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Abstract 

Overlay networks emerging as a main player in content delivery because they provide 

effective and reliable services that are not otherwise available. Extensive research has 

recently focused on the design of Service Specific Overlay Networks (SSON) to deliver 

media in a heterogeneous environment. This dissertation investigates the problem of 

SSON's management, and proposes an autonomous SSON management framework. The 

framework consists of a policy layer that in turn constitutes a set of Overlay Policy 

Enforcement Points (OPEP) and Overlay Policy Decision Points (OPDP). An OPEP is 

where policy decisions are actually enforced—policy decisions are made primarily at the 

OPDP. The research plan presented in this dissertation addresses the functionalities of 

these components. 

To realize dynamic SSONs construction, a novel, fault-resilient semantic overlay 

for MediaPorts resource discovery is proposed. It allows services to be efficiently and 

accurately located, and is based on a widely studied family of chordal rings called the 

optimal chordal ring. In addition to the semantics of the services offered, our solution is 

based on the geographical locations of the nodes. 

The increased complexity and heterogeneity of SSONs led to the proposal of 

autonomic overlays management architecture. Overlays are viewed as a dynamic 

organization for self-management in which self-interested nodes can join or leave 

according to their specific goals. It dynamically adapts the behavior of the overlay 

network to the preferences of the user, network, and service providers. 

To capture the overlay nodes autonomic behavior, a new approach for SSONs self-

organized composition is proposed. Using a self-organizing approach, autonomic entities 

are dynamically and seamlessly composed into SSONs to achieve system-wide goals. 

The algorithm that encompasses that approach is powered by learning rules induced 

from biological systems, and endowed with filtering rules to achieve the highest possible 

performance. 

Experimental studies are presented to demonstrate the performance of the proposed 

schemes. 
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Chapter 1 

Introduction 

1.1 Overview 

The growth of the Internet in terms of size and speed, as well as the flood of network 

applications and services that have been deployed in the last few years, is indicative of a 

shift from the traditional communication systems designed for simple data transfer 

applications to highly distributed and dynamic systems. Naturally, the spread of such 

systems has led to an increase in Multimedia development, in itself a feature that has 

become indispensable in networking environments. Audio and video content on the 

internet are more popular than ever, and many systems are designed with the purpose to 

carry this media; video conferencing, video on demand, IP Telephony, and Internet TV 

are but a few. In addition to being of large scale, these distributed networks and 

applications are unpredictable and complex; they are highly dynamic in changing 

environments. As a result, their management (networks and applications) is continuously 

faced with new complexities, putting the burden on the shoulders of network managers 

and service providers to design and implement mechanisms that are aware of the nature 

of different applications demands, and that can conform to various users' requirements. 

This has left management system paradigms in a continuous struggle to keep up with the 

ever increasing demands, and advancing technologies. 

Another aspect that has contributed to increased management complexity is the 

rapid growth of overlay networks and their users. Overlay networks consist of a set of 

nodes that are connected via virtual links, and are built on top of other computer 

networks with the purpose of implementing new applications that are not readily 

available in the underlying network. They can be used to increase routing robustness and 

security, reduce duplicate messages, and provide new services for mobile users. They 

1 



CHAPTER 1. INTRODUCTION 2 

can also be incrementally deployed on end hosts without the involvement of ISPs, and 

they do not incur new equipments or modifications to existing software or protocols. 

Overlay networks are becoming more popular because of their flexibility and their 

ability to offer new services; extensive research that has been recently exerted in the 

realms of overlay networks has focused on the design of specific networks to deliver 

media in a heterogeneous environment. In that course, a specific overlay network for 

each multimedia delivery service is created, leading to hundreds of overlays coexisting, 

and as a result, increasing management complexity and posing additional challenges to 

ISPs. This—in addition to rapid growth of systems such as P2P networks, pervasive 

computing networks, wireless sensor networks, ad-hoc networks, and wireless 

communication technology—renders traditional network management operations 

insufficient, and incurs new requirements on the networks: To become autonomous, 

scalable, interoperable, and adaptable to the increasingly dynamic and the widely 

distributed network demands. 

Management refers to the task of planning, allocating, configuring, deploying, 

administering, and maximizing the utilization of the underlying network resources. 

Functionalities of a management system also include aspects such as authorization, 

security management, reliability assurance, and performance guarantees. Little progress 

has been made in addressing the problem of designing an overall autonomous 

management framework for service-specific overlay networks that can be self-

configurable and adaptable by automating their management tasks. 

In this dissertation, we address the problem of developing an autonomous and self-

adaptable management framework for service-specific overlay networks. This chapter 

briefly discusses different aspects of the problem of autonomous management, and 

presents the motivation behind the proposed work. Subsequently, the proposed 

management architecture is briefly described, and the contributions are outlined. Finally, 

the organization of the remainder of the dissertation is presented. 
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1.2 Service Specific Overlay Networks 

Our lab (IMAGINE) was involved in the European project, The Ambient Networks [1], 

in which a working group has developed a sub-project called Smart Media Routing and 

Transport (SMART) [2]. The work presented in this thesis is developed using SMART 

as the starting point. 

Media distribution, adaptation, and caching have been very active areas of research 

in the last few years. However, most of the proposed work has taken only a partial view 

of the overall problem of media routing and delivery. Past research work was mainly 

dedicated to either caching architectures, media adaptation, or multicast protocols. 

Furthermore, the proposed solutions brought about by the research efforts were usually 

optimized to solve only one specific problem, such as a network congestion state, 

limitations of end-devices, or mobility. In contrast, the work on media routing and 

adaptation in SMART takes a holistic view, and supports media adaptation, distribution, 

and caching in an integrated way by making routing decisions based on available context 

information, such as underlying network constraints like Quality of Service (QoS) and 

congestion, mobility information, user preferences, and device limitations. 

Today's networking technologies consist of a broad heterogeneity of access 

networks, terminals, network interfaces, users, signaling and transport protocols, 

applications, and services. As a consequence, certain independent streams of multimedia 

data are required to be proactively cached, trans-coded, split, synchronized, translated, 

filtered, legally tapped, or transformed in some way or another before they can be 

delivered according to a variety of constraints, or properly displayed to the user. With 

today's technology, this transformation of multimedia content is generally assumed to be 

located at the end devices, either the user terminal or the media server. In both cases, this 

would lead to either quite complex user terminals or redundant content transmissions 

from the server. Transformation of multimedia data and possibly signaling traffic may 

therefore be motivated by the service provider, the network provider, or by user 

preferences. In most cases, it would be unreasonable to place the burden of data 

transformation on the client device, as mobile devices are limited by performance 



CHAPTER 1. INTRODUCTION 4 

constraints such as battery power, processing capability, memory capacity, available 

media codecs, and signaling protocols. It would also be unrealistic to expect that service 

providers can, or should, be responsible for performing all required transformation and 

adaptation operations. Thus, there is a need for network-side media processing 

capabilities and transformation services (which we term MediaPorts or MPs) somewhere 

on the media path between the sink (MediaClient, or MC) and the source (MediaServer, 

or MS). These MPs must be able to transform multimedia data from the MS into a form 

that is acceptable by the MC. This transformation takes into account the available 

context information for the purpose of optimal service delivery. Hence, there must be an 

option to take away the responsibility for the data transformation from the end users and 

the service providers. To this end, and to provide the flexibility to deliver multimedia 

content, SMART proposes the concept of Service-Specific Overlays Networks (SSONs), 

which enable the flexible configuration of virtual networks consisting of Overlay Nodes 

(ONodes) on top of the underlying physical network. This allows the transparent 

inclusion of network-side data processing capabilities (MediaPorts) in the end-to-end 

media delivery path from the MediaServer to the MediaClient. These MediaPorts can 

perform value-added processing, such as overlay routing, smart caching, and media 

adaptation among other functions. In SMART, an SSON will be created for each media 

delivery session or group of sessions, thus many SSONs can be created and deployed 

simultaneously. 

1.3 Management Problems and Challenges 

As described earlier, SSONs have many attractive features, but they come at the cost of 

increased overhead (due to the additional packet header and redundant work at the 

overlay and the IP layer) and complexity. Moreover, as traffic on the overlays increases 

(which occurs continuously), the network becomes overloaded, and its resources 

consumed [3]. In addition, overlays are usually designed independently, thus increasing 

the chances of negatively affecting each other (which will result in creating bottlenecks), 

and degrading their performance, as well as the underlying network performance. 
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Therefore, it is essential to incorporate an overlay network management mechanism that 

reduces the complexity of managing overlays and preserves their correct operations. 

The SSON management problem is generally perceived from two, almost 

contradicting angles: Users' and service providers' perspective. The users' perspective 

of SSON management problem is fundamentally limited to the ability to access a set of 

services that are customized to their needs; a user basically wants to be able to get the 

best service quality while suffering the least possible cost. From the service providers' 

perspective, the problem of SSON management deals with the satisfaction of two 

objectives. The first is to provide users with the desired services in a timely manner, and 

the second is to maximize their total revenue by utilizing resources as efficiently as 

possible. This adds to the list of complexities in the SSON management problem, which 

already includes a host of three major problems: 1) The dynamic changes in network 

conditions and topology, which renders management information quickly obsolete. For 

example, network nodes may fail, links may get congested, and routing information may 

change over time. Moreover, changing the overlay routing path is affected by the 

required QoS, bandwidth, latency, and the existence of other overlays. 2) Overlay 

members that are also dynamic; new users may join or leave the overlay, which 

introduces mobility issues of users roaming across different domains and changing their 

point of attachment to the network as they move. They may even be serviced by 

different providers during one running session, but nevertheless, expect that their 

sessions will always be delivered regardless of their location. 3) The limited knowledge 

that overlay nodes have about the network (this knowledge varies between overlay 

members). With a big number of overlays, the task of management becomes harder to 

achieve using traditional methods, and therefore, new management scheme should be 

provisioned to overcome these challenges. As described earlier, a management scheme 

is an end-to-end problem that is concerned with providing users with their required 

services by best utilizing the available network resources. Therefore, the new 

management scheme should consider the different phases that overlays go through 

during their lifetime. Specifically, a management scheme that deals with overlay 

creation, optimization, adaptation, and termination is needed. Creation requires the setup 
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of an overlay routing table in each overlay node along the end-to-end path—a path that 

must be optimized to the QoS metrics. Adaptation produces a new behavior that reflects 

a change in the overlay environment, and may be necessary to assist mobility, to deal 

with the failure of an overlay node, or to control congestion. Termination involves 

claiming the reserved resources and updating overlay routing tables. 

1.4 Motivation 

SMART creates an SSON for each media delivery service or group of services, 

however, it does not specify the means by which SSONs are constructed and managed. 

Creating an SSON for each media delivery session implies that a numerous number of 

SSONs will co-exist and thus if left unmanaged, they will not only degrade the 

performance of each other but also that of the underlying network. In addition, it is 

essential to have suitable mechanisms to discover the required media processing 

functions, and to seamlessly integrate them in the multimedia delivery session. 

Moreover, once SSONs are created, there should be a mechanism to adapt them 

dynamically to the ever changing conditions of the network, users, and service 

providers. 

Policy-based management represents one possible solution for SSONs management 

problem. The use of policies offers an appropriately flexible and customizable 

management solution that allows network entities to be configured on the fly [4], [5]. 

Usually, network administrators define a set of rules to control the behavior of network 

entities. These rules can be translated into component-specific policies that are stored in 

a policy repository, and are retrieved and enforced as needed. Policies therefore 

represent a suitable and efficient means of managing overlays. However, existing 

management systems usually direct the management task to the physical network 

entities, such as routers, switches, and gateways. Therefore, the management task to 

overlays and their logical elements is not considered. 
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Adaptive management systems represent another obvious solution to the problem of 

SSON management. A closer examination of existing adaptive management techniques 

shows that they can be classified into two distinct approaches for adaptation: 1) 

Adaptation with respect to the network and the operating system components, and 2) 

Adaptation at the application level. Adaptive applications can accept and tolerate 

resource scarcity by dynamically changing demands based on the availability of existing 

resources—apparently, applications which have strict real-time requirements do not fit 

in this category. On the other hand, network level adaptation solutions provide flexible 

means for the management of the underlying variable resources. Nevertheless, existing 

adaptation frameworks still have certain limitations; they usually lack an essential 

degree of flexibility, they are heavily dependent on decisions taken by human operators, 

and more complexity is added to their management functionalities. 

Although active networks-based management seems to provide some promising 

solutions, introducing more programmability into network devices also implies adding 

more complexity to their management functionalities. Also, excessive utilization of 

active packets results in network performance deterioration due to them exhausting 

network resources. One solution to this problem is to restrict the functionality of the 

programs carried by the active packets, alas resulting in architectures with decreased 

capabilities. Furthermore, the dispatched active packets or programmable codes 

introduce new safety and security concerns. 

A major limitation of most of the existing approaches arises from their static 

configurations, which are built a-priori by administrators into network devices. These 

approaches usually lack the flexibility required by SMART communication 

environments, and may not be sufficient to handle different changes in the underlying 

environments. Furthermore, with the current high competitive market of service 

providers, besides service quality, service cost becomes an important factor. However, 

the reliance on human operators is a major contributor to the current cost of services. 

Also, in current management systems, network reconfiguration in response to users' 

requests for service customization is only performed manually by a network operator. 
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This results in significant delays ranging from minutes to even days. Existing 

frameworks must be extended so that customers are able to tailor individual services to 

their particular requirements. Moreover, it is usually disadvantageous to limit the SSONs 

topologies at the time of connection establishment. Specified resource requirements do 

not often remain valid for the lifetime of the entire session. 

The aforementioned limitations of current management frameworks represent strong 

motivations for the development of a novel, autonomous SSON management framework 

with inherent dynamic capabilities. This framework will manage, customize, and extend 

SSONs resources in response to the continuously changing requirements. By making the 

management systems more autonomous, the need for direct and continuous involvement 

of human operators is reduced. 

1.5 Dissertation Overview 

This thesis approaches the issue of SSON management from two different, though 

related, levels: The first, policy-based adaptation and resources discovery, is concerned 

with locating the required MediaPorts (MPs) in the underlying network, as well as 

adaptively managing existing SSONs. This facilitates the processes of creation, 

configuration, adaptation, and termination of SSONs based on user, network, and service 

provider context information. In the second level, autonomic overlays, SSON autonomic 

management is developed to deal with increased management complexity. 

The resource discovery phase becomes particularly challenging in the case of 

dynamic network—the network resources and the users are also dynamic. We address 

this issue through the utilization of the optimal chordal ring features to build a fault 

resilient, scalable, and cost efficient resource discovery scheme. The adaptation is 

approached as a dynamic process where overlay network components are configured at 

run-time, rather than statically by network administrators. To facilitate this task, polices 

are utilized as tools to continually guide the behavior of the underlying overlay 

networks. This is carried out through a multi-layer autonomous framework. In the first 
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layer, the required overlay nodes and resources are identified and reported to the second 

layer, in which overlay-specific decisions and policies are dynamically generated and 

dispatched to the appropriate overlay policy enforcement points in the third layer. 

Overlay network components are then dynamically reconfigured to best utilize available 

resources while maintaining a smooth multimedia delivery. 

As mentioned before, information technology components produced over the past 

decades are so complex that they increase the management challenge of effectively 

operating a stable environment. Overlay networks management is further increased by 

the huge numbers of users, terminals, and services. Although human intervention 

enhances the performance and capacity of the components, it drives up the overall costs, 

even as technology component costs continue to decline. Due to this increased 

management complexity, autonomic overlays were developed in the second part of this 

dissertation. SSONs and their constituent overlay nodes are made autonomic, and so, 

self-manageable. Construction, configuration, and resource discovery were achieved 

using self-composition, which is realized using a self-organization algorithm. The 

algorithm is powered by learning rules induced from biological systems, and supported 

by filtering rules to achieve the highest possible performance. 

1.6 Summary of Contributions 

The goal of this dissertation is to investigate new principles and design new models for 

SSONs autonomous management. The major contributions of this dissertation can be 

summarized as follows: 

1. An Autonomous SSONs Management Framework. 

SSONs consist of a set of overlay nodes and links. To enable the adaptive 

management, we proposed extending overlay nodes to include an Overlay Policy 

Enforcement Point (OPEP) that communicates policy objects and requests 

decisions from a remote Overlay Policy Decision Point (OPDP). Both OPEP and 

OPDP consist of a set of agents that are used to realize their behavior. 
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Management actions are expressed though policies generated primarily at the 

OPDP, and enforced at the OPEP. Our proposal therefore is a complete design 

and functional specification of an autonomous SSON management framework. 

The framework makes use of the available context information, such as user, 

network, and service provider context information, to automate the creation, 

adaptation, and termination of SSONs [6], [7], and [8]. 

2. A Semantic MediaPorts (MPs) Resource Discovery Scheme. 

MediaPorts are essential to the construction and adaptation of SSONs because 

they allow the flexibility of modifying the content transparently. Discovering 

these MediaPorts, therefore, is an integral part of the autonomous management 

infrastructure, which should be scalable, efficient and accurate. To this end, a 

novel scheme for a semantic MediaPorts resource discovery is proposed. It is 

based on a widely studied family of chordal rings called the optimal chordal ring. 

The geographical network area is divided into a set of sub-areas. A ring 

connecting semantically similar MediaPorts is constructed for each sub-area. For 

each sub-area, one of the MediaPorts is identified as the access point for that sub-

area. Access points are then connected to each other using an optimal chordal 

ring of degree 4. Queries are then routed on the optimal chordal ring and 

descended into local rings only if they can be answered in that particular ring. 

This preserves the geographical proximities and allows for efficient locations of 

MediaPorts while minimizing the query cost and response time [9], [10]. 

3. An Autonomic Overlays Architecture for SSONs. 

As illustrated, the rapid growth (in terms of size and complexity) of information 

technology increases the management challenges. The use of overlay networks 

exhibited a similar growth, and they have been widely used to implement new 

services which pose more challenges to their management. Due to this increased 

management complexity, autonomic overlays were proposed to render overlays 

self-manageable. SSONs and their constituent overlay nodes are made 

autonomic, and thus become able to self-manage, ensuring that the creation, 
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optimization, adaptation, and termination of overlays are controlled by policies, 

and thus the behaviors of the overlays are tailored to their specific needs [11], 

[12]. 

4. A Self-organizing Composition Algorithm for Autonomic Entities. 

A major challenge in realizing autonomic overlays is how to compose a set of 

autonomic overlay nodes to construct SSONs, and to achieve the system-wide 

goals. To address this challenge, we proposed a novel self-organized 

composition for autonomic entities. Overlay nodes are composed into SSONs 

using a self-organizing algorithm to achieve system-wide goals. Knowledge 

about interactions, negative and positive feedback, and orientation-based 

modulation learning rules induced from biological systems, are all used to 

enhance the composition algorithm and to guarantee a valid and an efficient 

composition. The algorithm is also powered by filtering rules to achieve the 

highest possible performance [13]. 

1.7 Proposed Research Objectives 

The objectives of the proposed research work can be summarized as follows: 

Autonomous Management: The management system has to be self-adaptable and self-

reconfigurable in response to changes in the surrounding environment. 

Simplify human management Tasks: By automating management systems, administrators 

are shielded from unnecessary details of management, and freed up to other design and 

development tasks. 

Scalability: The performance of the management system has to be maintained regardless 

of the number of managed SSONs. 

Maximize Resource Utilization: Similar to all management systems, the key goal of the 

proposed framework is to maximize the utilization of the underlying network resources. 
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Mobility: The management framework must minimize service disruption during mobility 

management operations, such as mobile users. 

1.8 Organization of the Dissertation 

The remainder of the dissertation is organized into the following chapters. 

Chapter 2 presents and discusses essential background information on mobility 

management, and different standard technologies for multimedia delivery. 

Chapter 3 presents related work and discusses various approaches adopted by the 

research community, and identifies different issues addressed by various research groups 

to provide autonomous management. 

Chapter 4 outlines and discusses the proposed autonomous SSONs management 

framework; responsibilities of the different components along with their interactions are 

specified. Simulation results are also presented to demonstrate the performance of the 

proposed scheme. 

Chapter 5 presents a novel scheme for a semantic MediaPorts resource discovery based 

on the use of the optimal chordal ring. Simulation results are also presented to 

demonstrate the performance of the proposed scheme. 

Chapter 6 presents a novel architecture for autonomic overlays. Autonomic entities are 

driven by policies. This ensures that the SSONs are created, optimized, adapted, and 

terminated by policies, thus achieving their specific needs. 
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Chapter 7 presents a novel, self-organizing composition algorithm. Autonomic overlay 

nodes were built into SSONs by utilizing a self-organization algorithm. Learning and 

filtering rules were utilized to increase the performance of the algorithm. Simulation 

results are also presented to demonstrate the performance of the proposed scheme. 

Finally, Chapter 8 summarizes the presented contributions, and discusses directions of 

future research work. 



Chapter 2 

Background 

In its current (and original) architecture, the internet was designed for wired links and 

fixed end systems, without explicit support for mobile nodes or wireless connections. 

The wide usage of mobile devices and the increasing popularity of wireless 

communication links essentially give rise to varying link conditions, multi-homed 

devices, and handovers between physical access nodes, thus affecting the network 

infrastructure and introducing new challenges that must be addressed. To optimize the 

quality of communication, end-to-end connections will have to be adapted to actual link 

conditions and user preferences. Also, dynamic handovers will have to be realized in a 

seamless and secure way. At the user end, he/she needs to be supported by self-

configuring and self-managing devices and networks in order to achieve optimal 

performance in mobile and wireless environments. 

This chapter is organized as follows: The mobility management problem, existing 

and ongoing research in mobility management are first presented in Section 2.1. Models 

and standardization efforts that have been proposed for multimedia delivery are 

reviewed in Section 2.2. Section 2.3 discusses multimedia delivery framework in 

SMART. Finally, Section 2.4 concludes the chapter with a discussion that summarizes 

existing contributions and identifies some open issues. 

2.1 Mobility Management 

Wireless technologies have become characterized by rapid advances, seeing enabled 

access at several levels such as personal area networks (PANs), wireless LANs and 

WANs, and cellular and satellite networks. This has led to the emergence of new 

14 
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network types and services—albeit complicating the challenges of heterogeneity and 

interoperability mechanisms—which would enable the mobile end user to seamlessly 

traverse different networks while maintaining Internet connectivity. 

This section presents an overview of the current mobility management solutions, 

and investigates the different IP stack layers including application layer, network layer, 

and hybrid mobility solution. 

2.1.1 Definition 

Mobility Management is a communication scheme that enables the underlying network 

to deliver multimedia contents and calls to the roaming entities, regardless of their 

current points of attachments. In the mobile environment, an entity could be a laptop, a 

desktop computer, a wireless device, or any other computing device. 

Mobility management consists of location management and handoff management 

[14]. Location management allows the network to locate the Mobile Entity's (ME) 

current location by providing the means that allow the ME to announce its current 

location, and periodically updating the ME's location profile, which will be queered by 

any entity wishing to contact the ME. Handoff management maintains the ME's 

connection during its movement around the network, which might involve a new 

connection generation in the new subnet and the packet flow management for ongoing 

calls or sessions. 

There are two types of movements for MEs: 1) Inter-domain, and 2) Intra-domain 

roaming [15]. The latter refers to the movement of the ME between different domains 

of the same system, which implies that mobility management is based on similar 

network interfaces—handoff management is called Horizontal Handoff. Inter-domain 

roaming, on the other hand, refers to the movement of the ME between different 

backbones, protocols, technologies, or service providers—handoff management is 

called Vertical Handoff, and can be further classified into soft or hard. In soft vertical 

handoff, the new location and the old one handle the interchange between them while 
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performing the handoff; the handoff is achieved by proactively notifying the new 

location before the actual handoff takes place, thus minimizing packet loss but 

introducing delay. In hard handoff, the ME moves to the new location, and from there 

tries to re-establish the connection; consequently, the connection may be off for a small 

period of time during the move, however, the delay and signaling are less than those of 

the soft handoff [16]. 

In general, a mobility management scheme/protocol usually supports one or more of the 

following mobility types: 

Terminal mobility: The ME is reachable regardless of its current location, i.e. the 

ME is allowed to move between different sub-nets and, at the same time, being 

always reachable for incoming calls. It is important to maintain the session during 

the sub-net change. 

Personnel mobility: The user is able to access his/her services regardless of 

location and terminal being used. In that course, the user is allowed to have 

different terminals and will be reached at any of them or at all of them. Also, the 

user may have more than one address and any of them may be used to reach the 

user's active terminal. 

Session mobility: The user is able to continue a session (or part of a session) even 

while changing terminals. For example, a user may want to continue a session that 

had initially been started at his/her PDA on an office desktop computer when 

entering his/her office [17]. 

Service mobility: The user is allowed to access his/her services while roaming or 

changing devices. For example, a user may want his/her buddy list, address book, 

and call logs to be accessible from any terminal; the user must have the ability to 

alter these services from any terminal. 
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2.1.2 Network Layer Mobility Schemes 

Network layer solutions provide mobility-related features at the IP layer. They do not 

rely on or make any assumption about the underlying wireless access technologies [18], 

[19]. Signaling messages for mobility purposes are carried by IP traffic. 

Mobile IP (MIP) [18], [19] is a standard protocol proposed by the Mobile IP 

Working Group of the Internet Engineering Task Force (IETF). It utilizes special 

mechanisms to offer continuous media support when MEs change their locations. Each 

ME has two addresses, the Home address and a Care-Of Address (COA). The former is 

a static address, and is used by any entity wishing to contact the ME. The latter is 

dynamic, i.e., it represents the current location of the ME, and is assigned to the ME 

whenever it connects to another network. The ME has a Home Agent (HA) in the home 

network, and whenever it connects to another network, it will register with a Foreign 

Agent (FA) to obtain a COA. The COA may be the IP address of the FA (in which case, 

it will be called a co-located COA), or it may be obtained from a separate entity, e.g. a 

Dynamic Host Configuration Protocol (DHCP) server. Any entity wishing to contact the 

mobile entity is called a Correspondent Entity (CE) (which might be a mobile entity); A 

CE does not need to have any mobile IP knowledge at all. 

The handoff procedure is carried out whenever a ME moves from one domain to 

another. The ME obtains a new COA when it enters the new domain and registers it 

with its HA. The HA sets up a tunnel to the COA, using it to deliver packets to the ME. 

MIP does address the terminal mobility problem, but it does not, nor do its related 

schemes by themselves, support device-independent persona mobility, or session and 

service mobility. In an effort to remedy that, two common versions of Mobile IP have 

emerged, version 4 (IPv4) and version 6 (IPv6). IPv6 solves the shortage of address in 

IPv4, with the issue of mobility having been considered from the start. 

MIP suffers from a set of drawbacks: 1) Due to tunneling, routing in mobile IP is 

inefficient; it is also asymmetric as the ME directly contacts the correspondent entity. A 

set of route optimization (MIP-RO) [20] techniques have been proposed as a solution, 

but they require the CE to be modified in order to understand binding updates-binding 
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updates inform the CE of the COA of the ME and hence the CE can tunnel packets to 

the COA without going through the HA. However, the correspondent entity must use 

triangular routing until it receives the binding update from the HA; reverse tunneling 

has been proposed to solve the problem of asymmetry [21]. 2) Firewalls cause security 

problems as they block traffic arriving from different sub-nets. Thus, the mobile entity 

will not be able to send the registration information to the home agent while it is 

roaming in a different network. [22]. 3) Tunneling the packets from the home agent to 

the mobile node causes an extra overhead; also the registration process causes an extra 

overhead. 4) Handoff latency problems which are caused by the long latency in the 

communication path between FA and HA as each time the ME changes its location, it 

has to re-register the new care-of address with the HA. This problem can be solved 

using a micro-mobility scheme, such as, Hierarchical Mobility Agent schemes, and Host 

Based Routing schemes (HBR) [23]. The Hierarchical Mobility Agent schemes (e.g. 

hierarchical Mobile IP (HMIP) [22], MIP with Regional Registration [24] (MIP-RR), 

and intra-domain mobility management protocol (IDMP) [25] and TeleMIP [26]) 

exploit the hierarchy of the network to reduce the signaling between the mobile entity 

and the home agent and thus achieve faster hand-off, but they suffer from a scalability 

problem. On the other hand, the HBR schemes (e.g. CIP [27] [28], HAWAII [29], and 

MMP [30]) are more flexible and can be integrated with different macro-mobility 

management schemes, like SIP and MIP. They also offer the lowest latency networking 

re-routing solution for micro-mobility management as they take an optimal path to the 

closest node that should handle both the location and route updates. A comparison 

between these different protocols is presented in [14] and [15]. 

2.1.3 Application Layer Mobility Schemes 

Application layer mobility can be used to solve the problems inherent in mobile IP. The 

Session Initiation Protocol (SIP) [31] is an IETF signaling protocol that allows users to 

establish, modify, and terminate a session consisting of audio, video, or any internet 

communication mechanism. SIP is a text-based protocol that is similar in both syntax 
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and semantics to the Hyper Text Transport Protocol (HTTP); the difference is that SIP 

can use any transport protocol in combination with its different logical entities (proxy, 

redirect, e tc . . ) to ensure request reliability. SIP is an application layer protocol 

independent from packet layer, and supports both User Datagram Protocol (UDP) and 

Transmission Control Protocol (TCP). SIP can be integrated with other protocols to 

support more functionality, such as Session Description Protocol (SDP) for delivering 

multimedia sessions, and Real-Time Protocol (RTP) [32] for transmitting real-time data. 

In addition to integration with other IP components, SIP has been recognized for its 

simplicity, programmability, modularity, and extensibility [33] [34]. 

SIP consists of the following entities: 1) SIP User Agent (UA): This is the end point 

that acts on behalf of the user; it is either a User Agent Client (UAC) that initiates 

requests, or a User Agent Server (UAS) that responds to requests. UAs communicate 

with each other directly or via another entity, like a proxy server or a redirect server. 2) 

SIP Proxy Server: This entity's main functionality is to forward incoming request to 

another server. A SIP proxy server can be either state-full or stateless; a state-full proxy 

maintains information about the request and all the responses that indicate the progress, 

in addition to the final response that indicates whether the request has been successful or 

not (collectively called a transaction). A stateless proxy does not maintain any 

information about the request; it just forwards the request to another server. If a state-

full proxy does not know the final destination of the request, it can fork the request by 

sending a copy to each possible destination, either in parallel or sequentially. 3) SIP 

Redirect Server. This simply returns to the requestor the address of the destination 

server, so that the UA (requestor) can contact the destination server directly. 4) SIP 

Registrar: This maintains the location information of the SIP users. SIP proxy and 

redirect servers regularly contact the registrar to know the existence of a SIP UA's 

address that will help in establishing a session between two parties. SIP proxy, redirect, 

and registrar are logical entities that may co-exist together in the same server. 

When the mobile entity changes its location, a registration process occurs to inform 

the home registrar about the new point of attachment. To continue ongoing sessions, the 
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mobile entity sends a RE-INVITE request to the correspondent entity, informing it with 

the new point of attachment. During the registration and the RE-INVITE, all data 

packets sent from the correspondent entity will be lost, thus it is highly desirable to 

reduce the packet lose as much as possible. 

2.1.4 Hybrid Approaches 

There are two different kinds of data that the ME and the CE might exchange. The first 

is the non-real-time traffic that has been usually carried over TCP; and the real-time 

traffic that must be carried over RTP/UDP. The two data types differ from each other in 

their delay and loss characteristics [35]. 

Different management schemes have emerged to support mobility for real-time and 

non-real-time traffic. SIP for example, basically supports multimedia real-time traffic, 

but does not support non-real-time traffic [36], as it breaks the TCP connection. Mobile 

IP, on the other hand, is more suitable for non-real-time traffic. Based on these facts, 

there have been attempts to combine both MIP and SIP (Hybrid) to support mobility for 

all kinds of traffic; however, MIP and SIP are not suitable for intra-domain mobility 

(mobility in the same domain). These approaches are called multi-layered as they 

combine both the network layer and the application layer to support mobility. 

In [37], a pure SIP approach is proposed, where SIP signaling is used to support 

macro-mobility, and Hierarchical Mobile IP (HMIP) or Cellular IP (CIP) is used to 

support micro-mobility as both provide faster handoff mechanisms [38]. Encapsulation 

is introduced to prevent the TCP session from breaking. The encapsulation takes place 

in both the ME and the correspondent entity. If the session is real-time, then no 

encapsulation is required. This technique clearly has the disadvantage of requiring the 

ME and the correspondent entity to have encapsulation capabilities. As an alternative 

solution, the authors propose a second approach that is similar to the first one in that it 

uses either HMIP or CIP to support faster handoffs, while the inter-domain mobility is 

supported by both MIP and SIP. SIP is responsible for real-time traffic, MIP for non-

real-time. The second technique uses the tunneling capabilities of MIP to deliver data 



CHAPTER 2. BACKGROUND 21 

packets from the correspondent entity to the mobile entity, and therefore entails the 

main problems that MIP suffers from. Although faster handoff techniques were used, 

there is a signaling problem, as the mobile entity has to register its new location with 

both its home agent and the home SIP registrar. 

As in [37], [35] proposes a new mobility management scheme for wireless IP 

networks that handles real and non-real time traffic. SIP is used to handle Macro-

mobility for real-time traffic, and MIP-LR (mobile IP with location registrar) is used for 

non-real-time traffic. In both cases, MMP (Micro-mobility management) is used to 

handle micro-mobility. The difference between [37] and [35] is that the former uses 

MIP to handle macro-mobility for non-real-time traffic, while the latter uses MIP-LR 

for the same task. They also differ in how they integrate SIP with MIP-LR; in [35] a 

policy table is used. Based on the policy table an entity (between the IP level processing 

and the link layer processing) examines each packet and sends it to the suitable handler. 

To handle terminal mobility, a SIP Re-INVITE message will be sent to the CE 

whenever the ME changes its location, and for non-real time traffic, an update message 

will be sent to the CE and to the HLR (Home Location Registrar). To handle micro-

mobility, micro mobility schemes [39] in addition to SIP are used. While in [37], data 

packets from or to the mobile entity are separated at the domain edge routers. 

2.2 Standard Technologies for Multimedia Delivery 

Today, there already exist a number of different solutions for providing multimedia 

services. Of these solutions, there are few technologies that can generally be regarded as 

standards for multimedia delivery; in this section we shed light on these technologies. 

2.2.1 Session Initiating Protocol (SIP) 

SIP is an application-layer control protocol for creating, modifying, and terminating 

sessions with one or more participants. As pointed out in the previous section, SIP is 

widely used to provide session control for real-time communications. For example, all 
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multimedia communications in the IP-based Multimedia Subsystem (IMS) of today's 

3G networks are based on SIP. While SIP is a very flexible and powerful technology, it 

was designed with mainly end-to-end usage in mind; adaptation of media content to 

meet user demands is generally assumed to occur at the end devices, and introducing 

dedicated adaptation components can only be achieved through non-standard 

approaches. Further, SIP was mainly designed to support point-to-point communication; 

supporting multi-point communication increases the complexity of the protocol 

considerably, and requires additional non-standard capabilities at the SIP servers. 

Finally, support for peer-to-peer or content distribution networks is completely non-

existent in SIP. Besides those application level shortcomings, SIP has only very simple 

support for mobility, thus causing long handover periods. SIP can only react to 

application level triggers for controlling the communication session, thereby, effects of 

network load or failures are completely ignored by SIP. 

2.2.2 IP-based Multimedia Subsystem (IMS) 

The 3 GPP IP Multimedia Subsystem (IMS) is the first platform standardized towards 

network-independent access and session control [40], [41]. IMS uses SIP for initiating, 

modifying, and terminating IP-based multimedia sessions. The goal of IMS is to 

provide service providers with a platform that facilitates the provision and management 

of a wide range of services. The success of service providers using IMS and 

consequently, the success of IMS as a whole, depends on how important those IMS 

services are to users. IMS is developed for person-to-person multimedia connections in 

Universal Mobile Telecommunications System (UMTS)-networks, but the use of IMS is 

not limited to UMTS environments. More generally, IMS can provide IP-based 

multimedia services over any packet-switched network. While IMS is based on SIP to a 

large extent, it does provide various improvements to enable support for broadcast 

communication and better support for mobility. By closely integrating the concepts of 

application servers, IMS already provides the basic requirements for enabling the 

integration of intelligent services into the communication sessions. However, the current 
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version of IMS's specifications still does not support mid-session macro-handover. In 

other words, whenever a node changes its global IP address (typically the case when a 

node connects to another access network), the ongoing session has to be terminated, and 

the long standard SIP-based IMS session setup procedures have to be performed once 

more at the new access network. Those time-consuming procedures may imply long 

perceivable disruption times at the application layer, which is not acceptable for delay-

sensitive, real-time services [42]. Moreover, similar to other SIP-based solutions, 

support for dedicated adaptation components is still lacking. Further, while the concept 

of conferencing and multi-party session is closely integrated into IMS, there is no 

adequate support for the routing of flows of the same session over different paths. 

2.2.3 Multicasting Protocols 

Content Distribution Networks (CDNs) act as trusted overlay networks that offer high-

performance delivery of common web objects, static data, and rich multimedia content 

by distributing content load among servers that are close to the clients [43][44]. CDNs 

can improve access to content that is typically un-cacheable by caching proxies, 

including secured content, streaming content, and dynamic content [45]. Different 

multicasting protocols together with caching technologies are commonly used in CDNs 

for the purpose of distributing multi-format rich media services. CDNs normally consist 

of integrated distribution, streaming, security and traffic management solutions to 

enable a variety of high-bandwidth broadband applications such as Video-on-Demand 

(VoD), web casting, interactive television, e-learning, and others. Similar to SIP and 

IMS, the concept of CDN was designed with a single application in mind, namely 

efficient transport of media data. Current CDNs lack the intelligence needed, not only 

for transporting media, but also for adapting it to the network load situation or for 

supporting user mobility and preferences. 
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2.3 Smart Media Routing and Transport (SMART) 

As pointed out, current approaches for media delivery are not sufficient for the purpose 

of providing network-side media processing capabilities on the media path. Therefore, a 

SMART framework is being developed to achieve these goals in the context of Ambient 

Networks. The overall goal of the Ambient Networks Integrated Project [46] is to 

develop a vision for future wireless and mobile networks. The aim of this project is to 

create an innovative, industrially exploitable new inter-networking framework that is 

based on the dynamic composition of networks. A key aspect of the project is to 

establish a common control layer for various network types, which provides end users 

with seamless multi-access connectivity to enable selection of the best available 

network. For an operator, the Ambient Network concept allows flexible and dynamic 

network configuration and management. 

In the environment targeted by Ambient Networks, there will be a broad 

heterogeneity of access networks, terminals, network interfaces, users, signaling, and 

transport protocols, applications, and services. As a consequence, certain independent 

streams of multimedia data may be required to be pro-actively cached, trans-coded, 

split, synchronized, translated, filtered, legally tapped, or transformed in some way or 

another before they can be delivered according to a variety of constraints, or properly 

displayed to the user. To this end, Smart Media Routing and Transport (SMART) 

architecture [2] has been proposed to enable the seamless integration of next-generation 

multimedia services into Ambient Networks. 

2.3.1 Media Processing Functions 

Services, as defined in the SMART-context, can be simple requests of information (web 

browsing), multimedia streaming (audio and video), and/or conferencing, or they can be 

more complex service scenarios including mobility features, media adaptation features, 

caching features, and so on. Media that is delivered as part of SMART-like services 

may need to be processed along the media path and thus inside the network (e.g., 
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dynamic trans-coding of video and audio streams to adapt to changing link properties, 

or proactive smart caching following user movement). Since services like media 

adaptation and trans-coding can only be located at the end systems today, they are often 

of very limited value. In the case of server-side adaptation, the media has to be 

transmitted several times (once for each type of encoding). Client side adaptation, on 

the other hand, has the drawback of wasting network resources (as the 'down scaling' of 

the media format is only done at the client end), and increasing the complexity (and 

hence the cost) of user terminals. 

Other services, such as caching or optimal routing of media traffic in order to 

optimize the possible achievable QoS, can only be achieved using network side 

intelligence. Similar reasoning can be used for broadcasting and multi-party 

communication. Only with the help of network side components is it possible to 

optimize the bandwidth usage. Therefore with SMART, additional intelligence can be 

located at the provider and inside the network. Examples of such intelligence include 

the following features: Media routing and media adaptation to deal with terminal and 

user mobility; media splitting to enable session/flow mobility; synchronization for re-

combining split flows; smart caching for accommodating low bandwidth access 

networks. 

In SMART, multimedia transformation is carried out by network-side media 

processing capabilities and transformation services [47], termed MediaPorts (or MPs), 

which are located somewhere on the media path, between the sink, called MediaClient 

(or MC) and the source, called MediaServer (or MS). MPs must be able to transform the 

multimedia data originating from the MS into a form that is acceptable for the MC. 

2.3.2 Overlay Routing 

The concept of overlay networks is promoted by SMART in order to enable inclusion of 

the above mentioned media processing functions in the end-to-end media delivery path 

in a way that is transparent to the underlying network (i.e. without the need to replace 

the existing infrastructure) as well as to the end-user applications. Consequently, the 
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migration path from legacy networks towards SMART-enabled Ambient Networks is 

expected to be inexpensive and straightforward. One of the important advantages of the 

overlay concept is that it enables the establishment of different types of overlay 

networks as needed. This allows, for example, for tailoring the virtual addressing 

scheme and the overlay routing to best suit the requirements of a particular service. 

Another example of the tremendous capabilities of overlay routing include more 

advanced multimedia transport techniques that enable transparent integration of value-

added media processing capabilities into the end-to-end media delivery path. Because of 

such advantages, the overlay concept has been selected as the basic building block for 

the SMART framework. 

Fig. 2.1 SMART Architecture within the Overall Ambient Networks Architecture 

2.3.3 Service-Specific Overlay Networks 

A Service-Specific Overlay Network (SSON) is defined through the set of Overlay 

Nodes (ONodes) that are part of a particular service (or collection of services that are 
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combined to one composed service) and the virtual links that connect the individual 

ONodes to each other. In SMART, a different virtual network is deployed for every 

media delivery service (or group of services), which allows for the configuration of 

appropriate, high-level routing paths that meet the exact requirements (for example, 

QoS, media formats, responsiveness, cost, resilience, or security) of a media service. 

Moreover, the exploitation of overlay network techniques also facilitates the transparent 

inclusion of network-side media processing functionalities (such as caching, adaptation, 

and synchronization) into the end-to-end data paths. Besides, the overlay network is 

able to react dynamically to a changing environment, that is, modifications in the 

overlay might be triggered due to changes in user preferences, mobility, QoS, or the 

underlying network. Finally, to provide maximum flexibility, SMART supports all these 

actions separately for each flow of the media service within a SSON. 

Fig.2.1 (redrawn from [2]) illustrates how the SMART architecture relates to the 

overall Ambient Network architecture. The figure also shows the Ambient Control 

Space (ACS) as well as its control interfaces, namely the Ambient Service Interface 

(ASI) and the Ambient Resource Interface (ARI). Roughly, the ASI provides the service 

and user profile to the Overlay Control Space (OCS) in case of a request for a media 

delivery service. The ARI is the interface to the connectivity layer, and manages the 

underlying connectivity resources. 

2.3.3 Overlay Node (ONode) Architecture 

An ONode is a specialized Ambient Network node that implements the functionality 

required to join the SSONs by, for example, provisioning network-side media 

processing functionalities, such as caching, media adaptation, synchronization, and 

Media aware inside the network. ONodes (see Fig 2.2, redrawn from [2]) can be 

described from the user perspective and the control perspective. For each SSON of 

which the ONode is part of, MediaPorts (MPs) are instantiated. MPs are responsible for 

Media Routing in the control plane and, in the user plane, host the so-called application 

modules, each responsible for a particular network-side media processing functionality. 
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Furthermore, and depending on the required media processing functionality, overlay 

nodes can take one or more of the roles of MC, MS, and MP. Note that a physical 

ONode can be part of many SSONs at the same time. 

The control plane of the ONode includes the ONode Control entity, which is 

responsible for the general management of the ONode and the signaling exchange. The 

ONode Control consists of several components, which can be classified into those that 

deal only with the local control and management of the ONode, and those that logically 

belong to the OCS, which is the Functional Entity residing in the ACS that controls the 

SSONs on Ambient Network wide basis. 

The user plane of the ONode encompasses the Overlay Support Layer (OSL) and 

the application modules that take part in media processing actions. The OSL sits on top 

of the underlying network; it embodies the basic overlay network functionality required 

in every ONode for the handling of packets at the overlay level. As such, the OSL is 

responsible for the sending, receiving, and forwarding of SSON-level packets. The OSL 

provides a common communication abstraction (overlay level network protocol and 

addressing) to all ONodes of a SSON, so that they can communicate with each other 

independent of their differences regarding the underlying protocol stacks and 

technologies. On top of the OSL, and using its services, there are application modules 

that implement the behavior of a MC, MS, or MP in regard to data handling. MCs act as 

data sinks and send the multimedia data to the end-point media applications; whereas 

MSs act as data sources and receive the multimedia data from the end-point 

applications. 
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Fig. 2.2 Implementation of an ONode on a Physical Node 

2.4 Summary 

In this chapter, we discussed various approaches that have been proposed to address the 

issue of mobility and multimedia delivery. The development of mobility management 

schemes such as Mobile IP (MIP) and Session Initiation Protocol (SIP), and the 

multimedia delivery schemes such as IP-based Multimedia Subsystem (IMS) has 

enabled mobile users to seamlessly traverse different networks while maintaining their 

connectivity to their home network, and continuing their sessions at their new locations. 

Nevertheless, it has been generally difficult to support all types of mobility, and still 

deliver multimedia to users without relying on network side functions that has the 

ability to adapt media to meet the user's, network's, and service provider's needs. 
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In order to satisfy the contradictory needs of different applications and services, 

Smart Media Routing and Transport (SMART) introduced the concept of Service-

Specific Overlay Networks (SSONs). This multimedia delivery method enables the 

flexible configuration of virtual networks on top of the underlying physical network 

infrastructure. SSONs have the ability to customize the virtual network topology, and 

the addressing as well as the routing at the overlay level according to the specific 

requirements of a media delivery service. In addition to that, SSONs transparently 

include network-side functions into the end-to-end communication path from the 

MediaServer (MS) to the MediaClient (MC), thus making it possible to support media 

routing, distribution, adaptation, and caching over complex communication mechanisms 

like peer-to-peer communication, multicasting, and broadcasting. 

However, SMART does not specify the means by which SSONs are constructed 

and managed. Creating an SSON for each media delivery session implies that a 

numerous number of SSONs will co-exist and thus, if left unmanaged, they will not 

only degrade the performance of each other, but also of the underlying network. In 

addition, it is essential to have suitable mechanisms to discover the required media 

processing functions, and to seamlessly integrate them in the multimedia delivery 

session. Moreover, once SSONs are created, there should be a mechanism to adapt 

them dynamically to the ever-changing conditions of the network, users, and service 

providers. 
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Related Work 

Requirements posed by autonomous overlay management cause certain problems to 

emerge; problems that our architecture proposes to resolve, but we still need to 

characterize these problems, and that is what we do before presenting our solution. To 

achieve that, we present a survey of current research efforts related to overlay 

management in this chapter, which is organized as follows: Various definitions and 

different overlay networks used in literature are first presented in section 3.1. Some of 

the overlay management models and standardization efforts that have been proposed are 

then highlighted in section 3.2. Section 3.3 reviews existing research work that has been 

carried-out in the area of resource discovery. Finally, section 3.4 summarizes and 

concludes the chapter. 

3.1 Overlay Networks 

An overlay network is a virtual network of nodes and logical links that is built on top of 

an existing network, with the purpose of implementing a network service that is not 

available in the existing network. For example, overlays can be used to increase routing 

robustness and increase security, reduce duplicate messages through multicast, and 

provide new services for mobile users. They can also be incrementally deployed on end 

hosts without co-operation from ISPs, and without the need to deploy new equipment or 

modify existing software/protocol [48], [49], and [50]. Frameworks that have been 

developed for this purpose fall mainly into one of two configurations: Static and 

Automatic. They can be further classified into Application Specific Overlay Networks 

and Generic Supporting Diverse Applications. Moreover, overlays can be layered—one 

kind of overlay built on top of another. An overlay network is thus an application layer 

31 
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internet which separates the physical layer from the applications, and supports 

customization to meet and optimize specific functionalities. Peer-to-peer networks are a 

common example of overlays. 

3.1.1 Application Specific Overlay Networks 

Application specific overlay networks have been tailored to a specific application. Such 

as multicasting [51], [52], content distribution networks [53], and peer-to-peer file 

sharing [54]. Application layer multicasting focuses greatly on using strategically 

placed fixed nodes to support overlay multicast service. Overcast [49] provides wide-

area content distribution and bandwidth sensitive multicast services while utilizing the 

network bandwidth efficiently. Resilient Overlay Network (RON) [48] is based on 

strategically placed nodes in the Internet domains. It is proposed to quickly detect and 

recover from path outages and degraded performance. However, RON is designed for 

applications with a small number of participating nodes and cannot be scaled to a big 

number of nodes. In [55], overlays are used to achieve fast fail-over and traffic load 

balancing in the Border Gateway Protocol (BGP). A set of policy agents installed in 

each participating autonomous system enforces necessary changes in the local BGP. 

The policy agents communicate through the overlay. Our work differs from these 

approaches in that it allows (a) a number of overlays to be managed at the same time, 

and (b) policies to be generated dynamically from the context information. Peer-to-peer 

networks are another example of application-specific overlay networks. It is primarily 

used for resource discovery and can be classified into structured and unstructured 

overlays. Because of its importance, we devoted Section 3.3 to discuss it. 

3.1.2 Generic Overlay Networks 

In generic overlay networks, knowledge is shared through an intermediate layer that 

measures a number of network properties. In [56], an underlay with a multi-tier overlay 

routing scheme is proposed. AS-level Internet topology and routing information is 
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acquired by a topology-probing kernel from nearby BGP routers, thereby overlay 

services can share this information without the need to individually probe the internet. A 

more generic approach is described in [57], where a number of quality metrics (such as 

low latency, low hop count, and high bandwidth) are acquired from end-to-end network 

measurements, and used to construct overlays. 

Yoid [58] is a generic overlay architecture which is designed to support a variety 

of overlay applications that are as diverse as net-news, streaming broadcasts, and bulk 

email distribution. Another similar effort is the Planet-lab [59] experiment that aims at 

building a global test-bed for developing and accessing new network services. A similar 

approach was proposed in OPUS [60], which provides a large scale, common overlay 

platform and the necessary abstractions to service multiple distributed applications. It 

automatically configures overlays nodes to dynamically meet the performance and 

reliability requirements of competing applications. X-Bone [61] is a system for 

automated deployment of overlay networks. It operates at the IP layer and is based on IP 

tunnel technique. Its main focus is to manage and allocate overlay links and router 

resources to different overlays and avoid resource contention among the overlays. 

OverQoS [62] can be employed to provide Internet QoS such as differentiated rate 

allocations, statistical bandwidth, and loss assurance, and can enable explicit-rate 

congestion control algorithms. Third-party providers can utilize OverQoS to provide 

QoS services to the customers using Controlled Loss Virtual Link (CLVL) technique, 

which ensures that the loss rate observed by aggregation is very small as long as the 

aggregate rate does not exceed a certain value. Service Overlay Network (SON) [63] is 

designed to use overlay technique to provide value-added Internet services. A SON can 

purchase bandwidth with certain QoS guarantees from ISPs, and use that bandwidth to 

build a logical end-to-end service delivery overlay. The authors have formulated the 

problem of QoS provisioning by considering various factors like SLA, service QoS, 

traffic demand distribution, and bandwidth cost. 

Although generic overlay networks are efficient in reducing the cost of acquiring 

the shared knowledge, they lack the flexibility to support specific application overlay 
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networks. Moreover, they do not take into account specific demands for individual 

services such as user or terminal mobility. More importantly, they do not explicitly 

address the use of policies to configure overlays dynamically, which our work does in 

addition to addressing the use of intelligent network side functions in the overlay path, 

which permits additional services to be deployed. 

3.2 Overlay Networks Management 

The overlay's attractive benefits come at the cost of increased overhead and complexity. 

Overhead is increased because of the additional packet header and the redundant work 

at the overlay and IP layers. The constantly increasing traffic carried by the overlays 

also tends to overload the network and consume its resources [3]. In addition, overlays 

are usually designed independently, which increases the chances that they will 

negatively affect each other: Bottlenecks are created, reducing the performance of both 

the overlays and underlying network. Overlays therefore need to incorporate a 

management mechanism that reduces this complexity and hence keeps them operating 

correctly. 

Overlay management is challenging for several reasons. First, the dynamic changes 

in network conditions and topology quickly renders management information obsolete. 

For example, network nodes may fail, links may get congested, and routing information 

may change. In addition, any changes in the routing path are affected by the required 

QoS [64], bandwidth, latency, and the existence of other overlays. Second, overlay 

members are dynamic, as new users may join or leave. Finally, each overlay node 

possesses limited knowledge of the network with that knowledge varying among 

overlay members, and with a large number of overlays, management by traditional 

methods becomes harder to achieve. Moreover, the management scheme must account 

for the different phases that overlays go through during their lifetime: Creation, 

optimization, adaptation, and termination. Creation requires the setup of a routing table 

in each overlay node along the end-to-end path—a path that must optimize the QoS 

metrics. Adaptation produces a new behavior that reflects a change in the overlay 
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environment. Adaptation may be necessary to assist mobility, to deal with the failure of 

an overlay node, or to control congestion. Termination means claiming the reserved 

resources and updating routing tables. 

Since our focus is on Service Specific Overlay Networks (SSONs), it should be 

noted that these networks pose additional challenges. In large distributed and 

heterogeneous networks, media content usually requires adaptation before it is 

consumed by clients. For example, video frames must be dropped to meet QoS 

constraints: A client with a PDA requires a scaled-down version of the video; a mobile 

user requires the content to be cached for viewing. When SSONs are used, a first step 

in any of these applications is for them to learn that the services exist. In other words, 

they need to know "what are the services needed?", "where are these services located?" 

and "how are they found?" This is clearly a resource discovery problem. 

3.2.1 Policy-based Management 

Policy-based management has been introduced as an efficient solution for managing 

network entities. The use of policies offers an appropriately flexible and customizable 

management solution that allows network entities to be configured on the fly [4], [5]. 

Usually, administrators define a set of rules to control the behavior of network entities. 

These rules are translated into component-specific policies that are stored in a policy 

repository, to be retrieved and enforced as needed. Policies have been widely supported 

by standard organizations such as the IETF and DMTF to address the needs for network 

management. It was first introduced by Sloman [65] as a tool for management. His work 

was the trigger for other research activities focusing on policies: Sloman's work 

introduced policies and illustrated the power of this concept particularly in the context 

of distributed systems. However focus was put on the general aspects of policies such as 

Policy Specification [66], Conflict Analysis [67], Policy Domains [68], and Hierarchies 

[69]. Policies were mainly used for specific applications in networks [70] and 

Collaborative Systems [71]. 
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The Policy Working Group [72] is chartered to define a scalable and secure 

framework for policy definition and administration. This group has defined a framework 

for policy-based management that defines a set of components to enable policy rules 

definition, saving, and enforcing. In the IETF model, the policy management system 

consists of a Policy Decision Point (PDP) and a Policy Enforcement Point (PEP) [73]. 

The PDP evaluates the request sent by a PEP as a result of policy event against a 

corresponding set of policy rules. The policy decision is then sent back to the PEP using 

a communication protocol such as Common Open Policy Service (COPS) [74]. Figure 

3.1 depicts the policy-based network management architecture defined within the IETF 

and DMTF framework, and used as the primary policy architecture by many research 

and commercial communities. The PEP is a network entity where the policy is enforced. 

Enforcement of policy decisions is carried out by the specific hardware/software 

features residing in the device such as packet filtering, marking, shaping, policing, 

bandwidth reservation, etc... A PDP retrieves policies from the policy repository, 

makes decisions based on retrieved information, and translates them into device specific 

configurations. These configurations are then sent to the PEP at the network entity. The 

policy management tool is the interface between the network administrator and the 

system. It allows administrators to specify policies to be enforced in network entities, 

and then translates them into a format compatible with the policy repository. The policy 

repository is a database that stores policies provided by the policy management tool, 

which in most cases is a Lightweight Directory Access Protocol (LDAP) directory. 

However, most implementations use static policy configurations built a priori into 

network elements. This may not be sufficient to handle changes. 

Peer-to-peer systems construct an overlay to allow resource sharing; therefore they 

are designed with a specific application in mind. In [75], policies are used to control the 

topology growth of peer-to-peer systems. Policies are distributed to all hosts in the 

system with each host able to adopt only one policy at a time. But human interaction is 

still required to define the policies, and to inject them into the system. In [76], peer-to-

peer concepts are used for wearable mobile devices to protect users from one another. A 

policy client resides in the kernel of the system, as well as a policy manager that stores 
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and dispatch policies. Unfortunately, the policies are static and built a priori. [55] 

proposes another application-specific overlay network to achieve fast fail-over and 

traffic load balancing in Border Gateway Protocol (BGP). A set of agents is installed in 

each participating autonomous system to enforce necessary changes to the local BGP. 

An overlay is constructed between the policy agents to facilitate their communication. 

Our work differs from those specific application overlay networks in that it allows 

many overlays to be managed at the same time. Moreover, peer-to-peer policies so far 

are static and lack flexibility, while polices in our work are generated dynamically. 

In the proposed work, we envision policies as a very powerful tool that can be used 

in automating the management of Service Specific Overlay Networks (SSONs). Policies 

are persistent; once a policy is applied, it remains active during its lifetime. Moreover, 

changing system behavior without modifying underlying software/hardware can be 

easily accomplished by changing the previously applied policies or by enforcing a new 

set of policies. Existing management systems usually direct the management task to 

physical entities such as routers, switches, and gateways. In our proposed scheme, the 

task is assigned to the overlays and their logical elements. This furthers the use of 

policies by automating the creation, assembly, and selection of the applied policies at a 

given instance of time, thereby generating policies dynamically and automating the 

adaptation in the behavior of the overlays without human interaction. 
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Fig. 3.1 IETF/DMTF Policy-Based Management Architecture 

3.2.2 Overlay Management Using Active Networks Technology 

Active networks are frameworks where network elements, primarily routers and 

switches, are programmable. In active networks, programs are injected into the network, 

and executed by the network elements to achieve higher flexibility and to present new 

capabilities. Each active node runs a Node Operating System (NodeOS) and one or 

more Execution Environments (EEs). The NodeOS is responsible for allocating and 

scheduling the node 's resources (link bandwidth, CPU cycles, and storage), while each 

EE implements a virtual machine that interprets active packets arriving at the node. 

Each EE defines a distinct virtual machine or "programming interface" on which 

Active Applications (AAs) can be built to provide a particular end-to-end service [77]. 
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There are two major approaches to service deployment in programmable and active 

networks [78]: In-band and out-of-band deployment schemes. In the former, the code of 

the services is transmitted together with the data in active packets, called capsules, 

which the service can execute with the co-located data on the appropriate nodes along 

the data path in the network. This scheme is suitable for on-demand deployment of 

small and simple services. In the the out-of-band scheme on the other hand, the service 

code is separated from the actual data, and is processed during the deployment phase. 

This scheme is more applicable to high-level, application-oriented services; the FAIN 

[79] project belongs to the second scheme. The deployment architecture [80] defines 

how and when service components are invoked and installed on selected network nodes, 

such that that the service deployment requirements are fulfilled, and the runtime 

management architecture deals with the installation of service components in execution 

environments, and with the management of component instances. The architecture uses 

the component as the main abstraction. From the management viewpoint a component 

instance represents two aspects: The functional aspect in which the component is seen 

as a (part of a) service instance; and the non-functional aspect in which the component 

is seen as a resource. 

Recently, active networks technology has been geared toward aiding network and 

service management functionalities. In [81], a new layer—the application environment 

(AE) layer—has been added to the active network framework, to offer high-level 

services desired by applications. These applications are called user-defined processing 

modules (UPMs). They are greatly simplified because they leverage services offered by 

the AE layer. 

Although active networks-based management seems to provide some promising 

solutions, introducing more programmability into network devices also implies adding 

more complexity to their management functionalities. In addition, excessive utilization 

of active packets results in network performance deterioration due to their high 

utilization of network resources—one solution to this problem is to restrict the 

functionality of the programs carried by the active packets, thus resulting in 
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architectures with decreased capabilities. Furthermore, the dispatched active packets or 

programmable codes introduce new safety and security concerns. 

There also exists a serious resource discovery problem. Active routers will not be 

deployed everywhere at the same time. Rather, they will be deployed individually or in 

isolated pockets. Given the unavoidable extra overhead in applying intelligent 

processing to packets, active routers will be deployed at the network periphery rather 

than in the network backbone. How are applications to find these isolated resources and 

put them together for a single purpose? 

3.2.3 Automated Management for Overlay Networks 

As illustrated earlier, current approaches in the literature present simple adaptation 

algorithms which offer sub-optimal solutions to the management problem. Dynamic 

self-adaptation in response to changing QoS needs; resources availability; service cost; 

perceived performance of the network components or even neighboring networks, will 

become an essential operation in future networks. In the following, we investigate some 

of the few trials for automating one or more of the overlay network management 

functionalities. 

The CADENUS (Creation and Deployment of End-User Services in Premium IP 

Networks) project [82] attempts to automate network service delivery. The focus was on 

how QoS technologies can be controlled and managed via standard interfaces in order to 

create, customize, and support communication services for demanding applications. 

Mediation components are used to represent the main actors involved, namely users, 

service providers, and network providers, and define their automated interactions. By 

defining roles, responsibilities, and interfaces, the service deployment process is 

decomposed into a set of sub-processes whose mutual interactions are standardized. The 

model brings novel contributions to automated management. Nevertheless, it lacks 

scalability and does not discuss impacts of network heterogeneity on system 

performance. 
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The DHARMA (Dynamic Hierarchical Addressing, Routing and naming 

Architecture) [83] proposes a middleware that puts no constraint on the topologies of 

the overlays, and defines a distributed addressing mechanism to properly route data 

packets inside the overlay. It separates the naming and addressing of overlay nodes, and 

so can be used to enable network applications to work over the Internet in an End to 

End mode while exhibiting mobility, multicasting, and security in a seamless way. The 

routing is greedy and follows the closest hierarchy to the destination node. The middle 

ware achieves reasonable results for network dynamics <=10% and restricts overlays to 

End to End communications. 

The ADCCS (Autonomous Decentralized Community Communication System) 

[84], [85] provides a framework for large-scale information systems, such as content 

delivery systems. It forms a community of individual members having the same 

interests and demands at specified time. It allows the members to mutually cooperate 

and share information without loading up any single node excessively, and organizes 

the community network into multi-levels of sub-communities. ADCCS's is concerned 

with reducing both the communication delay of a message that is broadcasted to all 

community nodes (while considering latency among them), and the required time for 

membership management. 

In [86], a distributed binning scheme is proposed to improve routing performance 

by ensuring that the application-level connectivity is harmonious with the underlying 

IP-level network topology. In the binning scheme, nodes partition themselves into bins 

such that those nodes that fall within a given bin are relatively close to one another in 

terms of network latency. To achieve this, a set of well known landmark machines are 

used and spread across the Internet. An overlay node measures its distance, i.e. round-

trip time, to this set of well known landmarks, and independently selects a particular bin 

based on these measurements. The scheme is targeted at applications where exact 

topological information is not needed, such as overlay construction and server selection; 

however it provides no support for the application specific demands. 
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In [87], [88], and [89], a social-based overlay for peer-to-peer networks is 

proposed. The social-based overlay clusters peers who have similar preferences for 

multimedia content. A similarity between two peers exists if both share common 

interests in specific types of multimedia content, hence peers sharing similar interests 

can be connected by shorter paths so that they can exchange multimedia content 

efficiently. Specifically, whenever a peer requests an object of interest, it can locate the 

object among its neighboring peers, i.e., the peers that have high similarity and which 

are more likely to hold the requested object. Some of these approaches [87] model a 

distance measure that quantifies the similarity between peers, and uses random walk 

technique to sample the population and discover similar peers from the randomly 

selected samples. In [88], the similarity of peers is measured by comparing their 

preference lists, which record the number of the most recently downloaded objects. 

However, a new user who has only made a few downloads cannot get an accurate 

similarity measure. In [89], a central server collects the description vectors of all users, 

and establishes overlay links based on the distance between each pair of users. The 

central server does not explicitly define the description vector however, which has a 

significant effect on the accuracy of the similarity measure. 

3.2.4 Autonomic Management 

Autonomic Computing (AC), launched by IBM in 2001 [90], is an emerging technology 

that aims to allow users to traverse transparently and dynamically between different 

providers and service domains. IBM identified the complexity of current computing 

systems as a major barrier to its growth [90], and as a result, automated selection of 

service configuration, relocation, and monitoring must be carried out with minor 

intervention of users and system administrators. AC simplifies and automates many 

system management tasks traditionally carried out manually. Systems that manage 

themselves are able to adapt to changes in their environment in accordance with 

business objectives; the result is a great savings in management costs and IT 

professionals' time, thus freeing the latter to focus on improving their offered service 
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rather than managing them manually. Some of the main scientific and engineering 

challenges that collectively make up the grand challenge of autonomic computing were 

outlined in [91]. Also, a set of characteristics required by AC were identified and 

explained in [92]. 

According to the IBM vision [93], an AC system is one that knows itself and its 

environment, configures and reconfigures itself under varying and unpredictable 

conditions, heals itself, provides self-protection, and keeps its complexity hidden. 

Although the IBM vision is a holistic approach to designing computer systems, much of 

the research in this field focuses on a few specific aspects of this vision. 

Autonomic communications was proposed in [93]. It has a similar concept to 

IBM's autonomic computing, differing in that it focuses on the individual elements of 

the network, how their behavior is learned and altered, and how they interact with their 

peer elements. A generic architecture for autonomic service delivery was proposed in 

[94]. It defines a resource management model based on virtualization, but it is service-

independent, and is unlikely to achieve the specific QoS requirements for each service 

dynamically without human intervention. A model for dynamic fault tolerance 

technique selection for grid work flow, which allows the system to configure its fault 

tolerance mechanism, was developed in [95]. 

Pattern classification and clustering techniques that support online decision making 

and incremental learning in autonomic systems were proposed in [96]. The use of 

policies to configure autonomic elements to enforce the required behavior in an Apache 

web server was presented in [97]. A set of UML-based models were developed and used 

in [98] to specify autonomic properties and to deploy policies as an executing system 

based on composition and model modification. A policy-driven model based on multi-

agent systems was also proposed in [99]; in that model, Web services are represented as 

agents, and agent behavior is controlled using high level policies. A mapping of 

biological systems to PBMS was introduced in [100]; this system is hierarchical and 

relies on mechanisms for organism regulation, which supports self-management at 

different levels of the hierarchy. Humans in an organization thus specify policy at a 



CHAPTER 3. RELATED WORK 44 

level of abstraction that reflects their specific needs. The difference between our work 

and all these approaches is that the above approaches consider a particular service to 

which their design is appropriate. In addition, policy generation is not a fully automatic 

process and human intervention is still needed. 

Projects such as Service Clouds [101], Autonomia [102], GridKit [103], Auto-Mate 

[104], and Unity [105] utilize the autonomic concept in different ways. Service Clouds 

provides an infrastructure for composing autonomic communication services. It 

combines adaptive middleware functionality with an overlay network to support 

dynamic service reconfiguration. Autonomia provides dynamically programmable 

control and management to support the development and deployment of smart 

applications; primarily, it achieves the self-healing property for failed entities. GridKit 

proposes a middleware that offers a consistent programming model across different 

communication types. AutoMate enables the development of autonomic Grid 

applications by investigating programming models, frameworks, and middleware 

services that support autonomic elements. Finally, Unity designs both the behavior of 

individual autonomic elements and the relationships that are formed among them, in 

order to create computing systems that manage themselves. A detailed survey on 

autonomic computing is available in [106]. Although, in theory, AC seems to provide 

the ultimate solution for the complex management problem, in general, research efforts 

towards Autonomic Management are still in their infancy and are still faced with many 

challenges. 

Our work focuses on service-specific overlay networks; thus, the interaction 

between the network and computing entities is based on a service request/offer concept 

in which each entity is responsible for its internal state and resources. An entity may 

offer a service to other entities. The offering entity responds to a request based on its 

willingness to provide a service in its current state. Our work is concerned with all 

possible phases of the service delivery in SSONs—from the instance of requesting a 

service to terminating it. As a result, we present an integral approach to SPs that wish to 

deliver services over their infrastructure. 
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3.3 Resource Discovery 

In large, distributed networks, media content usually requires adaptation before it is 

consumed by clients; for example, video frames must be dropped to meet QoS 

constraints. A client with a PDA requires a scaled-down version of the video; a mobile 

user requires the content to be cached for viewing. Therefore, we need to discover the 

required resources before we construct the media flow path. Resource discovery 

techniques can be classified into centralized, distributed, and semantic approaches. This 

section provides an overview of the most established resource discovery techniques. 

3.3.1 Centralized Approaches 

In centralized approaches, all resource information (resource description, node address, 

e tc . . ) are kept in a centralized server. Each arriving node needs to actively notify this 

server about its kept resource information; consequently, nodes only need to consult 

node address from the server about its needed resources. This type of architecture is 

very simple and easy to deploy, but has the problem of single point-of-failure. Napster 

[107], a peer-to-peer system, adopts this approach. Alternatively, directory servers in 

which all the services offered in the network are registered can be used. Either nodes 

know how to direct queries to all these servers, or the servers know how to 

communicate with each other. For example, the centralized approach [108] is suitable 

for networks with stable topology and for applications that do not require frequent 

service updates. Though it consumes bandwidth, has a high message overhead, and 

suffers from single point-of-failure (in the servers), this approach has been used in the 

Internet [109] for web services and other applications [110]. Needless to say that such a 

centralized approach is not well suited to the dynamic topology of SMART, where 

services on offer must be updated frequently. 
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3.3.2 Distributed Approaches 

Flooding is the simplest approach to resource discovery. A query is broadcast to all 

nodes. A requesting node contacts its neighbors, which in turn contact their own 

neighbors until the resource is found. Each receiving node determines independently 

how to process and respond to the query. Although this approach is flexible and requires 

no topology awareness, it consumes bandwidth and suffers from an exponential number 

of overhead messages [111], [112], [113], and [114]. In [115], a path-directed approach 

that is explicitly targeted to media stream processing services is proposed: The query is 

sent to nodes that move it progressively closer to the destination. While this is more 

efficient than flooding, queries are still sent to nodes where answers may not be 

available. 

Dynamic Hash Table (DHT) approaches are decentralized, and are proposed 

mainly for P2P systems. They can be classified, based on their inter-connection 

architectures, into flat or hierarchical. Flat approaches Chord [54], CAN [116], Pastry 

[117], Tapestry [118], and Kademlia [119] provide a uniform distribution of peers and 

resources. They support scalable and distributed storage and retrieval of {Key,Data) pairs 

on the overlay network, and they do this by associating each node in the network with a 

portion of the key space; all data items whose keys fall into a node's key space are 

stored at that node. DHT systems differ in the details of the routing strategy as well as in 

the organization of the key space. In a network of N nodes, where each node 

maintains O(logA0 routing entries, DHTs generally perform lookups using only 

O(logTV) overlay hops (CAN [116] is an exception). 

Chord is a decentralized P2P lookup service that stores {Key,Data) pairs for 

distributed data items. It assigns keys to its peers using consistent hashing [120], where 

consistent hash functions assign peers and data keys an m-hit identifier using SHA-1 

[121] as the base hash function. Given a key k, the node responsible for storing k's data 

can be determined using a hash function that assigns an identifier to each node and to 

each key (by hashing the node's IP address and the key). Key k is assigned to the first 

peer whose identifier is the successor of k in the identifier space. Chord nodes form a 
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connected Ring topology, with each node maintaining a finger (routing) table with 

O(logN) pointers to other nodes. When a new chord node joins the network, certain keys 

have to be moved to the new joining node from its successor. Similarly, when a node 

leaves Chord, all its keys are assigned to its successor. This operation costs 0(log
2
N) 

messages. Chord supports only a lookup operation; given a key k, it maps k into the 

node responsible for storing the data associated with k. In the steady state, Chord 

performs lookups in O(logN) messages to other nodes. 

CAN is designed to be scalable, fault-tolerant, and self-organizing for internet scale 

applications. It is built on a virtual ^-dimensional cartesian coordinate space on a d-

torus (for some fixed integer d). Every node in CAN owns a distinct zone from the 

virtual overall space. A CAN node maintains a routing table that holds the IP address 

and virtual coordinate zone of each of its neighbors in the coordinate space. Using a 

uniform hash function, any key k is mapped onto a point p in the coordinate space. K 

and its data are then stored at the node that owns the zone that contains p. Routing 

messages follows a greedy forwarding pattern; when a node joins, it will randomly 

select a point of ^/-dimensional space, and then becomes responsible for half of the zone 

that this point belongs to, and hold all keys whose IDs belong to this zone. A CAN node 

maintains a coordinate routing table that holds the IP address and virtual coordinate 

zone of each of its immediate neighbors in the coordinate space. A node sends the 

message to a neighbor node that is closest to the destination coordinate. The routing 

table size at each CAN node is 2 x d, and lookups cost 0(d x JV1 ) messages. Thus, in 

contrast to Chord, the routing table maintained by a CAN node does not depend on the 

network size N, but the lookup cost increases faster than O(logN). If d = logN, CAN 

lookups match Chord's. 

Pastry nodes form a decentralized, self-organizing, and fault-tolerant overlay 

network within the Internet. Each node in the Pastry system is assigned a nodelD, a 

128-bit node identifier that is used to indicate the position of the node in circular 

nodelD space in the range [0 - (2128-1)]. When a new node joins the system, it is 

assigned a randomly generated nodelD from the uniformly distributed nodelD space. 
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Routing in Pastry is a prefix-based routing. A node forwards the message to another 

node whose nodelD shares with the key a prefix that is at least one digit (or b bits) 

longer than the prefix that the key shares with the present node's ID. For a network of N 

nodes, Pastry routes to the numerically closest node to a given key in less than log/N 

steps under normal operation (where b is a configuration parameter with typical value of 

6 = 4). 

Each Pastry node maintains a routing table, a neighborhood set, and a leaf set. The 

neighborhood set is not normally used in routing messages; it is useful in maintaining 

locality properties. It contains a set of nodelDs and IP addresses that are closest 

(according a proximity metric) to the local node. The leaf set is used during the message 

routing, and contains a set of nodes with half of those nodes being the numerically 

closest larger nodelDs, and the second half being the numerically closest smaller 

nodelDs, relative to the present node's nodelD. Each node maintains a routing table of 

[log/N x (2
b
 - 1) ] entries. Each entry in the routing table contains the IP address of 

one of potentially many nodes whose nodelD have the appropriate prefix. Therefore, 

lookups cost between any pair of nodes is (log/N). 

Tapestry shares similar properties with Pastry, but the main difference between 

them lies in the handling of network locality and object replication; Tapestry' is based 

on Plaxton [122]. The core location and routing mechanisms of Tapestry are similar to 

those of Plaxton, but Tapestry's goal is to improve the capability to detect, circumvent, 

and recover from failures through maintaining periodically updated cached content. To 

avoid a single point of failure, Tapestry uses multiple roots for each data object— 

Routing is longest prefix routing. Tapestry uses local tables at each node, called 

neighbor maps, to route overlay messages to the destination ID, digit by digit. Each 

node in Tapastry maintains routing maps, which are organized into routing levels, each 

level containing entries that point to a set of peers closest in distance that match the 

suffix for that level. The routing method guarantees that any existing unique peer in the 

system can be located within at most \ogsN logical hops, in a system with N peers using 

nodelDs of base B. Since the peer's local routing map assumes that the preceding digits 

file:///ogsN
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all match the current peer's suffix, the peer needs only to keep a small constant size (B) 

entry at each route level, yielding a routing map of size B x loggN. 

Kademlia is similar to many peer-to-peer systems. Keys are opaque, and each peer 

is assigned a NodelD in the 160-bit key space, with <key,data> pairs stored on peers 

with IDs close to the key. Kademlia uses a novel XOR metric for distance between 

points in the key space. XOR is symmetric and allows nodes to receive lookup queries 

from precisely the same distribution of nodes contained in their routing tables. Each 

node in the network stores a list of {IP address,UDPport,NodeID} triples for nodes of 

distances between 2' and 2
l+1 from itself. These lists are called ^-buckets. Each ^-bucket 

is kept sorted by last time seen. Therefore, the maximum state kept by any node is k, a 

typical value for k being 20. 

The Kademlia routing protocol consists of the following steps: 1) PING probes a 

node to check if it is active; 2) STORE instructs a node to store a <key,data> pair; 3) 

FINDNODE takes a 160-bit ID and returns {IP address,UDP port,NodeID} triples for 

the k node it knows that are closest to the target ID; 4) FINDVALUE is similar to 

FIND_NODE: It returns {IP address,UDP port,NodeID} triples, except in the case 

when a node receives a STORE for the key, in which case it just returns the stored 

value. 

Despite their efficiency, current Dynamic Hashing Tables (DHTs) are limited to 

pure lookup of unique Keys, which introduces a problem: A user will not always be 

aware of a Key's value. Large routing tables incur costs, in addition to the traffic 

maintenance needed to keeping them up to date (in order to avoid stale entries that may 

cause timeout delays). DHT systems also exhibit dramatic latency growth when 

subjected to increasing churn, where nodes continuously join and leave the network. 

This may lead to network partitions, causing subsequent lookups to provide inconsistent 

results [123], [124]. 

Multi-attribute searches have been proposed to solve the limitations of unique IDs. 

The main approaches include Reverse Hash Tables [125], [126], [127], [128], [129], 

[130], and [131], and Keyword-fusion [132], [133], and [134]. Reverse Hash Tables are 
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based on inverted indexes, in which (Resource ID, Node) is replaced by the inverted 

list: (keyword, List of resources/List of nodes). Each resource is described by a list of 

keywords. Then, each keyword is indexed separately. Therefore, the inverted index is 

distributed among peers by keyword; hence a query with n keywords can be answered 

by n nodes. All the results are collected by the requesting node that computes the 

intersection of all the responses as the final result. The scalability limitations of this 

technique and its existing optimizations, in terms of high bandwidth consumption, have 

been demonstrated in [135]. In Keyword-fusion, the resource identifiers are obtained by 

hashing an attribute or a list of attributes using a consistent function. This list of 

attributes defines a single key that identifies the resource uniquely. It solves the problem 

of common keywords—those keywords that frequently appear in the keyword lists of a 

large number of files—by generating a new keyword (referred to as synthetic) through 

concatenating a set of keywords in the Alphabetic order. The value part of the mapping 

for the synthetic keyword is an intersection of all file lists in the original mapping, i.e. a 

list of the files that contain the set of keywords in their keyword lists. While Reverse 

Hash Tables introduces a significant load in the network, and Keyword-fusion reduces 

this traffic, they both require the keywords to be known beforehand. 

Hierarchical DHTs can be further classified into vertical and horizontal approaches. 

Vertical approaches [136], [137], and [138] ensure that the nodes in any domain form a 

DHT routing structure by themselves. The DHT containing all nodes in an internal 

domain is obtained by merging all the DHT "children" into a larger DHT, and then by 

applying this recursively at higher domains. This has many advantages; for one, local 

traffic does not affect other layers. Other advantages lie in network proximity and 

efficient caching. However, the creation of several DHTs assigned to sub-domains can 

affect the scalability and the total number of connections in the network. Furthermore, a 

routing table is needed for each DHT, thus increasing the maintenance cost. In 

horizontal approaches [139], [140], leaf overlay networks are connected using a single 

DHT that contains the conceptual hierarchy, and which optimizes the routing in the 

whole network, thus reducing the number of connections that build the hierarchical 

infrastructure at the expense of more complex routing tables. In addition to the 
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traditional DHT benefits, hierarchical DHTs provide fault isolation, effective caching, 

and bandwidth utilization. The limitations of traditional DHTs do, however, still exist. 

Smart Media Routing and Transport (SMART) is a highly dynamic environment. 

MediaPorts (MPs) resources change frequently, and frequent re-hashing is not feasible. 

Consider the example of a service that requires MPs caching at least 100MB in the 

network; using DHT to find all caching MPs results in a huge message overhead— 

finding those with less than 100MB cache is not useful. Using a multi-attribute search, 

we can retrieve only those MPs with an available cache greater than 100MP. However, 

after selecting a specific MP, its cache size will be less than before. This implies that we 

need to re-hash this MP and its cache. Different caching MPs belong to different 

domains. Hierarchical DHTs will therefore not be able to group them into one cluster 

without the clustering becoming costly. More importantly, if multiple MPs are needed 

for a specific media flow, they cannot be discovered all at once because their number 

and types are not known beforehand. In a dynamic distributed environment, discovering 

the first MP and trying to discover the rest recursively is costly. This is because the 

discovery time will be substantial and, before reaching a solution, the network might 

have changed, which in turn might require beginning the search again. 

One common way to improve the performance of a network is to increase its 

connectivity and decrease its diameter, a feat that can be achieved by adding links. 

However, we want to add as few links as possible since their cost has practical 

implications on the design. Additionally, the number of links going out of a node must 

be small to allow for fast maintenance. Also, the links must be added in a homogeneous 

way so that nodes can be easily inserted and messages can be routed systematically. 

3.3.3 Semantic Approaches 

Semantic approaches [141], [142] have been proposed as an enhanced search 

mechanism. Peers with similar content become members of the same Semantic Overlay 

Network (SON). Queries are then forwarded to the SON that satisfies the query, thereby 

reducing their communication cost. A major problem of SONs is to construct efficient 
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overlays. In [141], SONs are presented as groups of peers, which share common 

interests. In [142], a similarity-based, pre-computed binary relation among peers is 

encoded in SON. Each peer becomes directly connected to a small number of other 

peers that are likely to be good routing targets. Bloom filters [143] or hash sketches 

maintained in a directory based on DHT have been used as a brief summary technique 

for query filtering and routing. In [144], a probabilistic algorithm based on bloom filters 

is first used to discover content. If it failed, a deterministic algorithm is used. This is 

motivated by the assumption that the probabilistic algorithm finds resources quickly 

when it can, and fails quickly when it cannot. In [145], a DHT maintains a global key-

to-document index. The key-index only contains single terms and term sets that are rare 

and thus discriminative with respect to a document collection. A particular instantiation 

of the key-indexing creates keys by combining terms appearing in well-defined 

contexts. Their work assumes that peers are cooperative and provide documents for 

indexing that will become searchable through a global index. At the same time, they 

offer computing and storage resources to build and maintain the global index and the 

underlying P2P network. 

A different notion of SONs [146] is related to schema mappings and peers that are 

logically interconnected through schema mappings; the approach is a two-layer model: 

A physical layer based on the P-Grid access structure, and a logical semantic overlay 

layer. Peers in Grid-Vine create (and possibly index) translation links, mapping one 

schema onto another. These links can then be used to propagate queries in such a way 

that relevant data items annotated according to different schemas can also be retrieved. 

Query forwarding can be implemented using iterative forwarding, where peers process 

series of translation links repeatedly, or recursive forwarding, where peers delegate the 

forwarding to other peers. 

Other SON examples are globally available term statistics about the peers' contents 

[147], gossiping strategies [148], locality in the underlying network [149], and resource 

shortcuts that group peers into clusters according to their contents [150], [151]. 
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However, many of those methods involve directory lookups, statistical computations, 

and multi-hop messages. 

Semantic approaches have been also proposed for ad hoc networks [152], [153], 

and [154], and Grid technologies [155], [123], [156], [157], and [158]. In ad hoc 

networks, nodes are considered equals, in effect acting like a special kind of P2P 

network. Grid systems allow the sharing of heterogeneous, distributed resources that are 

potentially numerous and dynamic. Resource discovery is achieved by either using 

broadcasting, or advertising services to the entire network or through special structures. 

Routing queries on top of a semantic overlay will result in more efficient resource 

discovery. But problems remain: These approaches are not fault-resilient, the overlay is 

difficult to maintain, and the message overhead is considerable. Moreover, assuming the 

lack of knowledge of both global content and network topology, the actual construction 

of these overlays is challenging. In a Peer-to-Peer architecture, each node is initially 

aware only of its neighbors and their content. Thus, finding other peers with similar 

contents to form a SON becomes a tedious problem. 

Resilient Overlay Network (RON) [48] allows distributed Internet applications to 

detect and recover from path outages and periods of degraded performance. However, 

RON overlay does not scale for more than 50 nodes. 

Geographical routing [159], [160] is a routing method that uses geometrical 

reasoning for forwarding packets. Typically, a greedy approach is used: This means that 

a packet is forwarded to the node in the neighborhood that is closest in Euclidean 

distance to the destination. Since MPs may not fall exactly in the path between 

MediaClient (MC) and MediaServer (MS), geographical routing does not guarantee that 

the needed MPs will be discovered. Furthermore, since these MPs are not known 

beforehand, geographical routing becomes impractical. 
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3.4 Summary 

In this chapter, we have extensively discussed various approaches that have been 

proposed to address the issue of managing overlay networks. The development of 

management schemes, such as policy-based management, active-network management, 

and autonomic computing have made it possible to provide some management 

operations. Nevertheless, it is generally difficult to manage service-specific overlay 

networks while maintaining the service specific requirements, since numerous overlays 

exist, each dictating its own requirements. However, it is vital to construct, configure, 

and manage these overlays to prevent them from consuming network resources, and to 

make them efficient. By investigating current research contributions in literature, the 

following key conclusions have been reached: 

1. Static network components configuration is inefficient to manage overlays in the 

aggregate levels; overlays have their own logical components that should be 

configured and managed. 

2. The costs of maintenance of existing management models are high, due to the 

reliance on human operators. 

3. Current management mechanisms mostly cover only a single part of the global 

overlay life cycle management problem. An adequate management mechanism 

should cover all the phases that overlays pass through during their lifetime. 

Furthermore, it should incorporate management actions between different 

classes and types of overlays. 

4. Segregation between resource discovery and overlay management leads to an 

inefficient usage for both. Resource discovery mechanisms should be efficient 

and accurate, in addition to providing a high success rate. Moreover, a resource 

discovery mechanism should be integrated in the management scheme such that 

the frequent requests do not generate great overhead on the network resources. 

5. The deployment and management of overlays is a serious issue, and in order to 

support large-scale, distributed applications, overlays must be deployed and 
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managed in an automated manner without any manual intervention, or 

unnecessary communication. Ideally, no modifications to applications or 

operating systems should result from this process. 



Chapter 4 

Autonomous Management Infrastructure 

As mentioned earlier, this dissertation is focused on developing novel approaches that 

can be used to achieve an autonomous management of SSONs. To this end, the 

following chapters will develop schemes to automate SSONs management. For that 

purpose, this chapter gives an overview of the proposed framework for autonomous 

SSONs management, it proceeds as follows: Section 4.1 introduces overlay management 

challenges. Section 4.2 reviews SMART modeling for overlay networks and its 

limitations. Section 4.3 presents an overview of the proposed architecture, and section 

4.4 discusses the proposed architecture components in details. In Section 4.5, we present 

a use case scenario that shows the steps used in creating, adapting, and terminating 

SSONs. In Section 4.6, we present simulation details and results. Finally, the chapter is 

concluded with a brief summary. 

4.1 Introduction 

As discussed earlier, an overlay network is a virtual network of nodes and logical links 

that is built on top of an existing network in order to implement a service that is 

otherwise, not originally available. Overlays can be used to increase routing robustness 

and security, to reduce duplicate messages, and to provide new services for mobile 

users. They can also be incrementally deployed on end hosts without the involvement of 

ISPs, and they do not need new equipment or modifications to existing software or 

protocols [48], [49], and [50]. These attractive benefits come at the cost of increased 

overhead and complexity. Overhead is increased because of the additional packet header 

and the redundant work at the overlay and IP layers. The constantly increasing traffic 

56 
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carried by the overlays also tends to overload the network and consume its resources [3]. 

In addition, overlays are usually designed independently. This increases the chances that 

they will negatively affect each other; bottlenecks are created, and they reduce the 

performance both of the overlays and of the underlying network. Overlays therefore 

need to incorporate a management mechanism that reduces this complexity and keeps 

them operating correctly. 

Overlay management is challenging for several reasons. First, the dynamic changes 

in network conditions and topology quickly renders management information obsolete. 

For example, network nodes may fail, links may get congested and routing information 

may change. In addition, any changes in the routing path are affected by the required 

QoS [64], bandwidth, latency, and the existence of other overlays. Second, overlay 

members are dynamic since new users may join or leave. Finally, each overlay node has 

limited knowledge of the network, and the knowledge varies among overlay members. 

With a large number of overlays, management by traditional methods becomes harder to 

achieve and, a new management scheme must be supplied. This new scheme must 

account for the different phases that overlays go through during their lifetime: creation, 

optimization, adaptation, and termination. 

Creation requires the setup of a routing table in each overlay node along the end-to-

end path, a path that must optimize the QoS metrics. Adaptation produces a new 

behavior that reflects a change in the overlay environment, and may be necessary to 

assist mobility, deal with the failure of an overlay node, or control congestion. 

Termination means claiming the reserved resources and updating routing tables. 

The use of policies offers an appropriately flexible and customizable management 

solution that allows network entities to be configured on the fly [4], [5]. Usually, 

administrators define a set of rules to control the behavior of network entities. These 

rules are translated into component-specific policies that are stored in a policy 

repository, to be retrieved and enforced as needed. However, existing management 

systems usually direct the management task to physical entities such as routers, 

switches, and gateways. In our architecture, the task is assigned to the overlays and their 
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logical elements. Policies are generated dynamically, and no human interaction is 

required. 

We propose a new approach to the autonomous, context-aware, policy-based 

management of overlay networks. The approach's novelty lies in that sets of policies, 

specifically adapted to the current availability of resources and users' demands, are 

dynamically generated from the available context information and enforced on the fly. 

Policies also control the various construction phases harmoniously. Our goal is to 

automate overlay management in a dynamic manner that preserves the flexibility and 

benefits that overlays provide. 

4.2 SMART Modeling for Overlay Networks 

To recap, in SMART, A Service Specific Overlay Network (SSON) is constructed for 

each media delivery service or group of services. An SSON is a virtual network 

composed of a set of overlay nodes and links, which customizes the network to the 

particular requirements of the service (such as QoS, media formats, responsiveness, 

cost). SSONs have the ability to transparently include network side entities called 

MediaPorts (MP) in the communication path, thereby providing the flexibility to modify 

the content and services such as caching, adaptation and synchronization [47]. 

Overlay nodes are physical Ambient Network nodes that have the capabilities 

needed for them to become part of the SSONs; these are a control plan and a user plan. 

The control plan is responsible for the creation, routing, adaptation, and termination of 

SSONs. The user plan contains the Overlay Support Layer that receives packets from the 

network, sends them to the network, and forwards them on the overlay. Overlay nodes 

implement a sink (MediaClient, or MC), a source (MediaServer, or MS) or a MediaPort 

(MP) in any combination. MPs are special side components that provide valuable 

functions to media sessions such as special routing capabilities, smart caching and 

adaptation. MPs, MCs, and MSs are managed by the control plan. The control plan also 
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contains a MediaPort Directory Service (MPDS) to maintain information about the 

available MPs, such as location, load and cost. 

SMART'S architecture is described in detail in [2]. But SMART does not specify 

the means by which SSONs are constructed and managed, nor does it specify how 

SSONs can be adapted dynamically according to the users' context; our architecture 

addresses these drawbacks. First, the control plan is equipped with a new entity called 

the Overlay Policy Enforcement Point (OPEP). The OPEP is designed to control node 

resources and functionalities by enforcing configuration changes based on context 

information. This in turn is used to dynamically generate policies. Second, an SSON 

Overlay Policy Decision Point (OPDP) is used for each SSON or group of SSONs to 

make the appropriate decisions about the creation, adaptation and termination of SSONs. 

In addition, a set of System PDPs (SPDPs) is used to coordinate the actions of OPDPs. 

COPS protocol [74] is used to exchange policy objects between the OPEP, OPDP, and 

SPDP. 
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4.3 Architecture Overview 

A schematic description of the main components of our proposed architecture is shown 

in Fig. 4.1. The central components are the OPDP, SPDP, OPEP and the Policy 

Generator (PG). The OPEP is a component in the overlay nodes while the OPDP and the 

SPDP are remote entities that may reside at a policy server. The PG generates and adapts 

policies using the available context information. The OPEP is the point at which policy 

decisions are actually enforced. Policy decisions are made primarily at the PDP1. The 

PDP receives policies from the PG, evaluates them and distributes them appropriately. 

The OPEP requests decisions and enforces them. With any change in the context 

information, an adaptation process is triggered by first generating the policies that reflect 

the new context and then by proactively sending them to be dynamically enforced. 

We distinguish between the sources of context information, such as user context, 

service provider context and network provider context. All these types of context must 

be considered when building a comprehensive management system. We assume that the 

context information has been gathered in a context memory [161], [162], which feeds it 

to the PG. The PG generates different types of policies: user policies, application 

policies, service provider policies, network provider policies, and service-specific 

policies. Any change in the SSON environment triggers an adaptation process in which 

new policies are generated dynamically and sent to the appropriate PDP. 

The policy repository saves all the policies generated for each SSON, and also 

contains other information relevant to the management task. This may include the 

SSONs constructed so far and the Media Port Directory Service (MPDS) that lists the 

available MPs and their capabilities, user registration, and accounting information. 

There are two different types of PDP: The SSON PDP (OPDP) and the System PDP 

(SPDP). Since the number of overlay nodes expected in each SSON is small, each 

OPDP is assigned one or more SSONs. The OPDP is responsible for automating the task 

of creating, adapting, configuring, and terminating its designated SSONs. It 

1 We use PDP to refer to both OPDP and SPDP unless it is necessary to make a distinction. 
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communicates directly with the participating overlay nodes to achieve its tasks. 

Typically, its tasks are the following. 1) It makes configuration decisions in response to 

the system policies received, and uses these decisions to configure the overlay nodes 

participating in a given SSON. 2) During construction of an SSON, it is responsible for 

optimizing the service path to meet the required QoS metrics of the high-level system 

policies as well as the context of the service. 3) It monitors the QoS metrics for the 

multimedia session and continuously adapts the service path to the changing conditions 

of the network, the service, and user preferences. 4) It also monitors the participating 

overlay nodes, and finds alternatives in case any of the nodes do not conform to the 

required performance level. OPDPs receive goal policies from SPDPs in order to decide 

the types of actions required. 

A single OPDP is able to automate the management functions only for the SSONs 

that it manages. If a network contains a large number of SSONs, it may be that they are 

not really isolated. On the one hand, each overlay node can be part of many SSONs if it 

offers more than one service or if it has enough resources to serve more than one 

session. On the other hand, the SSONs' service paths may overlap, resulting in two or 

more SSONs sharing the same physical or logical link. For example, if two SSONs share 

the same routing MP with the same goal to maximize throughput, the result will be race 

conditions on the shared resources. Therefore, in order to achieve a system-wide 

balance, the OPDPs need to coordinate their actions. This is achieved using SPDPs. 

SPDPs interact with one or more OPDPs. They pass the high-level system policies, 

such as for load-balancing, to the OPDPs. Whenever they find shared goals between two 

different SSONs, they send information that avoids conflicting actions. The OPDPs then 

contact each other and create a Virtual Management Overlay (VMO) as illustrated in 

Fig. 4.2. This VMO coordinates their actions before they are passed to their overlay 

nodes. 

Sharing goals is not the only reason to create VMOs. SSONs that share common 

links and SSONs that belong to the same policy domain (same service class, ISP, etc.) 

may also create VMOs among themselves. Additionally, SSONs that share common 
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nodes or links affect each other's performance as they compete for the shared resources. 

This can result in degraded performance as the competition causes them to frequently 

evaluate their decisions in an attempt to reach the desired performance goals. All SSONs 

in a given domain (ISP) are also expected to achieve the domain-wide policies together. 

VMOs allow these policies to be sent and adapted to each SSON in a way that achieves 

the desired goals. VMOs also allow the sharing of control and information between 

different SSONs. A set of SSONs co-located in a given vicinity (such as an area, 

domain, AS) usually has independent routing decisions based on its observations for its 

environment. Sharing this information results in reduced overhead for each overlay and 

allows policies to be adapted and generated in order to achieve better performance. 

When VMOs are created, each OPDP can obtain information of two types, the first 

related to the coordination actions, the second to the common metrics in which each 

OPDP is interested. Goal policies are passed from SPDPs to the OPDPs they manage. 

The context information of the network, users, and services is used primarily to aid in 

generating suitable policies at each level. 

• SSON PDP (OPDP) #SystemPDP(SPDP) 

Figure 4.2. Virtual Management Overlay (VMO) hierarchy 
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4.4 Proposed Architecture Details 

This section describes, in detail, the central components of the proposed architecture, 

and the various steps in the construction, adaptation, and termination of SSONs. 

4.4.1 Policy Generator (PG) 

The central component in the PG [163] is the automated policy adaptor (APA). The key 

feature in APA design is to separate the mapping of abstract higher-level goals to 

network-level objectives from the functionality that adapts the behavior of network 

components. Although we used the same concepts as [163] to generate policies, our PG 

goes beyond those concepts as follows. First, policies for system and business objectives 

are derived from the relevant context information, as are policies for users and 

applications. While in [163], network administrators and users/applications specify these 

policies using a graphical user interface and register them with the APA, we derive these 

policies from the context, thereby further automating the process. Second, instead of 

sending the policies directly to the managed resources, we send them to the PDPs. This 

separates the process of generating policies from the process of making decisions. This 

is done because adapting an existing policy may not be sufficient to adapt an entire 

SSON. In addition, adapting one policy may require adaptations in other policies in 

order to achieve an SSON-wide adaptation. The separation of policy generation from 

decision making allows for more flexibility to adapt SSONs dynamically based on their 

specific requirements as units. 

As a result, overlay management is seen as a process of learning from current 

system behavior by creating new policies at runtime in response to changing 

requirements. The PG generates and adapts five kinds of policies and sends them to 

PDPs. These are user policies, network policies, application policies, service provider 

policies, and service specific policies. The adaptation process is either triggered at pre-

set intervals or by events received from the OPDP and network monitors in the OPEP. 
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These events are in response to user-related or application-related events such as low 

battery level, or changes in a user's location or an application's QoS requirements. 

The PG considers policy adaptation to be a process of learning from current system 

behavior. This learning process assembles new policies at runtime. The policy-making 

passes through three main phases: Stage setting, consideration of alternative decisions, 

and reassessment of the applied decision. As a final step, a feedback mechanism ensures 

that the new policies are correct. 

In the first phase, all necessary information is obtained from the context 

information. In the second phase, the PG selects one or more actions from the action 

space that best attains the specified change. The selection is made by calculating an 

expected loss value for each action. Choosing the optimum policy is simply a matter of 

choosing the action that minimizes the expected loss values. The third phase involves 

the assembly of a new policy as a result of the actions selected in the previous step. The 

newly assembled policy consists of a triggering event translated by the PG from higher-

level policies such as user location. Conditions are specified by the characteristics of the 

satisfied objective and the selected action. The new policy can also be associated with a 

lifetime, a duration after which it expires and is deleted. Once a policy is assembled, it is 

sent to the appropriate PDP. 

The final step is performed by the reassessment module that evaluates the success of 

the new policy. Network monitors in OPEPs measure the average values for the actual 

QoS parameters. For example, an SSON's actual throughput of traffic is calculated and 

compared with the objective. The difference between the values measured by the 

monitors and the required objectives is fed back to the first stage as a new objective 

change. If the difference is substantial, the adaptation process is repeated. 
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4.4.2 Overlay Policy Decision Point (PDP) 

As shown in Fig. 4.3, the Overlay Policy Decision Point is composed of a Management 

Agent (OPDPMA), an Overlay Conflict Resolution Agent (OCRA), a Plans Generator, 

and a Communication Agent (CA). 

The management agent receives the policies from the PG, analyses them, and makes 

appropriate decisions. It assigns a unique ID to each SSON and to each flow. Flows can 

then be routed independently when, for example, it is necessary to meet the required 

QoS. To create or adapt an SSON, the management agent sends the IDs, the SSON's 

performance requirements and the requested MP capabilities to the Plans Generator. 

The Plans Generator is responsible for constructing the topology of the SSON that 

meets the requested performance properties (such as low overlay path latency or a 

specific overlay path bandwidth) and the requested MP capabilities (such as a caching 

MP with at least 300Mb disk space). It searches for the path that best meets the QoS 

constraints. For this to be done, a set of QoS metrics has to be available. These metrics 

(such as link costs, delay, jitter, and bandwidth) are either part of the context information 

available in the plan history or are obtainable by reusing measurement techniques 

similar to those presented in [164], [165]. These costs are updated using a link state 
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update protocol that is outside the scope of this paper. To facilitate the process of finding 

the optimal path, and to allow the network to interactively contribute to successful media 

delivery, the Plans Generator includes the suitable MPs whenever necessary. 

The MP location is chosen to be as close as possible to the shortest path between the 

source and the sink. The Plans Generator either chooses the most suitable MP, or any 

suitable MP and then searches for the optimal path from the source to the MP, and from 

the MP to the sink. The former choice ensures that the MP is as close as possible to the 

shortest path, yet it does not guarantee that an MP will be found. To avoid this problem, 

we expand the search parameters and run the search again, accepting that this increases 

the time needed to find an optimal path and consumes more resources. The latter choice 

allows a parallel search for the optimal path, and reduces the management overhead, but 

does not guarantee that the MP closest to the shortest path will be found. Any MP can be 

chosen at random from the Media Port Directory Service, in which SMART assumes 

that MPs register their locations and capabilities. But since geographically closer nodes 

are expected to have fewer hops between them [166], [167], it is more efficient to 

choose a MP that is geographically close to the sink. This is the approach taken in this 

paper. 

Once the Plans Generator finds the optimal path, it constructs a connection matrix 

that represents the SSON topology and sends it to the management agent, and to the PG. 

The PG generates the policies that construct or adapt the SSON and sends them to the 

Management Agent. 

The OCRA (is listed here for completeness and it is an object of future work) 

receives the policies from the management agent, and checks them for any conflict with 

previous policies. This ensures that new or adapted SSONs do not negatively affect the 

operation of those already deployed. If a conflict is found, the policies are rejected and 

the SSON has to enter an adaptation process. Conflicts are generally divided into two 

types: Static and Dynamic. In our model, a static conflict is one that is detected at the 

time a new policy is generated; a dynamic conflict is one that occurs at runtime. If no 

conflicts are found, the management agent either sends the policies to the appropriate 
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OPEP through the Communication Agent (CA) for immediate enforcement or retains 

them in the policy repository to be activated at a future time. The CA is responsible for 

sending policy objects to the appropriate OPEP as well as for receiving policy objects 

from OPEPs. 

The SPDP's main tasks are to coordinate the actions of two or more OPDPs, and to 

distribute system-level policies that guarantee system-wide performance. These policies 

are derived from the network and service provider context information. SPDPs consist of 

the same components as the OPDP, except that they do not contain the Plans Generator 

module. They therefore receive the system policies such as load balancing from the 

Policy Generator, analyze them, and send them to a conflict resolution module. This 

module checks the consistency of the new policies against those already installed. In 

case of conflicts, the new policies are fed back to the Policy Generator for re-adaptation. 

If no conflicts are found, the policies are sent to their OPDPs through the 

communication agent. 

Fig. 4.4 OPEP Architecture 
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4.4.3 Overlay Policy Enforcement Point (OPEP) 

The OPEP is the point at which policies are actually enforced. As shown in Fig. 4.4, the 

OPEP is composed of four cooperating agents. It receives notifications or messages from 

the monitoring agents that require a policy decision, and then constructs a request for a 

policy decision and sends it to the OPDP. Once the policy decision is received, the 

OPEP enforces the decision by accepting or denying as appropriate. 

- Overlay Policy Management Agent (OPMA). The OPMA manages the various 

aspects of the OPEP through two-way transmission of policy objects with the OPDP. It 

also receives notifications and adaptation events from the Monitoring Agents. Once a 

new policy object is received, the OPMA analyzes it to determine the appropriate action. 

If it is a decision, it is sent to the policy enforcement agent (PEA), which decides how 

the policy will be enforced. If it is an adaptation, it constructs an appropriate policy 

object, and communicates with the OPDP to acquire a decision. 

- Policy Enforcement Agent (PEA). The PEA is responsible for enforcing or removing 

the overlay policies at the overlay node. It receives and analyzes policy decisions from 

the OPMA. With the assistance of the Resource Interface Agent (RIA), it enforces them 

at the appropriate overlay node component. It also sends a report to the OPMA 

describing the success or failure of the enforcement. 

- Resource Interface Agent (RIA). The RIA is an interface between the OPEP and the 

components of the overlay node. As such, it communicates with the appropriate 

component to enforce a policy. For example, it communicates with an Overlay Service 

Layer (OSL) component to update a routing table entry and with the MP to reserve or 

free its resources. 

- Monitoring Agents (MA). MAs are placed at various layers of the system as 

required. Each MA is responsible for monitoring its layer, and reporting to the main 

monitoring agent in the OPEP. MAs are therefore able to monitor the available resources 

and capabilities, as well as the connectivity of the overlay node to neighboring nodes. 

MAs also monitor the performance of overlay nodes and MPs. Whenever reduced 
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performance is detected, MAs send an adaptation event to the Management Agent so 

that additional resources can be freed. 

4.5 Use Case Scenario 

This section provides a simple illustration of how our architecture uses policies to create, 

adapt, and terminate an SSON. 

SSON Construction: The process of constructing an SSON starts with the service 

provider (or user) defining the properties of the service to be offered. These properties 

include the required QoS, the required network side functions (such as caching), and any 

other requirements specific to the service. The OPEP sends the properties to an SPDP 

that assigns the task to an OPDP and forwards the properties to the PG. The PG then 

converts them into policies and sends them to the OPDP. For example, the PG would 

generate policy (a) for a user requesting a video from a streaming video server: 

If (User = "x") and (Application 

Max_Bandwidth < 128 kbps, 

AggregateBandwidth < 1024 kbps, 

OneWay_Delay < 200ms, 

Special_Functions = "caching", 

Priority = 3 

"video") Then 

(a) 

Once the OPDPMA decides, with the help of the policy repository, that this is a new 

service, it assigns a unique SSONID to the service. If the service has multiple flows, it 

assigns a distinct FLO W I D to each of them. The video session in our example has two 

flows (video and audio). Each flow can be routed on a different path if necessary, but 

our initial assumption is that both are routed on the same path. The OPDPMA therefore 

constructs the following policy object and passes it to the Plans Generator. 

Action 

Create 

SSONJD 

3432 

FLOWJds 

Audio = 1 Video = 2 

Application 

video 

User 

X 

Policies 

Policy (1) 
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The Plans Generator searches for the optimal path, including the suitable MPs. It then 

IF (SSON_ID = 3432) and (VideoFlowID = 2) and (AudioFlowID = 1) 

and (User = "x") Then 

Connection_MAT = {ONodeA (client), ONodeB (caching MP), 

ONodeC (server)} (b) 

Client = ONodeA, 

Next_HOP = ONodeB, 

Server = ONodeC 

sends back a policy object (b) containing the proposed topology in the form of a 

connection matrix. 

This plan is sent to the PG that uses the relevant context to generate the policies (c) 

that will make up the SSON. The first policy instructs the server's OPEP to mark each 

packet with the session information. The second policy updates its routing table to route 

the packets to the next overlay node in the SSON topology. The rest of the policies 

update the routing tables of overlay nodes. In OnodeB, a caching media port is 

configured to cache the data and to deliver it to ONodeA (the client). At that point, the 

OSL component is instructed to deliver the packets to the requesting application. 

Once the OPDPMA receives these policies, it sends them to the conflict resolution 

agent to check for conflicts with policies and SSONs that are already installed. If there 

are no conflicts, the OPDPMA constructs a policy object for each participating overlay 

node. This policy object contains information about its neighboring overlay nodes in 

order to facilitate routing and the enforcement of applicable policies. If a conflict is 

detected, the policies are rejected and an adaptation process is triggered so that the 

conflict can be overcome. 

Once the policy object is received by the OPEP, it is analyzed and enforced. In our 

example, the caching MP at ONodeB starts caching the video content and sending the 

video to the client from the cached version. The OPEP reports to the OPDP informing it 

about the success or failure of enforcing the decision. Assuming success at all overlay 

nodes, the SSON is now constructed. 
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Server = ONodeC 

If (User = "x") and (Application = "video") Then 

SSON_ID = 3432, 

Audio_FlowID = 1, 

Video_FlowID = 2 

IF (SSONID = 3432) and ((Video_FlowID = 2) or (Audio_FlowID = 1)) 

Then 

Next_HOP_ONodeID = ONodeB, 

Next_HOP_ONodeIP = xxx.xxx.xxx.xxx, 

Media_Ports = none 

Tarcret = ONodeB 

IF (SSON_ID = 3432) and ((Video_FlowID = 2) or (Audio_FlowID 

Then 

Media_Ports = "Caching", 

Caching = "ok" 

IF (SSON_ID = 3432) and ((Video_FlowID = 2) or (Audio_FlowID 

and Caching = "ok") Then 

Disk_Space = 300 MB, 

Freshness_Factor = 50.0, 

Expiration_Time = now + lOh, 

On cache miss refer to: ONodeC_IP = "xxx.xxx.xxx.xxx", 

On overload refer to: ONodeC_IP = "xxx.xxx.xxx.xxx" 

IF (SSON_ID = 3432) and ((Video_FlowID = 2) or (Audio_FlowID 

and (User = "x") Then 

Next_HOP_ONodeID = ONodeA, 

Next_HOP_ONodeIP = xxx.xxx.xxx.xxx, 

Sending_Rate = default 

Target =0NodeA 

IF (SSON_ID = 3432) and ((Video_FlowID = 2) or (Audio_FlowID = 1)) 

Then 

Application = "video" 

D) 

= D) 

D) 

(C) 
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SSON Adaptation: If another user requests the same service, the overlay must be 

adapted to include the new user. In our example, the new user's OPEP constructs a 

policy object containing the request and user information. After authenticating the user 

for security and accounting purposes (operations outside the scope of this work), the 

OPDPMA checks if there is an SSON for the requested service, and when one is found, 

it triggers an adaptation process by sending a message to the PG requesting any policies 

specific to the user. Assuming that the new user's context information has already been 

fed to the context memory, the PG generates policy (d): 

If (User = "y") and (Application = "video") Then 

Available_Bandwidth = 16 kbps, 

One_Way_Delay < 300ms, 

Special_Functions = "routing, scaling". 

Priority = 2 

(d) 

Based on this policy, the OPDPMA decides to scale down the video frames so that 

they may be routed to the new user. It therefore includes another MP with routing and 

adaptation capabilities. Along with the SSON information, this is sent to the Plans 

Generator that invokes the plan and decides which Media Port to include. It sends back a 

policy object (e) containing the proposed topology in the form of a connection matrix. 

IF (SSON ID = 

and (User = 

Connection 

Client (y) 

Next_HOP = 

3432) 
n
y") 

MAT = 

and (VideoJFlowID = 

Then 

2) and 

{ONodeB (caching), ONodeD 

MP), ONodeE (client)} 

= ONodeE, 

ONodeD, 

Scaling, 
Server = ONodeB, 

caching MP 

(Audio 

(media 

FlowID = 1) 

adaptation 

(e) 
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In our proposal, the caching Media Port is used to route the data to the new user 

rather than the original streaming server. This adaptation saves network bandwidth and 

resources because the same content is distributed only once for each SSON, rather than 

once for each user. 

The PG generates policies (f). The sending rate of the caching MP is chosen to 

match the user preferences, the adaptation MP is configured to scale down the video 

frames, and the video data are buffered at the client side before being forwarded to the 

requesting application. The rest of the adaptation steps are the same as those in the 

section on creation. 

Target =ONodeB 

IF (SSON_ID = 3432) and (Video_FlowID = 2) and (Audio_FlowID = 1) 

and (User = "y") Then 

Next_HOP_ONodeID = ONodeD, 

Next_HOP_ONodeIP = xxx.xxx.xxx.xxx , 

Media_Ports = "caching" , 

Sending_Rate = lOp/lOOmls 

Target = ONodeD 

IF (SSON_ID = 3432) and (Video_FlowID = 2) and (Audio_FlowID = 1) 

Then 

Media_Ports = "Scaling", 

Scaling = "ok" 

IF (SSON_ID = 3432) and (Video_FlowID = 2) and (Audio_FlowID = 1) 

and (Scaling ="ok") Then 

Frame_rate = lOfps, 

FrameSize = 320x240 

IF (SSON_ID = 3432) and (Video_FlowID = 2) and (AudioFlowID = 1) 

Then 

Next_HOP_ONodeID = ONodeE, 

Next_HOP_ONodeIP = xxx.xxx.xxx.xxx 

Target =ONodeE 

IF (SSON_ID = 3432) and ((Video_FlowID = 2) or (Audio_FlowID = 1)) 

Then 

Buffer_Size > 2 MB, 

Application = "video" 

(f> 
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SSON Termination: If a user leaves a session normally, (or even unexpectedly 

because of a crash), the SSON must be adapted accordingly. If the session is ended 

normally, the OPDP receives a notification of leave from the user; it then sends a policy 

object to the overlay nodes to uninstall the existing policies. If the notification is 

received from the last user of the SSON, the session is terminated by sending policy 

objects to the overlay nodes that are part of the SSON. In our example, a leave request 

from user y causes the following policies (g) to be sent by the OPDP to ONodeB, 

ONodeD, and OnodeE. Once these policies are received by the respective OPEPs, they 

are deleted immediately and all ongoing packets are dropped. 

To deal with the failures that may occur in a dynamic network, we adopt a fault 

recovery mechanism similar to the one described in [168], which guards against failures 

with a checkpoint technique. Each overlay node that is part of an SSON sends the 

checkpoint back to the OPDP. The OPDP caches any checkpoints obtained. If an overlay 

node fails, the OPDP can receive no more checkpoints, upon which, it decides whether 

to re-adapt the SSON or terminate the SSON if it has no users. 

Target = ONodeB 

IF (SSON_ID = 3432) and (Video_FlowID = 2) and (Audio_FlowID = 1) 

and (User = "y") Then 

D e l e t e _ P o l i c y 

Targe t = ONodeD 
IF (SSON_ID = 3432) and (Video_FlowID = 2) and (Audio_FlowID 
Then 

Media_Por ts = "None", Sca l ing = "No", 
D e l e t e _ P o l i c y 

IF (SSON_ID = 3432) and (VideoFlowID = 2) and (AudioFlowID 
Then 

D e l e t e _ P o l i c y 

Ta rcre t = ONo deE 

IF (SSON_ID = 3432) and ( (VideoFlowID = 2) o r (Audio_FlowID = 1) ) 
Then 

Delete_Policy 

= 1) 

= 1) 
(g) 
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4.6 Simulation Details and Results 

This section summarizes simulation results of the proposed scheme. In our simulation, 

the topology was constructed using the BRITE [169] topology generator, and the 

network was simulated using the J-Sim network simulator [170], a simulator with a 

Java(tm)-based engine. We conducted two experiments to test our architecture; the first 

simulated a moderate-sized network to test a mobility scenario, the second a large 

network to test the response to heavy demand. 

— — 3rd Scene 
— • - Movement path | | j LB, Routing MP. ® HB, Caching MP. 

Fig. 4.5 Mobility Scenario 

4.6.1 Experiment 1: Mobility Scenario 

In the first experiment, three interconnected networks were simulated as shown in Fig. 

4.5. One was a LAN with randomly generated topology, and the other two were WLANs 

with different bandwidth capacities. WLAN A had a higher bandwidth capacity (15 

Mb/s) than WLAN B (5 Mb/s). The scenario consisted of three scenes, the first showing 

the creation of the overlay, and the second and third showing the dynamic adaptation 

and routing. In the first scene, a user tunes her office PC into a video server and starts to 
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view a video. A SSON that requires a high bandwidth MP is created. In the second 

scene, the user moves to a cafeteria during her lunch break. When she enters the 

cafeteria's coverage area, the network detects her PDA and its wireless headset. The 

SSON adapts by choosing a splitting MP that splits the audio and video of the session 

into different flows. The audio flow is sent through a routing MP to the headset. 

Assuming that the user previously established her context by stating that she has a 

meeting in a conference room after lunch, a caching MP close to the conference room's 

wireless LAN is selected and automatically configured to catch the video flow. In the 

third scene, the user moves to the conference room and the SSON is automatically 

reconfigured. The video flow from the caching MP is resumed, thereby reducing 

transmission delays. The throughput for each scene appears in Fig. 4.6. 
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Fig. 4.6 Mobility Scenario Result 

We observe that as the user moves to the cafeteria, the throughput decreases until it 

reaches its minimum. As the throughput starts decreasing, the OPEP sends an adaptation 

request to its SSON OPDP. The OPDP then decides, based on user and network context, 

to split the session into video and audio flows. It then it adapts the SSON to route the 
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audio flow to the new location. This is shown as Scene 2 in Fig. 4.6 where the audio 

throughput is less than the original video and audio throughput. When the user moves to 

the conference room, the monitoring agents in the user OPEP detect the move and report 

to the SSON OPDP. The OPDP then readapts the SSON to the new context and resumes 

the transmission of the session from the cached version. Our architecture dynamically 

handles the adaptations of SSONs to the available context information since all 

adaptations are done transparently and with no explicit interaction from the user. 

0.18 

0.16 

I 0.14 
u 

•S 0-12 
TO 

_ l 

5 0.1 
« 
Q. 

£0.08 
TO 

| 0.06 

^0.04 
< 

0.02 

0 

Random , 

Geographical • # 

• 

, - ' ^ ^ 

. ' ' ^ ^ 

,<'' ^ ^ 

/ ^ ^ 

i i i i" i 

2 4 6 8 

Number of MediaPorts 

Fig. 4.7 Average Overlay Path Latency 

10 12 

4.6.2 Experiment 2: Large Scale Network 

The topology used in the second experiment has 1000 nodes. The bandwidth assigned to 

each node is randomly selected between 128 and 512 Kbits/s, and the links propagation 

delay is fixed at 1 ms. Each source generates packets according to a Poisson process 

with a bitrates of 3400 kbit/s, and a uniform random selection of destination nodes. 

Following a flash crowd characteristic, all nodes request their sessions at a random point 
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during the first 2 seconds while the simulation lasts for another 1000 seconds. We ran 

the simulation 10 times and collected the results after each run. The first run simulated 

100 SSONs with each subsequent run adding 100 SSONs. To reach steady state 

behavior, each SSON issued one adaptation request randomly 30 seconds after the start 

of the simulation. As previously described, each SSON has one or more MPs when 

created and different MPs when adapted. In our selection of MPs, we compared two 

approaches. In the Geographical approach, we selected MPs that were geographically 

close to the shortest path between the source and the destination. In the Random 

approach, MPs were selected at random. We measured the overlay latency, packet 

stretch and management overhead. 

1) Overlay Latency: Figure 4.7 illustrates the average latency incurred by 1000 overlays 

with varying numbers of MPs. MPs join the overlays until the desired number is 

reached; the measurements are taken after the system stabilizes. The Random approach 

has the worst performance, especially for large sessions. Three factors contribute to the 

latency overhead. First, the encapsulation and decapsulation time depends on overlay 

node capabilities such as CPU speed and memory. Second, as overlay packets add more 

information to the header of the normal IP packets, the packet size increases, thereby 

increasing the time needed for delivery. The solution is to equip devices, especially 

small ones such as PDAs, with faster CPUs and more memory in order to maintain, or if 

possible to reduce, latency level. Third, the processing time needed at MPs, for example 

to record the data into caches. The average overlay path latency increases linearly with 

the number of MPs in the path. Although each MP adds its own latency depending on 

how fast it can provide its service, the average latency incurred by each MP is 0.01s. 

Therefore, in order to compensate for the delay in multimedia transmission at the source 

and its presentation at the destination, we need to set a buffer size at the destination 

relative to the number of MPs used in the SSON. 



CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 79 

0-100 0-200 0-300 0-400 0-500 0-600 0-700 0-800 0-900 0-1000 

Number of Sessions 

Fig. 4.8 The Average Overlay Path Stretch 

2) Packet stretch: The stretch of the SSONs' topologies is defined as the number of 

physical hops taken by an overlay packet divided by the number of hops a packet takes 

when using an IP-layer path between the same source and destination. A high stretch 

value indicates an inefficient SSON topology as their packets have longer routes and 

delays. Fig. 4.8 shows the simulation results for the average overlay path stretch and Fig. 

4.9 shows the distribution of the actual stretch values for the geographical approach. The 

results show that the stretch for the geographical approach ranges from 1.73-1.79. This 

low stretch value is not significant considering the gains obtained by using policies. The 

distribution of the actual stretch values shows that 3.6% of sessions have a stretch 

greater than 3 and 76.8% have a stretch less than 2. Although the geographical approach 

improves the overlay path stretch, the improvement is not significant compared to the 

random approach. This is due mainly to the limitation that results from using an MPDS. 

The MPDS is a centralized entity that, in addition to its disadvantage of being a single 

point of failure, frequently registers MPs services and capabilities. In a dynamic 
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network, this is not sufficient as the services change over time. The capacities of MPs 

are also dynamic as they change when sessions are added and removed. In order to 

decrease the stretch, therefore, there is a need to design a resource location mechanism. 

This would integrate the search for an optimal overlay path that satisfies a certain QoS 

metric with the search for the MPs needed to construct the SSON. The resource 

discovery approach should be decentralized and should exploit the semantics of the 

services offered by MPs. 

0-1 1-1.5 1.5-2 2-2.5 2.5-3 3-3.5 3.5-4 4-4.5 
Stretch Interval 

Fig. 4.9 The Distribution of the Actual Stretch 
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3) Management Overhead: The management overhead of the architecture consists of (a) 

the time needed to generate and enforce policies, (b) the time needed to exchange 

messages between the SSON OPDP and OPEPs, as well as between the SSON OPDP 

and the System OPDP, and (c) the time needed to access information in the policy 

repository and plan history. Fig. 4.10 shows the average management overhead and the 

95% confidence interval. For the geographical approach results show that, while the 

number of sessions increases, the mean management overhead increases only slightly. 

For a small number of sessions, stretch is a significant factor as it results in larger delays 

and thereby increases the management time. For example, the second simulation run 

shows that the average management overhead is nearly 0.278s and the stretch is 1.75 

(see fig. 4.8). As more sessions are added, therefore, the average stretch decreases and 

the time needed to generate policies and to access the repository and plan history 

outweighs the effect of the stretch. We also observe a similar behavior in the random 

approach. The exception is that in the random approach the management time increases 
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faster than the geographical approach where the management overhead time slightly 

increases. However, the average increase is insignificant compared to the gain achieved 

by the architecture itself. 

Fig. 4.11 shows that the time needed to process and enforce policies is nearly 42% 

of the total time consumed in creating or adapting an SSON. Exchanging messages 

between the OPDP and OPEPs takes 32% of the time, and the remaining 26% is used to 

access information in the policy repository and plan history. This indicates that the 

overhead caused by introducing policies is compensated for by the gain achieved by the 

context-aware architecture and the dynamic deployment of SSONs. Since the extra time 

is needed only once to create an SSON and once for each adaptation, it is insignificant 

for overlays that do not require adaptation, or that have a long operation time between 

creation and adaptation. 
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4.7 Summary 

In this chapter, a novel scheme for SSONs network management has been presented. 

The context-aware management architecture automates the task of managing overlay 

networks through flexible and policy-based adaptation. The creation, adaptation, and 

termination of overlay networks were controlled by the OPDP and the OPEP, which 

were used to dispatch and enforce policies. Simulation results show the flexibility and 

the efficiency of constructing SSONs using our scheme; it shows that on average, 

SSONs will be composed of 2-4 MPs. This contributes to the scalability of the scheme 

as low management overhead is needed by SSONs. However, MPs discovery is curried 

out using a MPDS. All MPs registers their services in it, and whenever a service is 

needed, a request is sent to the MPDS. This is clearly inefficient and centralized, and a 

more flexible and distributed solution is needed to cope with the dynamicity of 

networks, users, and applications. 



Chapter 5 

Semantic Overlay for MediaPorts Resource Discovery 

As illustrated in the previous chapter, resource discovery represents a key component in 

assisting SSONs construction and adaptations. This chapter presents a novel scheme for 

MediaPorts resources discovery that can locate the needed MPs accurately and 

efficiently. The rest of this chapter is organized as follow: Section 5.1 introduces 

resource discovery challenges. Design goals are discussed in section 5.2. Section 5.3 

introduces MPs modeling, while section 5.4 reviews the optimal chordal ring that 

represents the main building block for the proposed resources discovery mechanism. 

Section 5.5 discusses the semantic overlay construction, and section 5.6 discusses the 

routing of service replies on the constructed SORD. In section 5.7, we present 

algorithms to query, join, leave, and break SORD. Degrees of freedom in constructing 

SORD are discussed in section 5.8. In section 5.9, we present simulation details and 

results. Scalability of the resource discovery scheme is discussed in section 5.10. 

Finally, the chapter is concluded with a brief summary. 

5.1 Introduction 

Given the many sources of heterogeneity (of networks, users and applications), SSON 

construction uses network side functions called MediaPorts (MPs) to provide the 

flexibility to modify the content and services such as caching, adaptation, and 

synchronization [47]. 

In large, distributed networks, media content usually requires adaptation before it is 

consumed by clients. For example, video frames must be dropped to meet QoS 

constraints. A client with PDA, for example, requires a scaled-down version of the 

84 
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video; a mobile user requires the content to be cached for viewing. We illustrate the type 

of applications we are targeting with the following example. Consider a user 

(MediaClient, or MC) trying to view a movie from a streaming video server 

(MediaServer, or MS) on his PDA, where the MC terminal can accept Mpeg and English 

subtitles, and the movie at the MS is available in DivX and French subtitles. Since the 

available video format is not directly usable at the MC side, an MP (or possibly more 

than one MP) is needed to convert the video to the needed format. SMART creates an 

SSON for this video flow, which consists of the MC, MS and the set of MPs that are 

needed to establish the service. A first step in any of these applications is for them to 

learn that the required services exist. In other words, they need to know "what are the 

services that are needed?", "where are these services located?" and "how are they 

found?" This is clearly a resource discovery problem. This example represents a large 

category of applications that pose the following challenges when designing a resource 

discovery system. 

1. The required resources (MPs) are not known beforehand. In our example, there 

might be no single MP that converts DivX into Mpeg, and French subtitles into 

English. However, the SSON can be constructed using three MPs: The first 

converts DivX into RM, and the second converts RM into Mpeg. A third 

buffering MP is needed to remove the jitter introduced by processing the media. 

2. To construct an efficient SSON with multiple MPs, the selected MPs locations 

should avoid looping in the overlay path. In our example, if two MPs are used 

to construct the SSON, the MP that provides the final acceptable video format 

should be closer to the MC. 

There are various approaches to resource discovery. Centralized approaches 

maintain a mapping between the resources and the nodes offering them, but this creates 

bottlenecks and is not scalable in dynamic networks. De-centralized approaches, such as 

the popular P2P DHT approaches, improve scalability by avoiding dependency on 

centralized entities. But they offer limited functionality by supporting exact lookups 

only. They are also inefficient in that they produce a large message overhead, especially 
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if nodes fail. To reduce the message overhead, queries need to be routed efficiently, 

which leads to the proposal of semantic approaches. Generally, semantic approaches 

create an overlay network that connects resources based on predefined criteria. Queries 

are routed on the overlay only; response time is improved and message overhead is 

reduced. But these approaches are designed with a specific application in mind, and 

overlays are hard to maintain. They also broadcast service descriptions on the overlay, 

thereby adding to the message overhead. 

We believe that these systems are not flexible enough in dynamic networks where 

resource properties (such as computational power, memory and available storage) vary 

very frequently over time. SMART'S many SSONs, for example, commonly require 

updated resource information, both in the construction stage and during their life time in 

order to adapt to the ever-changing topology. Resource discovery techniques therefore 

need to be both resilient to the dynamic topology (i.e. made up of multiple paths 

between network nodes and service nodes), and efficient in terms of query responses, 

network communication, and accuracy. This is particularly important in SMART, where 

the discovery algorithm is used repeatedly to obtain updated information with which to 

construct and adapt SSONs. Resources should not therefore depend on other nodes to 

advertise or register their services. Unfortunately, existing service discovery techniques 

are not well suited to SMART; they are either centralized, or they produce an enormous 

message overhead. Nor are they resilient when failures occur. 

In this chapter, we propose a novel resource discovery service for MPs, which we 

have named the Semantic Overlay Resource Discovery (SORD). SORD meets the 

challenges described above and considers not only the semantics of the services offered 

by MPs, but also their physical location. It provides SMART with an overlay that can be 

efficiently queried without using service announcements. SORD ensures that nodes 

without services, or those not located on the route to the desired resource, are not 

involved in the discovery process. Importantly, SORD is based on a widely-studied 

family of chordal rings called the optimal chordal ring. The result is a fault-resilient and 

efficient structure. 



CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 87 

5.2 Design Goals 

1) Decentralization. SORD should not depend on central entities because, in a 

dynamic network, these entities may not always be available. 

2) Adaptability. SORD should adapt to a changing topology with low overhead. If 

faults occur, or as nodes leave or join, SORD should maintain its normal 

operations. 

3) Semantic Overlay. The semantic properties of Media-Ports should minimize the 

overhead of routing queries. 

4) Optimal Routing. SORD should avoid flooding, yet provide correct results 

wherever they exist. 

5) Efficiency. SORD should be efficient in query response time, message 

overhead, and accuracy. 

5.3 MediaPorts (MPs) Modeling 

SSON construction involves the following main tasks: 

1) Expressing in objective terms the media end points (MC, MS). 

2) Discovering the MPs needed to process the media flow so that it is usable at the 

MC. This step requires a suitable MP service description. 

3) Routing the media stream through the selected MPs. 

Our work does not assume a specific MP service description. Services can be 

described using standard Web Service Description Language (WSDL) [171], for 

example, and extended with semantic metadata. For simplicity, an MP service can be 

described using a service identification ID, an input/, an output O , and the function / 

that the service provides. Using this simple representation, a service S always receives 
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/ and produces O as a result of applying f on I. Each service used incurs a cost and 

each MP provides one or more services. We assume that the media end points do not 

alter the media flow. Therefore, they are described using their / and O only. For an 

MC, / refers to the possible input format and O refers to the content output channel 

(ex. Display). For an MS, / refers to the content input and O refers to the encoding 

scheme. Using this simple description scheme, an MC requesting content from an MS, 

can be served directly only if the input / of the client is compatible to the output O of 

the server. In the case of non-compatibility, an MP (or perhaps more than one) has to be 

inserted between the MS and the MC to establish the media delivery. Discovering these 

MPs is the focus of this paper. Given an input media / and a requested output media 

O , the problem is to find a set of services (or MPs) that transforms / into O and 

minimizes or maximizes a cost criterion. The result is that the MPs are chained to 

process the media flow. 
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Fig. 5.1 (a) Types of MPs, and (b) MPs Chaining 

To facilitate this chaining, as shown in Fig. 5.1a, MPs can be described according to 

their input and output ports: single, splitters, or joiners [115]. Single MPs have only one 



CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 89 

input port and one output port. They take a media flow as input and transform it into a 

different output flow according to the service function that they offer. Splitters have one 

input and several outputs. They take one media flow as an input and produce a number 

of output flows. A splitter might, for example, take a video as an input and produce 

audio and video as an output. Joiners have several inputs that they merge into one 

output. Similarly, a joiner might take an audio and a video flow as input and produce a 

video flow as its output. MP services can therefore be independent, or partially or 

completely chained. As shown in Fig. 5.1b, independent MPs can perform a service 

without help from other MPs. Partially chained MPs consist of at least two MPs where 

the output and inputs of the first can be composed with some of the inputs and outputs of 

the second. They are partially chained in the sense that they need other MPs to provide a 

complete service. Completely chained MPs are made up of at least two MPs where all 

the output and input ports of the first are composed with all the input or outputs ports of 

the second. Also completely chained are MPs where all the outputs of the first are 

composed with some of the inputs of the second, and where the remaining inputs are 

composed with all the inputs of a third MP. In other words, completely chained MPs are 

those that provide a complete service. Since media descriptions have been well studied 

[172], we will not attempt to provide a complete description. 

5.4 Optimal Chordal Ring 

Because of their simplicity, expandability, and regularity, chordal rings have been 

studied for many years as an interconnection architecture for parallel and distributed 

systems [173]. In this chapter, we focus on a widely-studied family of degree 4 chordal 

rings. They are called optimal chordal rings because of their network properties of 

symmetry, high fault-tolerance, low broadcast time, and ease of routing. All these 

properties contribute productively to the efficiency of our discovery mechanism. In an 

optimal chordal ring, each node knows about 4 neighbors, specifically two ring nodes 

and two chord nodes [174]. We prefer the optimal chordal ring because the low 

reliability of traditional rings makes them highly vulnerable. For example, the 
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connectivity of a unidirectional ring of N nodes is 1 because the failure of any node / 

would break down the direct path from node (*-l) to node(/ + l ) . Moreover, the 

diameter of unidirectional rings (the maximum distance between any pair of nodes) is as 

big as(N-\). This negatively affects the performance: A large diameter would contribute 

to the latency between these two nodes. The extra chord connections in the optimal 

chordal ring are an additional overhead when compared to a traditional ring. But this 

overhead is offset by the low diameter, the ease of routing, and the resiliency. An 

optimal chordal ring can be defined as follows. 

Definition 1: Optimal chordal ring of degree 4 

Given two positive integersN, C, where 2<c<N. The graph Rt(N,c) is an optimal 

chordal ring of degree 4 whose node set is {0,1,..., N-\\ and 

edge set { [i, (i +1) mod N] ,[/',(/' + c) mod N\ i e {0,1,..., Af-1 } } 

\N = 2k
2
+2k + l 

[C = 2k + 1 

Where k is the diameter of the network, the ring Rk(N,c) is regular and of degree 4 

(N is odd 
If \ i OR 

[N is even&C*N/2 

Each node in an optimal chordal ring is connected to its two nearest neighbors: node 

/, for example, is connected to nodes (i -1) and (i +1), and node 0 is connected to nodes 1 

and(;v-l). In addition, each node has two other chordal connections defined by the 

edges connecting the nodes at distance C in the ring to other nodes. The symmetry 

makes all nodes equivalent. For any k > 1, the ring Rk(N,c) has a diameter equals to k 

[175]. See R2 in Fig. 5.2. 
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Fig. 5.2 An Optimal Chordal Ring R2(13,5) 

5.5 SORD Construction 

MPs either provide value-added services such as caching, media adaptation, flow 

splitting, and synchronization, or they provide special routing capabilities. During the 

setup phase of a media delivery service, MPs are selected to be in the optimal location in 

the end-to-end path. SORD searches only those MPs most likely to have a positive 

answer. By constructing semantic rings for each type of service offered, efficiency is 

increased. Requests are routed through the semantic rings only. Studies [166] and [167] 

have shown that link latencies are extremely affected by geographical locations, 

demonstrating that geographically closer nodes are expected to have fewer hops and 
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latencies between them because a path on the overlay network consists of a series of 

application-level (not IP-level) hops between the source and destination nodes. This can 

lead to inefficient routing because routing on the overlay usually uses the neighboring 

nodes on the overlay to forward messages. These overlay neighbors might be 

considerably far from each other in the IP-level. To improve performance, it is necessary 

to avoid placing distant nodes as neighbors on the overlay. To this end, we have used 

nodes' Geographical locations to ensure that neighboring nodes on the overlay are also 

neighbors in the underlying IP-level network topology. The semantic rings are thus 

composed of a set of local rings connected to a global ring. The local rings group 

semantically similar MPs in a geographical sub-area, and one of the MPs represents the 

access point for the local ring. The set of access points forms the global ring, an optimal 

chordal ring of degree 4. SORT) construction therefore consists of two steps: 1) 

Classifying MPs semantically, and 2) Constructing global and local rings. 

5.5.1 Classifying MPs 

MPs can be easily grouped into hierarchies, each of which representing a semantic 

overlay network. MPs can be classified, based on the services that they offer, into 

caching, adaptation, synchronization, and routing. Those MPs with semantically similar 

services in a given sub-area are connected. For example, MPs offering a caching service 

establish a connection among themselves. This organization improves query 

performance while maintaining a high degree of node autonomy. MPs can belong to 

more than one classification if they offer more than one service. 

One important aspect of MP classification is the level of granularity. For example, 

caching MPs can be classified as "caching only". Or granularity can be increased by 

properties such as connectivity, location, cost, and capacity. Excessive granularity 

implies that queries will be answered with a small number of messages, but at greater 

maintenance cost. Poor granularity implies more message overhead and less 

maintenance cost; the granularity of MPs should therefore be a tradeoff between the 

number of messages at a given SORD and the maintenance cost at each MP. Simply 
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put, it should be straightforward to look at the properties of each MP and distinguish 

between dynamic properties that change over time (such as capacity, cost, and location) 

and static properties that are maintained through the MP operational time (mostly related 

to the type of offered services such as caching and synchronization). We believe that 

dynamic properties should not be included in the granularity of the overlay semantic 

segmentation. Including them implies that, each time they change, their logical location 

in the overlay should change too which is costly in a dynamic environment. Our choice, 

therefore, is to decrease the MPs' granularity which results in an overlay that has well-

defined service semantics with fewer dynamic properties. The choice to provide a 

service is left entirely to the MP that has the most up-to-date knowledge about its 

availability, cost, capacity, and other properties. 

Another important and related challenge is how to perform comparison and logical 

transformations on media endpoint descriptions [115]. Using the description in Section 

5.3, it should be straightforward to look at MS and MC descriptions and to tell whether 

or not the content is in a form that can be received by the client; it should also be 

possible to determine the effect that a MP will have on a content description. We 

therefore assume the existence of a function sim(MDl,MD2) that computes the 

difference between two media descriptions. For instance, we can use a modified X-Diff 

[176] algorithm to analyze the similarity between two media endpoint descriptions as 

well as between a media description and a MP description. For example, sim(MC,MS) -

<|> implies that the input of the MC is compatible to the output of the MS. There is 

therefore no need to insert MPs in the media flow. On the other hand, if sim(MC.MS) = 

X, then X represents the mismatch between MC and MS description. It also represents 

the set of required adaptations for the media flow to be viewable at the MC. The same 

function can be used to compute the similarity between MPs. For example, if a media 

flow is passing through M P 1 , then sim(MS,MPl) = y represents the set of required 

adaptations after passing the media flow through MP1. If MP1 is going to be used, y 

should be less than X. In other words, the set of required adaptations after passing the 

media flow through MP1 is less than the original set. 
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5.5.2 Constructing Local and Global Rings 

5.5.2.1 Rk Geometrical Representation 

We assume that each node knows its geographical location, and that the geographical 

area is two-dimensional. If we consider a geometrical representation of Rk already used 

in [175], we define a representation in the Euclidian plane that is divided into squares of 

size 1 and centered at integer coordinate. Each square is labeled with a node of Rk as 

follows. The square in coordinate (0,0) is labeled 0; for any square with label /, the 

square to the right is labeled (/ + l), and the square to the left is labeled (/-1). The square 

above is labeled i + ik + \, and the square below is labeled l-2k-\ (all operations are 
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performed mod N). A ring edge between nodes u,v in the chordal ring is represented by 

a horizontal line of length 1 between the centers of the adjacent squares labeled u,v . The 

chordal edges are represented by a vertical line of length 1 between the centers of the 

adjacent squares. Fig. 5.3 shows a tile (dotted lines), a collection of contiguous squares 

such that every node of the optimal chordal ring appears only once as a label of a square. 

This tile includes all shortest paths from node 0 to all other nodes in the R3 geometrical 

representation. From the tile, we see that the shortest path is 0(k) hops in the worst case. 

At node 0, we see that 4 nodes are one hop away, 8 nodes are 2 hops away, 12 nodes are 

3 hops away, etc. Therefore, the average lookup cost is 

AvgCost = 
f k

 ' ' 2k + \ 
$ > 2 / t f - l 

V;=i 

(5.1) 

The average cost in (5.1) is equivalent to: 

AvgCost = V2*2 logJV-l/3 (5.2) 

Since the optimal chordal ring is symmetric, the same tile can be used to find all the 

shortest paths from any node V to all other nodes by re-labeling the plane with node V in 

the center. The geometrical representation is complete; different tiles with different 

properties, or routing between ring nodes, can be represented in the same plane. 

5.5.2.2 Global Ring 

By dividing the geographical area into sub-areas, the sub-areas match the Rk geometrical 

representation. The result is that routing paths between geographical sub-areas 

correspond to the routing paths in the matching geometrical representation. Since the 

network geographical area is two-dimensional, the geographical area fits in the Rk 

geometrical representation. To do so, the x coordinate is divided into sub-areas equal to 

C (the distance of chords inj^). Fig. 5.3 shows a tile (the solid rectangle) in the 

geometrical representation of R3 that is equivalent to the two-dimensional geographical 

area. Each square in the tile represents a geographical sub-area and, at the same time, a 
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node in Rk. From this tile, we observe the following: 1) All ring edges are adjacent in 

the tile, and they are also adjacent in the geographical plane, except on the left and right 

edges. For example, node 6 connects to node 7, while sub-area 6 is distant from sub-area 

7. That means in SORD, global ring nodes labeled {0, C, 2C, 3C ...} are connected to 

nodes {(C-l), 2C-1, 3C-1 ...} respectively. We should therefore avoid using those 

connections whenever possible as they result in long latency. To solve this problem, we 

can also connect nodes labeled {C-l, 2C, 3C-1 ...} to nodes {2C-1, 3C, 4C-1 ...} 

respectively, 2) All chord edges are adjacent in the tile as well as in the geographical 

plane. The exception is chords on the top/down edges, where one chord is adjacent and 

the second is not. This type of connection is not considered a problem in the two-

dimensional network, as the nodes are actually some distance from each other and the 

communication cost is paid anyway. However, these connections can be used efficiently 

to deliver messages to distant nodes. 

Using this representation, we preserve the geographical proximity of ring nodes. As 

a result, a small number of hops are expected to connect global ring nodes, and less 

network latency is expected for the communication between them. 

Each sub-area should be represented by one node. Therefore, one MP in each sub-

area is identified as the access point. The selection of the access point may be based on 

criteria such as highest bandwidth, connectivity, or connection life time. All access 

points connect to each other to form an optimal chordal ring of degree 4 referred to as 

the global ring. 

An important aspect of this matching between the geographical sub-areas and Rk 

nodes is that we need the same number of sub-areas during the life time of SORD. It is 

therefore important to carefully choose k that decides the number of nodes in Rk and to 

provide a solution for network evolution. & is a system parameter that depends on: 1) the 

actual number of MPs present in the network (n), 2) the expected growth rate ( r ) of 

MPs, 3) the expected operational period (p ). Therefore, k is given by: 
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k> ^2(n + nrp)-l-l/2 (5.3) 

SinceN - (n + nrp), the total number of MPs is greater than the actuals, the extra 

(N - n) are virtually hosted by other MPs. 

When network size dramatically increases, it is advantageous to increase the 

number of sub-areas, thus decreasing granularity. To do so, we can choose an initial Rk, 

such that a large number of sub-areas is present to support network evolution. The extra 

sub-areas can be virtually hosted by existing nodes, and when enough nodes are present 

in these areas, they can be split from the hosted nodes. This corresponds to a larger k in 

(5.3). 

5.5.2.3 Local Rings 

In SORD, semantically similar MPs are connected to each other if they belong to the 

same geographical sub-area. One of these MPs in each sub-area is the access point for 

its sub-area. Since multiple MP types can be present in the same geo-graphical sub-area, 

different rings are constructed for each type. The node that is serving as the access point 

for a given sub-area should be aware of all different rings; it should know at least one 

node from each ring, and the MP types for each ring. To increase robustness, this 

knowledge can be replicated within the rings. 

In its basic form, SORD has two levels: Global ring that connects sub-areas, and a 

local ring at each sub-area. To increase its scalability, we can recursively construct Rk 

rings in each sub-area. The maximum number of hierarchical levels is set to (&-1), 

where k is the parameter used to construct the global ring. Therefore, the hierarchy of 

the local rings is of the form: Rk_i,Rk_2,...,R2 • 
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The choice to build more or less hierarchical levels in a given sub-area depends on 

the number of MPs in it. The lowest hierarchical level is R2 that contains 13 nodes. For 

a lower number of MPs, we either create a traditional ring or a star topology. 

Algorithm 1: Routing on SORD 

Once a MP is discovered by S, S uses this algorithm to rout the query on SORD 

Status: = {INITIATOR, GIOBALRING, LOCALRING, ASLEEP, WAITING,DONE} 

Sinit = {INITIATOR, IDLE}' initial states 

Sterm = {Done} 'termination state 

INITIATOR ' the source node that request the session 

Spontaneously 

{ Send(Q, MCd,MSd, a) to MP ' empty chain history 

Become ASLEEP } 

GIOBALRING ' any node in the optimal chordal ring that receives a query 

ReceivingfQ, MCd,MSd, a) 

{ i f (withina) { SendfQ, MCd,MSd, a) to LOCALRING, Become WAITING} 

else { do ROUT(Q, MCd,MSd, a), Become DONE } } 

LOCALRING 'any node in a sub-area rings 

If ReceivingfQ, MCd,MSd, a) 

{ I f (Withina) { Process(Q), send(Q) to L.succ, become DONE} else send(Q) to L.succ} 

WAITING 'optimal chordal ring node receiving Qfrom its local ring. 

do ROUT(Q, MCd, MSd, a) 

procedure ROUTfQ, MCd, MSd, a)' used by optimal chordal ring node to rout Q. 

{ i f (InMSArea) Send (Q, MCd,MSd, a) to MS 'this prevents Qfrom being sent beyond the MS 

else { 

Candidates <- {WithinScopeAngle(G.succ,G.pred, CHI, CH2, MC, MS, a ) ' choose ring neighbors 

that is within a and if a candidate is known to be failed remove it from Candidates 

Send(Q, MCd, MSd, a) to Candidates(x) - [received]}} 

Fig. 5.4 Routing in SORD Algorithm 

5.6 Routing of Service Replies 

When a node sends out a query, results must be sent back to that node. Replies can be 

routed back to the requesting node in two ways: 1) MPs can use the shortest path 

algorithm to route the reply without a major use of SORD. 2) Using a reverse routing 

technique, the reply can retrace the query path. In the former case, the new route to the 

requesting node generates an additional network load. This load is reduced and system 



CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 99 

efficiency is increased [177] if the path that already exists from the querying node is 

reused. In the latter case, the reverse routing is either symmetric or asymmetric. In 

symmetric routing, we can retrace the exact original routing path from the requesting 

node to the MP. This is possible by forcing each message to save the last address of the 

optimal chordal node that sent it. But failure is possible if any number of nodes in the 

previous path have disappeared or moved. In asymmetric routing, the service reply is 

routed on SORD, but along a path different from the original one since the optimal 

chordal ring owns a number of paths between any two nodes. Our strategy is to combine 

both symmetric and asymmetric approaches. Service replies in SORD are routed using 

the reverse routing (symmetric) approach. Whenever a failure is detected, the 

asymmetric approach is used until the reply reaches the requesting node. 

5.7 Algorithms In SORD 

In this section, we present the algorithms that ensure the validity of SORD, and we 

demonstrate how they can be efficiently used for resource discovery. 

5.7.1 Querying SORD 

To find the service path between source S and destination!), all the required MPs must 

be located. The most suitable MPs are located in the shortest path between S and/). 

Querying SORD therefore consists of two stages, 1) discovery, and 2) routing. 

If S has no previous knowledge of the existing SORD, or if its knowledge has 

expired, it has to run a discovery algorithm, which is based on flooding. Since each sub-

area has its own local ring of MPs, discovery takes at most a number of messages equal 

to the message cost of flooding in a single sub-area. In most cases, especially in sub-

areas with many MPs, this cost can be expected to be very low. This is because any MP 

can complete the algorithm successfully. After discovering a SORD node, the 

information is cached locally for subsequent queries, and the actual routing for the query 

starts at stage two, as shown in Fig. 5.4. When a node wants to search for a service, it 
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sends the query to the closest MP (established in stage one). The query is then sent along 

the global ring to all the destination sub-areas. The query consists of the MC and MS 

descriptions, the search scope angle ( a ) and a chain history. The chain history (initially 

Fig. 5.5 Network Geographical Area and Search Scope Angle 

empty) accumulates all the possible adaptation from all MPs that this query visits, which 

basically results in a list of paths; each path representing a possible solution for the 

media flow. 

Any global ring node that receives the query sends it to its local ring nodes only if it 

is within a .It waits until it receives the query again, then it forwards the query to each 

neighbor in the global ring if it falls within a. 
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To know that it is within the search scope angle, the shaded area in Fig. 5.5, a global 

ring node A computes the angles P and <j) using the following formula: 

»--,•„-( \(x2-xlfol-yO)-(xl-xOXy2-yl) ) (5 4) 

[ V(*2 - *i)2 + (y2 - yif * V(xi - xof + (ji - ^o)2
 / 

Where (xl, y\) is the MC location, {xl, yl) is the MS location, and (xO, yO) is the 

location of A . The computation of § is similar to the computation of p except that the 

MC and MS locations will be switched in (5.4). 

A is within the scope angle if /? < a
/L A ^ < 85 

When a local ring node receives a query, it processes the query only if it is within 

the search scope or. Processing the query involves: 1) Retrieving incomplete paths from 

the chain history, 2) the current node adding itself along with its costs, if it can provide a 

service for the path, 3) the current node creating a new path and adding that path to the 

chain history, if it can provide a complete or partial service for the MC and MS. The 

node then forwards the query to its next neighbor in the local ring. Query forwarding 

will be terminated when the query is received by the MS. Since the MS might not be a 

MP, each global ring node checks to see if it is in the same area as the MS, and if so, it 

will serve the query and send it to the MS. At this point, the MS investigates the chain 

history and computes the best path for the media flow, then sends a constructFlowPath 

message through it to the media client. If no solution is found, the MS sends a failure 

message to the MC, and the MC can then reinitiate the query with a greater a. 
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Generally, the algorithm avoids sending the query to large parts of the network 

where answers are not likely to be found, and also, it considers only MPs in the direct 

path between the source and the destination. The algorithm also exploits the resiliency of 

the optimal chordal ring by routing around failed nodes. This is particularly important in 

a dynamic network, since it ensures that resources are discovered even in the event of 

failures. 

Algorithm 2: Joining SORD 

Node S is a MP joined the network. Therefore it has to Join SORD. 

Status: = {INITIATOR, ASLEEP, DONE} 

Sinit = {INITIATOR}' initial states 

Sterm = {Done} 'termination state 

INITIATOR ' the node S 

Spontaneously 

{ send(JoinRequest, TTL) to S(x) 'all nodes reachable within one hop 

Become ASLEEP } 

ANY 'any node independent from its current status 

Receiving(JoinRequest,TTL) { 

If (localRingNode) reply(JoinOffer) 'if not an optimal chordal ring node 

' contains its access point, Succ, Pred, and Service Type 

else if (globalRingNode) { 

if (globalRingNode.SubArea = S.SubArea) reply(JoinOffer) 'same sub-area as S 

'JoinOffer contains globalRingNode's Succ, Pred in local ring 

else (globalRingNode.SubArea = S.SubArea -1) 

reply(JoinAccessPoint) ' if S is the first in its sub-area 

'JoinAccessPoint contains the 4 global ring connections 

} else if (TTL>0) send(JoinRequest,TTL) to its S(X) - [received from] } 

ASLEEP'the node S 

{collect(JoinOffer) messages 

if (3 JoinAccessPoint A ~3 JoinOffer £ S.SubArea) 

become an access point for its sub-area 

else { 

S chooses a node V that offers the same (or close) Service type 

Send(OfferAccept) to V 

V sends a message to V.Succ informing it to change its pred to S 

V sets V.succ = S 

S.succ and S.pred sends(ConfirmJoin) to S 

S sets its succ and pred. accordingly and become DONE }} 

Fig. 5.6 Joining SORD Algorithm 
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Algorithm 3: Leaving SORD 

Node S is a MP that wants to leave the network. 

Status: = {INITIATOR, DONE} 

Smit = {INITIATOR}' initial states 

Sterm = {Done} 'termination state 

INITIATOR ' the node S 

Spontaneously 

If (s € LocalRing) Sends(LeaveMessage) to S.succ 

'S.succ and S.pred connect to each other 

And S.pred 

else { 'S an optimal chordal ring node or an access point 

If (3 LocalRing) { 

S.succ become the new Access point 

send (newAccessPoint) to S.succ, S.pred, S.chordl, S.chord2 

} else {'S.GSucc in the global ring virtually hosts this subArea because it is empty 

Send(HostVirtualAccessPoint) to S.Gsucc' contains all S connections 

S.succ acquires all the connections of S } 

Become DONE 

Fig. 5.7 Leaving SORD Algorithm 

5.7.2 Joining and Leaving SORD (Intentionally) 

When a new MP joins the network, it does not become part of the existing SORD, and 

does not receive search messages. To correct this, it has to join SORD using the Join 

algorithm in Fig. 5.6. 

The new MP sends a join request to its neighbors, which will forward that request to 

their neighbors, until the request reaches a SORD node or a node that is aware of a 

SORD node. The SORD node that receives a join request sends a join offer only if it is a 

local ring member, otherwise it sends its known local ring members to the MP. The MP 

then collects join offers and selects the suitable local ring type and joins it. According to 

the algorithm, an MP is only allowed to join the local ring in its sub-area. This 

minimizes the messages exchanged and ensures the stability of the global ring. If a MP 

joins from a sub-area where there is no local ring, it becomes the access point for its sub-

area and acquires its connections from its global ring successor that was virtually hosting 

the empty sub-area. When an MP wants to leave the network, it calls the Leave 

algorithm in Fig. 5.7; it simply sends a leave message instructing its successor and 

predecessor to connect to each other. If it is an access point, its successor in the local 
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ring becomes the new access point. If it is the last node in its sub-area, the global 

successor virtually hosts it. In the worst case, the Leave algorithm costs 4 messages. 

Algorithm 4: Broken Global Ring 
Status:= {INITIATOR, IDLE, ASLEEP, WAITING, DONE} 

MPinit = {INITIATOR, IDLE} 
MPterm = {Done} 

INITIATOR ' an optimal chordal ring node 
Spontaneously { 

Send(GlobalRingCheck,TTL) to MP(x) 'to 4 ring neighbors 
Set timer T 
Become ASLEEP ' until T expires or receive OK} 

IDLE 
Receiving(GlobalRingCheck,TTL) { 

Return(OK)' to the sender 
if (received from CHI or CH2) 

Send(GlobalRingCheck,TTL-l) to S(x) - {sender} 
Else if (received from a ring peer i.e not CHI or CH2) 
lf(TTL-2!=0) 
Send(GlobalRingCheck,TTL-l) to ring peers - {sender} 

Set timer T 
Become ASLEEP} 

ASLEEP 
If Receiving(OK) Become DONE 

' from all peers that this node sent messages to. 
Else If T>\ 

If Not ping(predecessor(k))'assume a broken link 
Do BrokenLink(k) 

4/vy'any node independent from its status 
Receiving(BrokenCheck) { 

If Ping(predecessor) send BrokenCheck to predecessor 
Else return predecessor(v) } 

Receiving(BrokenCheckOnChord){ 
send BrokenCheck to successor 
' successor pings its CHI peer and save the result and 
' sends the message to its' successor} 

WAITING 
Receiving(predecessor(v)) { 

If (v = k) do singleRepair(k) 
Else do multipleRepair(k,v) } 

receiving(BrokenCheckOnChord) { 
'assign a node for each failed node. And instruct them to 

'take their rolls.} 
Become DONE 

procedure BrokenLink(k) 
{Send(BrokenCheck) to CHI peer 

Become WAITING} 
procedure singleRepair (k) 

{'take the rolls of k by connecting to its successor and chords. 
Become DONE} 

procedure multipleRepair(k,v) 
{Send(BrokenCheckOnChord) to CH2 peer 
Become WAITING} 

Fig. 5.8 Broken Global Ring Algorithm 
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5.7.3 Broken SORD 

In a dynamic network, nodes not only join and leave the network; they may also 

unexpectedly disappear, which causes SORD to break. If a MP unexpectedly leaves 

SORD, its negative effect depends on the ring it belongs to. 

Algorithm 5: Broken Local Ring 

MP didn't receive a periodic check message from its Local Peer. 

Status:= {INITIATOR, DONE} 

MPinit = {INITIATOR} 

MPterm = {Done} 

INITIATOR ' the MP 

Spontaneously 

Begin 

if ( NOT Ping(MP.pred)) {' if unable to ping its pred. i.e MP.pred failed 

if (Ping(MP.pred.pred)) { ' known from previous LocalRingCheck 

if (AccessPoint(MP.pred)) MP uses algorithm 2 to join global ring 

else {set MP.pred = MP.pred.pred, send(changeSucc) to MP.pred } 

} else {repeat until (Ping(Mp.pred.?)), 

'ping the next pred until we reach a live one 

set MP.pred = ?, send(changeSucc) to MP.pred.? } 

} 
Become DONE 

End 

Fig. 5.9 Broken Local Ring Algorithm 

If the node is a global ring member, its local ring may become disconnected. MPs in 

that sub-area cannot be reached by search messages. However, all the other sub-areas are 

reachable. This is because of the fault-resilient property of the optimal chordal ring—the 

multiple paths between any two nodes. However, the problem must be detected and 

corrected in order to restore SORD to its normal operations. The detection is done by a 

periodic GlobalRingCheck Message sent on the global ring. If a MP does not receive 

this message after a certain amount of time, it assumes a broken ring and runs the 

algorithm in Fig. 5.8. 
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If the node is a local ring member, the global ring is unaffected, and search 

messages are routed normally. The local ring, however, is disconnected. Using the 

LocalRingCheck message and the algorithm in Fig 5.9, local ring nodes are able to 

detect and correct broken links. 

The Broken Global Ring algorithm makes use of the optimal chordal ring's low 

broadcast time. Traditional algorithms forward the periodic ring check message to one 

node after another. This makes use of all possible links, and forwards the check message 

through a maximum subset of links that guarantees ©(z')time units. The result is a 

substantial decrease in time complexity compared to traditional methods that 

requires Q\2\/ +iJJ . The algorithm also checks for group failures, by sending a 

BrokenCheckOnChord message to the opposite direction of the ring. It can therefore 

detect up to c — 1 failures using C — 1 messages for periodic checks, and Ac - 5 

messages for failure checks. Since the optimal chordal ring is symmetric, and the edge 

and the node are transitive, the algorithm can be initiated by any node. The algorithm 

therefore alternates between all nodes in each consecutive N periodic check to guarantee 

that all links are being tested. 

5.8 Degrees of Freedom for SORD 

All the algorithms presented here assume that each local ring member knows only its 

predecessor and successor in the ring, and the four neighbors for each access point in the 

global ring. While this establishes the locality of updates, it restricts the ring structure. 

Not all nodes in a local ring are likely to bring the media closer to its destination. We 

can assume that the access point knows all its sub-area members, but it can choose to 

send the query message only to a subset of them (though not if a sub-area contains a 

large number of MediaPorts). 

Alternatively, we can subdivide each sub-area, which allows each local ring to be 

constructed in such a way that geographically close nodes are connected to each other. 

This is similar to the construction of the global ring, except that each local ring is 
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traditional. The degree of freedom this provides is most appropriate if there are a large 

number of MediaPorts in each sub-area. A hybrid approach can also be used to construct 

a star-like structure in sub-areas with a small number of MediaPorts and a ring structure 

in sub-areas with a large number. 

Another degree of freedom lies in choosing the access points to the sub-areas. 

Access points have an upper arm connecting the global ring and a lower arm connecting 

the local rings. Using both rings, they should therefore be able to handle a large number 

of requests. Additionally, their location inside their sub-areas should allow for and 

contribute to global ring construction. Techniques for choosing super-peers in P2P 

networks can therefore be reused without the need to modify SORD algorithms. 

Another degree of freedom is to use the number of failures (f) to enhance SORD's 

robustness. If the number of failures is high, the value of f is increased. When f exceeds 

a certain threshold value, the number of nodes that have a backup of the global ring node 

information is increased. This is done by requiring neighboring network nodes to host 

the same type of connections and information. For example, when f = 0, no immediate 

network node is required to host the global ring node information, and when f > 2, the 

direct neighbors of the global ring node host the information. Although this duplicate 

information is a clear overhead, it provides SORD with the following advantages: 1) The 

global ring becomes more robust to node failures, 2) the discovery cost (Fig. 5.5) is 

significantly low, as many nodes in a given sub-area have knowledge of SORD, and 3) 

the load on the original global ring node may be distributed to neighboring nodes when 

the original node is unable to handle the incoming requests. 

Another degree of freedom is to improve the way queries are processed in SORD. 

Due to the lack of knowledge about the needed MPs, queries in SORD are processed in a 

sequential-chain. This can be parallelized by sending the query to global ring nodes 

(access points) all at once. Each ring node sends the query to its local ring, based on 

whether it provides a service or not. Each access point then sends replies to the MS, 

either using SORD or a shortest path algorithm. The MS retrieves the path history and 

builds a service graph that can be searched for the best solution. 
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Lastly, since each MP may belong to more than one SORD, and may provide more 

than one service, a multi-dimensional routing algorithm can be used to route queries 

efficiently. This is achieved by using different SORDs, though only one SORD is used 

for the answer. This knowledge can be also used to discover a specific SORD by 

routing the discover message to all known SORDS in a given MediaPort. 

5.9 Simulation Details and Results 

We used a discrete event simulator to evaluate the performance and efficiency of SORD. 

The topology was constructed using the BRITE [169] Topology Generator, and the 

network was simulated using the J-Sim network simulator [170], a simulator with a 

Java(tm)-based engine. SORD's structure is built in a way that supports the construction 

of SSONs. Constructing SSONs has been proposed by several methods, while SORD's 

structure is similar to DHT approaches. Thus, evaluation of SORD consists of assessing 

its efficiency in constructing SSONS compared to existing methods; determining the 

effect of SORDs' specific parameters and their relation to each other; and comparing 

SORD to DHT approaches. To this end, we conducted three experiments. The first 

compares SORD's discovery mechanism with Limited-Flooding (LF) and Path-Directed 

(PD) approaches [178], [179]. Limited-flooding has been predominantly used to 

discover services in environments such as ad hoc and pervasive networks. The path-

directed protocol starts from the source and expands along the end-to-end routing path 

towards the destination node, with a sideway expansion of a given distance (e.g. based 

on the number of hops, delay, etc..) After visiting the nodes defined by the protocol, it 

contracts towards the source node, gathering the requested information (depending on 

the resources/services we are looking for). The sideway expansion parameter of the 

protocol controls the scope of the search and thus limits the number of nodes to be 

probed. To examine the effect of granularity, R3(25,7), R5(61,ll) and Rio(221,21) 

optimal chordal rings were simulated. None of these approaches have advertisements for 

the offered services. In the following, we use SORD to denote R3, R5 and Rio unless the 

distinction is necessary. The second experiment evaluates the efficiency of SORD under 
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various parameters such as mobility, search angle, and service density. And the last 

experiment compares the message cost of SORD to two popular DHT based approaches. 

100 200 300 

Search Scope 

Fig. 5.10 Average Response Time 

400 500 

5.9.1 Simulation Setup 

The topology used hosted 3000 nodes in a 5000 X 5000 node two-dimensional overlay 

space. The bandwidth assigned to each node was randomly selected between 128 and 

512 kbits/s. Each node had a random geographical location. To follow a flash crowd 

characteristic, all nodes issued their queries at a random point during the first 30 

seconds, with the simulation lasting for another 1000 seconds. We ran the simulation a 

number of times with different search scope values, which can be any metric useful to 

measure the network distance of an end-to-end service path between source and 

destination. Examples are the number of hops or the aggregate delay. In our case, we 

have used the end to end delay, measured as the Round Trip Time (RTT) in 
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milliseconds. For each run, a random number of queries (between 2000 and 4000) were 

requested. The results were collected after each run. 

5.9.2 Experiment 1 

In the first experiment, we measured response time, query cost, and success rate. In this 

experiment, the search scope angle in SORT), a, is fixed at 35 for all queries. 

5.9.2.1 Average Response Time 

The response time for discovery requests is the difference between the starting time of 

the search and the arrival of the complete result set. Fig. 5.10 shows that the average 

response time of LF approach is at least one and a half times higher than the average 

response time of the PD approach. The average response time observed in R3, R5, and 

Rio is much lower still. We believe that the decrease in response time is primarily due to 

two factors: First, the decrease in the overhead of service replies (see Fig. 5.12). This is 

because in LF and PD, service replies travel a greater number of hops than in SORD 

where the number of hops is reduced. Second, the decrease in the overhead due to search 

messages (see Fig. 5.11). This is mostly because service requests were routed directly to 

the nodes where answers were most likely to be found. Furthermore, the average 

response time observed in Rio is lower than that of R3 and R5. The reduced granularity 

in Rio results in a small local rings at each sub-area. Thus service requests and replies 

take less time to go through the entire local ring. 
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Fig. 5.11 Overhead Due to Search Messages 
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Fig. 5.12 Overhead Due to Query Responses 



CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 112 

5.9.2.2 Query Cost 

This quantifies the cost of searching SORD for services. Query cost is composed of 1) 

the total number of search messages (the total number of hops taken by all queries 

divided by the number of queries) and 2) the total number of reply messages (the total 

number of hops taken by all reply messages divided by the number of replies). In SORD, 

the total number of hops is the sum of the total number of hops in the discovery stage 

and the total number of hops taken by the query. The discovery stage is present only in 

SORD and is required only once for each node. Fig. 5.11 shows that LF has the worst 

performance: It produces a greater number of search messages, except in searches with 

small scope values. This is because we need to discover SORD first before we can use it 

to route the query. Understandably, the discovery stage in SORD is similar to LF with 

small TTL values. The consequence is that, with small search scope values, there will be 

an overlap between the discovery and routing stages. So to reduce the message cost for 

small search scope values, the discover message should also be considered as a service 

request, which increases the chances of finding a service match before the query is 

routed on SORD. But as the search scope increases, the number of messages in LF and 

PD is at least two times higher than the number of messages in SORD. For search scope 

values less than 350, Rio produces less number of messages compared to R3 and R5. 

With larger scope values, Rio tends to generate more messages while R3 and R5 behave 

similarly. This is because in Rio the number of sub-areas is much higher than in R3 and 

R5. This increases the number of sub-areas between the media end points, thereby 

increasing the number of messages routed in the global ring. 

The overhead due to query response is shown in Fig. 5.12. For small search scope 

values (below 230), SORD has a larger overhead. This is because SORD routes service 

requests to all the available MPs in targeted sub-areas, resulting in a larger number of 

service replies. However, for larger search scope values, SORD outperforms both PD 

and LF approaches. Rio also produces larger replies than R5, and R5 produces larger 

replies than R3. We believe that this is primarily due to 1) the way the service replies are 
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routed on SORD as discussed in section (5.6) and 2) the increase in the number of the 

global ring nodes. 

5.9.2.3 Success Rate 

Success rate measures the accuracy of SORD, and is defined as the number of requests 

that receive positive responses, divided by the total number of queries. Fig. 5.13 shows 

that SORD results in a higher success rate, except for small search scope values, for 

which LF is more effective (though it did not reach the 100% success rate that the PD 

approach attains after a certain search scope value). However, SORD reaches the 100% 

success rate earlier. We believe that this is due to the huge network load generated by 

LF. For large search scope values, LF generates a large number of messages and 

receives a large number of reply messages. As a consequence, messages are dropped or 

lost due to collisions. In the PD approach, the messages are controlled by the distant 
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function that reduces their number. By contrast, SORD generates the lowest number of 

messages; as we have seen, this is by routing service requests only to sub-areas located 

in the direct geographical path between the end points. R3, R5 and Rio have almost the 

same success rate. This is because all MediaPorts in the direct path between the media 

end points will be reached by R3, R5 and Rio regardless of their differences in the 

response time and query cost. 

5.9.2.4 Initial Cost 

Since LF and PD have no initial cost for building a structure, the results are presented 

without the initial construction cost for SORD as well. Generally, we can construct 

SORD by building a spanning tree between MPs and broadcasting the geographical sub-

areas, node address in SORD, and the connections for the global ring in that spanning 

tree. The cost of these steps is the initial construction cost of SORD and is given by: 

M{SORD/INl)=4m-2n + 3(n-k) + 2 (5.5) 

Where m is the number of links, n is the number of nodes and k is the number of 

MediaPorts. Then, assuming k « n , the cost becomes: 

M{SORDIINl) = 4m + n-\ (5.6) 

Therefore, the initial cost complexity is 0(m) and the time complexity is&(d), 

where d is the diameter of the network. Generally, the cost is equivalent to about 50-60 

queries, which indicates that SORD is most suitable for applications where a high 

number of queries is expected. The initial construction cost is compensated for by the 

low query cost, the improved response time, and success rate. 
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Alternatively we can use a mechanism similar to the bootstrap mechanism proposed 

by [180]. We assume that SORD has an associated DNS domain name, and that it 

resolves to the IP address of one or more SORD bootstrap nodes; this maintains a list of 

SORD nodes that are currently present in the system. To join SORD, the new node uses 

the DNS to retrieve a bootstrap node that will supply it with several SORD nodes 

currently in the system. The new node then sends the join requests to one of these nodes 

to be forwarded to its geographical access point. 

Fig. 5.14 Success Rate as a Function of Scope and Search Angle 

5.9.3 Experiment 2 

In the second experiment, we evaluated the efficiency of SORD with extensive 

measurements of the success rate and the overlay path stretch as a function of the 

following parameters: 1) Search scope, 2) search scope angle a, 3) service density, 4) 
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number of mobile nodes. The search scope is the same as in the previous experiment. 

Angle a defines how many sub-areas are being searched in a given search query. 

Intuitively, increasing a increases the success rate but also increases the query cost. It is 

therefore essential to decide on the best initial a to be used. Service density refers to the 

number of distinct services in the network. We assume that each MP offers only one 

service drawn randomly from a set of 600. Each query searches for a service selected 

randomly from the same set. Even if the service is not present in the network explicitly, 

it can be provided by chaining two or more MPs. Finally, to test the efficiency of the 

SORD in the presence of churns, mobile nodes are introduced. The topology parameters 

in this experiment are the same as in section 5.9.1. The only difference is that each node 

is equipped with a wireless interface. The MAC layer uses the IEEE 801.11 protocol and 

the mobility model for each node is a Random Waypoint. Each mobile node moves 

average speed of 5 km/hour [181]. 

5.9.3.1 Scope vs. Search Angle a 

Fig. 5.14 shows the success rate of SORD when both scope and a are variables. Service 

density and mobility are set to 600 and 30% respectively. Increasing both (scope and a) 

increases the success rate. This figure suggests that choosing a in the range [30-40] 

guarantees a 100% success rate for scopes greater than 3000. While a in [15-30] attains 

a 100% success rate for larger scope values. Although a in [40-50] has a higher success 

rate than [30-40], the increase is not substantial. These observations suggest that 

applications should use 30 as an initial search scope angle, and if the desired results are 

not found, a should be increased by 5. 
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Fig. 5.15 Success Rate as a Function of Scope and Service Density 

5.9.3.2 Scope vs. Service Density 

Fig. 5.15 shows the success rate of SORD when both scope and service density are 

variables, a and mobility are set to 30 and 30% respectively. Increasing the service 

density increases the success rate. However, even for low service densities, SORD 

achieves a 100% success rate for scopes greater than 550. This observation supports the 

previous finding that a = 30 is a good initial choice. 

5.9.3.3 Scope vs. Mobility 

Mobility is an important challenge in a dynamic network. The MC (or user) might move 

to another location and the MP providing the service might be mobile or become 
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unavailable due to a power limitation. The mobility of nodes affects SORD in that each 

time a node moves away from its sub-area, the Leave algorithm will be executed and 

each time a node enters a different sub-area, the Join algorithm will be executed. This 

varies depending on whether the moving node is a local or global ring member. 

Fig. 5.16 Success Rate as a Function of Scope and Mobility 

Fig. 5.16 shows the success rate of SORD when both scope and mobility are 

variables, a and service density are set to 30 and 600 respectively. We ran the simulation 

12 times. Each run increased the number of mobile nodes by 5% by random selection. In 

each run and for each scope value, we issued 25 queries and computed the success rate. 

We observe that mobility < 35% has a limited effect on success rate. An observable 

effect appeared for mobility > 50, though SORD still achieves the 100% success rate. 

We believe that this is due to: 1) The small routing table that SORD maintains because 

less time and messages are needed to fix changes, 2) new nodes are only allowed to join 
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the local ring which leaves the global ring unchanged and operational. Only a small 

number of existing nodes in a very small locality are affected, 3) the ability to route 

around failures. 

Fig. 5.17 Overlay Path Stretch as a Function of Scope and Service Density 

5.9.3.4 Stretch 

Stretch is defined as the number of hops taken by an overlay packet divided by the 

number of hops the packet takes when using an IP-layer path between the same source 

and destination. A high stretch value indicates an inefficient SSON topology as longer 

routes delay the packets. Fig. 5.17 shows the stretch when both scope and service 

density are variables, a and mobility are set to 30 and 30% respectively. The figure is 

rotated so that the higher service density and scope values are shown in the front. When 

the number of services increases, the stretch decreases. The results show that for search 

scope values > 250 and service density > 250, stretch varies from 1.04-1.1. For smaller 
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values it varies from 1.1-1.22. Generally, the stretch is not significant considering the 

gains in other measurements. 
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5.9.4 Experiment 3 

In this experiment, we compared flat SORD, CAN [116], and CHORD [54] protocols. 

For the sake of realistic comparison, SORD nodes stores <key,value> pairs and the 

network has 106 keys. Key lookups are generated according to a Poisson process at a 

rate of one per second. Joins and failures are modeled by a Poisson process with the 

mean arrival rate of one per 60 seconds. For CAN and CHORD, each node periodically 

runs the stabilization routines at randomized intervals averaging 30 seconds; all finger 

table entries are updated on every invocation of the stabilization routine (Both CAN and 

CHORD use the same stabilization algorithm proposed originally by the CHORD 

protocol). The stabilization algorithm maintains a successor list at each node; a 

successor list of size r maintains r connections at each node pointing to the first r 
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successors in the CHORD ring. The network is strongly stabilized when r = 2logN . As a 

result, the total number of states maintained by each node is the sum of the routing table 

size and the successor list size. 
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Fig. 5.19 Overhead as a Function of Network Size 

Fig. 5.18 plots the total number of messages generated by each protocol during a 2 

hour interval. The total number of messages is normalized by the network size (4096 

nodes), and computed as the sum of the messages generated due to lookups and 

maintenance. CHORD maintains a successor list of size log N. In addition to the periodic 

refreshes sent by each node to its neighbors, CAN maintains a successor/predecessor list 

of size 2. We observed that SORD generated the lowest message overhead. Increasing 

the CAN dimensions to a certain limit decreases the total number of messages. We 

observed that this limit occurs when d = l2 = logN. (Increasing the dimension decreases 

the lookup cost). Total message cost is well beyond that of SORD due to the CAN large 
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maintenance cost. CHORD maintains more nodes in the successor list, thus incurring the 

highest message overhead. 

Fig. 5.19 shows the total number of messages (averaged over 2 hours) as a function 

of network size. Although SORDs' lookup cost increases at a greater rate than CHORD, 

the maintenance cost in SORD is very low compared to CHORD. We believe that, in 

addition to the low number of connections per node, this is due to the symmetry of the 

optimal chordal ring of degree 4. A 2 dimensional CAN maintains 4 connections per 

node and 2 connections for the successor list. While this is close to the 4 connections in 

SORD, the lookup cost in a 2 dimensional CAN grows faster than that of SORD. These 

results show that the increase of lookup costs in SORD is compensated by the decrease 

in maintenance cost. 

5.10 Scalability 

One common way to improve the performance of a network is to increase its 

connectivity and decrease its diameter, and this can be done by adding links. However, 

we want to add as few links as possible since their cost has practical implications in the 

design. Additionally, the number of links going out of a node must be small to allow for 

fast maintenance. The links must be added in a homogeneous way so that nodes can be 

easily inserted, and messages can be routed systematically. 

Dynamic Hash Table (DHT) approaches are decentralized. They support scalable 

and distributed storage, and retrieval of (Key, Data) pairs on the overlay network. In a 

network of N nodes, where each node maintains O(logAf) routing entries, DHTs generally 

perform lookups using only 0(\ogN) overlay hops (CAN [116] is an exception). In 

contrast, the proposed discovery approach, SORD, has only 4 links per node 

independent of N (the number of nodes in the network). It routes in 0(&) hops (where k 

is the diameter of the optimal chordal ring). For relatively small N , k< logN . For 

larger AT, k = c*log
2
N (where c is a variable increasing with N ). For N = 190000, c = 1 
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and for # = 1 0 , c= 1.8. CAN [116] is an exception in that it routes in 0\dN^
d
) hops 

(where d is the dimension) with a routing table size 0(dr) which is independent of N. 

Setting d = log iV allows CAN to match the scaling properties of other DHT systems in 

that it routes in OQogN) hops and requires a routing table size that is 0(\ogN). However, 

CAN is not designed to vary d as N (and thus O(logTV)) varies, therefore this match will 

only occur for the "right" N corresponding to a fixed d. Setting d = 2 allows CAN to 

match SORDs' routing table size of 0(4) but increases the lookup cost to 0(2N^
2
). This 

implies that while SORD lookups is more expensive compared to DHT systems (except 

CAN with d = 2), SORD topology is more stable in a dynamic network. This is because 

SORD uses a small routing table size that requires less work and less time to fix any 

change in the topology. These results are evident in figures 5.18 and 5.19. However, to 

increase scalability and fault isolation, hierarchies are introduced. It can be seen that 

SORD trades lookup cost for more efficiency and flexibility. 

5.11 Summary 

In this chapter, a novel scheme for semantic resource discovery has been presented. The 

proposed scheme allows services to be found without relying on centralized directory 

servers, and also minimizes query cost and response time. The approach is targeted for 

SMART [2], but it can be adapted to a wide variety of applications, such as P2P and ad 

hoc networks. The proposed overlay structure is based on a widely-studied family of 

chordal rings (the optimal chordal ring of degree 4), the semantics of the offered 

services, and the physical location of nodes. It is fault-resilient because of the multiple 

paths between ring nodes, allowing queries to be routed optimally between any two 

nodes. It has been shown that the proposed scheme is efficient in query cost, accuracy, 

and query responses. In addition, results suggest that decreasing the granularity will 

decrease the response time but increase the query cost. Moreover, an initial search angle, 

a, of 30 degrees is sufficient to give an acceptable success rate. 



Chapter 6 

Towards an Autonomic Service Architecture 

As discussed earlier, IT professionals must reinforce the responsiveness and resiliency 

of service delivery, by improving quality of service while reducing the total cost of their 

operating environments. Yet, information technology (IT) components over the past 

decades are so complex that they increase the challenges to effectively operate a stable 

environment. Overlay networks management complexity is turn increased by the huge 

number of users, terminals, and services. Although Human intervention enhances the 

performance and capacity of the components, it drives up the overall costs—even as 

technology component costs continue to decline. Due to this increased management 

complexity, this chapter gives an overview of autonomic SSONs; it proceeds as follows: 

Section 6.1 introduces autonomic overlays management challenges. Section 6.2 

discusses Autonomic overlays. Section 6.3 identifies required knowledge and their 

types, while section 6.4 proposes different policy types used to realize autonomic 

entities interactions. Finally, section 6.5 presents a discussion and summary for the 

chapter. 

6.1 Introduction 

A service delivered to a customer by a Service Provider (SP) is usually formed from 

a composition of different services. Some services are basic in the sense that they cannot 

be broken down further into component services, and they usually act on the underlying 

resources. Other services are composed of several basic services, each consisting of an 

allocation of resource amounts to perform a function. However, with the increasing 

demands for QoS, service delivery should be efficient, dynamic, and robust. Current 

124 
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manual approaches to service management are costly, and consume resources and IT 

professionals' time, which leads to increased customer dissatisfaction; with the advent of 

new devices and services, the complexity is further increased. With a large number of 

overlays, the management task becomes harder to achieve using traditional methods. 

Therefore, new solutions are needed to allow SPs to support the required services, and to 

focus on enhancing these services, rather than their management. Autonomic Computing 

(AC) helps address this complexity by using technology to manage technology. 

The concept of autonomic computing (AC) [93] was proposed by IBM to enable 

systems to manage themselves through the use of self-configuring, self-healing, self-

optimizing, and self-protecting solutions. It is a holistic approach to computer systems 

design and management, aiming to shift the burden of support tasks, such as 

configuration and maintenance, from IT professionals to technology. Therefore, AC is a 

key solution for SSON management in heterogeneous and dynamic environments. 

Establishing a SSON involves 1) Resource discovery to discover network-side 

nodes that support the required media processing capabilities, 2) an optimization 

criterion to decide which nodes should be included in the overlay network, 3) 

configuring the selected overlay nodes, and 4) adapting the overlay to the changing 

network context, user, or service requirements, and joining and leaving nodes. In AC, 

each step must be redesigned to support autonomic functions. In other words, in 

Autonomic Overlays (AO), each step imposes a set of minimum requirements. For 

example, the resource discovery scheme should be distributed and not rely on a central 

entity; it needs to be: Dynamic to cope with changing network conditions; efficient in 

terms of response time and message overhead; and accurate in terms of its success rate. 

The optimization step is mapped into a self-optimization scheme that selects resources 

based on an optimization criterion (such as delay, bandwidth, etc.) and should yield the 

cheapest overlay, and/or an overlay with the least number of hops, and/or an overlay that 

is load-balanced, and/or a low latency overlay network, and/or a high bandwidth overlay 

network. The configuration of the selected overlay nodes in a given SSON is mapped 

into a self-configuration and self-adaptation. Self-configuring SSONs dynamically 
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configure themselves on the fly. Thus they can adapt their overlay nodes immediately to 

the joining and leaving nodes and to the changes in the network environment. Self-

adapting SSONs self-tune their constituent resources dynamically to provide 

uninterrupted service. Our goals are to automate overlay management in a dynamic 

manner that preserves the flexibility and benefits that overlays provide, to extend 

overlay nodes to become autonomic, to define the inter-node autonomic behavior 

between overlay nodes, and to define the global autonomic behavior between SSONs. 

This chapter proposes a novel Management Architecture for overlay networks. 

There are two main contributions brought about by the Architecture: First, we introduce 

the concept of Autonomic Overlays (AO), in which SSONs and their constituent overlay 

nodes are made autonomic and thus become able to self-manage. Second, autonomic 

entities are driven by policies that are generated dynamically from the context 

information of the user, network, and service providers. This ensures that the creation, 

optimization, adaptation, and termination of overlays are controlled by policies, and thus 

the behaviors of the overlays are tailored to their specific needs. 
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6.2 Autonomic Overlays 

To tackle the complexity of overlay management, each SSON is managed by an SSON 

Autonomic Manager (SSON-AM) that dictates the service performance parameters. This 

ensures the self.* functions of the service. In addition to this, overlay nodes are made 

autonomic to self-manage their internal behavior and their interactions with other 

overlay nodes. In order to ensure system wide performance, System Autonomic 

Managers (SAM) manages the different SSON managers by providing them with high 

level directives and goals. The following sections detail the different aspects of our 

architecture. 

6.2.1 Architecture Overview 

The set of components that makes up our architecture is shown in Fig. 6.1. The lowest 

layer contains the system resources that are needed for multimedia delivery sessions. In 

particular, the Overlay Support Layer (OSL) receives packets from the network, sends 

them to the network, and forwards them on to the overlay. Overlay nodes implement a 

sink (MediaClient, or MC), a source (MediaServer, or MS), or a MediaPort (MP) in any 

combination. MPs are special network side components that provide valuable functions 

to media sessions; these functions include, but are not limited to, special routing 

capabilities, caching, and adaptation. These managed resources can be hardware or 

software and may have their own self-managing attributes. 

The next layer contains the overlay nodes. Overlay nodes are physical Ambient 

Network nodes that have the necessary capabilities to become part of the SSON. They 

consist of a control plan and a user plan. The control plan is responsible for the creation, 

routing, adaptation, and termination of SSONs, while the user plan contains a set of 

managed resources. The self-management functions of overlay nodes are located in the 

control plan. The Ambient Manageability interfaces are used by the self-managing 

functions to access and control the managed resources. The rest of the layers automate 
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the overlays' management in the system using their autonomic managers. SSON-AMs 

and SAMs may have one or more autonomic managers, e.g. for self-configuring and 

self-optimizing. Each SSON is managed by an SSON-AM that is responsible for 

delivering the self-management functions to the SSON. The SAMs are responsible for 

delivering system wide management functions; thus, they directly manage the SSON-

AMs. The management interactions are expressed through policies at different levels. 

All of these components are backed up with a distributed knowledge. The following 

sections describe each component in detail. 
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Fig. 6.2 Autonomic control loop 

6.2.2 Autonomic Elements 

6.2.2.1 Overlay Nodes Autonomic Manager (ONAM) 

Each overlay node contains a control loop similar to the IBM control loop [90], as 

shown in Fig. 6.2. The Autonomic Manager (AM) collects the details it needs from its 

managed resources, analyzes those details to decide what actions need to change, 

generates the policies that reflects the required change, and enforces these policies at the 

correct resources. As shown in the figure, the ONAM consist of the following: 
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Monitoring Agents (MAs): These agents collect information from the overlay 

node resources, such as packet loss, delay jitter, and throughput. A MA also correlates 

the collected data according to the installed policies, and reports any violation to the 

Analyze/Learning Agent (ALA). For example, an MA for a Caching MP collects 

information about the MP's available capacity, and whenever the available capacity 

reaches 10%, it reports to the ALA. Another example is the MA for a routing MP that 

relays data packets between overlay nodes: Its MA collects information about the 

throughput and reports to the ALA whenever the throughput reaches a high value. These 

collected data will be used to decide the correct actions that must be taken to keep the 

overlay node performance within its defined goals. The MAs interact with the Resource 

Interface Agents (RIAs) to monitor the overlay node resources availability, and to 

collect data about the desired metrics. They also receive policies regarding the metrics 

that they should monitor as well as the frequency in which they report to the ALA. 

Analyze/Learning Agent (ALA): This agent observes the data received from the 

MAs, and checks to see whether a certain policy with which its overlay node is 

associated is being met. It correlates the observed metrics with respect to the contexts, 

and performs analysis based on the statistical information. In the case that one of 

policies is violated, it sends a change request to the Policy Generator (PG). This 

component is an objective of future work. 

Policy Generator (PG): The difference between this control loop and the IBMs' 

control loop lies in the use of a PG instead of a Plan component. The Plan function -

according to IBM [90] - is to select or create a procedure that reflects the desired change 

based on the received change request from the Analyze Agent. This is not sufficient in 

our case, where each overlay node receives high level policies and it is up to the overlay 

node to decide how to enforce these policies based on its available resources. Therefore, 

we envisioned a PG instead. The PG reacts to the change request in the same way as in 

the Plan component, although it also generates different types of policies in response to 

the received high level policies. For example, based on the goal policies received by the 

overlay node, the policy generator generates the tuning polices and passes them to the 
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MAs (more about this in Section 3.4). Upon generating new policies, the policy 

generator consults a Conflict Resolution Agent (CRA) that ensures the consistency of 

the new generated policies with those that already exist. Generally, we divide conflicts 

into two types: Static and dynamic. In our model, a static conflict is a conflict that can be 

detected at the time of generating a new policy, while a dynamic conflict is one that 

occurs at run time. 

Policy Enforcement Agent (PEA): The PG generates suitable policies to correct 

the situation in response to a change request, and passes these policies to the PEA. The 

PEA then uses the suitable RIA to enforce them. This includes mapping the actions into 

executable elements by forwarding them to the suitable RIA responsible for performing 

the actual adjustments of resources and parameters. The enforced policies are then stored 

in the Knowledge Base (KB). 

Resource Interface Agents (RIAs): These implement the desired interfaces to 

the overlay node resources. The MAs interacts with them to monitor the availability of 

overlay node resources and the desired metrics in its surrounding environment. Each 

resource type has its own RIA that translates the policy actions into an adjustment of 

configuration parameters that implements the policy action. 

External Interfaces: Each overlay node has a set of interfaces to receive and 

export events and policies to other overlay nodes. These interfaces are essential to 

enable multiple overlay nodes to cooperate to achieve their goals. In particular, these 

interfaces are used by the SSON-AM to interact with the overlay nodes that had agreed 

to participate in the SSON. The SSON-AM sends the system policies to the overlay 

nodes through these interfaces, through which it also receives reports on their current 

status. 
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6.2.2.2 SSON Autonomic Managers (SSON-AM) 

SSON-AMs implement the intelligent control loop in much the same way as ONAMs. 

They automate the task of creating, adapting, configuring, and terminating SSONs. They 

work directly with the ONAM through their management interfaces. They perform 

different self-management functions, such as self-configuring, self-optimizing, and self-

adapting. Therefore, they have different control loops. Typically, they perform the 

following tasks: 

Self-configuration: SSON-AMs generate configuration policies in response to 

the received system policies. They use these policies to configure overlay nodes that are 

participating in a given SSON. 

Self-optimization: during SSON construction, SSON-AMs discover the overlay 

nodes required to set up a routing path for the multimedia session. Therefore, they are 

responsible for optimizing the service path to meet the required QoS metrics induced 

from high level policies as well as the context of the service. 

Self-Adaptation: SSON-AMs monitor the QoS metrics for the multimedia 

session and keep adapting the service path to the changing conditions of the network, 

service, and user preferences. They also monitor the participating overlay nodes and find 

alternatives in case one of the overlay nodes is not abiding to the required performance 

metrics. 

SSON-AMs receive goal policies from the SAMs to decide the types of actions that 

should be taken for their managed resources. A SSON-AM can manage one or more 

overlay nodes directly to achieve its goals. Therefore, the overlay nodes of a given 

SSON are viewed as its managed resources. In addition, they expose manageability 

interfaces to other autonomic managers, thus allowing SAMs to interact with them in 

much the same way that they interact with the ONAMs. 
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This is illustrated in Fig. 6.3. Where the lower part represents an SSON that consists of a 

Source (S), a Destination (D), and a MediaPort (MP). The SSON is managed by a 

SSON-AM. Since the SSON-AM can manage multiple SSONs, it has its own 

Knowledge Base (KB). It contains also a PG backed up with a CRA. The PG has access 

to the available context information that assists it in achieving its goals. The upper part 

represents a SAM and its components. The SAM is able to manage one or more SSON-

AMs. Therefore, it has its own KB, and PG. The context information of the user, 

network, and service is assumed to be available to these autonomic managers as they can 

acquire it from the Context Functional Area in the Ambient Control Space [46]. 
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Fig. 6.3 The relation between an SSON, SSON-AM, and SAM 

6.2.2.3 System Autonomic Managers (SAM) 

A single SSON-AM alone is only able to achieve self-management functions for the 

SSON that it manages. If a large number of SSONs in a given network with their 

autonomic managers is considered, it is observable that these SSONs are not really 
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isolated. On the one hand, each overlay node can be part of many SSONs if it offers 

more than one service or if it has enough resources to serve more than one session. On 

the other hand, the SSONs' service paths may overlap, resulting in two or more SSONs 

sharing the same physical or logical link. For example, consider two SSONs sharing the 

same routing MP with the same goal to maximize throughput. This will lead to a 

competition between autonomic managers that are expected to provide the best 

achievable performance. Therefore, and in order to achieve a system wide autonomic 

behavior, the SSON-AMs need to coordinate their self-managing functions. Typically 

this is achieved using SAMs. SAMs can manage one or more SSON-AMs. They pass 

the system high level policies, such as load balancing policies, to the SSON-AMs. 

Moreover, whenever they find shared goals between two different SSON-AMs, they 

inform them to avoid conflicting actions. The involved autonomic managers then contact 

each other to coordinate their management actions before they are passed to their 

overlay nodes. 

Sharing goals is not the only reason for the coordination step; SSONs sharing 

common links as well as SSONs that belong to the same policy domain (same service 

class, ISP, etc.) may also need to coordinate their management actions. Moreover, 

SSONs that share common nodes/links affect each other's performance, as they compete 

for the shared resources. This might result in a degraded performance as the competition 

will cause the control loop to be invoked frequently in an attempt to reach the desired 

performance goals. Also, all the SSONs in a given domain (ISP) are expected to achieve 

the domain wide policies together. Coordination allows these policies to be dispatched 

and adapted to each SSON in a way that achieves the desired goals. Moreover, it also 

allows the sharing of control and information between different SSONs. A set of SSONs 

that are co-located in given vicinity (such as an area, domain, AS, etc.) are usually 

equipped with independent route decisions based on its observations of its environment. 

Sharing this information will result in a reduced overhead for each overlay to compute 

this information, and will allow for adapting and generating policies to achieve better 

performance. 
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6.3 Distributed Knowledge 

Each autonomic manager obtains and generates information. This information is stored 

in a shared Knowledge Base (KB) (see Fig. 6.3). The shared knowledge contains data 

such as SSON topology, media type descriptions, the set of policies that are active, and 

the goal policies received from higher level autonomic managers. The shared knowledge 

also contains the monitored metrics and their respective values. When coordination is 

needed, each autonomic manager can obtain two types of information from its peers. 

The first is related to the coordination actions and the second is related to the common 

metrics in which each autonomic manager is interested. Therefore, knowledge evolves 

over time; the autonomic manager's functions add new knowledge as a result of 

executing their actions, obsolete knowledge is deleted or stored in log files. Also, goal 

policies are passed from high level autonomic managers to their managed autonomic 

managers. The context information of the network, users, and services is also used 

primarily to aid in generating suitable policies at each level of autonomic managers. 

6.4 Policies 

The use of policies offers an appropriately flexible, portable, and customizable 

management solution that allows network entities to be configured on the fly. Usually, 

network administrators define a set of rules to control the behavior of network entities. 

These rules can be translated into component-specific policies that are stored in a policy 

repository and can be retrieved and enforced as needed. Policies represent a suitable and 

efficient means of managing overlays. However, the proposed architecture leverages the 

management task to the overlays and their logical elements, thus providing the directives 

on which an autonomic system can rely to meet its requirements. Policies in our 

autonomic architecture are generated dynamically, thereby achieving an automation 

level that requires no human interaction. In the following, we will highlight the different 
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types of policies specific to autonomic overlays. These policy types are generated at 

different levels of the system. 

Configuration policies: These are policies that can be used to specify the 

configuration of a component or a set of components. The SSON-AMs generate the 

configuration polices for the service path that meets the SSON's QoS requirements. The 

ONAMs generate the specific resource configuration policies that, when enforced, 

achieve the SSON QoS metrics. The user, service, and network context are used by these 

autonomic managers to generate configuration policies. 

Adaptation policies: Thesre policies that can be used to adapt the SSON to 

changing conditions. They are generated in response to a trigger fired by a change in the 

user, service, or network context. SSON-AMs receive these triggers either from the 

SAMs or from the ONAMs, while the ONAMs receive these triggers either from the 

SSON-AMs or from their internal resources. Whenever a change that violates the 

installed policies occurs, an adaptation trigger is fired. The autonomic manager that first 

detects this change tries to solve the problem by generating the suitable adaptation 

policies; if it does not succeed, it informs the higher level autonomic manager. 

Coordination policies: Are policies that can be used to coordinate the actions of 

two or more SSON-AMs. They are generated by the SAMs to govern the behavior of 

SSON managers that have conflicting goals to avoid race conditions. 

Regulation policies: These are generated by the overlay nodes themselves to 

control the MAs' behavior with respect to their goals. For example, a MA that measures 

throughput has a policy to report throughput < 70%. Another regulation policy can be 

installed to replace this policy and report throughput < 90%. The second regulation 

policy can be generated in response to an adaptation policy that requires throughput to 

be at least 90%. The MAs therefore are made more active to contribute to achieving the 

required tasks. 
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Fig. 6.4 Different Policy Levels 

Figure 6.4 shows how these policies are related to our autonomic architecture. At 

the highest level, the SAMs define the set of system polices. These policies represent the 

system-wide goals and do not describe either the particular devices that will be used to 

achieve the system goals, or the specific configurations for these devices. SAMs pass 

these policies to the SSON-AMs. SSON-AMs refine the system policies and generate 

service specific policies. They do so by adding further details to the system policies. 

These details are induced from the system policies as well as from the context 

information of the users, the network, and the service. At this level, the goals of the 

SSON under discussion, such as the permitted QoS metrics, are defined. These goals are 

still device independent policies. The set of service polices is then passed to the 

ONAMs. These autonomic managers further refine the received policies and generate 

the overlay node polices and their respective resource specific policies. Overlay node 

policies represent the goals that this overlay node is expected to achieve, while resource 
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specific policies represents the actual actions that the resources of the overlay node has 

to do to achieve the overlay node goals. This separation of policies allows each 

autonomic element to focus on its goals and how to achieve them using its current 

resources while contributing at the same time to the overall system performance. By de-

coupling the functionality of adapting overlay node resources policies from the task of 

mapping system objectives and abstract users' requirements, the policy separation offers 

users and IT professionals the freedom to specify and dynamically change their 

requirements. The hierarchical policy model is used to facilitate the mapping of higher 

level system policies into overlay node objectives. Given sets of user, service and 

network context and constraints, as well as sets of possible actions to be taken, decisions 

for policy customizations are taken at run time based on values obtained from MAs to 

best utilize the available overlay node resources. 

In addition to generating policies from high level goals, the policy generator located 

in each autonomic manager serves as a Policy Decision Point (PDP) for the low level 

autonomic manager. For example, the SSON-AM serves as a PDP for the ONAM. 

Whenever an ONAM detects that one of the configuration policies has been violated, it 

tries to solve the problem locally. If it is unable to do so, it consults the SSON-AM to 

which the overly node is providing a service. The SSON-AM then tries to solve the 

problem by either relaxing the goals of the services or by finding an alternative overlay 

node that is able to achieve the SSON's goals. The SSON-AM then informs the ONAM 

of its decision, and may also consult its designated SAM to acquire decisions on 

situations that it cannot handle locally. The autonomic manager acting as a PDP decides 

which policies, if any configuration or adaptation policies have been violated, were most 

important and what actions to take. It uses information about the installed policies and 

the current context of the user, network, and service. 

6.5 Summary 

In this chapter, a novel scheme for SSONs autonomic management has been presented. 

This work provides a complete integrated architecture for autonomic SSONs 
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management; it illustrates the benefits of avoiding the complexity of existing service 

management systems. The road towards fully autonomic system architecture is still long; 

however, and this chapter presents an autonomic overlay architecture that represents the 

basic building blocks needed by autonomic overlay systems. 

The success of autonomic computing relies on systems' ability to manage 

themselves, and to react to changing conditions. The proposed layered architecture for 

autonomic overlay provision enables autonomy and dynamic overlay construction 

through multi-level policies. The architecture components can self-assemble into an 

overall autonomic system—flexibility is crucial to the system. Therefore, individual 

overlay nodes should be able to self-organize to form diverse SSONs. This is possible 

through the investigation of the different media types and QoS requirements for each 

media delivery session, which allows for the dynamic self-composition of the 

fundamental services needed by SSONs. This will lead to the ultimate dynamic self-

management, and will require the dynamic assignment of SSON-AMs and SAMs. 



Chapter 7 

A Self-Organizing Composition towards Autonomic Overlay 

Networks 

As illustrated in the previous chapter, a major challenge for autonomic computing is 

composing multiple autonomic entities to achieve system-wide goals. In autonomic 

overlays, the challenge involves composing multiple autonomic overlay nodes to 

construct SSONs, which achieves the required QoS. This chapter presents a novel self-

organizing composition scheme that can compose overlay nodes to realize SSONs using 

a self-organizing principle. The rest of this chapter is organized as follows: Section 7.1 

introduces autonomic composition challenges. Section 7.2 summarizes related work. 

Section 7.3 introduces design goals, composition model, self-organizing rules, and the 

composition algorithm. In Section 7.4, we present simulation details and results, and 

finally, the chapter is concluded with a brief summary. 

7.1 Introduction 

Recently, considerable research has been exhausted on self-managing systems, including 

work from IBM's autonomic computing initiative. As illustrated in Section 3.2.4, IBM 

introduced the concept of Autonomic Computing (AC) [93], which allows systems to 

manage themselves. IBM identified the complexity of current computing systems as a 

major burden that hinders its growth [90]. AC simplifies and automates many system 

management tasks that are otherwise traditionally carried out manually. Systems that 

manage themselves are able to adapt to changes in their environment in accordance with 

business objectives. The result is a great saving in management costs and in the time of 

IT professionals. Liberated from manual operations, these professionals can focus on 

139 
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improving their overall service. A major challenge in their work [90], [92] is to compose 

multiple autonomic entities to achieve system-wide goals. We faced a similar challenge 

when we attempted to compose multiple autonomic overlay nodes to construct SSONs. 

Service composition has been proposed within service-oriented environments [182]. It 

allows simple services to be dynamically combined into more complex services. Service 

composition is usually defined as a directed acyclic graph G(N, L, W), where N is the 

number of services in G, and L is the set of links in which a link l(u, v) represents a 

service composition between u and v, with W as its cost. A service path is defined as a 

path in Gthat minimizes a cost criterion. In a highly dynamic network such as SMART, 

MPs' services are dynamic and change over time. The number of services N is therefore 

not known beforehand. Assuming there is a large number of MPs, the set of links L that 

represents all the possible service compositions, changes dynamically. It is impractical 

to rely on a predefined set of services, as we need an accurate view of the network at any 

time. These problems can be solved using a registrar entity in which all MPs register 

their services. The service path is then found by searching G for the best path that 

minimizes the cost criterion (delay, jitter, throughput, e t c . ) . Most service composition 

schemes use this model, but it has become unsuitable for media delivery because of its 

poor scalability and reliability. The central entity is a single point of failure; it also 

consumes bandwidth because each MP has to re-register its services and resources each 

time a change occurs. This also means that G has to be re-computed, and another search 

performed for the best service path. Clearly, this solution is not cost efficient, and in a 

dynamic network where the topology is always changing, a central entity is not reliable 

as it may unpredictably leave the network. 

This chapter builds on the previous one, where we proposed Autonomic Overlays, 

and developed the service specific autonomic architecture, and focuses on the problem 

of composing different autonomic elements to achieve system wide goals. 
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7.2 Related Work 

Service Composition is the orchestration of a number of existing services to provide a 

richer composite service assembled to meet some user requirements. In particular, if no 

single service can satisfy the functionality required by the user, it should be possible to 

combine existing services together in order to fulfill the request. This has triggered a 

considerable number of research efforts on composition. Composition techniques can be 

classified into static and dynamic. In static composition, available services are combined 

by adding a central coordinator that is responsible for invoking and combining the single 

sub-services. This means that the requester should build an abstract process model 

before the composition starts. The model includes a set of tasks and their data 

dependency. On the other hand, the dynamic composition composes services on 

demand, based on requests from users. For instance, by dynamically composing services 

on demand, services do not need to be configured or deployed in advance. In addition, 

by composing services based on requests from users, it is possible to customize the 

services to individual user profiles. The dynamic composition of services requires the 

placement of services based on their capabilities and the recognition of those services 

that can be matched to create a composition. 

Several dynamic service composition systems have been proposed. In [183], an 

architecture that obtains intuitively the semantics of the requested service, is proposed. It 

discovers the components required to compose a service, and composes the requested 

service based on its semantics and the semantics of the discovered components. 

Unfortunately, discovery and execution of the service are carried out by a central 

middleware. SpiderNet [184] is a QoS-aware service composition framework that 

provides a Bounded Composition Probing (BCP) scheme to achieve QoS-aware service 

composition. The basic idea of BCP is to examine a small subset of good candidate 

compositions according to the users' service requirements and current system 

conditions. The BCP scheme executes a hop-by-hop distributed composition protocol to 

achieve its goals. However, the user has to be aware of the required services and 

specifies them before hand. 
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Work flow systems [185], [186], [187], [188], [189], and [190] require a user to 

request a service by choosing or creating a service template that describes the structure 

of the service in a flowchart-like diagram. They compose the requested service through 

discovering the components necessary to convert the template into an executable 

workflow. For example, eFlow[185] uses a static workflow generation method. A 

composite service is modeled by a graph that defines the order of execution among the 

nodes in the process. The graph is created manually but it can be updated dynamically. 

Many research efforts tackling service composition problem via AI planning have 

been reported. Methods in [191], [192], and [193] adapt and extend the Golog language 

for automatic construction of Web services that are built on top of the situation calculus. 

The general idea of this method is that software agents could reason about Web services 

to perform automatic Web service discovery, execution, composition, and inter-

operation. Existing systems [194], [195], [196], [197], and [198] require a user to 

request a service using a logic language. For example, the system described in [198] 

requires a user to choose a meta-program described in Golog logic programming 

language. Similarly, in SWORD [194], a service is modeled by its preconditions and 

post conditions. They are specified in a world model that consists of entities and 

relationships among entities. A web service is represented in the form of a Horn rule that 

denotes the post conditions are achieved if the preconditions are true. To create a 

composite service, the service requester only needs to specify the initial and final states 

of the composite service, and then the plan generation can be achieved using a rule-

based expert system. However, rule-based chaining can sometimes generate "uncertain" 

results if a precondition cannot uniquely determines a post condition. AI planning 

systems compose the requested service in a logic language through a form of planning. 

However, understanding logic programming languages may not be an easy task. 

Service composition has been also addressed by systems such as GriPhyN [199], 

Libra [200], Ninja [201], and CANS [202]. GriPhyN considers compositions as a static 

graph of services, and assumes prior knowledge of the participating services and their 

interaction patterns. The Libra framework aims to automate the optimal composition of 
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services across the wide-area network using service-specific knowledge. Ninja is a path-

based approach that allows services to be automatically discovered and composed into a 

path. CANS uses type-based specification of components and network resources to 

enable service access paths to be dynamically and automatically constructed. A 

mechanism that constructs all possible compositions based on their semantic and 

syntactic descriptions was proposed in [182]; in this approach, all available services are 

grouped into directories. The approaches in [203], [204], and many others, mandate the 

service requests to describe the structure of the service. The composition is carried out 

by discovering the necessary components. Projects [205], [206] compose services if their 

basic components are present in the network. If one component is missing, an extended 

discovery stage is required. Such and other research projects (e.g., [207], [208], and 

[209]) attempt to generate a global system configuration, under specific optimization 

criteria. Most see composition as a discovery problem, but they either rely on a 

centralized composition entity—which has scalability limitation—to carry out the 

discovery, integration and composition of services, or they assume a prior knowledge of 

a service graph that defines the basis for their composition algorithms. Moreover, 

previous work only supports linear composition topology and fixed composition order, 

which greatly limits the applicability and efficiency of service composition. Our work 

addresses these limitations and proposes the composition of autonomic elements in 

which each autonomic element is self-managed. 

7.3 Self-Organizing Composition 

Autonomic elements inherently guarantee self-management functions for their own 

resources. However, SSONs are made up of many autonomic elements. The need is 

therefore to develop tools and environments that facilitate the automated composition of 

elements into more complex services. Our scheme is based on self-organizing principles 

found in many biological systems [210]. The requirements for SSON composition are 

listed below. 
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• Decentralized: A mechanism is needed to dynamically and automatically select 

different overlay nodes first to construct an SSON and then be manageable by 

SSON managers. This achieves automatic operation and avoids a single point of 

failure. 

• Efficient: The overlay nodes should be selected with minimal disruption to 

existing services. The use of extensive real-time communications should be 

limited, while maintaining the QoS requirements. 

• Robust: Automatic and self-organizing selection and reselection of overlay nodes 

is needed in order to avoid both the failure of nodes (due to the network's high 

mobility and heterogeneity) and a single point of failure. 

• Dynamic: No set of autonomic managers in the network should be permanently 

responsible for a particular management task. Tasks should be automatically 

transferable so that loads are balanced and scalable. 

• Distributed and self-organized: The selection of the overlay nodes required to 

construct an SSON should be distributed in order to minimize overhead on the 

node responsible for management. The selection of the set of nodes with which 

SSONs are constructed should use local knowledge only. 

Fig. 7.1 Types of MPs Services Composition 
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7.3.1 Composition Model 

Our work does not assume a specific service description; services can be described using 

standard Web Service Description Language (WSDL) [211], for example, and extended 

with semantic metadata. For clarity, we use the same MPs modeling presented in Section 

5.3. To summarize, a service S can be described using service identification ID, an 

input/, an outputO, and the function / that the service provides. Using this simple 

representation, a service S always receives / and produces O as a result of applying 

/ o n / . Each service used incurs a cost and each MP provides one or more services. 

Given an input media / and a requested output media O, the problem is to find a service 

path that transforms / into O and minimizes or maximizes a cost criterion. 

As shown in Fig. 7.1a, MPs can be described according to their input and output 

ports: Single, splitters, or joiners [212]. Single MPs have only one input port and one 

output port. Splitters have one input and several outputs. Joiners have several inputs that 

they merge into one output. Services can therefore be independent, or partially or 

completely composed. As shown in Fig. 7.1b, independent MPs can perform a service 

without help from other MPs. Partially composed MPs are those that need other MPs to 

provide a complete service. Completely composed MPs are those that provide a 

complete service. 

7.3.2 Definition of the Problem 

In a dynamic network, each of a set of MPs may offer one or more services. Each MP 

has knowledge of only its services and of those offered in its vicinity. A Media Client 

(MC) requests media from a Media Server (MS). Media are characterized by the input 

(I) that represents the type of media that the MS has, the output (O) that the client can 

accept, and the required QoS. The composition problem is to determine the media flow 

that transforms I into O. 
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Knowledge is defined by the vicinity of each MP. The vicinity can be as small as 

the direct neighbors of a MP or as large as the whole network. The smaller the vicinity, 

the more local the knowledge and the lower the cost needed to acquire it. Operating at 

either end of this range is impractical: Knowledge of the whole network poses similar 

problems to using a central entity, and the direct neighbors of a given MP might not be 

MPs themselves. We therefore define the vicinity as the set of MPs in a sub-area of the 

network. Each sub-area must be large enough to contain multiple media ports and small 

enough to minimize the cost of acquiring the local knowledge. Generally, a service path 

should meet the required QoS, that is, it should minimize or maximize a cost criterion. 

We do not impose strict parameters on these criteria because they are application and 

user-dependent. For example, one user might be interested in maximizing the 

throughput, while another user might wish to minimize delay. Moreover, only the input 

and the output of each requested media flow are known beforehand, while the service 

path composition and the order of service are determined dynamically. 

(xl,.yl) 

Fig. 7.2 Network Geographical Area and Search Scope Angle 
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7.3.3 Self-composing Assumptions and Rules 

We assume that each node knows its geographical location, and that the network 

geographical area is two-dimensional. This can be obtained by mapping IP to 

geographical locations [213]. We also assume that the area is further divided into sub-

areas of equal size as shown in Fig. 7.2. It is the same as Fig. 5.5. We repeat it here for 

clarity. Note that although the computation is similar, it is being used differently in this 

chapter. In this chapter we don't maintain any form or structure between nodes. 

Therefore, the only needed knowledge is the geographical location. While in Chapter 5, 

the resource discovery, we form an optimal chordal ring between nodes and the 

computed nodes inside a given search angle are the nodes on that ring. Moreover, 

routing is based on the connections of the optimal chordal ring. In contrast, routing here 

is based on flooding and the search angle limits the propagation of the flooded request to 

those nodes inside the angle scope. The sub-areas are fixed for sufficient time to allow 

each node to become aware of them. This knowledge can be broadcast once to all nodes 

in the network; new nodes acquire the knowledge from neighboring nodes. As stated 

previously, each MP knows its own services and those offered by MPs in its sub-area. 

This knowledge is also obtained by broadcasting it in each sub-area. Although this step 

is a clear overhead, it is required only once by each MP. Initially, the service request is 

forwarded based on local knowledge only, that is, only to nodes that can provide a value 

for the service request and for its output service. We also forward the service request 

only to MPs in the direct path between the MC and the MS (the shaded area shown in 

Fig. 2). This is because service composition is useful only when it can bring the media 

flow closer to its goal. Looping of a service path is undesirable because of its clear 

performance problem, and because closer nodes can be expected to require fewer hops 

than those further away. Finally, each MP has a distance function that is used to 

produce the list of required adaptations for a media flow based on its input and output. 

Using these assumptions, a MediaPort A has a list of other MPs that provide services 

(called the ActiveList). A may be able to compose with all of these services, with some 

of them, or with none at all. The composition may be partial or complete. Whenever A 

receives a composition task during its lifetime, if it is unable to execute the task 
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independently, it forwards the composition task to the highest ranked MP that it can 

compose with in its ActiveList. The rank between MPs A and B is R(A, B) and is 

calculated using the following rules: 

• R(A, B) — 4, If A knows that B can compose with A to provide a complete service 

• R(A, B) = 3, If A knows that B can compose with A to provide a partial service 

• R(A,B) = 2, IfA knows that B can provide a complete service by itself without 

composing with A 

• R(A,B) = I, If A knows that B can provide a partial service by itself without 

composing with A 

• R(A,B) = 0, If A knows that B can't provide a service at all 

These ranks can be viewed as virtual links with a strength value. A rank of 0 means 

that the link has no chance to be selected in the composition process as it provides no 

useful service. However, the link is maintained, as it might be needed to forward the 

request if the current node is not aware of any other node that it can compose with. The 

higher the strength, the more chances the MP has to be selected. The ranks represent the 

initial view of MP A to its vicinity. The ActiveList becomes dynamic, as the ranks 

based on the actual selection of nodes are modified and as links are added or removed. 

Since the network is dynamic, MPs may leave or join it. Whenever a new MP joins the 

network, it broadcasts its availability to its vicinity allowing other nodes to update their 

ActiveLists and whenever a MP discovers that one of its ActiveList members is 

unavailable, it removes it from the list. By the use of learning rules, new members from 

neighboring sub-areas can be added to the ActiveList as described later. 
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1. If 4̂ is within the search scope, it Computes the list of adaptations A[i] that are 

needed to transform I into O, 

2. Extracts the elements in the composition history and adds to the list of adaptations 

A[i] all the available partial adaptations. 

3. For each adaptation in A[i] 

3.a If A can provide a complete service it will add to the composition history its 

ID, the service cost, and the available information that is relevant to the QoS 

metrics (ex. The delay between itself and the node that it composes with) 

3.b If A can provide a partial service then it will add to the composition history the 

above information in addition to the output partial service. 

3.c If A can provide both complete and partial adaptation it will add both to the 

composition history. 

3.d If A doesn't provide any type of adaptation, it adds nothing. 

4. Forwarding the service request: A checks its ActiveList to decide where to send the 

service request. Generally, A prefers MPs with highest ranks. To further limit the 

forwarding and to reduce the cost of sending messages it do the following: 

4.a If A knows a MP that it can provide a complete service it forward the message 

to it. 

4.b If A knows a MP that it can compose with, it forward the message to it. 

4.c If the activeList has all ranks zero, then A has no clue about where it should 

forward the message. Therefore, A sends it to all of its ActiveList Members. 

5. Any node that receives a forwarded message deals with it in the same way as A did. 

The only exception is for the receiver node to be the MS, in which case, the MS 

waits for a period of time T, and retrieves the composition history from each 

received message. It then selects a path that meets the cost metric for the media flow, 

and sends a ConstructPath message through the path to the MC in a reverse order. If 

no path is retrieved, the MS sends a failure message to the MC that will resubmitted 

composition request after increasing a. 

Fig. 7.3 Composition Algorithm 
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7.3.4 Self-organizing Composing Algorithm 

A media flow is constructed when a MC requests a service composition task. The MC 

broadcasts a composition request to its vicinity containing the request ID (RID), the 

MediaClient Input (I), the MediaServer Output (O), the QoS requirements, and the angle 

a [0,180] that determines the search scope between the MC and the MS (see Fig. 7.2). 

The larger a is, the more sub-areas are included in the search. The message contains the 

task information as well as the composition history accumulated as the message is sent 

through the network. To prevent the uncontrolled forwarding of a service request, each 

node keeps a record of received requests and compares any new request with this record. 

If the request has already been dealt with, it is discarded. MP A processes a request as 

shown in Fig. 7.3. 

To know that it is within the search scope, A computes the angles p and <j> using the 

following formula: 

. J \(x2-xl)(yl-y0)-(xl-xO)(y2-yl) 
p = sin — ( 7 n 

i k V(*2 - *02 + (y2 - yi)
2
 * V(*i - *°)2 + G* ~ y°f J 

Where (xl,yl) is the MC location, (x2,yl) is the MS location, (x0,y6) is the location of A . 

A is within the scope area if /? < °fy A ^ < 85 

If A is not within the search scope, it discards the message. 

This composition algorithm relies on the message being broadcasted from the MC 

to MPs in its vicinity and from any MP with an ActiveList of zero to its vicinity. But the 

clear overhead of broadcasting renders this undesirable. We therefore combine the 

algorithm with learning rules induced from biological systems [210]. These rules are: 

1. Learning from interaction: Since the service request is sent to all sub-areas in the 

search angle a, an MP in one sub-area may learn about MPs that it can compose with 

in other sub-areas. Step 3.b of the algorithm shows that this knowledge can be 
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acquired with no extra cost. Because each MP adds its own adaptations to the 

adaptation list A[i], any MP can decide which of the MPs that it can compose with 

are not listed in its ActiveList. Those MPs can be added to the ActiveList for future 

use and the same rules can be used to rank them. In the first few requests, this rule 

does not reduce the message cost, and the algorithm still uses the broadcasting option. 

As the number of requests increases, so does the number of useful links added. The 

message overhead is thereby reduced. Typically, each MP has limited space in which 

to store information about its neighboring MPs. Adding more MPs fills the available 

space quickly. We therefore use a replacement strategy whereby any new MP is 

added to the ActiveList if the ActiveList is not full. If it is full, the MP with the 

lowest rank is replaced by the new one. 

2. Positive and negative feedback: in step 4 of the algorithm, a MP forwards the service 

request to nodes in its ActiveList. Although our filtering rules reduce the number of 

nodes to which the message is forwarded, the number of candidate nodes could still 

be high and the resulting overhead is undesirable. Nor are all candidate nodes really 

needed, as some may not be willing to participate in the new media flow (either 

because they do not have enough resources or because they have their own policies 

that do not allow them to participate). In fact, a dynamic network implies that not all 

nodes are available all the time. We therefore extend our algorithm to include positive 

feedback: We increase the rank of links to nodes that are known to be cooperative and 

have actually participated in a media flow. This is simple knowledge to acquire, and 

comes with no cost. In step 5 of the algorithm, each node receiving a ConstructPath 

message executes an UpdateRanks function that increases the rank of nodes that a MP 

is composing with. Conversely, if a MP is known to fail frequently or not to have 

participated in a media flow for some time, its rank is decreased. This positive and 

negative feedback reduces the number of nodes that receive composition requests. It 

also becomes much more probable that messages are received by a MP that has more 

opportunity to participate usefully and cooperatively in the media flow. 
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3. Orientation-based modulation: from Fig. 7.2, it can be seen that the composition 

request moves to its destination in a specific direction. A node therefore selects nodes 

from its ActiveList that reflect that direction. This ensures that each receiving node is 

closer to the destination than the transmitting node and prevents the message from 

going into loops. 

7.3.5 Discussion 

After waiting for a period of time T, the MS may receive several media flow paths, both 

valid and incomplete. Using an optimization criterion, the MS computes the cost of each 

complete flow, and selects the one that meets the required cost. The media flow paths, 

either complete or partial, are of great importance for autonomic systems. Since the 

network is dynamic, an established path may not be available for the duration of the 

session. Participating nodes may run out of resources; they may also fail or leave the 

network. It is therefore essential for autonomic systems to be able to recover from these 

and similar situations. The MS keeps a record of all the possible media flow paths 

returned when the algorithm is executed. Once it receives a leave notification from a 

current path member, it looks for an alternative node as a replacement or for an 

alternative path from those already available. 

In the previous chapter, an SSON autonomic manager is responsible for self-

configuring and self-optimizing the SSON overlay path or media flow. Our composition 

algorithm assumes that the MS plays this role. However, if a different node claims the 

SSON autonomic manager, it receives the media flow paths. To obtain the best 

performance, the SSON autonomic manager should be close to the media flow path. And 

since the flow path is not known beforehand, the SSON autonomic manager should be 

located in one of the sub-areas between the MC and MS. 

Although alternative media flow paths are important, accounting for all possible 

alternatives and partial solutions increases the size and overhead cost of the request 

message. The following rule can therefore be added to the algorithm at steps 3.a and 3.b 
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IF A can provide a complete OR partial service (S) 

IF S ~3 in the composition history OR (S 3 and the number of similar services < S) 

Add the service to the composition history 

This rule limits the number of similar services in a path history to a predefined 

threshold value (S). The value of S depends on how dynamic the network is and how 

much bandwidth is available. In a highly dynamic network, nodes leave and join 

frequently. We need more alternatives in order to avoid service breakdown. We 

therefore set S to a greater value. Setting 8 to a lower value reduces the number of 

alternatives, but does not eliminate them completely. For example, if 8 =0, there are no 

alternative solutions in the current message. But the algorithm allows a number of 

messages with the same service request to be forwarded along different paths. 

In the proposed composition algorithm, QoS has been generically addressed through 

using a cost metric, where its value decides if a node will be selected in a final media 

flow path or not. While this allows for a wider use of QoS parameters, it doesn't 

explicitly address the intelligibility of the media flows after being processed by the 

composed MPs [214] and leaves this topic as a future work. 

7.4 Experimental Evaluation 

We used a discrete event simulator to evaluate the performance and efficiency of the 

algorithm. A large-scale network was used to test measurements such as network load, 

composition time, stretch, and success rate. We first compared the self-organizing 

algorithm (Self-Org) with limited-flooding (LF) and Graph Based (GB) approaches. In a 

LF protocol, a composition request is broadcast to all direct neighbors. Close neighbors 

send it on to their neighbors with the propagation controlled by a TTL value. In a GB 

approach [182], all services register with a central directory. The service advertisement 

contains a graph that represents the service to be registered, and the directory maintains 

a global graph of all registered services. Composition requests are then sent to the 
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directory. In the interests of a more realistic comparison with the GB approach, we 

considered a service model that transforms one alphabet into another [182] (for example, 

a service that accepts a as input and transforms it to b, a —>• c,..., b —> a,...etc.). This 

results in a total of 625 different services. We then examined the effect of learning rules 

on the same measurements by simulating the self-organizing algorithm enhanced with 

the rules we developed (Self-Org+). 
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Fig. 7.4 Network Load 

7.4.1 Simulation Setup 

The simulation topology was constructed using the BRITE [169] topology generator. 

The topology had 2000 nodes in a 1000x1000 node two-dimensional overlay space; 

bandwidth assigned to each node was randomly selected between 128 and 512 kbits/s; 

links propagation delay was fixed at 1 ms; each node had a random geographical 

location. To simulate a flash crowd, all nodes issued their composition requests at a 

random point during the first 15 seconds, with the simulation lasting for another 10000 
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seconds. We ran the simulation 13 times with varying service densities, and varying 

values for the search angle a , and for search scope. (This value is similar to TTL 

except that it measures how far the composition request travels in the network in terms 

of network distance. This is a relatively stable characteristic.) For each run, a random 

number of compositions (between 1800 and 2000) was requested. The results were 

collected and averaged after each run. In the GB approach, updates are triggered every 

minute. In Self-Org and Self-Org+, 8 is set to 2, the ActiveList size is 15, and each sub-

area is 40x40. 

Fig. 7.5 Self-Org+ Network Load as a Function of Scope and Search Angle 
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Fig. 7.6 Composition Time 

7.4.2 Network Load 

Network Load quantifies the cost of using the composition scheme. It represents the 

total number of generated messages (the total number of hops taken by all composition 

requests divided by the number of requests). 

Fig. 7.4 shows that LF has the worst performance, as it produces a greater number of 

messages; the GB approach performs better than LF with small service densities. This is 

because the network load in GB is determined by the number of services because each 

service produces many service advertisements, while in LF, the network load is 

determined by the TTL value. The figure shows that the Self-Org approach has a lower 

load than LF and GB, and the Self-Org+ algorithm has the lowest network load. This is 

because the Self-Org+ load is determined not only by the number of services but also by 

the search scope angle a. Fig. 7.5 shows a 3D mesh for Self-Org+ with a and scope 

varying simultaneously. The figure shows that increasing a and the scope increases the 
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network load. However, after a = 40 and scope = 550, the increase is only slight. This 

means that the network is stabilizing due to the learning rules and that all composition 

requests are being served with a bounded number of messages. 

Fig. 7.7 Self-Org+ Composition Time as a Function of Search Angle and the 
Scope 
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7.4.3 Average Composition Time 

The composition time is the difference between the starting time of the composition 

request and the arrival of the complete results. Fig. 7.6 shows that the average 

composition time of the GB approach is at least three times higher than of the LF 

approach when the number of services is small. This is because composition time in GB 

greatly depends on the number of requests. The average composition time observed in 

Self-Org+ is slightly lower than Self-Org for a large number of services and slightly 

higher for a small number of services. We believe that this increase is primarily due to 

the reduced amount of learning. Fig. 7.7 shows the 3D mesh for Self-Org+ when both 

the scope and the angle a are varied. 

7.4.4 Packet stretch 

Stretch is defined as the number of hops taken by an overlay packet divided by the 

number of hops the packet takes when using an IP-layer path between the same source 

and destination. A high stretch value indicates an inefficient SSON topology as longer 

routes delay the packets. Fig. 7.8 shows the simulation results for the average stretch, 

and Fig. 7.9 shows the 3D mesh for Self-Org+ when both the scope and the angle a are 

varied. GB displays the worst stretch, especially for a low number of services. When the 

number of services increases, the stretch decreases. The results show that the stretch for 

the Self-Org+ approach ranges from 1.01-1.2 for large search scope values, and from 

1.01-1.8 for smaller values. The results also show that the angle a has little effect on the 

stretch. This is because the path that best minimizes the stretch lies directly between the 

source and the destination; increasing a will therefore not affect the stretch. Generally, 

the stretch in Self-Org+ is not significant, considering the gains in other measurements. 
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7.4.5 Success Rate 

Success rate is defined as the number of requests that receive positive responses, divided 

by the total number of queries. Fig. 7.10 shows that Self-Org+ results in a higher success 

rate, except when the number of services is relatively small. In that case, LF is more 

effective, though the success rate is still less than 100%. GB is also more effective than 

Self-Org+ for a small number of services and attains a 100% success rate after a certain 

number of services. However, Self-Org+ reaches the 100% success rate earlier. 

Mobility is an important challenge in a dynamic network. The MC (or user) might 

move to another location and the MP, which is providing the service, might be mobile or 

become unavailable due to power limitation. Therefore, we measured the success for 

Self-Org+ compared to LM under mobility situations. The topology parameters in this 

experiment are the same as in section 7.4.1. The only exception is that each node is 

equipped with a wireless interface. The MAC layer is using the IEEE 801.11 protocol 

and the mobility model for each node is a Random Waypoint. Each mobile node moves 

with at a speed of 6 meters/second. Service density and the search angle a are fixed at 

500 and 35 respectively. 

Mobility of nodes affects the multimedia sessions in progress as well as those sessions 

that are being composed. Therefore, when a mobile node moves, an alternative node 

must replace it immediately in order to reduce service disruption. Fortunately, increasing 

the value of 5 in Self-Org+ algorithm can be of a great help in this situation. To this end 

we set 5 to be proportional to the number of mobile nodes. We ran the simulation 

multiple times with varying the number of mobile nodes. Fig. 7.11 shows the success 

rate of the mobility experiment. We observed that Self-Org+ outperforms LF and attains 

the 100% success rate with mobility less than 10%. Increasing the number of mobile 

nodes decreases the success rate in both Self-Org+ and LF. For 50% mobility (that is 
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1000 nodes in our simulated topology), Self-Org+ attains 70% success rate 

attains only 44%. 
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7.4.6 Additional results 

As illustrated, the composition request accumulates the possible compositions while the 

request flows from the source to the destination. This indicates that both composition 

request size and the number of returned paths are vital to the success of the algorithm. 

First, a very large request size is not desirable because it consumes bandwidth. Second, a 

large number of paths is not desirable also because it generates so many messages. Fig 

7.12 shows the measured average request size and Fig. 7.13 shows the average number 

of paths. For these figures, the search angle was fixed at 35. We observed that the 

average request size is greatly reduced by Self-Org+. It increases with the search scope, 

but varies between 10 and 30 Kbytes, over 50% less than Self-Org. We also observed 

that the average number of paths is much lower when we decrease 8 from 6 to 2. It 

varies from 2 to 5, which results in a great saving for the bandwidth. 

7.5 Summary 

In this chapter, a novel scheme for SSONs self-organizing composition has been 

presented, in which, autonomic elements can organize themselves into SSONs using a 

self-organizing algorithm. The algorithm is powered by learning rules derived from 

biological systems, and composition requests are forwarded based on the knowledge 

acquired from previous requests. The scheme also accounts for alternative media flow 

paths, as well as for partial media flow paths, and provides rules to control the growth of 

possible solutions to an acceptable level. It was shown that the proposed scheme is 

efficient in composition cost, accuracy, and composition time. 



Chapter 8 

Conclusions and Future Work 

This chapter identifies contributed research work and discusses planned and future 

directions; it is organized into two sections: Section 8.1 gives a summary of research 

contributions in the area of autonomous SSONs management. Section 8.2 sheds light on 

future research directions. 

8.1 Dissertation Contributions 

The focus of the conducted research has been the development of an autonomous 

management system for SSONs. The first step towards achieving that goal demanded a 

literature study of the autonomous management problem and management difficulties. 

More precisely, we aimed to address two questions: 1) What are the requirements of an 

autonomous management system? 2) Why is it difficult to satisfy these requirements 

with the current approaches? Answering these questions materialized into a state-of-the-

art survey of major research directions and efforts in the areas of autonomous overlay 

networks management and resource discovery schemes. Based on the identified 

limitations of current research work, a novel framework for an automated SSONs 

management system has been designed. The framework has been presented as a multi-

layered model that utilizes context of users, applications, and the underlying network to 

perform autonomous management functionalities. The main contributions of the current 

research work can be summarized as follows: 

1. A state-of-the-art survey of management approaches. 

2. A complete design and functional specification of an autonomous SSON 

management framework. The framework makes use of the available context 

164 
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information such as user, network, and service provider context information to 

automate the creation, adaptation, and termination of SSONs. The performance 

of the proposed scheme has been evaluated through simulation. 

3. A novel scheme for a semantic MPs resource discovery has been presented, and 

is based on a widely studied family of chordal rings called the optimal chordal 

ring. The semantics of MPs, as well as their geographical locations, were used to 

achieve the highest possible performance. In contrast to existing approaches, the 

proposed approach requires the lowest number of states maintained at each 

node, and produces an acceptable message overhead. Simulation results have 

merited the efficiency of the proposed scheme. 

4. Due to the increased management complexity, a novel, autonomic overlays 

architecture for SSONs management has been presented; SSONs and their 

constituent overlay nodes are made autonomic, and thus become able to self-

manage. Autonomic entities are driven by policies that are generated 

dynamically from the context information of the user, network, and service 

providers. This ensures that the creation, optimization, adaptation, and 

termination of overlays are controlled by policies, and thus the behaviors of the 

overlays are tailored to their specific needs. 

5. To tackle a major challenge in autonomic computing, a Self-organized 

composition for autonomic entities has been presented. Overlay nodes are 

composed of SSONs using a self-organizing algorithm to achieve system-wide 

goals. The algorithm is powered by learning rules induced from biological 

systems, and endowed with filtering rules to achieve the highest possible 

performance. The performance of the proposed composition scheme has been 

evaluated by simulation. 



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 166 

8.2 Future Research Work 

The main focus of our future research work can be divided into two key directions as 

follows: Semantic QoS Composition and Case-Based & Reinforcement Learning 

Adaptive Management. 

8.2.1 Semantic QoS Composition 

A subject for future work is the intelligibility of media flows after being processed by 

the MPs along the composed path. By incorporating the semantics of offered services 

and the QoS requirements into MPs composition, one can further enhance the quality 

and performance of an autonomous management system. One way to achieve that is 

through the utilization of the technical quality and semantics of the media content. 

Consider, for example, a media content that has been converted from DivX into RM and 

finally into MPEG. The quality of MPEG media can be very low compared to the 

original media encoding quality. Therefore, it is essential to consider not only the 

required conversions for the content but also the quality of the complete chains of 

concatenated conversions. A model is thus needed to evaluate the assumed outcome of 

such media conversions, and to automatically propose the most suitable way of 

conversion and delivery, which might require the adaptation of methods from the area of 

automatic decision making, and also algorithms for selecting and configuring the 

composition path. 

8.2.2 Case-Based & Reinforcement Learning Adaptive Management 

By incorporating the experience gained from applying different management strategies, 

one can further enhance the performance of autonomous management systems by 

(among other methods) the utilization of Case-Based Reasoning (CBR), as well as 

Reinforcement Learning (RF) concepts. CBR is a problem solving and learning 

paradigm that has received considerable attention over the last few years [215]. 

Reinforcement learning (RL) is a promising new approach for automatically developing 
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effective policies for self-* management Systems [216]. RL has the potential to achieve 

superior performance to traditional methods while demanding less built-in domain 

knowledge. 

On one hand, an agent in RF learns effective decision-making policies through an 

online trial-and-error process, which works by observing the environment's current 

state, performing some legal action, and receiving a reward (a numerical value that the 

user would like to maximize) followed by an observed transition to a new state. RL 

might need to observe a huge number of (state, action) pairs and state transitions to 

converge to optimal policies. This prohibits an online training approach (due to initial 

poor policies), and is not suitable for highly dynamic environment. On the other hand, 

CBR suffers from scalability of Case Memory because it requires huge number of cases. 

We plan to investigate the feasibility of representing policies as cases, and to learn new 

policies using RF. We also plan to address the difficult challenge of coordinating 

decisions between different, and possibly conflicting, Autonomic Managers. To resolve 

this challenge, we will need to better characterize their actions. We will also need to 

develop a technique to coordinate the various evaluation metrics, and to determine a 

coordination policy to ensure coherent action among them. 

8.3 Scalability of Proposed Autonomous Management Framework 

Scalability in our proposed autonomous management framework can be viewed 

from different perspectives. On one hand scalability might refer to the number of 

messages generated by our resource discovery protocol, the number of policy objects 

exchanged between the OPEP and the OPDP, and the number of messages generated by 

our self-organization composition scheme. On the other hand scalability might refer to 

the maximum number of concurrent SSONs that could coexist in the same network 

while fixing its resources. 

Although we don't provide a mathematical model that proves the scalability of our 

resource discovery protocol we showed in Section 5.9.4 that the proposed protocol is 
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scalable because it generates less number of messages compared to two well known 

scalable protocols. These are Chord and CAN. This is evident in Fig. 5.19 where we 

compared the total message overhead of our resource discovery protocol to that of Chord 

and CAN. The total overhead is computed as the number of messages needed for the 

lookup phase and the maintenance messages generated by each protocol to preserve its 

structure integrity. 

The number of policy objects generated by our autonomous management 

framework is another factor that affects its scalability. Usually these policy objects are 

generated due to a change in the network environment. For example, when the resources 

being monitored by the OPEP are fallen below a threshold, the OPEP constructs a policy 

object that reflects this change and sends it to the OPDP. The OPDP in turn construct a 

decision stating how to react to the noticed change and sent back to the OPEP to be 

enforced. Since SSONs usually consists of a limited and small number of overlay nodes, 

the number of such policy objects is expected to be very small. Fig. 4.10 shows the 

average management overhead of using our proposed policy architecture. It shows that 

in average 0.278 seconds are needed to react to any single change in a given SSON. 

While Fig 4.11 shows that 32% of this time is being used for message exchange. 

Considering the low number of overlay nodes and thus the low number of needed 

adaptations, these figures implies that our system is scalable in terms of the number of 

policy objects needed to adapt an SSON. 

The number of messages generated by our self organization composition algorithm 

is another factor that affects the scalability of our proposed autonomous management 

framework. Once a composition request is sent from the MC, it will be kept forwarded 

inside the search scope angle until it is received by the MS. Although the basic 

forwarding mechanism is based on broadcasting and learning, many factors support the 

scalability of our composition technique. First, the composition request forwarding is 

limited to those nodes that lie in inside the search scope angle (see Fig 7.2). Second, the 

composition request is being forwarded selectively to those nodes that are expected to 

provide a service for the request. And finally, learning rules were used to prevent the 
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composition request from going into loops in the network. This is evident in Fig. 7.4 

were our proposed composition algorithm produced a very low number of messages 

compared to most popular techniques. 

Viewing scalability as the maximum number of concurrent SSONs that could 

coexist in the same network while fixing its resources results in a different way to 

analyze and proof our autonomous management framework scalability. Although it is 

really hard to come up with a measure that quantifies the number of concurrent SSONs 

that can coexist while providing the best requested QoS, a deep look at how SSONs are 

being constructed can give us a strong hint on whether the system is scalable or not. As a 

matter of fact, the most efficient SSON is the one that uses the least possible packet 

latency, and any system will not be scalable if the SSONs latencies are way above the 

minimum possible latency. Fortunately, the minimum possible latency for an SSON can 

be measured by the shortest path latency between the MC and the MS. Since no system 

could ever produce latency smaller than the shortest path latency, dividing the SSON 

latency by the shortest path latency will give us a measure, called the stretch, of how 

efficient and scalable our framework in constructing SSONs. Fig. 4.8 shows that the 

average overlay path stretch is 1.76 when the resource discovery is centralized and Fig. 

7.8 shows that the average overlay path stretch for our composition technique is 1.1. It is 

worth noting that when the stretch was 1.76, the resource discovery were carried out 

separately from the construction phase of the SSONs, while it was integrated in the 

construction phase when we reached the 1.1 stretch which is relatively low proves that 

our framework is constructing SSONs with latencies very close to optimal shortest path 

latency. 

8.4 Research Work Limitations 

As we explained earlier, the focus of the conducted research has been the development 

of an autonomous management system for SSONs. We identified the requirements for 

an autonomous management system and proposed a framework for the automation of 

SSONs management system. The framework has been presented as a multi-layered 
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model that utilizes context of users, applications, and the underlying network to perform 

autonomous management functionalities. The main limitations of the current research 

work can be summarized as follows: 

1. The focus throughout this dissertation was on automating the management 

functions of SSONs. We have considered all the possible phases that the SSON 

go through during its life time. More specifically, we considered the creation, 

optimization, adaptation, and termination phases. Although SSONs represents a 

special type of overlay networks, they cannot be treated in the same fashion. 

One limitation is that, SSONs usually consists of limited number of nodes, these 

includes the MS, MC, and a set of MP that are needed to transform the requested 

media- located at the MS- from its current state to a state acceptable by the MC. 

Our study and experiment showed that the length of an SSON in terms of the 

number of participating nodes varies from 2 to 6 nodes. However, SSONs are 

customized and tailored to the specific demands of the users. In contrast overlay 

networks such as P2P networks consists of thousands up to millions of users and 

nodes. But they are generic and don't represent or satisfies the users specific 

requirements. 

2. Although MPs provides value added functions to SSONs such as caching, 

synchronization and routing, they can be considered as a limitation for overlays 

in general. This is due to the fact that these MPs are located inside the network, 

i.e. not at the network edges, and their ownership is usually belongs to a certain 

service provider. Mandating that the multimedia session has to go through one or 

multiple media ports implies that the SSON is no longer controlled by the users 

but rather by the service providers that own, install, and control MPs. The rapid 

deployment of MPs thus might results in decreasing the number of new services 

that evolves over time. Although this might be desirable from the service 

providers' perspective, it limits the growth of the technologies. 

3. The semantic resource discovery technique presented in Chapter 5 is being 

designed for the specific needs of SSONs. Although it provides comparable 
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results to the most popular protocols such as Chord and CAN, it might not be a 

ready solution for just any resource discovery problem. The reason is that, the 

design and implementation of our resource discovery technique considers and 

exploits the specific properties of SSONs. For example, the chaining of MPs to 

realize SSONs has to be in a specific order and this order starts from the MS and 

ends at the MC. Therefore we focus our search for resources in those areas 

located between the MS and MC. This might not be the case for many other 

applications. 
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