geometric context-based segmentation scheme that exploits
the natural scene structure in indoor environments. In the due
process, a topological graph of the workspace is built in terms
of images which can be subsequently utilised for the tasks of
localisation, path planning and navigation. Experimental results
on a mobile robot in an unmodified laboratory and corridor
environments demonstrate the validity of the approach.

I. VISION-BASED ROBOT NAVIGATION

Vision-based robot navigation [1] has long been a funda-

mental goal in both robotics and computer vision research.

While the problem is largely solved for robots equipped with

active range-finding devices, for a variety of reasons the

task still remains challenging for robots equipped only with

vision sensors. Cameras have evolved as attractive sensors

as they help in the design of economically viable systems

with simpler sensor limitations.

Several techniques have been proposed and extensively

studied in literature to address this problem. They can be

broadly classified into model-based and appearance-based

approaches [1]. Model-based approaches correspond to the

conventional algorithms employing a metric model of the

robot’s workspace [2]. Features are tracked in the images

and a 3D reconstruction of them is computed in an off-

line process. Localisation is performed by matching features

in the model with those observed in the current image and

the pose is computed from 3D-2D correspondences. The

accuracy of this approach is highly dependent on the features

used for tracking, robustness of the feature descriptor and

the method for image matching and view reconstruction. In

contrast, appearance-based (or view-based) algorithms [3],

[4], [5], [6], [7] avoid the need for a metric model by

working directly in the sensor space. The environment is

generally represented as a topological graph in which each

node represents a position in the workspace and stores the

sensor readings (i.e., images from the camera) observed at
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that pose. Pairs of nodes corresponding to positions with

a direct path between them are connected with an edge.

In this context, localisation reduces to an image-retrieval

problem that involves finding within the database the image

description that is most similar to its current view. A path

to follow is described by a set of images extracted from

the database. Control of the robot is either performed by

hardcoding the action required to move from one node to

another in the graph [4] or by employing a more robust

approach in the form of visual servoing [5]. This paradigm

is relatively new and is attracting active interest, as the

modelling of objects is substituted by the memorisation of

views, which is far easier than 3D modelling [3], [6], [7].

Though the appearance-based approaches developed until

now have helped us gain a state of maturity in this field,

there are certain aspects that need to be further addressed.

The proposed algorithms assume that an image database or

a topological graph of the workspace is already available to

the robot [3], [4], [5]. This information is acquired manually

during a training phase where a human-operator guides the

robot through the workspace [4]. This is a tedious process as

it involves human intervention every time a robot moves to a

new workspace, which is particularly difficult for very large

environments. This drawback severely limits the applicability

of such approaches. Further, the robotic system is restricted

to the limited amount of information that is acquired by

it during the training stage. As map building is done off-

line, it limits the robot workspace only to the explored

regions that are visualised during the training stage [3], [5].

It would be rather preferable to dynamically extend the robot

workspace into unseen regions in its surroundings. Although

a few methods have been developed to automatically organise

images of a workspace into a graph (representing the spatial

relationship between them) [3], [5], [7], they still demand

user intervention to obtain the images and to ensure sufficient

sampling of the entire workspace. It must be emphasised that

task of exploration is an important aspect of any mobile

robot navigation algorithm and forms the basis for the

design of several important algorithms (localisation, servoing

etc). Hence an autonomous efficient exploration algorithm is

very much critical for the overall success of the navigation

paradigm.

Rather than limiting image-based paradigms to a sim-

ple teach-and-replay scheme, they can be extended to au-

tonomously learn and navigate unknown environments. In

this paper, we present a method for systematically exploring

an unknown bounded indoor workspace for the first time. The

method is analogous to the popular frontier based exploration

strategy [8] but involving a robot equipped only with a
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Fig. 1. Inferring horizons using geometric context-based segmentation (a) Original Image (b) Segmented (super-pixeled) Image (c) HSV Image (d)
Edge-filtered Image (e) Output Image showing floor region (the boundary indicates the horizon) (f) Polar Plot (blue points indicate obstacle boundaries
relative to the robot (black circle))

monocular camera. Specifically, we describe a method to

extract frontier boundaries directly from a single image

by exploiting geometric context information (Sect. II-A).

Using the detected frontiers, the robot is navigated to the

unexplored regions (Sect. II-B). The mapping is performed

in terms of a topological graph (Sect. II-C). Based on this

exploration strategy, we subsequently describe algorithms for

localisation, planning and control (Sect. II-D) of a mobile

robot in the explored environment. Thus in principle it

enables the achievement of a holistic image-based navigation

framework.

II. PROPOSED IMAGE-BASED EXPLORATION APPROACH

Most image-based navigation techniques assume that a

sequence of images is acquired during a human-guided

training step that allows the robot to find paths for moving

from its initial position to a goal pose. To overcome this

limitation, for the first time, the problem of exploring an

unfamiliar environment using a single limited-field of view

camera is considered.

The purpose of exploration is to systematically discover

and memorise unknown regions of an environment so that a

robot can navigate reliably throughout the environment. This

topic has received considerable attention in the literature in

the context of range-based sensors, the most popular being

the frontier-based exploration strategy [8]. In general, all the

approaches have, in common, the concept of information

gain i.e., moving to the destinations in the world that are most

informative for mapping and for increasing the confidence

about its location. This problem has attracted recent interest

in the context of vision sensors, specifically in the domain

of visual SLAM [9]. These algorithms often involve the use

of metric maps and can be broadly classified into one of

two categories, online algorithms that incrementally update

a 3D map of the environment [6] and off-line algorithms

that process a large set of readings in a batch manner [10].

Further, these methods are dependent on human control or

active range sensing for planning and obstacle avoidance.

Our proposed strategy is different from the above approaches

in terms that exploration is performed autonomously and

the mapping is done directly using images, which makes

it particularly suited for image-based navigation paradigms.

Our basic approach is similar to the popular frontier-based

strategy where the central idea is to gain new information

about the world by moving the robot to the boundary between

open space and uncharted territory (i.e., the frontiers). The

focus here is to estimate the obstacle-free regions from

the images and drive the robot towards these navigable

regions for increasing its knowledge of the workspace. In

this context, the frontiers are more appropriately referred as

horizons. More precisely, the robots takes an image from

its current position and detects all possible horizons from

it. The detected horizons are maintained in an open list.

One of the frontiers is selected and the robot is moved

towards it. It then acquires images from its new position and

adds them to a topological map. By moving to successive

frontiers, the robot can constantly increase its knowledge of

the world and extend its map into new territories until the

entire environment has been explored.

A. Inferring Horizons

In this section, we describe the method to infer the hori-

zons directly from an image. To achieve this step, the natural

scene structure in regular man-made indoor environments

is exploited. In such environments, the floor in the entire

workspace is usually a level plane and obstacles when present

start at or near the floor level (assuming no overhanging

obstacles). Also the appearance of the floor is reasonably

different from that of the surrounding walls and the obstacles

present in the scene. The basic idea is to segment and identify

the ground plane region in the image from the obstacle-

occupied areas.

Methods for ground plane extraction typically exploit

the appearance or geometry of the ground region. In [11],

appearance-based models of outdoor scenes were used to

identify the ground plane, vertical structures and the sky

region from a single view and to build a rough 3D recon-

struction of a scene. In this paper, ground plane extraction

from a single image is performed using colour and texture

cues. The input image is first over-segmented into a number

of super-pixels i.e., contiguous regions with fairly uniform

colour and texture [12] (See Fig. 1(b)). Each super-pixel

is then labelled as belonging to the ground or non-ground

region using the colour and texture cues. The colour-based

segmenter assigns a score to every super-pixel representing

how likely it is to belong to the floor region based on the

colour of its constituent pixels. This is done using an adaptive

Hue-Saturation-Value (HSV) histogram approach that mod-

els the distribution of ground region pixel colours [13] (See

Fig. 1(c)). The membership score (X) of each segment Si is

calculated as

X(Si) =
1

|Si|

∑

pjǫSi

U(H(pj)− T ), (1)

where U is a heavy-side function, H = f(h, s, v) is the

histogram probability of the bin corresponding to the hue,

saturation, value tuple and T is a threshold determined
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Fig. 2. Determining distance d and orientation θ to obstacles: (a) Profile
View (b) Top View of the robot

based on the entropy of the histogram. Super-pixels with

a score above a particular threshold are labelled as part of

the floor. When placed in a new environment, the HSV

histogram is initialised by assuming that a small region

directly in front of the robot is open space and that hence

a trapezoidal region near the bottom of the initial view can

be marked as a part of the ground plane. The texture-based

segmenter finds possible boundaries between the ground and

non-ground regions by identifying edges across which large

changes in image texture take place (using an Sobel operator)

as shown in Fig. 1(d). Texture information is measured

at regular intervals in small patches on both sides along

each edge. If there is a large difference in texture between

two patches, and one of the patches is in a super-pixel

marked as definitely floor and the second does not, then

the second super-pixel is labelled as non-floor. Texture here

primarily refers to the mean RGB value and the variance

of intensity. A new HSV histogram is then re-calculated

over all super-pixels in the floor region and is used to

assign labels to unlabelled super-pixels using (1). Thus by

combining candidate boundary hypothesis with ground plane

membership score of each super-pixel, the exact extent of the

floor plane can be estimated (See Fig. 1(e)). The boundary

pixels of the floor region in the image constitute the horizons.

B. Horizon Boundary Computation

Given the pixel information of the horizons in the image,

the polar plot of distance to them can be computed using

simple trigonometric relations. Fig. 2(a) shows the profile

view of the robot while Fig. 2(b) shows its top view. The

height h of the camera center from the ground plane and its

tilt angle β from the horizontal are fixed and assumed to be

known. Also the camera is assumed to be pre-calibrated i.e.,

internal parameters K of the camera (specifically the image

center c and the focal length f ) are already available.

K =

2

4

fx 0 cx

0 fy cy

0 0 1

3

5

Using the concept of similar triangles, angle φ can be

derived as φ = arctan(
y−cy

fy
), where (cx, cy) is the camera

center and (fx, fy) is the focal length. The distance d to

the obstacle can then be determined as d = hcot(β + φ).
The orientation (or the bearing angle) can be computed

as θ = α + arctan(x−cx

fx
), where α is the camera pan

(a) (b)

Fig. 3. Two types of images are acquired by the robot. In each sub-figure,
the first image is captured with the camera tilted downwards to observe the
floor region (for use in the exploration process); while the second image,
taken with zero tilt, is utilised in building the topological graph for the
purpose of localisation and navigation.

angle. The polar plot is represented in the form of radial

distances d to the visible obstacles indexed by θ i.e., d(θ).
Fig. 1(f) displays the polar plot obtained for the considered

image view. It must be emphasised that the computation

of the polar plot is simplified by utilising the fact that

the ground level is planar and the height of the robot is fixed.

To infer the obstacle free regions, the resultant polar plot

is scanned through (radially) for detecting continuous free

interval regions, spanning at least c◦ and at a minimum

distance D away from the robot. The value of D is set

depending on the minimum distance the camera can view

while tilted downwards (here 25cm) and c is chosen based

on the minimum width for the robot to pass through (here

30◦). For the detected frontiers, their heading direction is

chosen to be the median angle (θ
′

) of the interval region and

the distance of the frontier from the current position is set

to d(θ
′

). If a continuous frontier spans more than 60◦, it is

split into two sub-frontiers and explored separately. In case

of multiple frontiers, the algorithm prefers the ones closer

to its heading direction. This biases the robot in favor of

moving directly forward rather than following zig-zagged

paths. However, it would be preferable to consider a more

formal notion of information gain for selecting the frontiers.

It should be noted that the computed polar plot is used

only for the purpose of finding suitable target locations to

explore and is not incorporated into the robot’s representation

of the workspace. Hence a highly accurate range plot is not

necessary.

C. Modelling as Topological Graphs

The visual memory of the robot is modelled as a topolog-

ical graph. Each node in the graph represents a position in

the robot workspace and stores the images acquired by the

robot at the pose. Note that the stored images are different

from the images used in the horizon computation step and

are acquired at a zero-tilt angle (See Fig. 3). The images

are acquired at equally spaced pan angles covering a full

360◦ panorama. These images are added along with their

SIFT feature points to the topological graph. Edges in the

graph connect navigable straight line paths between two

nodes i.e., two nodes are linked by an edge if the robot

moved directly from one to the other during the exploration

process. They are bidirectional as the robot could move back

and forth amongst the nodes. Further, the edges store local

geometric information between the adjacent nodes inferred

from the epipolar geometry. The epipolar geometry between



Fig. 4. An example showing four iterations of exploration. The robot is
shown in red, unexplored frontiers are marked with blue crosses, nodes and
edges in the graph are marked with grey dots and lines respectively. On the
last iteration, the robot backtracks to a previous node before travelling to
the frontier using the planning and servoing algorithms

two camera views, referred as the essential matrix E, is

calculated using the five-point relative pose algorithm [14].

The algorithm can successfully compute E matrix even in

cases when the two views contain a dominant plane (which

occur frequently in man-made environments), thus tackling

planar as well as non-planar scenes. The decomposition of

E yields the rotation matrix R and translation vector t (upto

scale) [15]. To disambiguate the scale, some prior knowledge

about the real world motion is required. The odometric

information is utilised for this purpose.

It must be emphasised that once the robot selects a par-

ticular frontier to visit, it stops at regular intervals along its

way to capture more images. This ensures that the sampling

of the workspace is sufficiently dense for the localisation

and navigation algorithms to work robustly. In case the

path from the current position to the destination frontier

is not a simple direct path, it employs the path planning

and servoing algorithms to navigate to the desired pose

(Sect. II-D). In Fig. 4(b), we observe that the robot detects

two frontiers at positions B and C relative to its current

pose. It first explores frontier B (and in the process detects

another new frontier at D). Next for exploring frontier C,

it backtracks to its previous position, using the planning

and servoing algorithm, and then proceeds towards C. The

overall exploration algorithm is summarised in Algo. 1.

1: frontiers← ∅;
2: initializeGraph( );
3: currentPose← initialize( );
4: repeat

5: I ← captureImages1(currentPose);
6: newFrontiers← getFrontiers(I);
7: frontiers← frontiers ∪ newFrontiers;
8: destination← nextUnexploredFrontier( );
9: while (currentPose 6= destination) do

10: servoRobot(destination);
11: I

′

= captureImages2(currentPose);
12: updateGraph(I

′

);
13: end while

14: frontiers← frontiers− {destination};
15: until frontiers = ∅;
16: storeGraph();

Algorithm 1: Image-based Exploration Algorithm

Thus using the proposed image-based exploration

algorithm, an autonomous robot can systematically

explore an unknown environment and build a topological

representation of it. The graph resulting out of this process

can be subsequently utilised for localising the robot in this

environment and navigating it to perform goal-oriented tasks.

In the following, the algorithms required for localisation,

planning and servoing using the output of the above

exploration approach are described.

Qualitative Localisation In image-based navigation

systems, localisation is performed by finding the node in the

graph whose image best matches that of the current view [3],

[4], [7]. Features typically used for matching include colour

histograms, Fourier signatures and local feature descriptors.

It must be emphasised that localisation is qualitative in

nature as the absolute robot pose with respect to a reference

frame is not determined; rather the retrieval process only

informs that the robotic system is in the vicinity of one of

the images from the database [6]. In this work, the image

matching is performed by comparing the locally invariant

SIFT features extracted from the images [16]. It must be

recalled the SIFT features of each image are already indexed

in the graph structure. The robot is localised to the image

with the largest number of SIFT matches to the current view.

Path Planning Planning of a path between the current robot

pose and a desired destination first requires the localisation

of the current and the desired image views. Once the two

nodes in the graph closest to the current position and the

destination are determined, a path through the graph that

links them is found. This path will take the form of a number

of intermediate image way-points that the robot must move

to in order to reach the destination. To find the shortest path

(in cases where more than one path is available), Dijkstra’s

algorithm is used. The edge weight wAB between any two

adjacent nodes A and B used for this path planning process

is given by wAB = α|θAB | + β||TAB ||, where θAB is the

rotation angle between the positions and TAB is the relative

displacement vector. α, β are constant scale factors chosen

such that wAB also becomes a measure of the time required

for the robot to move from node A to B. Hence the path

planner returns the fastest available path in the graph to the

destination pose.

D. Visual Servo Control

Once a path from the current position to a destination has

been determined by the path planner, a servoing algorithm

is required to move the robot towards its destination via the

intermediate way-points. One could either employ a feed-

forward or a feedback based strategy. In case of the former,

the meta information stored in the edges of the graph (i.e., the

relative displacement values) could be used to drive the robot

directly to the desired pose via the way-points. However, to

achieve an asymptotic regulation of the robot pose, visual

servo control strategies can be utilised as follows.

A look-and-move strategy is used to navigate the robot

from one way-point to the next. Wide baseline feature match-

ing [16] is performed to match the the image of the current

way-point and another neighboring image in the topological
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Fig. 5. Experimental testbed: (a) A differential drive robot with a pan-tilt
camera and an on-board laptop. (b) The upper right image shows a birds
eye view of the lab environment while the bottom displays the corridor
environment

graph that is separated by a baseline. The matched features

are triangulated using the pre-computed essential matrix

(see Sect. II-C) to obtain a coarse 3D reconstruction (upto

scale). Ambiguity in scale is resolved using the odometric

information (stored along the edges in the topological graph).

The features in the reconstructed model are matched to those

in the current view of the robot. The pose of the robot

(rotation R and translation t) with respect to the current

way-point is then estimated using the pose from three-points

algorithm [17]. The estimated rotation and translation are

applied to the robot to displace it to the next way-point. Due

to errors in the reconstruction, pose estimation and odometric

information, the robot may not converge exactly at the way-

point. However, perfect convergence to intermediate way-

points is not desired as these nodes only act as consecutive

checkpoints in the sensor space to reach the goal. Moreover,

the navigation errors do not accumulate from one way-point

to next as they are corrected at every step.

III. EXPERIMENTAL RESULTS AND ANALYSIS

Our experimental setup is comprised of an indigenously

designed and built differential drive robotic platform (with

kinematics similar to a unicycle) as displayed in Fig. 5(a).

The robot is equipped with encoder feedback, ultrasonic

range finders (only for collision detection) and an internally-

calibrated camera on a pan-tilt head. The camera used is a

Flea2 colour camera (from PointGrey) fitted with a 5mm

lens which gives a field of view (FOV) of approximately

50◦. The proposed algorithms were implemented in Linux

on a 1.6 GHz Dell Inspiron 640m laptop mounted on-board.

They were tested in indoor workspaces, including laboratory

and corridor environments (See Fig. 5(b)). Some of the

results are demonstrated in the accompanying video.

Small-scale Exploration First, the exploration algorithm

was tested in two of our laboratories which measured

approximately 11m × 6m. As the field of view of the

camera was around 50◦, eight images were taken by

panning the camera at each pose to acquire a complete 360◦

FOV (An omni-directional camera could be employed to

avoid this step). During the process of frontier detection,

the camera was tilted downwards by 30◦ to ensure the floor

region close to the robot was within its field of view (See

Fig. 3). The exploration algorithm stopped the robot every

50cm to take images of the workspace. Fig. 6 illustrates

(a)

(b)

(c) (d)

Fig. 7. Exploration in a ‘T’ shaped corridor environment. Fig.a shows
the frontal input images (left, center, right orientations) taken near one of
the corners in the corridor. Fig.b shows the corresponding output images
with segmented floor region. Fig.c shows the resultant polar plot computed
(using all the three images) overlaid on manually measured ground truth.
Fig.d displays the poses taken by the robot during the actual exploration
run (manually overlaid on a ground truth map).

the process of the frontier-detection method at few example

poses in the workspace. The final graph contained about

396 image nodes.

Medium-scale Exploration The exploration algorithm

was also tested around the intersection of two corridors.

The area marked for exploration measured approximately

15m × 12m. Fig. 7(a-c) show the frontier computation

process at a particular pose in the corridor. Fig. 7(d) displays

the final path traversed by the robot while exploring this

workspace. The maximum allowed depth of the graph

was limited to 20 steps (approx 10m) from the starting

position for this experiment. The map overlaid is the

manually-measured ground truth and the positions shown

are the actual positions at which the robot was, when it

added the node to the graph. It can be observed that there

is some backtracking performed by the robot for returning

to an unexplored frontier position near the junction of

the corridor. This was done using the path planning and

servoing algorithm. The final graph contained 520 image

nodes.

Localisation The effectiveness of the exploration algorithm

was evaluated by using the resulting topological graph for

localisation and navigation experiments. Localisation was

performed by matching SIFT features between the view

from the current robot pose and the images stored in the

topological graph [16]. Fig. 8 shows some query images

and the best matches found in the graph. It can be observed

that the retrieved images are very close to the query image.

Planning & Servoing Experiments were performed to eval-

uate the sufficiency of the built topological graph for the

purpose of navigation. The robot was placed randomly in

the explored workspace and was provided with different

destination images to reach. Using the paths selected by the

planning algorithm, images along these paths were retrieved
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Fig. 6. Horizon Inferencing algorithm on two sample images. The input (first) image is first segmented into super-pixels (second image). Super-pixels
belonging to the floor region are identified using a HSV histogram process (third image). This result is combined with the texture-based result computed
on the input image (fourth image). The final result (fifth image) displays the identified floor region using the result of both colour and texture cues. The
final image displays the computed polar plot.

(a) (b) (c) (d)

Fig. 8. Localisation result: For each sub-figure, left column shows the query image while the right column displays the retrieved image

and used in the servoing algorithm. Fig. 9 shows an instance

of the servoing algorithm in one of the lab environments. It

can be observed that the robot is effectively guided to its

goal using the retrieved image path.

Fig. 9. Navigation Result: The sequence of images (seen from the robots
view) while servoing from start pose (top left) to the goal pose (bottom
right).

IV. CONCLUSION

This paper described a novel image-based exploration

algorithm for the task of autonomous vision-based robot

navigation. The proposed algorithm detected the frontier

boundaries from the images captured by a monocular camera

and utilised them to explore the unknown regions of the

environment. A topological graph with images acting as

nodes was used for modelling the explored workspace. The

approach facilitated the robot to autonomously expand its

workspace and memorise newly discovered information. We

believe that this approach will be essential for mobile robots

to progress in the direction of increased applicability.
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