
u Ottawa
L'Universite canadienne

Canada's university

FACULTE DES ETUDES SUPERIEURES l = = l FACULTY OF GRADUATE AND
ET POSTOCTORALES U Ottawa POSDOCTORAL STUDIES

L'Universit^ canadierme
Canada's university

IbrahimAl-Ogily
TuTEWDE"UTHlSE"MMbR"OFTHESIS~

Ph.D. (Computer Science)
GRADE/DEGREE

School of Information Technology and Engineering
""TACUlTirfCOLlVD^^

Autonomous Management for Service Specific Overlay Networks

TITRE DE LA THESE /TITLE OF THESIS

Ahmoud Karmouch
DIRECTEUR (DIRECTRICE) DE LA THESE / THESIS SUPERVISOR

CO-DIRECTEUR (CO-DIRECTRICE) DE LA THESE / THESIS CO-SUPERVISOR

EXAMINATEURS (EXAMINATRICES) DE LA THESE / THESIS EXAMINERS

Shikharesh Majumdar _ Samuel Pierre

Amiya Nayak Tet Yeap

GaryW. Slater
Le Doyen de la Faculte des etudes superieures et postdoctorales / Dean of the Faculty of Graduate and Postdoctoral Studies

AUTONOMOUS MANAGEMENT FOR
SERVICE SPECIFIC OVERLAY NETWORKS

By

Ibrahim Z. Al-Oqily

Thesis submitted to the
Faculty of Graduate and Postdoctoral Studies

In partial fulfillment of the requirements
For Doctor of Philosophy degree in

Computer Science

School of Information Technology and Engineering
(SITE)

Faculty of Engineering
University of Ottawa

© Ibrahim Z. Al-Oqily, Ottawa, Canada, 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-48382-4
Our file Notre reference
ISBN: 978-0-494-48382-4

NOTICE:

The author has granted a non-

exclusive license allowing Library

and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses

worldwide, for commercial or non-

commercial purposes, in microform,

paper, electronic and/or any other

formats.

AVIS:

L'auteur a accorde une licence non exclusive

permettant a la Bibliotheque et Archives

Canada de reproduire, publier, archiver,

sauvegarder, conserver, transmettre au public

par telecommunication ou par Plntemet, prefer,

distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,

sur support microforme, papier, electronique

et/ou autres formats.

The author retains copyright

ownership and moral rights in

this thesis. Neither the thesis

nor substantial extracts from it

may be printed or otherwise

reproduced without the author's

permission.

L'auteur conserve la propriete du droit d'auteur

et des droits moraux qui protege cette these.

Ni la these ni des extraits substantiels de

celle-ci ne doivent etre imprimes ou autrement

reproduits sans son autorisation.

In compliance with the Canadian

Privacy Act some supporting

forms may have been removed

from this thesis.

Conformement a la loi canadienne

sur la protection de la vie privee,

quelques formulaires secondaires

ont ete enleves de cette these.

While these forms may be included

in the document page count,

their removal does not represent

any loss of content from the

thesis.

Canada

Bien que ces formulaires

aient inclus dans la pagination,

il n'y aura aucun contenu manquant.

Abstract

Overlay networks emerging as a main player in content delivery because they provide

effective and reliable services that are not otherwise available. Extensive research has

recently focused on the design of Service Specific Overlay Networks (SSON) to deliver

media in a heterogeneous environment. This dissertation investigates the problem of

SSON's management, and proposes an autonomous SSON management framework. The

framework consists of a policy layer that in turn constitutes a set of Overlay Policy

Enforcement Points (OPEP) and Overlay Policy Decision Points (OPDP). An OPEP is

where policy decisions are actually enforced—policy decisions are made primarily at the

OPDP. The research plan presented in this dissertation addresses the functionalities of

these components.

To realize dynamic SSONs construction, a novel, fault-resilient semantic overlay

for MediaPorts resource discovery is proposed. It allows services to be efficiently and

accurately located, and is based on a widely studied family of chordal rings called the

optimal chordal ring. In addition to the semantics of the services offered, our solution is

based on the geographical locations of the nodes.

The increased complexity and heterogeneity of SSONs led to the proposal of

autonomic overlays management architecture. Overlays are viewed as a dynamic

organization for self-management in which self-interested nodes can join or leave

according to their specific goals. It dynamically adapts the behavior of the overlay

network to the preferences of the user, network, and service providers.

To capture the overlay nodes autonomic behavior, a new approach for SSONs self-

organized composition is proposed. Using a self-organizing approach, autonomic entities

are dynamically and seamlessly composed into SSONs to achieve system-wide goals.

The algorithm that encompasses that approach is powered by learning rules induced

from biological systems, and endowed with filtering rules to achieve the highest possible

performance.

Experimental studies are presented to demonstrate the performance of the proposed

schemes.

II

Dedication

To the spirit of my father, who had dedicated his whole life to his family, To my mother,

for her unconditional and endless love, to Layth, Zaki, and Hazem, my sons, for their

infinite love, to my wife, Shereen, for her continuous encouragement and support.

Ill

Acknowledgements

I would like to offer my profound thanks to my supervisor, Prof. Ahmed Karmouch, for

his guidance, patience, and encouragement during my Ph.D. years at The University of

Ottawa, during which he have taught me how to transcend above my short comings to

become a good researcher, and a better person. He is not only a thesis advisor, but also a

role model to me; without his continued support, encouragement, and especially his

guidance and mentoring, it would not have been possible to complete this work.

I would also like to thank all my colleagues in the IMAGINE research laboratory. Their

input, cooperation, and fruitful discussions always helped clarify my ideas. I am very

lucky to have worked with these brilliant minds, and to have learnt so much from them.

I would like to thank my parents for their encouragement and support. I am indebted to

their love and to their belief in me, and for even more than I will ever be able to express.

I would like to thank my wife, Shereen, for all the sacrifices that she had put during my

research work. Her patience and encouragement were a source of continuous motivation

for me.

IV

Contents

List of Figures X

Abbreviations XIII

1 Introduction 1

1.1 Overview 1

1.2 Service Specific Overlay Networks 3

1.3 Management Problems and Challenges 4

1.4 Motivation 6

1.5 Dissertation Overview 8

1.6 Summary of Contributions 9

1.7 Proposed Research Objectives 11

1.7 Organization of the Dissertation 12

2 Background 14

2.1 Mobility Management 14

2.1.1 Definition 15

2.1.2 Network Layer Mobility Schemes 17

2.1.3 Application Layer Mobility Schemes 18

2.1.4 Hybrid Approaches 20

2.2 Standard Technologies for Multimedia Delivery 21

2.2.1 Session Initiating Protocol (SIP) 21

2.2.2 IP-based Multimedia Subsystem (IMS) 22

2.2.3 Multicasting Protocols 23

2.3 Smart Media Routing and Transport (SMART) 24

V

2.3.1 Media Processing Functions

2.3.2 Overlay Routing

2.3.3 Service-Specific Overlay Networks

2.3.4 Overlay Node (ONode) Architecture

2.4 Summary

3 Related Work

3.1 Overlay Networks

3.1.1 Application Specific Overlay Networks

3.1.2 Generic Overlay Networks

3.2 Overlay networks Management

3.2.1 Policy-based Management

3.2.2 Overlay Management Using Active

Technology

3.2.3 Automated Management for Overlay Networks

3.2.4 Autonomic Management

3.3 Resource discovery

3.3.1 Centralized Approaches

3.3.2 Distributed Approaches

3.3.3 Semantic Approaches

3.4 Summary

4 Autonomous SSONs Infrastructure

4.1 Introduction

4.2 SMART Modeling for Overlay Networks

4.3 Architecture Overview

4.4 Proposed Architecture Details

4.4.1 Policy Generator (PG)

4.4.2 Overlay Policy Decision Point (PDP)

VI

4.4.3 Overlay Policy Enforcement Point (OPEP) 68

4.5 Use Case Scenario 69

4.6 Simulation Details and Results 75

4.6.1 Experiment 1: Mobility Scenario 75

4.6.2 Experiment 2: Large Scale Network 77

4.7 Summary 83

5 Semantic Overlay for MediaPorts Resource Discovery 84

5.1 Introduction 84

5.2 Design Goals 87

5.3 MediaPorts Modeling 87

5.4 Optimal Chordal Ring 89

5.5 SORD Construction 91

5.5.1 Classifying MediaPorts 92

5.5.2 Constructing Global and Local Rings 94

5.5.2.1 Rk Geometrical Representation 94

5.5.2.2 Global Ring 95

5.5.2.3 Local Rings 97

5.6 Routing of Service Replies 98

4.7 Algorithms in SORD 99

5.7.1 Querying SORD 99

5.7.2 Joining and Leaving SORD 103

5.7.3 Broken SORD 105

5.8 Degrees of Freedom for SORD 106

5.9 Simulation Details and Results 108

5.9.1 Simulation Setup 109

5.9.2 Experiment 1 110

5.9.2.1 Average Response Time 110

5.9.2.2 Query Cost 112

5.9.2.3 Success Rate 113

VII

5.9.2.4 Initial Cost 114

5.9.3 Experiment 2 115

5.9.3.1 Scope Vs. Search Angle 116

5.9.3.2 Scope Vs. Service Density 117

5.9.3.3 Scope Vs. Mobility 117

5.9.3.4 Stretch 119

5.9.4 Experiment 3 120

5.10 Scalability 122

5.11 Summary 123

6 Towards an Autonomic Service Architecture for SSONs 124

6.1 Introduction 124

6.2 Autonomic Overlays 127

6.2.1 Architecture Overview 127

6.2.2 Autonomic elements 128

6.2.2.1 Overlay Nodes Autonomic Manager(ONAM) 128

6.2.2.2 SSON Autonomic Managers (SSON-AM) 131

6.2.2.3 System Autonomic Managers (SAM) 132

6.3 Distributed Knowledge 134

6.4 Policies 134

6.5 Summary 137

7 A Self-Organizing Composition towards Autonomic Overlay 139

Networks

7.1 Introduction 139

7.2 Related Work 141

7.3 Self-Organizing Composition 143

7.3.1 Composition Model 145

7.3.2 Definition of the Problem 145

VIII

7.3.3 Self-composing Assumptions and Rules 147

7.3.4 Self-organizing Composing Algorithm 150

7.3.5 Discussion 152

7.4 Experimental Evaluation 153

7.4.1 Simulation Setup 154

7.4.2 Network Load 156

7.4.3 Average Composition Time 159

7.4.4 Packet stretch 159

7.4.5 Success Rate 161

7.4.6 Additional results 163

7.5 Summery 163

8 Conclusion and Future Research Directions 164

8.1 Dissertation Contributions 164

8.2 Future Research Work 166

8.2.1 Semantic QoS Composition 166

8.2.2 Case-Based & Reinforcement Learning Adaptive 166

Management.

8.3 Scalability of Proposed Autonomous Management Framework 167

8.4 Research Work Limitations 169

List of Publications 172

Bibliography 174

IX

List of Figures

2.1 The SMART architecture within the overall Ambient Networks 26

architecture

2.2 Implementation of an ONode on a Physical Node 29

3.1 IETF/DMTF Policy-Based Management Architecture 3 8

4.1 Context-aware overlay policy architecture 59

4.2 Virtual Management Overlay (VMO) hierarchy 62

4.3 OPDP architecture 65

4.4 OPEP architecture 67

4.5 Mobility Scenario 75

4.6 Mobility scenario result 76

4.7 Average overlay path latency 77

4.8 The average overlay path stretch 79

4.9 The distribution of the actual stretch 80

4.10 The average management overhead 81

4.11 The time needed to create or adapt an SSON 82

5.1 (a) Types of MPs, and (b) MPs chaining 88

5.2 An optimal chordal ring R.2(13,5) 91

5.3 The geometrical representation of R3 94

5.4 Routing in SORD algorithm 98

5.5 Network geographical area and search scope angle 100

5.6 Joining SORD algorithm 102

X

5.7 Leaving SORD algorithm 103

5.8 Broken global ring algorithm 104

5.9 Broken local ring algorithm 105

5.10 Average response time 109

5.11 Overhead due to search messages 111

5.12 Overhead due to query responses 111

5.13 Success rate 113

5.14 Success rate as a function of scope and search angle 115

5.15 Success rate as a function of scope and service density 117

5.16 Success rate as a function of scope and mobility 118

5.17 Overlay path stretch as a function of scope and service density 119

5.18 Overhead as a function of time 120

5.19 Overhead as a function of network size 121

6.1 Autonomic overlays architecture 126

6.2 Autonomic control loop 128

6.3 The relation between an SSON, SSON-AM, and SAM 132

6.4 Different Policy Levels 136

7.1 Types of MPs services composition 144

7.2 Network geographical area and search scope angle 146

7.3 Composition Algorithm "

7.4 Network load 154

7.5 Self-Org+ network load as a function of scope and search angle 155

7.6 Compo s ition time 15 6

XI

7.7 Self-Org+ composition time as a function of search angle and the scope 157

7.8 SSON overlay path stretch 158

7.9 Self-Org+ overlay path stretch as a function of the search angle and the 158

scope

7.10 Service composition success rate 160

7.11 Service composition success rate with mobility 160

7.12 Average request Size 162

7.13 Average number of paths returned at the MS 162

XII

Abbreviations

AAs

AC

ACS

AI

ALA

AM

AO

APA

ARI

AS

ASI

BCP

BGP

CA

CBR

CDN

CE

COA

COPS

DHCP

EEs

Active Applications

Autonomic Computing

Ambient Control Space

Artificial Inelegance

Analyze/Learning Agent

Autonomic Manager

Autonomic Overlays

Automated Policy Adaptor

Ambient Resource Interface

Autonomous System

Ambient Service Interface

Bounded Composition Probing

Border Gateway Protocol

Communication Agent

Case-Based Reasoning

Content Distribution Networks

Correspondent Entity

Care-Of Address

Common Open Policy Service

Dynamic Host Configuration Protocol

Execution Environments

XIII

FA

HA

ID

IETF

IMS

IT

KB

LDAP

LF

MA

MC

ME

MIP

MP

MPDS

MS

OCRA

OCS

ONAM

ONode

OPDP

OPDPMA

OPEP

Foreign Agent

Home Agent

Identification

Internet Engineering Task Force

IP-based Multimedia Subsystem

Information Technology

Knowledge Base

Lightweight Directory Access Protocol

Limited-Flooding

Monitoring Agent

MediaClient

mobile entity

Mobile IP

MediaPorts

Media Port Directory Service

MediaServer

Overlay Conflict Resolution Agent

Overlay Control Space

Overlay Node Autonomic Manager

Overlay Node

Overlay Policy Decision Point

Overlay Policy Decision Point Management Agent

Overlay Policy Enforcement Point

XIV

OPMA

OSL

P2P

PD

PDP

PEA

PEP

PG

QoS

RF

RIA

RTP

RTT

SAM

SDP

SIP

SMART

SORD

SP

SPDP

SSON

TCP

TTL

Overlay Policy Management Agent

Overlay Support Layer

Peer-To-Peer

Path-Directed

Policy Decision Point

Policy Enforcement Agent

Policy Enforcement Point

Policy Generator

Quality of Service

Reinforcement Learning

Resource Interface Agent

Real-Time Protocol

Round Trip Time

System Autonomic Managers

Session Description Protocol

Session Initiation Protocol

Smart Media Routing and Transport

Semantic Overlay Resource Discovery

Service Provider

System Policy Decision Point

Service-specific overlays network

Transmission Control Protocol

Time to Live

XV

UA User Agent

UAC User Agent Client

UAS User Agent Server

UDP User Datagram Protocol

VMO Virtual Management Overlay

VoD Video-on-Demand

WSDL Web Service Description Language

XVI

Chapter 1

Introduction

1.1 Overview

The growth of the Internet in terms of size and speed, as well as the flood of network

applications and services that have been deployed in the last few years, is indicative of a

shift from the traditional communication systems designed for simple data transfer

applications to highly distributed and dynamic systems. Naturally, the spread of such

systems has led to an increase in Multimedia development, in itself a feature that has

become indispensable in networking environments. Audio and video content on the

internet are more popular than ever, and many systems are designed with the purpose to

carry this media; video conferencing, video on demand, IP Telephony, and Internet TV

are but a few. In addition to being of large scale, these distributed networks and

applications are unpredictable and complex; they are highly dynamic in changing

environments. As a result, their management (networks and applications) is continuously

faced with new complexities, putting the burden on the shoulders of network managers

and service providers to design and implement mechanisms that are aware of the nature

of different applications demands, and that can conform to various users' requirements.

This has left management system paradigms in a continuous struggle to keep up with the

ever increasing demands, and advancing technologies.

Another aspect that has contributed to increased management complexity is the

rapid growth of overlay networks and their users. Overlay networks consist of a set of

nodes that are connected via virtual links, and are built on top of other computer

networks with the purpose of implementing new applications that are not readily

available in the underlying network. They can be used to increase routing robustness and

security, reduce duplicate messages, and provide new services for mobile users. They

1

CHAPTER 1. INTRODUCTION 2

can also be incrementally deployed on end hosts without the involvement of ISPs, and

they do not incur new equipments or modifications to existing software or protocols.

Overlay networks are becoming more popular because of their flexibility and their

ability to offer new services; extensive research that has been recently exerted in the

realms of overlay networks has focused on the design of specific networks to deliver

media in a heterogeneous environment. In that course, a specific overlay network for

each multimedia delivery service is created, leading to hundreds of overlays coexisting,

and as a result, increasing management complexity and posing additional challenges to

ISPs. This—in addition to rapid growth of systems such as P2P networks, pervasive

computing networks, wireless sensor networks, ad-hoc networks, and wireless

communication technology—renders traditional network management operations

insufficient, and incurs new requirements on the networks: To become autonomous,

scalable, interoperable, and adaptable to the increasingly dynamic and the widely

distributed network demands.

Management refers to the task of planning, allocating, configuring, deploying,

administering, and maximizing the utilization of the underlying network resources.

Functionalities of a management system also include aspects such as authorization,

security management, reliability assurance, and performance guarantees. Little progress

has been made in addressing the problem of designing an overall autonomous

management framework for service-specific overlay networks that can be self-

configurable and adaptable by automating their management tasks.

In this dissertation, we address the problem of developing an autonomous and self-

adaptable management framework for service-specific overlay networks. This chapter

briefly discusses different aspects of the problem of autonomous management, and

presents the motivation behind the proposed work. Subsequently, the proposed

management architecture is briefly described, and the contributions are outlined. Finally,

the organization of the remainder of the dissertation is presented.

CHAPTER 1. INTRODUCTION 3

1.2 Service Specific Overlay Networks

Our lab (IMAGINE) was involved in the European project, The Ambient Networks [1],

in which a working group has developed a sub-project called Smart Media Routing and

Transport (SMART) [2]. The work presented in this thesis is developed using SMART

as the starting point.

Media distribution, adaptation, and caching have been very active areas of research

in the last few years. However, most of the proposed work has taken only a partial view

of the overall problem of media routing and delivery. Past research work was mainly

dedicated to either caching architectures, media adaptation, or multicast protocols.

Furthermore, the proposed solutions brought about by the research efforts were usually

optimized to solve only one specific problem, such as a network congestion state,

limitations of end-devices, or mobility. In contrast, the work on media routing and

adaptation in SMART takes a holistic view, and supports media adaptation, distribution,

and caching in an integrated way by making routing decisions based on available context

information, such as underlying network constraints like Quality of Service (QoS) and

congestion, mobility information, user preferences, and device limitations.

Today's networking technologies consist of a broad heterogeneity of access

networks, terminals, network interfaces, users, signaling and transport protocols,

applications, and services. As a consequence, certain independent streams of multimedia

data are required to be proactively cached, trans-coded, split, synchronized, translated,

filtered, legally tapped, or transformed in some way or another before they can be

delivered according to a variety of constraints, or properly displayed to the user. With

today's technology, this transformation of multimedia content is generally assumed to be

located at the end devices, either the user terminal or the media server. In both cases, this

would lead to either quite complex user terminals or redundant content transmissions

from the server. Transformation of multimedia data and possibly signaling traffic may

therefore be motivated by the service provider, the network provider, or by user

preferences. In most cases, it would be unreasonable to place the burden of data

transformation on the client device, as mobile devices are limited by performance

CHAPTER 1. INTRODUCTION 4

constraints such as battery power, processing capability, memory capacity, available

media codecs, and signaling protocols. It would also be unrealistic to expect that service

providers can, or should, be responsible for performing all required transformation and

adaptation operations. Thus, there is a need for network-side media processing

capabilities and transformation services (which we term MediaPorts or MPs) somewhere

on the media path between the sink (MediaClient, or MC) and the source (MediaServer,

or MS). These MPs must be able to transform multimedia data from the MS into a form

that is acceptable by the MC. This transformation takes into account the available

context information for the purpose of optimal service delivery. Hence, there must be an

option to take away the responsibility for the data transformation from the end users and

the service providers. To this end, and to provide the flexibility to deliver multimedia

content, SMART proposes the concept of Service-Specific Overlays Networks (SSONs),

which enable the flexible configuration of virtual networks consisting of Overlay Nodes

(ONodes) on top of the underlying physical network. This allows the transparent

inclusion of network-side data processing capabilities (MediaPorts) in the end-to-end

media delivery path from the MediaServer to the MediaClient. These MediaPorts can

perform value-added processing, such as overlay routing, smart caching, and media

adaptation among other functions. In SMART, an SSON will be created for each media

delivery session or group of sessions, thus many SSONs can be created and deployed

simultaneously.

1.3 Management Problems and Challenges

As described earlier, SSONs have many attractive features, but they come at the cost of

increased overhead (due to the additional packet header and redundant work at the

overlay and the IP layer) and complexity. Moreover, as traffic on the overlays increases

(which occurs continuously), the network becomes overloaded, and its resources

consumed [3]. In addition, overlays are usually designed independently, thus increasing

the chances of negatively affecting each other (which will result in creating bottlenecks),

and degrading their performance, as well as the underlying network performance.

CHAPTER 1. INTRODUCTION 5

Therefore, it is essential to incorporate an overlay network management mechanism that

reduces the complexity of managing overlays and preserves their correct operations.

The SSON management problem is generally perceived from two, almost

contradicting angles: Users' and service providers' perspective. The users' perspective

of SSON management problem is fundamentally limited to the ability to access a set of

services that are customized to their needs; a user basically wants to be able to get the

best service quality while suffering the least possible cost. From the service providers'

perspective, the problem of SSON management deals with the satisfaction of two

objectives. The first is to provide users with the desired services in a timely manner, and

the second is to maximize their total revenue by utilizing resources as efficiently as

possible. This adds to the list of complexities in the SSON management problem, which

already includes a host of three major problems: 1) The dynamic changes in network

conditions and topology, which renders management information quickly obsolete. For

example, network nodes may fail, links may get congested, and routing information may

change over time. Moreover, changing the overlay routing path is affected by the

required QoS, bandwidth, latency, and the existence of other overlays. 2) Overlay

members that are also dynamic; new users may join or leave the overlay, which

introduces mobility issues of users roaming across different domains and changing their

point of attachment to the network as they move. They may even be serviced by

different providers during one running session, but nevertheless, expect that their

sessions will always be delivered regardless of their location. 3) The limited knowledge

that overlay nodes have about the network (this knowledge varies between overlay

members). With a big number of overlays, the task of management becomes harder to

achieve using traditional methods, and therefore, new management scheme should be

provisioned to overcome these challenges. As described earlier, a management scheme

is an end-to-end problem that is concerned with providing users with their required

services by best utilizing the available network resources. Therefore, the new

management scheme should consider the different phases that overlays go through

during their lifetime. Specifically, a management scheme that deals with overlay

creation, optimization, adaptation, and termination is needed. Creation requires the setup

CHAPTER 1. INTRODUCTION 6

of an overlay routing table in each overlay node along the end-to-end path—a path that

must be optimized to the QoS metrics. Adaptation produces a new behavior that reflects

a change in the overlay environment, and may be necessary to assist mobility, to deal

with the failure of an overlay node, or to control congestion. Termination involves

claiming the reserved resources and updating overlay routing tables.

1.4 Motivation

SMART creates an SSON for each media delivery service or group of services,

however, it does not specify the means by which SSONs are constructed and managed.

Creating an SSON for each media delivery session implies that a numerous number of

SSONs will co-exist and thus if left unmanaged, they will not only degrade the

performance of each other but also that of the underlying network. In addition, it is

essential to have suitable mechanisms to discover the required media processing

functions, and to seamlessly integrate them in the multimedia delivery session.

Moreover, once SSONs are created, there should be a mechanism to adapt them

dynamically to the ever changing conditions of the network, users, and service

providers.

Policy-based management represents one possible solution for SSONs management

problem. The use of policies offers an appropriately flexible and customizable

management solution that allows network entities to be configured on the fly [4], [5].

Usually, network administrators define a set of rules to control the behavior of network

entities. These rules can be translated into component-specific policies that are stored in

a policy repository, and are retrieved and enforced as needed. Policies therefore

represent a suitable and efficient means of managing overlays. However, existing

management systems usually direct the management task to the physical network

entities, such as routers, switches, and gateways. Therefore, the management task to

overlays and their logical elements is not considered.

CHAPTER 1. INTRODUCTION 7

Adaptive management systems represent another obvious solution to the problem of

SSON management. A closer examination of existing adaptive management techniques

shows that they can be classified into two distinct approaches for adaptation: 1)

Adaptation with respect to the network and the operating system components, and 2)

Adaptation at the application level. Adaptive applications can accept and tolerate

resource scarcity by dynamically changing demands based on the availability of existing

resources—apparently, applications which have strict real-time requirements do not fit

in this category. On the other hand, network level adaptation solutions provide flexible

means for the management of the underlying variable resources. Nevertheless, existing

adaptation frameworks still have certain limitations; they usually lack an essential

degree of flexibility, they are heavily dependent on decisions taken by human operators,

and more complexity is added to their management functionalities.

Although active networks-based management seems to provide some promising

solutions, introducing more programmability into network devices also implies adding

more complexity to their management functionalities. Also, excessive utilization of

active packets results in network performance deterioration due to them exhausting

network resources. One solution to this problem is to restrict the functionality of the

programs carried by the active packets, alas resulting in architectures with decreased

capabilities. Furthermore, the dispatched active packets or programmable codes

introduce new safety and security concerns.

A major limitation of most of the existing approaches arises from their static

configurations, which are built a-priori by administrators into network devices. These

approaches usually lack the flexibility required by SMART communication

environments, and may not be sufficient to handle different changes in the underlying

environments. Furthermore, with the current high competitive market of service

providers, besides service quality, service cost becomes an important factor. However,

the reliance on human operators is a major contributor to the current cost of services.

Also, in current management systems, network reconfiguration in response to users'

requests for service customization is only performed manually by a network operator.

CHAPTER 1. INTRODUCTION 8

This results in significant delays ranging from minutes to even days. Existing

frameworks must be extended so that customers are able to tailor individual services to

their particular requirements. Moreover, it is usually disadvantageous to limit the SSONs

topologies at the time of connection establishment. Specified resource requirements do

not often remain valid for the lifetime of the entire session.

The aforementioned limitations of current management frameworks represent strong

motivations for the development of a novel, autonomous SSON management framework

with inherent dynamic capabilities. This framework will manage, customize, and extend

SSONs resources in response to the continuously changing requirements. By making the

management systems more autonomous, the need for direct and continuous involvement

of human operators is reduced.

1.5 Dissertation Overview

This thesis approaches the issue of SSON management from two different, though

related, levels: The first, policy-based adaptation and resources discovery, is concerned

with locating the required MediaPorts (MPs) in the underlying network, as well as

adaptively managing existing SSONs. This facilitates the processes of creation,

configuration, adaptation, and termination of SSONs based on user, network, and service

provider context information. In the second level, autonomic overlays, SSON autonomic

management is developed to deal with increased management complexity.

The resource discovery phase becomes particularly challenging in the case of

dynamic network—the network resources and the users are also dynamic. We address

this issue through the utilization of the optimal chordal ring features to build a fault

resilient, scalable, and cost efficient resource discovery scheme. The adaptation is

approached as a dynamic process where overlay network components are configured at

run-time, rather than statically by network administrators. To facilitate this task, polices

are utilized as tools to continually guide the behavior of the underlying overlay

networks. This is carried out through a multi-layer autonomous framework. In the first

CHAPTER 1. INTRODUCTION 9

layer, the required overlay nodes and resources are identified and reported to the second

layer, in which overlay-specific decisions and policies are dynamically generated and

dispatched to the appropriate overlay policy enforcement points in the third layer.

Overlay network components are then dynamically reconfigured to best utilize available

resources while maintaining a smooth multimedia delivery.

As mentioned before, information technology components produced over the past

decades are so complex that they increase the management challenge of effectively

operating a stable environment. Overlay networks management is further increased by

the huge numbers of users, terminals, and services. Although human intervention

enhances the performance and capacity of the components, it drives up the overall costs,

even as technology component costs continue to decline. Due to this increased

management complexity, autonomic overlays were developed in the second part of this

dissertation. SSONs and their constituent overlay nodes are made autonomic, and so,

self-manageable. Construction, configuration, and resource discovery were achieved

using self-composition, which is realized using a self-organization algorithm. The

algorithm is powered by learning rules induced from biological systems, and supported

by filtering rules to achieve the highest possible performance.

1.6 Summary of Contributions

The goal of this dissertation is to investigate new principles and design new models for

SSONs autonomous management. The major contributions of this dissertation can be

summarized as follows:

1. An Autonomous SSONs Management Framework.

SSONs consist of a set of overlay nodes and links. To enable the adaptive

management, we proposed extending overlay nodes to include an Overlay Policy

Enforcement Point (OPEP) that communicates policy objects and requests

decisions from a remote Overlay Policy Decision Point (OPDP). Both OPEP and

OPDP consist of a set of agents that are used to realize their behavior.

CHAPTER 1. INTRODUCTION 10

Management actions are expressed though policies generated primarily at the

OPDP, and enforced at the OPEP. Our proposal therefore is a complete design

and functional specification of an autonomous SSON management framework.

The framework makes use of the available context information, such as user,

network, and service provider context information, to automate the creation,

adaptation, and termination of SSONs [6], [7], and [8].

2. A Semantic MediaPorts (MPs) Resource Discovery Scheme.

MediaPorts are essential to the construction and adaptation of SSONs because

they allow the flexibility of modifying the content transparently. Discovering

these MediaPorts, therefore, is an integral part of the autonomous management

infrastructure, which should be scalable, efficient and accurate. To this end, a

novel scheme for a semantic MediaPorts resource discovery is proposed. It is

based on a widely studied family of chordal rings called the optimal chordal ring.

The geographical network area is divided into a set of sub-areas. A ring

connecting semantically similar MediaPorts is constructed for each sub-area. For

each sub-area, one of the MediaPorts is identified as the access point for that sub-

area. Access points are then connected to each other using an optimal chordal

ring of degree 4. Queries are then routed on the optimal chordal ring and

descended into local rings only if they can be answered in that particular ring.

This preserves the geographical proximities and allows for efficient locations of

MediaPorts while minimizing the query cost and response time [9], [10].

3. An Autonomic Overlays Architecture for SSONs.

As illustrated, the rapid growth (in terms of size and complexity) of information

technology increases the management challenges. The use of overlay networks

exhibited a similar growth, and they have been widely used to implement new

services which pose more challenges to their management. Due to this increased

management complexity, autonomic overlays were proposed to render overlays

self-manageable. SSONs and their constituent overlay nodes are made

autonomic, and thus become able to self-manage, ensuring that the creation,

CHAPTER 1. INTRODUCTION 11

optimization, adaptation, and termination of overlays are controlled by policies,

and thus the behaviors of the overlays are tailored to their specific needs [11],

[12].

4. A Self-organizing Composition Algorithm for Autonomic Entities.

A major challenge in realizing autonomic overlays is how to compose a set of

autonomic overlay nodes to construct SSONs, and to achieve the system-wide

goals. To address this challenge, we proposed a novel self-organized

composition for autonomic entities. Overlay nodes are composed into SSONs

using a self-organizing algorithm to achieve system-wide goals. Knowledge

about interactions, negative and positive feedback, and orientation-based

modulation learning rules induced from biological systems, are all used to

enhance the composition algorithm and to guarantee a valid and an efficient

composition. The algorithm is also powered by filtering rules to achieve the

highest possible performance [13].

1.7 Proposed Research Objectives

The objectives of the proposed research work can be summarized as follows:

Autonomous Management: The management system has to be self-adaptable and self-

reconfigurable in response to changes in the surrounding environment.

Simplify human management Tasks: By automating management systems, administrators

are shielded from unnecessary details of management, and freed up to other design and

development tasks.

Scalability: The performance of the management system has to be maintained regardless

of the number of managed SSONs.

Maximize Resource Utilization: Similar to all management systems, the key goal of the

proposed framework is to maximize the utilization of the underlying network resources.

CHAPTER 1. INTRODUCTION 12

Mobility: The management framework must minimize service disruption during mobility

management operations, such as mobile users.

1.8 Organization of the Dissertation

The remainder of the dissertation is organized into the following chapters.

Chapter 2 presents and discusses essential background information on mobility

management, and different standard technologies for multimedia delivery.

Chapter 3 presents related work and discusses various approaches adopted by the

research community, and identifies different issues addressed by various research groups

to provide autonomous management.

Chapter 4 outlines and discusses the proposed autonomous SSONs management

framework; responsibilities of the different components along with their interactions are

specified. Simulation results are also presented to demonstrate the performance of the

proposed scheme.

Chapter 5 presents a novel scheme for a semantic MediaPorts resource discovery based

on the use of the optimal chordal ring. Simulation results are also presented to

demonstrate the performance of the proposed scheme.

Chapter 6 presents a novel architecture for autonomic overlays. Autonomic entities are

driven by policies. This ensures that the SSONs are created, optimized, adapted, and

terminated by policies, thus achieving their specific needs.

CHAPTER 1. INTRODUCTION 13

Chapter 7 presents a novel, self-organizing composition algorithm. Autonomic overlay

nodes were built into SSONs by utilizing a self-organization algorithm. Learning and

filtering rules were utilized to increase the performance of the algorithm. Simulation

results are also presented to demonstrate the performance of the proposed scheme.

Finally, Chapter 8 summarizes the presented contributions, and discusses directions of

future research work.

Chapter 2

Background

In its current (and original) architecture, the internet was designed for wired links and

fixed end systems, without explicit support for mobile nodes or wireless connections.

The wide usage of mobile devices and the increasing popularity of wireless

communication links essentially give rise to varying link conditions, multi-homed

devices, and handovers between physical access nodes, thus affecting the network

infrastructure and introducing new challenges that must be addressed. To optimize the

quality of communication, end-to-end connections will have to be adapted to actual link

conditions and user preferences. Also, dynamic handovers will have to be realized in a

seamless and secure way. At the user end, he/she needs to be supported by self-

configuring and self-managing devices and networks in order to achieve optimal

performance in mobile and wireless environments.

This chapter is organized as follows: The mobility management problem, existing

and ongoing research in mobility management are first presented in Section 2.1. Models

and standardization efforts that have been proposed for multimedia delivery are

reviewed in Section 2.2. Section 2.3 discusses multimedia delivery framework in

SMART. Finally, Section 2.4 concludes the chapter with a discussion that summarizes

existing contributions and identifies some open issues.

2.1 Mobility Management

Wireless technologies have become characterized by rapid advances, seeing enabled

access at several levels such as personal area networks (PANs), wireless LANs and

WANs, and cellular and satellite networks. This has led to the emergence of new

14

CHAPTER 2. BACKGROUND 15

network types and services—albeit complicating the challenges of heterogeneity and

interoperability mechanisms—which would enable the mobile end user to seamlessly

traverse different networks while maintaining Internet connectivity.

This section presents an overview of the current mobility management solutions,

and investigates the different IP stack layers including application layer, network layer,

and hybrid mobility solution.

2.1.1 Definition

Mobility Management is a communication scheme that enables the underlying network

to deliver multimedia contents and calls to the roaming entities, regardless of their

current points of attachments. In the mobile environment, an entity could be a laptop, a

desktop computer, a wireless device, or any other computing device.

Mobility management consists of location management and handoff management

[14]. Location management allows the network to locate the Mobile Entity's (ME)

current location by providing the means that allow the ME to announce its current

location, and periodically updating the ME's location profile, which will be queered by

any entity wishing to contact the ME. Handoff management maintains the ME's

connection during its movement around the network, which might involve a new

connection generation in the new subnet and the packet flow management for ongoing

calls or sessions.

There are two types of movements for MEs: 1) Inter-domain, and 2) Intra-domain

roaming [15]. The latter refers to the movement of the ME between different domains

of the same system, which implies that mobility management is based on similar

network interfaces—handoff management is called Horizontal Handoff. Inter-domain

roaming, on the other hand, refers to the movement of the ME between different

backbones, protocols, technologies, or service providers—handoff management is

called Vertical Handoff, and can be further classified into soft or hard. In soft vertical

handoff, the new location and the old one handle the interchange between them while

CHAPTER 2. BACKGROUND 16

performing the handoff; the handoff is achieved by proactively notifying the new

location before the actual handoff takes place, thus minimizing packet loss but

introducing delay. In hard handoff, the ME moves to the new location, and from there

tries to re-establish the connection; consequently, the connection may be off for a small

period of time during the move, however, the delay and signaling are less than those of

the soft handoff [16].

In general, a mobility management scheme/protocol usually supports one or more of the

following mobility types:

Terminal mobility: The ME is reachable regardless of its current location, i.e. the

ME is allowed to move between different sub-nets and, at the same time, being

always reachable for incoming calls. It is important to maintain the session during

the sub-net change.

Personnel mobility: The user is able to access his/her services regardless of

location and terminal being used. In that course, the user is allowed to have

different terminals and will be reached at any of them or at all of them. Also, the

user may have more than one address and any of them may be used to reach the

user's active terminal.

Session mobility: The user is able to continue a session (or part of a session) even

while changing terminals. For example, a user may want to continue a session that

had initially been started at his/her PDA on an office desktop computer when

entering his/her office [17].

Service mobility: The user is allowed to access his/her services while roaming or

changing devices. For example, a user may want his/her buddy list, address book,

and call logs to be accessible from any terminal; the user must have the ability to

alter these services from any terminal.

CHAPTER 2. BACKGROUND 17

2.1.2 Network Layer Mobility Schemes

Network layer solutions provide mobility-related features at the IP layer. They do not

rely on or make any assumption about the underlying wireless access technologies [18],

[19]. Signaling messages for mobility purposes are carried by IP traffic.

Mobile IP (MIP) [18], [19] is a standard protocol proposed by the Mobile IP

Working Group of the Internet Engineering Task Force (IETF). It utilizes special

mechanisms to offer continuous media support when MEs change their locations. Each

ME has two addresses, the Home address and a Care-Of Address (COA). The former is

a static address, and is used by any entity wishing to contact the ME. The latter is

dynamic, i.e., it represents the current location of the ME, and is assigned to the ME

whenever it connects to another network. The ME has a Home Agent (HA) in the home

network, and whenever it connects to another network, it will register with a Foreign

Agent (FA) to obtain a COA. The COA may be the IP address of the FA (in which case,

it will be called a co-located COA), or it may be obtained from a separate entity, e.g. a

Dynamic Host Configuration Protocol (DHCP) server. Any entity wishing to contact the

mobile entity is called a Correspondent Entity (CE) (which might be a mobile entity); A

CE does not need to have any mobile IP knowledge at all.

The handoff procedure is carried out whenever a ME moves from one domain to

another. The ME obtains a new COA when it enters the new domain and registers it

with its HA. The HA sets up a tunnel to the COA, using it to deliver packets to the ME.

MIP does address the terminal mobility problem, but it does not, nor do its related

schemes by themselves, support device-independent persona mobility, or session and

service mobility. In an effort to remedy that, two common versions of Mobile IP have

emerged, version 4 (IPv4) and version 6 (IPv6). IPv6 solves the shortage of address in

IPv4, with the issue of mobility having been considered from the start.

MIP suffers from a set of drawbacks: 1) Due to tunneling, routing in mobile IP is

inefficient; it is also asymmetric as the ME directly contacts the correspondent entity. A

set of route optimization (MIP-RO) [20] techniques have been proposed as a solution,

but they require the CE to be modified in order to understand binding updates-binding

CHAPTER 2. BACKGROUND 18

updates inform the CE of the COA of the ME and hence the CE can tunnel packets to

the COA without going through the HA. However, the correspondent entity must use

triangular routing until it receives the binding update from the HA; reverse tunneling

has been proposed to solve the problem of asymmetry [21]. 2) Firewalls cause security

problems as they block traffic arriving from different sub-nets. Thus, the mobile entity

will not be able to send the registration information to the home agent while it is

roaming in a different network. [22]. 3) Tunneling the packets from the home agent to

the mobile node causes an extra overhead; also the registration process causes an extra

overhead. 4) Handoff latency problems which are caused by the long latency in the

communication path between FA and HA as each time the ME changes its location, it

has to re-register the new care-of address with the HA. This problem can be solved

using a micro-mobility scheme, such as, Hierarchical Mobility Agent schemes, and Host

Based Routing schemes (HBR) [23]. The Hierarchical Mobility Agent schemes (e.g.

hierarchical Mobile IP (HMIP) [22], MIP with Regional Registration [24] (MIP-RR),

and intra-domain mobility management protocol (IDMP) [25] and TeleMIP [26])

exploit the hierarchy of the network to reduce the signaling between the mobile entity

and the home agent and thus achieve faster hand-off, but they suffer from a scalability

problem. On the other hand, the HBR schemes (e.g. CIP [27] [28], HAWAII [29], and

MMP [30]) are more flexible and can be integrated with different macro-mobility

management schemes, like SIP and MIP. They also offer the lowest latency networking

re-routing solution for micro-mobility management as they take an optimal path to the

closest node that should handle both the location and route updates. A comparison

between these different protocols is presented in [14] and [15].

2.1.3 Application Layer Mobility Schemes

Application layer mobility can be used to solve the problems inherent in mobile IP. The

Session Initiation Protocol (SIP) [31] is an IETF signaling protocol that allows users to

establish, modify, and terminate a session consisting of audio, video, or any internet

communication mechanism. SIP is a text-based protocol that is similar in both syntax

CHAPTER 2. BACKGROUND 19

and semantics to the Hyper Text Transport Protocol (HTTP); the difference is that SIP

can use any transport protocol in combination with its different logical entities (proxy,

redirect, e tc . .) to ensure request reliability. SIP is an application layer protocol

independent from packet layer, and supports both User Datagram Protocol (UDP) and

Transmission Control Protocol (TCP). SIP can be integrated with other protocols to

support more functionality, such as Session Description Protocol (SDP) for delivering

multimedia sessions, and Real-Time Protocol (RTP) [32] for transmitting real-time data.

In addition to integration with other IP components, SIP has been recognized for its

simplicity, programmability, modularity, and extensibility [33] [34].

SIP consists of the following entities: 1) SIP User Agent (UA): This is the end point

that acts on behalf of the user; it is either a User Agent Client (UAC) that initiates

requests, or a User Agent Server (UAS) that responds to requests. UAs communicate

with each other directly or via another entity, like a proxy server or a redirect server. 2)

SIP Proxy Server: This entity's main functionality is to forward incoming request to

another server. A SIP proxy server can be either state-full or stateless; a state-full proxy

maintains information about the request and all the responses that indicate the progress,

in addition to the final response that indicates whether the request has been successful or

not (collectively called a transaction). A stateless proxy does not maintain any

information about the request; it just forwards the request to another server. If a state-

full proxy does not know the final destination of the request, it can fork the request by

sending a copy to each possible destination, either in parallel or sequentially. 3) SIP

Redirect Server. This simply returns to the requestor the address of the destination

server, so that the UA (requestor) can contact the destination server directly. 4) SIP

Registrar: This maintains the location information of the SIP users. SIP proxy and

redirect servers regularly contact the registrar to know the existence of a SIP UA's

address that will help in establishing a session between two parties. SIP proxy, redirect,

and registrar are logical entities that may co-exist together in the same server.

When the mobile entity changes its location, a registration process occurs to inform

the home registrar about the new point of attachment. To continue ongoing sessions, the

CHAPTER 2. BACKGROUND 20

mobile entity sends a RE-INVITE request to the correspondent entity, informing it with

the new point of attachment. During the registration and the RE-INVITE, all data

packets sent from the correspondent entity will be lost, thus it is highly desirable to

reduce the packet lose as much as possible.

2.1.4 Hybrid Approaches

There are two different kinds of data that the ME and the CE might exchange. The first

is the non-real-time traffic that has been usually carried over TCP; and the real-time

traffic that must be carried over RTP/UDP. The two data types differ from each other in

their delay and loss characteristics [35].

Different management schemes have emerged to support mobility for real-time and

non-real-time traffic. SIP for example, basically supports multimedia real-time traffic,

but does not support non-real-time traffic [36], as it breaks the TCP connection. Mobile

IP, on the other hand, is more suitable for non-real-time traffic. Based on these facts,

there have been attempts to combine both MIP and SIP (Hybrid) to support mobility for

all kinds of traffic; however, MIP and SIP are not suitable for intra-domain mobility

(mobility in the same domain). These approaches are called multi-layered as they

combine both the network layer and the application layer to support mobility.

In [37], a pure SIP approach is proposed, where SIP signaling is used to support

macro-mobility, and Hierarchical Mobile IP (HMIP) or Cellular IP (CIP) is used to

support micro-mobility as both provide faster handoff mechanisms [38]. Encapsulation

is introduced to prevent the TCP session from breaking. The encapsulation takes place

in both the ME and the correspondent entity. If the session is real-time, then no

encapsulation is required. This technique clearly has the disadvantage of requiring the

ME and the correspondent entity to have encapsulation capabilities. As an alternative

solution, the authors propose a second approach that is similar to the first one in that it

uses either HMIP or CIP to support faster handoffs, while the inter-domain mobility is

supported by both MIP and SIP. SIP is responsible for real-time traffic, MIP for non-

real-time. The second technique uses the tunneling capabilities of MIP to deliver data

CHAPTER 2. BACKGROUND 21

packets from the correspondent entity to the mobile entity, and therefore entails the

main problems that MIP suffers from. Although faster handoff techniques were used,

there is a signaling problem, as the mobile entity has to register its new location with

both its home agent and the home SIP registrar.

As in [37], [35] proposes a new mobility management scheme for wireless IP

networks that handles real and non-real time traffic. SIP is used to handle Macro-

mobility for real-time traffic, and MIP-LR (mobile IP with location registrar) is used for

non-real-time traffic. In both cases, MMP (Micro-mobility management) is used to

handle micro-mobility. The difference between [37] and [35] is that the former uses

MIP to handle macro-mobility for non-real-time traffic, while the latter uses MIP-LR

for the same task. They also differ in how they integrate SIP with MIP-LR; in [35] a

policy table is used. Based on the policy table an entity (between the IP level processing

and the link layer processing) examines each packet and sends it to the suitable handler.

To handle terminal mobility, a SIP Re-INVITE message will be sent to the CE

whenever the ME changes its location, and for non-real time traffic, an update message

will be sent to the CE and to the HLR (Home Location Registrar). To handle micro-

mobility, micro mobility schemes [39] in addition to SIP are used. While in [37], data

packets from or to the mobile entity are separated at the domain edge routers.

2.2 Standard Technologies for Multimedia Delivery

Today, there already exist a number of different solutions for providing multimedia

services. Of these solutions, there are few technologies that can generally be regarded as

standards for multimedia delivery; in this section we shed light on these technologies.

2.2.1 Session Initiating Protocol (SIP)

SIP is an application-layer control protocol for creating, modifying, and terminating

sessions with one or more participants. As pointed out in the previous section, SIP is

widely used to provide session control for real-time communications. For example, all

CHAPTER 2. BACKGROUND 22

multimedia communications in the IP-based Multimedia Subsystem (IMS) of today's

3G networks are based on SIP. While SIP is a very flexible and powerful technology, it

was designed with mainly end-to-end usage in mind; adaptation of media content to

meet user demands is generally assumed to occur at the end devices, and introducing

dedicated adaptation components can only be achieved through non-standard

approaches. Further, SIP was mainly designed to support point-to-point communication;

supporting multi-point communication increases the complexity of the protocol

considerably, and requires additional non-standard capabilities at the SIP servers.

Finally, support for peer-to-peer or content distribution networks is completely non-

existent in SIP. Besides those application level shortcomings, SIP has only very simple

support for mobility, thus causing long handover periods. SIP can only react to

application level triggers for controlling the communication session, thereby, effects of

network load or failures are completely ignored by SIP.

2.2.2 IP-based Multimedia Subsystem (IMS)

The 3 GPP IP Multimedia Subsystem (IMS) is the first platform standardized towards

network-independent access and session control [40], [41]. IMS uses SIP for initiating,

modifying, and terminating IP-based multimedia sessions. The goal of IMS is to

provide service providers with a platform that facilitates the provision and management

of a wide range of services. The success of service providers using IMS and

consequently, the success of IMS as a whole, depends on how important those IMS

services are to users. IMS is developed for person-to-person multimedia connections in

Universal Mobile Telecommunications System (UMTS)-networks, but the use of IMS is

not limited to UMTS environments. More generally, IMS can provide IP-based

multimedia services over any packet-switched network. While IMS is based on SIP to a

large extent, it does provide various improvements to enable support for broadcast

communication and better support for mobility. By closely integrating the concepts of

application servers, IMS already provides the basic requirements for enabling the

integration of intelligent services into the communication sessions. However, the current

CHAPTER 2. BACKGROUND 23

version of IMS's specifications still does not support mid-session macro-handover. In

other words, whenever a node changes its global IP address (typically the case when a

node connects to another access network), the ongoing session has to be terminated, and

the long standard SIP-based IMS session setup procedures have to be performed once

more at the new access network. Those time-consuming procedures may imply long

perceivable disruption times at the application layer, which is not acceptable for delay-

sensitive, real-time services [42]. Moreover, similar to other SIP-based solutions,

support for dedicated adaptation components is still lacking. Further, while the concept

of conferencing and multi-party session is closely integrated into IMS, there is no

adequate support for the routing of flows of the same session over different paths.

2.2.3 Multicasting Protocols

Content Distribution Networks (CDNs) act as trusted overlay networks that offer high-

performance delivery of common web objects, static data, and rich multimedia content

by distributing content load among servers that are close to the clients [43][44]. CDNs

can improve access to content that is typically un-cacheable by caching proxies,

including secured content, streaming content, and dynamic content [45]. Different

multicasting protocols together with caching technologies are commonly used in CDNs

for the purpose of distributing multi-format rich media services. CDNs normally consist

of integrated distribution, streaming, security and traffic management solutions to

enable a variety of high-bandwidth broadband applications such as Video-on-Demand

(VoD), web casting, interactive television, e-learning, and others. Similar to SIP and

IMS, the concept of CDN was designed with a single application in mind, namely

efficient transport of media data. Current CDNs lack the intelligence needed, not only

for transporting media, but also for adapting it to the network load situation or for

supporting user mobility and preferences.

CHAPTER 2. BACKGROUND 24

2.3 Smart Media Routing and Transport (SMART)

As pointed out, current approaches for media delivery are not sufficient for the purpose

of providing network-side media processing capabilities on the media path. Therefore, a

SMART framework is being developed to achieve these goals in the context of Ambient

Networks. The overall goal of the Ambient Networks Integrated Project [46] is to

develop a vision for future wireless and mobile networks. The aim of this project is to

create an innovative, industrially exploitable new inter-networking framework that is

based on the dynamic composition of networks. A key aspect of the project is to

establish a common control layer for various network types, which provides end users

with seamless multi-access connectivity to enable selection of the best available

network. For an operator, the Ambient Network concept allows flexible and dynamic

network configuration and management.

In the environment targeted by Ambient Networks, there will be a broad

heterogeneity of access networks, terminals, network interfaces, users, signaling, and

transport protocols, applications, and services. As a consequence, certain independent

streams of multimedia data may be required to be pro-actively cached, trans-coded,

split, synchronized, translated, filtered, legally tapped, or transformed in some way or

another before they can be delivered according to a variety of constraints, or properly

displayed to the user. To this end, Smart Media Routing and Transport (SMART)

architecture [2] has been proposed to enable the seamless integration of next-generation

multimedia services into Ambient Networks.

2.3.1 Media Processing Functions

Services, as defined in the SMART-context, can be simple requests of information (web

browsing), multimedia streaming (audio and video), and/or conferencing, or they can be

more complex service scenarios including mobility features, media adaptation features,

caching features, and so on. Media that is delivered as part of SMART-like services

may need to be processed along the media path and thus inside the network (e.g.,

CHAPTER 2. BACKGROUND 25

dynamic trans-coding of video and audio streams to adapt to changing link properties,

or proactive smart caching following user movement). Since services like media

adaptation and trans-coding can only be located at the end systems today, they are often

of very limited value. In the case of server-side adaptation, the media has to be

transmitted several times (once for each type of encoding). Client side adaptation, on

the other hand, has the drawback of wasting network resources (as the 'down scaling' of

the media format is only done at the client end), and increasing the complexity (and

hence the cost) of user terminals.

Other services, such as caching or optimal routing of media traffic in order to

optimize the possible achievable QoS, can only be achieved using network side

intelligence. Similar reasoning can be used for broadcasting and multi-party

communication. Only with the help of network side components is it possible to

optimize the bandwidth usage. Therefore with SMART, additional intelligence can be

located at the provider and inside the network. Examples of such intelligence include

the following features: Media routing and media adaptation to deal with terminal and

user mobility; media splitting to enable session/flow mobility; synchronization for re-

combining split flows; smart caching for accommodating low bandwidth access

networks.

In SMART, multimedia transformation is carried out by network-side media

processing capabilities and transformation services [47], termed MediaPorts (or MPs),

which are located somewhere on the media path, between the sink, called MediaClient

(or MC) and the source, called MediaServer (or MS). MPs must be able to transform the

multimedia data originating from the MS into a form that is acceptable for the MC.

2.3.2 Overlay Routing

The concept of overlay networks is promoted by SMART in order to enable inclusion of

the above mentioned media processing functions in the end-to-end media delivery path

in a way that is transparent to the underlying network (i.e. without the need to replace

the existing infrastructure) as well as to the end-user applications. Consequently, the

CHAPTER 2. BACKGROUND 26

migration path from legacy networks towards SMART-enabled Ambient Networks is

expected to be inexpensive and straightforward. One of the important advantages of the

overlay concept is that it enables the establishment of different types of overlay

networks as needed. This allows, for example, for tailoring the virtual addressing

scheme and the overlay routing to best suit the requirements of a particular service.

Another example of the tremendous capabilities of overlay routing include more

advanced multimedia transport techniques that enable transparent integration of value-

added media processing capabilities into the end-to-end media delivery path. Because of

such advantages, the overlay concept has been selected as the basic building block for

the SMART framework.

Fig. 2.1 SMART Architecture within the Overall Ambient Networks Architecture

2.3.3 Service-Specific Overlay Networks

A Service-Specific Overlay Network (SSON) is defined through the set of Overlay

Nodes (ONodes) that are part of a particular service (or collection of services that are

CHAPTER 2. BACKGROUND 27

combined to one composed service) and the virtual links that connect the individual

ONodes to each other. In SMART, a different virtual network is deployed for every

media delivery service (or group of services), which allows for the configuration of

appropriate, high-level routing paths that meet the exact requirements (for example,

QoS, media formats, responsiveness, cost, resilience, or security) of a media service.

Moreover, the exploitation of overlay network techniques also facilitates the transparent

inclusion of network-side media processing functionalities (such as caching, adaptation,

and synchronization) into the end-to-end data paths. Besides, the overlay network is

able to react dynamically to a changing environment, that is, modifications in the

overlay might be triggered due to changes in user preferences, mobility, QoS, or the

underlying network. Finally, to provide maximum flexibility, SMART supports all these

actions separately for each flow of the media service within a SSON.

Fig.2.1 (redrawn from [2]) illustrates how the SMART architecture relates to the

overall Ambient Network architecture. The figure also shows the Ambient Control

Space (ACS) as well as its control interfaces, namely the Ambient Service Interface

(ASI) and the Ambient Resource Interface (ARI). Roughly, the ASI provides the service

and user profile to the Overlay Control Space (OCS) in case of a request for a media

delivery service. The ARI is the interface to the connectivity layer, and manages the

underlying connectivity resources.

2.3.3 Overlay Node (ONode) Architecture

An ONode is a specialized Ambient Network node that implements the functionality

required to join the SSONs by, for example, provisioning network-side media

processing functionalities, such as caching, media adaptation, synchronization, and

Media aware inside the network. ONodes (see Fig 2.2, redrawn from [2]) can be

described from the user perspective and the control perspective. For each SSON of

which the ONode is part of, MediaPorts (MPs) are instantiated. MPs are responsible for

Media Routing in the control plane and, in the user plane, host the so-called application

modules, each responsible for a particular network-side media processing functionality.

CHAPTER 2. BACKGROUND 28

Furthermore, and depending on the required media processing functionality, overlay

nodes can take one or more of the roles of MC, MS, and MP. Note that a physical

ONode can be part of many SSONs at the same time.

The control plane of the ONode includes the ONode Control entity, which is

responsible for the general management of the ONode and the signaling exchange. The

ONode Control consists of several components, which can be classified into those that

deal only with the local control and management of the ONode, and those that logically

belong to the OCS, which is the Functional Entity residing in the ACS that controls the

SSONs on Ambient Network wide basis.

The user plane of the ONode encompasses the Overlay Support Layer (OSL) and

the application modules that take part in media processing actions. The OSL sits on top

of the underlying network; it embodies the basic overlay network functionality required

in every ONode for the handling of packets at the overlay level. As such, the OSL is

responsible for the sending, receiving, and forwarding of SSON-level packets. The OSL

provides a common communication abstraction (overlay level network protocol and

addressing) to all ONodes of a SSON, so that they can communicate with each other

independent of their differences regarding the underlying protocol stacks and

technologies. On top of the OSL, and using its services, there are application modules

that implement the behavior of a MC, MS, or MP in regard to data handling. MCs act as

data sinks and send the multimedia data to the end-point media applications; whereas

MSs act as data sources and receive the multimedia data from the end-point

applications.

CHAPTER 2. BACKGROUND 29

Physical Node

User Plane Control Plane

f
Media Applications

/ i \ ASI

ONode / |

MC MP Mskv '

S V
OSL »" '

1
ONode
Control

1

Network

>

l \
ocs

Fig. 2.2 Implementation of an ONode on a Physical Node

2.4 Summary

In this chapter, we discussed various approaches that have been proposed to address the

issue of mobility and multimedia delivery. The development of mobility management

schemes such as Mobile IP (MIP) and Session Initiation Protocol (SIP), and the

multimedia delivery schemes such as IP-based Multimedia Subsystem (IMS) has

enabled mobile users to seamlessly traverse different networks while maintaining their

connectivity to their home network, and continuing their sessions at their new locations.

Nevertheless, it has been generally difficult to support all types of mobility, and still

deliver multimedia to users without relying on network side functions that has the

ability to adapt media to meet the user's, network's, and service provider's needs.

CHAPTER 2. BACKGROUND 30

In order to satisfy the contradictory needs of different applications and services,

Smart Media Routing and Transport (SMART) introduced the concept of Service-

Specific Overlay Networks (SSONs). This multimedia delivery method enables the

flexible configuration of virtual networks on top of the underlying physical network

infrastructure. SSONs have the ability to customize the virtual network topology, and

the addressing as well as the routing at the overlay level according to the specific

requirements of a media delivery service. In addition to that, SSONs transparently

include network-side functions into the end-to-end communication path from the

MediaServer (MS) to the MediaClient (MC), thus making it possible to support media

routing, distribution, adaptation, and caching over complex communication mechanisms

like peer-to-peer communication, multicasting, and broadcasting.

However, SMART does not specify the means by which SSONs are constructed

and managed. Creating an SSON for each media delivery session implies that a

numerous number of SSONs will co-exist and thus, if left unmanaged, they will not

only degrade the performance of each other, but also of the underlying network. In

addition, it is essential to have suitable mechanisms to discover the required media

processing functions, and to seamlessly integrate them in the multimedia delivery

session. Moreover, once SSONs are created, there should be a mechanism to adapt

them dynamically to the ever-changing conditions of the network, users, and service

providers.

Chapter 3

Related Work

Requirements posed by autonomous overlay management cause certain problems to

emerge; problems that our architecture proposes to resolve, but we still need to

characterize these problems, and that is what we do before presenting our solution. To

achieve that, we present a survey of current research efforts related to overlay

management in this chapter, which is organized as follows: Various definitions and

different overlay networks used in literature are first presented in section 3.1. Some of

the overlay management models and standardization efforts that have been proposed are

then highlighted in section 3.2. Section 3.3 reviews existing research work that has been

carried-out in the area of resource discovery. Finally, section 3.4 summarizes and

concludes the chapter.

3.1 Overlay Networks

An overlay network is a virtual network of nodes and logical links that is built on top of

an existing network, with the purpose of implementing a network service that is not

available in the existing network. For example, overlays can be used to increase routing

robustness and increase security, reduce duplicate messages through multicast, and

provide new services for mobile users. They can also be incrementally deployed on end

hosts without co-operation from ISPs, and without the need to deploy new equipment or

modify existing software/protocol [48], [49], and [50]. Frameworks that have been

developed for this purpose fall mainly into one of two configurations: Static and

Automatic. They can be further classified into Application Specific Overlay Networks

and Generic Supporting Diverse Applications. Moreover, overlays can be layered—one

kind of overlay built on top of another. An overlay network is thus an application layer

31

CHAPTER 3. RELATED WORK 32

internet which separates the physical layer from the applications, and supports

customization to meet and optimize specific functionalities. Peer-to-peer networks are a

common example of overlays.

3.1.1 Application Specific Overlay Networks

Application specific overlay networks have been tailored to a specific application. Such

as multicasting [51], [52], content distribution networks [53], and peer-to-peer file

sharing [54]. Application layer multicasting focuses greatly on using strategically

placed fixed nodes to support overlay multicast service. Overcast [49] provides wide-

area content distribution and bandwidth sensitive multicast services while utilizing the

network bandwidth efficiently. Resilient Overlay Network (RON) [48] is based on

strategically placed nodes in the Internet domains. It is proposed to quickly detect and

recover from path outages and degraded performance. However, RON is designed for

applications with a small number of participating nodes and cannot be scaled to a big

number of nodes. In [55], overlays are used to achieve fast fail-over and traffic load

balancing in the Border Gateway Protocol (BGP). A set of policy agents installed in

each participating autonomous system enforces necessary changes in the local BGP.

The policy agents communicate through the overlay. Our work differs from these

approaches in that it allows (a) a number of overlays to be managed at the same time,

and (b) policies to be generated dynamically from the context information. Peer-to-peer

networks are another example of application-specific overlay networks. It is primarily

used for resource discovery and can be classified into structured and unstructured

overlays. Because of its importance, we devoted Section 3.3 to discuss it.

3.1.2 Generic Overlay Networks

In generic overlay networks, knowledge is shared through an intermediate layer that

measures a number of network properties. In [56], an underlay with a multi-tier overlay

routing scheme is proposed. AS-level Internet topology and routing information is

CHAPTER 3. RELATED WORK 33

acquired by a topology-probing kernel from nearby BGP routers, thereby overlay

services can share this information without the need to individually probe the internet. A

more generic approach is described in [57], where a number of quality metrics (such as

low latency, low hop count, and high bandwidth) are acquired from end-to-end network

measurements, and used to construct overlays.

Yoid [58] is a generic overlay architecture which is designed to support a variety

of overlay applications that are as diverse as net-news, streaming broadcasts, and bulk

email distribution. Another similar effort is the Planet-lab [59] experiment that aims at

building a global test-bed for developing and accessing new network services. A similar

approach was proposed in OPUS [60], which provides a large scale, common overlay

platform and the necessary abstractions to service multiple distributed applications. It

automatically configures overlays nodes to dynamically meet the performance and

reliability requirements of competing applications. X-Bone [61] is a system for

automated deployment of overlay networks. It operates at the IP layer and is based on IP

tunnel technique. Its main focus is to manage and allocate overlay links and router

resources to different overlays and avoid resource contention among the overlays.

OverQoS [62] can be employed to provide Internet QoS such as differentiated rate

allocations, statistical bandwidth, and loss assurance, and can enable explicit-rate

congestion control algorithms. Third-party providers can utilize OverQoS to provide

QoS services to the customers using Controlled Loss Virtual Link (CLVL) technique,

which ensures that the loss rate observed by aggregation is very small as long as the

aggregate rate does not exceed a certain value. Service Overlay Network (SON) [63] is

designed to use overlay technique to provide value-added Internet services. A SON can

purchase bandwidth with certain QoS guarantees from ISPs, and use that bandwidth to

build a logical end-to-end service delivery overlay. The authors have formulated the

problem of QoS provisioning by considering various factors like SLA, service QoS,

traffic demand distribution, and bandwidth cost.

Although generic overlay networks are efficient in reducing the cost of acquiring

the shared knowledge, they lack the flexibility to support specific application overlay

CHAPTER 3. RELATED WORK 34

networks. Moreover, they do not take into account specific demands for individual

services such as user or terminal mobility. More importantly, they do not explicitly

address the use of policies to configure overlays dynamically, which our work does in

addition to addressing the use of intelligent network side functions in the overlay path,

which permits additional services to be deployed.

3.2 Overlay Networks Management

The overlay's attractive benefits come at the cost of increased overhead and complexity.

Overhead is increased because of the additional packet header and the redundant work

at the overlay and IP layers. The constantly increasing traffic carried by the overlays

also tends to overload the network and consume its resources [3]. In addition, overlays

are usually designed independently, which increases the chances that they will

negatively affect each other: Bottlenecks are created, reducing the performance of both

the overlays and underlying network. Overlays therefore need to incorporate a

management mechanism that reduces this complexity and hence keeps them operating

correctly.

Overlay management is challenging for several reasons. First, the dynamic changes

in network conditions and topology quickly renders management information obsolete.

For example, network nodes may fail, links may get congested, and routing information

may change. In addition, any changes in the routing path are affected by the required

QoS [64], bandwidth, latency, and the existence of other overlays. Second, overlay

members are dynamic, as new users may join or leave. Finally, each overlay node

possesses limited knowledge of the network with that knowledge varying among

overlay members, and with a large number of overlays, management by traditional

methods becomes harder to achieve. Moreover, the management scheme must account

for the different phases that overlays go through during their lifetime: Creation,

optimization, adaptation, and termination. Creation requires the setup of a routing table

in each overlay node along the end-to-end path—a path that must optimize the QoS

metrics. Adaptation produces a new behavior that reflects a change in the overlay

CHAPTER 3. RELATED WORK 35

environment. Adaptation may be necessary to assist mobility, to deal with the failure of

an overlay node, or to control congestion. Termination means claiming the reserved

resources and updating routing tables.

Since our focus is on Service Specific Overlay Networks (SSONs), it should be

noted that these networks pose additional challenges. In large distributed and

heterogeneous networks, media content usually requires adaptation before it is

consumed by clients. For example, video frames must be dropped to meet QoS

constraints: A client with a PDA requires a scaled-down version of the video; a mobile

user requires the content to be cached for viewing. When SSONs are used, a first step

in any of these applications is for them to learn that the services exist. In other words,

they need to know "what are the services needed?", "where are these services located?"

and "how are they found?" This is clearly a resource discovery problem.

3.2.1 Policy-based Management

Policy-based management has been introduced as an efficient solution for managing

network entities. The use of policies offers an appropriately flexible and customizable

management solution that allows network entities to be configured on the fly [4], [5].

Usually, administrators define a set of rules to control the behavior of network entities.

These rules are translated into component-specific policies that are stored in a policy

repository, to be retrieved and enforced as needed. Policies have been widely supported

by standard organizations such as the IETF and DMTF to address the needs for network

management. It was first introduced by Sloman [65] as a tool for management. His work

was the trigger for other research activities focusing on policies: Sloman's work

introduced policies and illustrated the power of this concept particularly in the context

of distributed systems. However focus was put on the general aspects of policies such as

Policy Specification [66], Conflict Analysis [67], Policy Domains [68], and Hierarchies

[69]. Policies were mainly used for specific applications in networks [70] and

Collaborative Systems [71].

CHAPTER 3. RELATED WORK 36

The Policy Working Group [72] is chartered to define a scalable and secure

framework for policy definition and administration. This group has defined a framework

for policy-based management that defines a set of components to enable policy rules

definition, saving, and enforcing. In the IETF model, the policy management system

consists of a Policy Decision Point (PDP) and a Policy Enforcement Point (PEP) [73].

The PDP evaluates the request sent by a PEP as a result of policy event against a

corresponding set of policy rules. The policy decision is then sent back to the PEP using

a communication protocol such as Common Open Policy Service (COPS) [74]. Figure

3.1 depicts the policy-based network management architecture defined within the IETF

and DMTF framework, and used as the primary policy architecture by many research

and commercial communities. The PEP is a network entity where the policy is enforced.

Enforcement of policy decisions is carried out by the specific hardware/software

features residing in the device such as packet filtering, marking, shaping, policing,

bandwidth reservation, etc... A PDP retrieves policies from the policy repository,

makes decisions based on retrieved information, and translates them into device specific

configurations. These configurations are then sent to the PEP at the network entity. The

policy management tool is the interface between the network administrator and the

system. It allows administrators to specify policies to be enforced in network entities,

and then translates them into a format compatible with the policy repository. The policy

repository is a database that stores policies provided by the policy management tool,

which in most cases is a Lightweight Directory Access Protocol (LDAP) directory.

However, most implementations use static policy configurations built a priori into

network elements. This may not be sufficient to handle changes.

Peer-to-peer systems construct an overlay to allow resource sharing; therefore they

are designed with a specific application in mind. In [75], policies are used to control the

topology growth of peer-to-peer systems. Policies are distributed to all hosts in the

system with each host able to adopt only one policy at a time. But human interaction is

still required to define the policies, and to inject them into the system. In [76], peer-to-

peer concepts are used for wearable mobile devices to protect users from one another. A

policy client resides in the kernel of the system, as well as a policy manager that stores

CHAPTER 3. RELATED WORK 37

and dispatch policies. Unfortunately, the policies are static and built a priori. [55]

proposes another application-specific overlay network to achieve fast fail-over and

traffic load balancing in Border Gateway Protocol (BGP). A set of agents is installed in

each participating autonomous system to enforce necessary changes to the local BGP.

An overlay is constructed between the policy agents to facilitate their communication.

Our work differs from those specific application overlay networks in that it allows

many overlays to be managed at the same time. Moreover, peer-to-peer policies so far

are static and lack flexibility, while polices in our work are generated dynamically.

In the proposed work, we envision policies as a very powerful tool that can be used

in automating the management of Service Specific Overlay Networks (SSONs). Policies

are persistent; once a policy is applied, it remains active during its lifetime. Moreover,

changing system behavior without modifying underlying software/hardware can be

easily accomplished by changing the previously applied policies or by enforcing a new

set of policies. Existing management systems usually direct the management task to

physical entities such as routers, switches, and gateways. In our proposed scheme, the

task is assigned to the overlays and their logical elements. This furthers the use of

policies by automating the creation, assembly, and selection of the applied policies at a

given instance of time, thereby generating policies dynamically and automating the

adaptation in the behavior of the overlays without human interaction.

CHAPTER 3. RELATED WORK 38

t \

Policy Management Tool

Fig. 3.1 IETF/DMTF Policy-Based Management Architecture

3.2.2 Overlay Management Using Active Networks Technology

Active networks are frameworks where network elements, primarily routers and

switches, are programmable. In active networks, programs are injected into the network,

and executed by the network elements to achieve higher flexibility and to present new

capabilities. Each active node runs a Node Operating System (NodeOS) and one or

more Execution Environments (EEs). The NodeOS is responsible for allocating and

scheduling the node 's resources (link bandwidth, CPU cycles, and storage), while each

EE implements a virtual machine that interprets active packets arriving at the node.

Each EE defines a distinct virtual machine or "programming interface" on which

Active Applications (AAs) can be built to provide a particular end-to-end service [77].

CHAPTER 3. RELATED WORK 39

There are two major approaches to service deployment in programmable and active

networks [78]: In-band and out-of-band deployment schemes. In the former, the code of

the services is transmitted together with the data in active packets, called capsules,

which the service can execute with the co-located data on the appropriate nodes along

the data path in the network. This scheme is suitable for on-demand deployment of

small and simple services. In the the out-of-band scheme on the other hand, the service

code is separated from the actual data, and is processed during the deployment phase.

This scheme is more applicable to high-level, application-oriented services; the FAIN

[79] project belongs to the second scheme. The deployment architecture [80] defines

how and when service components are invoked and installed on selected network nodes,

such that that the service deployment requirements are fulfilled, and the runtime

management architecture deals with the installation of service components in execution

environments, and with the management of component instances. The architecture uses

the component as the main abstraction. From the management viewpoint a component

instance represents two aspects: The functional aspect in which the component is seen

as a (part of a) service instance; and the non-functional aspect in which the component

is seen as a resource.

Recently, active networks technology has been geared toward aiding network and

service management functionalities. In [81], a new layer—the application environment

(AE) layer—has been added to the active network framework, to offer high-level

services desired by applications. These applications are called user-defined processing

modules (UPMs). They are greatly simplified because they leverage services offered by

the AE layer.

Although active networks-based management seems to provide some promising

solutions, introducing more programmability into network devices also implies adding

more complexity to their management functionalities. In addition, excessive utilization

of active packets results in network performance deterioration due to their high

utilization of network resources—one solution to this problem is to restrict the

functionality of the programs carried by the active packets, thus resulting in

CHAPTER 3. RELATED WORK 40

architectures with decreased capabilities. Furthermore, the dispatched active packets or

programmable codes introduce new safety and security concerns.

There also exists a serious resource discovery problem. Active routers will not be

deployed everywhere at the same time. Rather, they will be deployed individually or in

isolated pockets. Given the unavoidable extra overhead in applying intelligent

processing to packets, active routers will be deployed at the network periphery rather

than in the network backbone. How are applications to find these isolated resources and

put them together for a single purpose?

3.2.3 Automated Management for Overlay Networks

As illustrated earlier, current approaches in the literature present simple adaptation

algorithms which offer sub-optimal solutions to the management problem. Dynamic

self-adaptation in response to changing QoS needs; resources availability; service cost;

perceived performance of the network components or even neighboring networks, will

become an essential operation in future networks. In the following, we investigate some

of the few trials for automating one or more of the overlay network management

functionalities.

The CADENUS (Creation and Deployment of End-User Services in Premium IP

Networks) project [82] attempts to automate network service delivery. The focus was on

how QoS technologies can be controlled and managed via standard interfaces in order to

create, customize, and support communication services for demanding applications.

Mediation components are used to represent the main actors involved, namely users,

service providers, and network providers, and define their automated interactions. By

defining roles, responsibilities, and interfaces, the service deployment process is

decomposed into a set of sub-processes whose mutual interactions are standardized. The

model brings novel contributions to automated management. Nevertheless, it lacks

scalability and does not discuss impacts of network heterogeneity on system

performance.

CHAPTER 3. RELATED WORK 41

The DHARMA (Dynamic Hierarchical Addressing, Routing and naming

Architecture) [83] proposes a middleware that puts no constraint on the topologies of

the overlays, and defines a distributed addressing mechanism to properly route data

packets inside the overlay. It separates the naming and addressing of overlay nodes, and

so can be used to enable network applications to work over the Internet in an End to

End mode while exhibiting mobility, multicasting, and security in a seamless way. The

routing is greedy and follows the closest hierarchy to the destination node. The middle

ware achieves reasonable results for network dynamics <=10% and restricts overlays to

End to End communications.

The ADCCS (Autonomous Decentralized Community Communication System)

[84], [85] provides a framework for large-scale information systems, such as content

delivery systems. It forms a community of individual members having the same

interests and demands at specified time. It allows the members to mutually cooperate

and share information without loading up any single node excessively, and organizes

the community network into multi-levels of sub-communities. ADCCS's is concerned

with reducing both the communication delay of a message that is broadcasted to all

community nodes (while considering latency among them), and the required time for

membership management.

In [86], a distributed binning scheme is proposed to improve routing performance

by ensuring that the application-level connectivity is harmonious with the underlying

IP-level network topology. In the binning scheme, nodes partition themselves into bins

such that those nodes that fall within a given bin are relatively close to one another in

terms of network latency. To achieve this, a set of well known landmark machines are

used and spread across the Internet. An overlay node measures its distance, i.e. round-

trip time, to this set of well known landmarks, and independently selects a particular bin

based on these measurements. The scheme is targeted at applications where exact

topological information is not needed, such as overlay construction and server selection;

however it provides no support for the application specific demands.

CHAPTER 3. RELATED WORK 42

In [87], [88], and [89], a social-based overlay for peer-to-peer networks is

proposed. The social-based overlay clusters peers who have similar preferences for

multimedia content. A similarity between two peers exists if both share common

interests in specific types of multimedia content, hence peers sharing similar interests

can be connected by shorter paths so that they can exchange multimedia content

efficiently. Specifically, whenever a peer requests an object of interest, it can locate the

object among its neighboring peers, i.e., the peers that have high similarity and which

are more likely to hold the requested object. Some of these approaches [87] model a

distance measure that quantifies the similarity between peers, and uses random walk

technique to sample the population and discover similar peers from the randomly

selected samples. In [88], the similarity of peers is measured by comparing their

preference lists, which record the number of the most recently downloaded objects.

However, a new user who has only made a few downloads cannot get an accurate

similarity measure. In [89], a central server collects the description vectors of all users,

and establishes overlay links based on the distance between each pair of users. The

central server does not explicitly define the description vector however, which has a

significant effect on the accuracy of the similarity measure.

3.2.4 Autonomic Management

Autonomic Computing (AC), launched by IBM in 2001 [90], is an emerging technology

that aims to allow users to traverse transparently and dynamically between different

providers and service domains. IBM identified the complexity of current computing

systems as a major barrier to its growth [90], and as a result, automated selection of

service configuration, relocation, and monitoring must be carried out with minor

intervention of users and system administrators. AC simplifies and automates many

system management tasks traditionally carried out manually. Systems that manage

themselves are able to adapt to changes in their environment in accordance with

business objectives; the result is a great savings in management costs and IT

professionals' time, thus freeing the latter to focus on improving their offered service

CHAPTER 3. RELATED WORK 43

rather than managing them manually. Some of the main scientific and engineering

challenges that collectively make up the grand challenge of autonomic computing were

outlined in [91]. Also, a set of characteristics required by AC were identified and

explained in [92].

According to the IBM vision [93], an AC system is one that knows itself and its

environment, configures and reconfigures itself under varying and unpredictable

conditions, heals itself, provides self-protection, and keeps its complexity hidden.

Although the IBM vision is a holistic approach to designing computer systems, much of

the research in this field focuses on a few specific aspects of this vision.

Autonomic communications was proposed in [93]. It has a similar concept to

IBM's autonomic computing, differing in that it focuses on the individual elements of

the network, how their behavior is learned and altered, and how they interact with their

peer elements. A generic architecture for autonomic service delivery was proposed in

[94]. It defines a resource management model based on virtualization, but it is service-

independent, and is unlikely to achieve the specific QoS requirements for each service

dynamically without human intervention. A model for dynamic fault tolerance

technique selection for grid work flow, which allows the system to configure its fault

tolerance mechanism, was developed in [95].

Pattern classification and clustering techniques that support online decision making

and incremental learning in autonomic systems were proposed in [96]. The use of

policies to configure autonomic elements to enforce the required behavior in an Apache

web server was presented in [97]. A set of UML-based models were developed and used

in [98] to specify autonomic properties and to deploy policies as an executing system

based on composition and model modification. A policy-driven model based on multi-

agent systems was also proposed in [99]; in that model, Web services are represented as

agents, and agent behavior is controlled using high level policies. A mapping of

biological systems to PBMS was introduced in [100]; this system is hierarchical and

relies on mechanisms for organism regulation, which supports self-management at

different levels of the hierarchy. Humans in an organization thus specify policy at a

CHAPTER 3. RELATED WORK 44

level of abstraction that reflects their specific needs. The difference between our work

and all these approaches is that the above approaches consider a particular service to

which their design is appropriate. In addition, policy generation is not a fully automatic

process and human intervention is still needed.

Projects such as Service Clouds [101], Autonomia [102], GridKit [103], Auto-Mate

[104], and Unity [105] utilize the autonomic concept in different ways. Service Clouds

provides an infrastructure for composing autonomic communication services. It

combines adaptive middleware functionality with an overlay network to support

dynamic service reconfiguration. Autonomia provides dynamically programmable

control and management to support the development and deployment of smart

applications; primarily, it achieves the self-healing property for failed entities. GridKit

proposes a middleware that offers a consistent programming model across different

communication types. AutoMate enables the development of autonomic Grid

applications by investigating programming models, frameworks, and middleware

services that support autonomic elements. Finally, Unity designs both the behavior of

individual autonomic elements and the relationships that are formed among them, in

order to create computing systems that manage themselves. A detailed survey on

autonomic computing is available in [106]. Although, in theory, AC seems to provide

the ultimate solution for the complex management problem, in general, research efforts

towards Autonomic Management are still in their infancy and are still faced with many

challenges.

Our work focuses on service-specific overlay networks; thus, the interaction

between the network and computing entities is based on a service request/offer concept

in which each entity is responsible for its internal state and resources. An entity may

offer a service to other entities. The offering entity responds to a request based on its

willingness to provide a service in its current state. Our work is concerned with all

possible phases of the service delivery in SSONs—from the instance of requesting a

service to terminating it. As a result, we present an integral approach to SPs that wish to

deliver services over their infrastructure.

CHAPTER 3. RELATED WORK 45

3.3 Resource Discovery

In large, distributed networks, media content usually requires adaptation before it is

consumed by clients; for example, video frames must be dropped to meet QoS

constraints. A client with a PDA requires a scaled-down version of the video; a mobile

user requires the content to be cached for viewing. Therefore, we need to discover the

required resources before we construct the media flow path. Resource discovery

techniques can be classified into centralized, distributed, and semantic approaches. This

section provides an overview of the most established resource discovery techniques.

3.3.1 Centralized Approaches

In centralized approaches, all resource information (resource description, node address,

e tc . .) are kept in a centralized server. Each arriving node needs to actively notify this

server about its kept resource information; consequently, nodes only need to consult

node address from the server about its needed resources. This type of architecture is

very simple and easy to deploy, but has the problem of single point-of-failure. Napster

[107], a peer-to-peer system, adopts this approach. Alternatively, directory servers in

which all the services offered in the network are registered can be used. Either nodes

know how to direct queries to all these servers, or the servers know how to

communicate with each other. For example, the centralized approach [108] is suitable

for networks with stable topology and for applications that do not require frequent

service updates. Though it consumes bandwidth, has a high message overhead, and

suffers from single point-of-failure (in the servers), this approach has been used in the

Internet [109] for web services and other applications [110]. Needless to say that such a

centralized approach is not well suited to the dynamic topology of SMART, where

services on offer must be updated frequently.

CHAPTER 3. RELATED WORK 46

3.3.2 Distributed Approaches

Flooding is the simplest approach to resource discovery. A query is broadcast to all

nodes. A requesting node contacts its neighbors, which in turn contact their own

neighbors until the resource is found. Each receiving node determines independently

how to process and respond to the query. Although this approach is flexible and requires

no topology awareness, it consumes bandwidth and suffers from an exponential number

of overhead messages [111], [112], [113], and [114]. In [115], a path-directed approach

that is explicitly targeted to media stream processing services is proposed: The query is

sent to nodes that move it progressively closer to the destination. While this is more

efficient than flooding, queries are still sent to nodes where answers may not be

available.

Dynamic Hash Table (DHT) approaches are decentralized, and are proposed

mainly for P2P systems. They can be classified, based on their inter-connection

architectures, into flat or hierarchical. Flat approaches Chord [54], CAN [116], Pastry

[117], Tapestry [118], and Kademlia [119] provide a uniform distribution of peers and

resources. They support scalable and distributed storage and retrieval of {Key,Data) pairs

on the overlay network, and they do this by associating each node in the network with a

portion of the key space; all data items whose keys fall into a node's key space are

stored at that node. DHT systems differ in the details of the routing strategy as well as in

the organization of the key space. In a network of N nodes, where each node

maintains O(logA0 routing entries, DHTs generally perform lookups using only

O(logTV) overlay hops (CAN [116] is an exception).

Chord is a decentralized P2P lookup service that stores {Key,Data) pairs for

distributed data items. It assigns keys to its peers using consistent hashing [120], where

consistent hash functions assign peers and data keys an m-hit identifier using SHA-1

[121] as the base hash function. Given a key k, the node responsible for storing k's data

can be determined using a hash function that assigns an identifier to each node and to

each key (by hashing the node's IP address and the key). Key k is assigned to the first

peer whose identifier is the successor of k in the identifier space. Chord nodes form a

CHAPTER 3. RELATED WORK 47

connected Ring topology, with each node maintaining a finger (routing) table with

O(logN) pointers to other nodes. When a new chord node joins the network, certain keys

have to be moved to the new joining node from its successor. Similarly, when a node

leaves Chord, all its keys are assigned to its successor. This operation costs 0(log
2
N)

messages. Chord supports only a lookup operation; given a key k, it maps k into the

node responsible for storing the data associated with k. In the steady state, Chord

performs lookups in O(logN) messages to other nodes.

CAN is designed to be scalable, fault-tolerant, and self-organizing for internet scale

applications. It is built on a virtual ^-dimensional cartesian coordinate space on a d-

torus (for some fixed integer d). Every node in CAN owns a distinct zone from the

virtual overall space. A CAN node maintains a routing table that holds the IP address

and virtual coordinate zone of each of its neighbors in the coordinate space. Using a

uniform hash function, any key k is mapped onto a point p in the coordinate space. K

and its data are then stored at the node that owns the zone that contains p. Routing

messages follows a greedy forwarding pattern; when a node joins, it will randomly

select a point of ^/-dimensional space, and then becomes responsible for half of the zone

that this point belongs to, and hold all keys whose IDs belong to this zone. A CAN node

maintains a coordinate routing table that holds the IP address and virtual coordinate

zone of each of its immediate neighbors in the coordinate space. A node sends the

message to a neighbor node that is closest to the destination coordinate. The routing

table size at each CAN node is 2 x d, and lookups cost 0(d x JV1) messages. Thus, in

contrast to Chord, the routing table maintained by a CAN node does not depend on the

network size N, but the lookup cost increases faster than O(logN). If d = logN, CAN

lookups match Chord's.

Pastry nodes form a decentralized, self-organizing, and fault-tolerant overlay

network within the Internet. Each node in the Pastry system is assigned a nodelD, a

128-bit node identifier that is used to indicate the position of the node in circular

nodelD space in the range [0 - (2128-1)]. When a new node joins the system, it is

assigned a randomly generated nodelD from the uniformly distributed nodelD space.

CHAPTER 3. RELATED WORK 48

Routing in Pastry is a prefix-based routing. A node forwards the message to another

node whose nodelD shares with the key a prefix that is at least one digit (or b bits)

longer than the prefix that the key shares with the present node's ID. For a network of N

nodes, Pastry routes to the numerically closest node to a given key in less than log/N

steps under normal operation (where b is a configuration parameter with typical value of

6 = 4).

Each Pastry node maintains a routing table, a neighborhood set, and a leaf set. The

neighborhood set is not normally used in routing messages; it is useful in maintaining

locality properties. It contains a set of nodelDs and IP addresses that are closest

(according a proximity metric) to the local node. The leaf set is used during the message

routing, and contains a set of nodes with half of those nodes being the numerically

closest larger nodelDs, and the second half being the numerically closest smaller

nodelDs, relative to the present node's nodelD. Each node maintains a routing table of

[log/N x (2
b
 - 1)] entries. Each entry in the routing table contains the IP address of

one of potentially many nodes whose nodelD have the appropriate prefix. Therefore,

lookups cost between any pair of nodes is (log/N).

Tapestry shares similar properties with Pastry, but the main difference between

them lies in the handling of network locality and object replication; Tapestry' is based

on Plaxton [122]. The core location and routing mechanisms of Tapestry are similar to

those of Plaxton, but Tapestry's goal is to improve the capability to detect, circumvent,

and recover from failures through maintaining periodically updated cached content. To

avoid a single point of failure, Tapestry uses multiple roots for each data object—

Routing is longest prefix routing. Tapestry uses local tables at each node, called

neighbor maps, to route overlay messages to the destination ID, digit by digit. Each

node in Tapastry maintains routing maps, which are organized into routing levels, each

level containing entries that point to a set of peers closest in distance that match the

suffix for that level. The routing method guarantees that any existing unique peer in the

system can be located within at most \ogsN logical hops, in a system with N peers using

nodelDs of base B. Since the peer's local routing map assumes that the preceding digits

file:///ogsN

CHAPTER 3. RELATED WORK 49

all match the current peer's suffix, the peer needs only to keep a small constant size (B)

entry at each route level, yielding a routing map of size B x loggN.

Kademlia is similar to many peer-to-peer systems. Keys are opaque, and each peer

is assigned a NodelD in the 160-bit key space, with <key,data> pairs stored on peers

with IDs close to the key. Kademlia uses a novel XOR metric for distance between

points in the key space. XOR is symmetric and allows nodes to receive lookup queries

from precisely the same distribution of nodes contained in their routing tables. Each

node in the network stores a list of {IP address,UDPport,NodeID} triples for nodes of

distances between 2' and 2
l+1 from itself. These lists are called ^-buckets. Each ^-bucket

is kept sorted by last time seen. Therefore, the maximum state kept by any node is k, a

typical value for k being 20.

The Kademlia routing protocol consists of the following steps: 1) PING probes a

node to check if it is active; 2) STORE instructs a node to store a <key,data> pair; 3)

FINDNODE takes a 160-bit ID and returns {IP address,UDP port,NodeID} triples for

the k node it knows that are closest to the target ID; 4) FINDVALUE is similar to

FIND_NODE: It returns {IP address,UDP port,NodeID} triples, except in the case

when a node receives a STORE for the key, in which case it just returns the stored

value.

Despite their efficiency, current Dynamic Hashing Tables (DHTs) are limited to

pure lookup of unique Keys, which introduces a problem: A user will not always be

aware of a Key's value. Large routing tables incur costs, in addition to the traffic

maintenance needed to keeping them up to date (in order to avoid stale entries that may

cause timeout delays). DHT systems also exhibit dramatic latency growth when

subjected to increasing churn, where nodes continuously join and leave the network.

This may lead to network partitions, causing subsequent lookups to provide inconsistent

results [123], [124].

Multi-attribute searches have been proposed to solve the limitations of unique IDs.

The main approaches include Reverse Hash Tables [125], [126], [127], [128], [129],

[130], and [131], and Keyword-fusion [132], [133], and [134]. Reverse Hash Tables are

CHAPTER 3. RELATED WORK 50

based on inverted indexes, in which (Resource ID, Node) is replaced by the inverted

list: (keyword, List of resources/List of nodes). Each resource is described by a list of

keywords. Then, each keyword is indexed separately. Therefore, the inverted index is

distributed among peers by keyword; hence a query with n keywords can be answered

by n nodes. All the results are collected by the requesting node that computes the

intersection of all the responses as the final result. The scalability limitations of this

technique and its existing optimizations, in terms of high bandwidth consumption, have

been demonstrated in [135]. In Keyword-fusion, the resource identifiers are obtained by

hashing an attribute or a list of attributes using a consistent function. This list of

attributes defines a single key that identifies the resource uniquely. It solves the problem

of common keywords—those keywords that frequently appear in the keyword lists of a

large number of files—by generating a new keyword (referred to as synthetic) through

concatenating a set of keywords in the Alphabetic order. The value part of the mapping

for the synthetic keyword is an intersection of all file lists in the original mapping, i.e. a

list of the files that contain the set of keywords in their keyword lists. While Reverse

Hash Tables introduces a significant load in the network, and Keyword-fusion reduces

this traffic, they both require the keywords to be known beforehand.

Hierarchical DHTs can be further classified into vertical and horizontal approaches.

Vertical approaches [136], [137], and [138] ensure that the nodes in any domain form a

DHT routing structure by themselves. The DHT containing all nodes in an internal

domain is obtained by merging all the DHT "children" into a larger DHT, and then by

applying this recursively at higher domains. This has many advantages; for one, local

traffic does not affect other layers. Other advantages lie in network proximity and

efficient caching. However, the creation of several DHTs assigned to sub-domains can

affect the scalability and the total number of connections in the network. Furthermore, a

routing table is needed for each DHT, thus increasing the maintenance cost. In

horizontal approaches [139], [140], leaf overlay networks are connected using a single

DHT that contains the conceptual hierarchy, and which optimizes the routing in the

whole network, thus reducing the number of connections that build the hierarchical

infrastructure at the expense of more complex routing tables. In addition to the

CHAPTER 3. RELATED WORK 51

traditional DHT benefits, hierarchical DHTs provide fault isolation, effective caching,

and bandwidth utilization. The limitations of traditional DHTs do, however, still exist.

Smart Media Routing and Transport (SMART) is a highly dynamic environment.

MediaPorts (MPs) resources change frequently, and frequent re-hashing is not feasible.

Consider the example of a service that requires MPs caching at least 100MB in the

network; using DHT to find all caching MPs results in a huge message overhead—

finding those with less than 100MB cache is not useful. Using a multi-attribute search,

we can retrieve only those MPs with an available cache greater than 100MP. However,

after selecting a specific MP, its cache size will be less than before. This implies that we

need to re-hash this MP and its cache. Different caching MPs belong to different

domains. Hierarchical DHTs will therefore not be able to group them into one cluster

without the clustering becoming costly. More importantly, if multiple MPs are needed

for a specific media flow, they cannot be discovered all at once because their number

and types are not known beforehand. In a dynamic distributed environment, discovering

the first MP and trying to discover the rest recursively is costly. This is because the

discovery time will be substantial and, before reaching a solution, the network might

have changed, which in turn might require beginning the search again.

One common way to improve the performance of a network is to increase its

connectivity and decrease its diameter, a feat that can be achieved by adding links.

However, we want to add as few links as possible since their cost has practical

implications on the design. Additionally, the number of links going out of a node must

be small to allow for fast maintenance. Also, the links must be added in a homogeneous

way so that nodes can be easily inserted and messages can be routed systematically.

3.3.3 Semantic Approaches

Semantic approaches [141], [142] have been proposed as an enhanced search

mechanism. Peers with similar content become members of the same Semantic Overlay

Network (SON). Queries are then forwarded to the SON that satisfies the query, thereby

reducing their communication cost. A major problem of SONs is to construct efficient

CHAPTER 3. RELATED WORK 52

overlays. In [141], SONs are presented as groups of peers, which share common

interests. In [142], a similarity-based, pre-computed binary relation among peers is

encoded in SON. Each peer becomes directly connected to a small number of other

peers that are likely to be good routing targets. Bloom filters [143] or hash sketches

maintained in a directory based on DHT have been used as a brief summary technique

for query filtering and routing. In [144], a probabilistic algorithm based on bloom filters

is first used to discover content. If it failed, a deterministic algorithm is used. This is

motivated by the assumption that the probabilistic algorithm finds resources quickly

when it can, and fails quickly when it cannot. In [145], a DHT maintains a global key-

to-document index. The key-index only contains single terms and term sets that are rare

and thus discriminative with respect to a document collection. A particular instantiation

of the key-indexing creates keys by combining terms appearing in well-defined

contexts. Their work assumes that peers are cooperative and provide documents for

indexing that will become searchable through a global index. At the same time, they

offer computing and storage resources to build and maintain the global index and the

underlying P2P network.

A different notion of SONs [146] is related to schema mappings and peers that are

logically interconnected through schema mappings; the approach is a two-layer model:

A physical layer based on the P-Grid access structure, and a logical semantic overlay

layer. Peers in Grid-Vine create (and possibly index) translation links, mapping one

schema onto another. These links can then be used to propagate queries in such a way

that relevant data items annotated according to different schemas can also be retrieved.

Query forwarding can be implemented using iterative forwarding, where peers process

series of translation links repeatedly, or recursive forwarding, where peers delegate the

forwarding to other peers.

Other SON examples are globally available term statistics about the peers' contents

[147], gossiping strategies [148], locality in the underlying network [149], and resource

shortcuts that group peers into clusters according to their contents [150], [151].

CHAPTER 3. RELATED WORK 53

However, many of those methods involve directory lookups, statistical computations,

and multi-hop messages.

Semantic approaches have been also proposed for ad hoc networks [152], [153],

and [154], and Grid technologies [155], [123], [156], [157], and [158]. In ad hoc

networks, nodes are considered equals, in effect acting like a special kind of P2P

network. Grid systems allow the sharing of heterogeneous, distributed resources that are

potentially numerous and dynamic. Resource discovery is achieved by either using

broadcasting, or advertising services to the entire network or through special structures.

Routing queries on top of a semantic overlay will result in more efficient resource

discovery. But problems remain: These approaches are not fault-resilient, the overlay is

difficult to maintain, and the message overhead is considerable. Moreover, assuming the

lack of knowledge of both global content and network topology, the actual construction

of these overlays is challenging. In a Peer-to-Peer architecture, each node is initially

aware only of its neighbors and their content. Thus, finding other peers with similar

contents to form a SON becomes a tedious problem.

Resilient Overlay Network (RON) [48] allows distributed Internet applications to

detect and recover from path outages and periods of degraded performance. However,

RON overlay does not scale for more than 50 nodes.

Geographical routing [159], [160] is a routing method that uses geometrical

reasoning for forwarding packets. Typically, a greedy approach is used: This means that

a packet is forwarded to the node in the neighborhood that is closest in Euclidean

distance to the destination. Since MPs may not fall exactly in the path between

MediaClient (MC) and MediaServer (MS), geographical routing does not guarantee that

the needed MPs will be discovered. Furthermore, since these MPs are not known

beforehand, geographical routing becomes impractical.

CHAPTER 3. RELATED WORK 54

3.4 Summary

In this chapter, we have extensively discussed various approaches that have been

proposed to address the issue of managing overlay networks. The development of

management schemes, such as policy-based management, active-network management,

and autonomic computing have made it possible to provide some management

operations. Nevertheless, it is generally difficult to manage service-specific overlay

networks while maintaining the service specific requirements, since numerous overlays

exist, each dictating its own requirements. However, it is vital to construct, configure,

and manage these overlays to prevent them from consuming network resources, and to

make them efficient. By investigating current research contributions in literature, the

following key conclusions have been reached:

1. Static network components configuration is inefficient to manage overlays in the

aggregate levels; overlays have their own logical components that should be

configured and managed.

2. The costs of maintenance of existing management models are high, due to the

reliance on human operators.

3. Current management mechanisms mostly cover only a single part of the global

overlay life cycle management problem. An adequate management mechanism

should cover all the phases that overlays pass through during their lifetime.

Furthermore, it should incorporate management actions between different

classes and types of overlays.

4. Segregation between resource discovery and overlay management leads to an

inefficient usage for both. Resource discovery mechanisms should be efficient

and accurate, in addition to providing a high success rate. Moreover, a resource

discovery mechanism should be integrated in the management scheme such that

the frequent requests do not generate great overhead on the network resources.

5. The deployment and management of overlays is a serious issue, and in order to

support large-scale, distributed applications, overlays must be deployed and

CHAPTER 3. RELATED WORK 55

managed in an automated manner without any manual intervention, or

unnecessary communication. Ideally, no modifications to applications or

operating systems should result from this process.

Chapter 4

Autonomous Management Infrastructure

As mentioned earlier, this dissertation is focused on developing novel approaches that

can be used to achieve an autonomous management of SSONs. To this end, the

following chapters will develop schemes to automate SSONs management. For that

purpose, this chapter gives an overview of the proposed framework for autonomous

SSONs management, it proceeds as follows: Section 4.1 introduces overlay management

challenges. Section 4.2 reviews SMART modeling for overlay networks and its

limitations. Section 4.3 presents an overview of the proposed architecture, and section

4.4 discusses the proposed architecture components in details. In Section 4.5, we present

a use case scenario that shows the steps used in creating, adapting, and terminating

SSONs. In Section 4.6, we present simulation details and results. Finally, the chapter is

concluded with a brief summary.

4.1 Introduction

As discussed earlier, an overlay network is a virtual network of nodes and logical links

that is built on top of an existing network in order to implement a service that is

otherwise, not originally available. Overlays can be used to increase routing robustness

and security, to reduce duplicate messages, and to provide new services for mobile

users. They can also be incrementally deployed on end hosts without the involvement of

ISPs, and they do not need new equipment or modifications to existing software or

protocols [48], [49], and [50]. These attractive benefits come at the cost of increased

overhead and complexity. Overhead is increased because of the additional packet header

and the redundant work at the overlay and IP layers. The constantly increasing traffic

56

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 57

carried by the overlays also tends to overload the network and consume its resources [3].

In addition, overlays are usually designed independently. This increases the chances that

they will negatively affect each other; bottlenecks are created, and they reduce the

performance both of the overlays and of the underlying network. Overlays therefore

need to incorporate a management mechanism that reduces this complexity and keeps

them operating correctly.

Overlay management is challenging for several reasons. First, the dynamic changes

in network conditions and topology quickly renders management information obsolete.

For example, network nodes may fail, links may get congested and routing information

may change. In addition, any changes in the routing path are affected by the required

QoS [64], bandwidth, latency, and the existence of other overlays. Second, overlay

members are dynamic since new users may join or leave. Finally, each overlay node has

limited knowledge of the network, and the knowledge varies among overlay members.

With a large number of overlays, management by traditional methods becomes harder to

achieve and, a new management scheme must be supplied. This new scheme must

account for the different phases that overlays go through during their lifetime: creation,

optimization, adaptation, and termination.

Creation requires the setup of a routing table in each overlay node along the end-to-

end path, a path that must optimize the QoS metrics. Adaptation produces a new

behavior that reflects a change in the overlay environment, and may be necessary to

assist mobility, deal with the failure of an overlay node, or control congestion.

Termination means claiming the reserved resources and updating routing tables.

The use of policies offers an appropriately flexible and customizable management

solution that allows network entities to be configured on the fly [4], [5]. Usually,

administrators define a set of rules to control the behavior of network entities. These

rules are translated into component-specific policies that are stored in a policy

repository, to be retrieved and enforced as needed. However, existing management

systems usually direct the management task to physical entities such as routers,

switches, and gateways. In our architecture, the task is assigned to the overlays and their

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 58

logical elements. Policies are generated dynamically, and no human interaction is

required.

We propose a new approach to the autonomous, context-aware, policy-based

management of overlay networks. The approach's novelty lies in that sets of policies,

specifically adapted to the current availability of resources and users' demands, are

dynamically generated from the available context information and enforced on the fly.

Policies also control the various construction phases harmoniously. Our goal is to

automate overlay management in a dynamic manner that preserves the flexibility and

benefits that overlays provide.

4.2 SMART Modeling for Overlay Networks

To recap, in SMART, A Service Specific Overlay Network (SSON) is constructed for

each media delivery service or group of services. An SSON is a virtual network

composed of a set of overlay nodes and links, which customizes the network to the

particular requirements of the service (such as QoS, media formats, responsiveness,

cost). SSONs have the ability to transparently include network side entities called

MediaPorts (MP) in the communication path, thereby providing the flexibility to modify

the content and services such as caching, adaptation and synchronization [47].

Overlay nodes are physical Ambient Network nodes that have the capabilities

needed for them to become part of the SSONs; these are a control plan and a user plan.

The control plan is responsible for the creation, routing, adaptation, and termination of

SSONs. The user plan contains the Overlay Support Layer that receives packets from the

network, sends them to the network, and forwards them on the overlay. Overlay nodes

implement a sink (MediaClient, or MC), a source (MediaServer, or MS) or a MediaPort

(MP) in any combination. MPs are special side components that provide valuable

functions to media sessions such as special routing capabilities, smart caching and

adaptation. MPs, MCs, and MSs are managed by the control plan. The control plan also

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 59

contains a MediaPort Directory Service (MPDS) to maintain information about the

available MPs, such as location, load and cost.

SMART'S architecture is described in detail in [2]. But SMART does not specify

the means by which SSONs are constructed and managed, nor does it specify how

SSONs can be adapted dynamically according to the users' context; our architecture

addresses these drawbacks. First, the control plan is equipped with a new entity called

the Overlay Policy Enforcement Point (OPEP). The OPEP is designed to control node

resources and functionalities by enforcing configuration changes based on context

information. This in turn is used to dynamically generate policies. Second, an SSON

Overlay Policy Decision Point (OPDP) is used for each SSON or group of SSONs to

make the appropriate decisions about the creation, adaptation and termination of SSONs.

In addition, a set of System PDPs (SPDPs) is used to coordinate the actions of OPDPs.

COPS protocol [74] is used to exchange policy objects between the OPEP, OPDP, and

SPDP.

Context Memory

Network Provider

Service Provider

70
* -n

•° 7
o o

a> —

O •<

Policy
Generator

SSON PDP I

(OPDP) [

User

Policy
Gennrator

(SPDP)

X J
2:

50

o o
(A =

S °
o x :
-3

System PDP l^_

daptat ion^-^V*

T r i g g e r ! r

Fig. 4.1 Context-aware overlay policy architecture

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 60

4.3 Architecture Overview

A schematic description of the main components of our proposed architecture is shown

in Fig. 4.1. The central components are the OPDP, SPDP, OPEP and the Policy

Generator (PG). The OPEP is a component in the overlay nodes while the OPDP and the

SPDP are remote entities that may reside at a policy server. The PG generates and adapts

policies using the available context information. The OPEP is the point at which policy

decisions are actually enforced. Policy decisions are made primarily at the PDP1. The

PDP receives policies from the PG, evaluates them and distributes them appropriately.

The OPEP requests decisions and enforces them. With any change in the context

information, an adaptation process is triggered by first generating the policies that reflect

the new context and then by proactively sending them to be dynamically enforced.

We distinguish between the sources of context information, such as user context,

service provider context and network provider context. All these types of context must

be considered when building a comprehensive management system. We assume that the

context information has been gathered in a context memory [161], [162], which feeds it

to the PG. The PG generates different types of policies: user policies, application

policies, service provider policies, network provider policies, and service-specific

policies. Any change in the SSON environment triggers an adaptation process in which

new policies are generated dynamically and sent to the appropriate PDP.

The policy repository saves all the policies generated for each SSON, and also

contains other information relevant to the management task. This may include the

SSONs constructed so far and the Media Port Directory Service (MPDS) that lists the

available MPs and their capabilities, user registration, and accounting information.

There are two different types of PDP: The SSON PDP (OPDP) and the System PDP

(SPDP). Since the number of overlay nodes expected in each SSON is small, each

OPDP is assigned one or more SSONs. The OPDP is responsible for automating the task

of creating, adapting, configuring, and terminating its designated SSONs. It

1 We use PDP to refer to both OPDP and SPDP unless it is necessary to make a distinction.

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 61

communicates directly with the participating overlay nodes to achieve its tasks.

Typically, its tasks are the following. 1) It makes configuration decisions in response to

the system policies received, and uses these decisions to configure the overlay nodes

participating in a given SSON. 2) During construction of an SSON, it is responsible for

optimizing the service path to meet the required QoS metrics of the high-level system

policies as well as the context of the service. 3) It monitors the QoS metrics for the

multimedia session and continuously adapts the service path to the changing conditions

of the network, the service, and user preferences. 4) It also monitors the participating

overlay nodes, and finds alternatives in case any of the nodes do not conform to the

required performance level. OPDPs receive goal policies from SPDPs in order to decide

the types of actions required.

A single OPDP is able to automate the management functions only for the SSONs

that it manages. If a network contains a large number of SSONs, it may be that they are

not really isolated. On the one hand, each overlay node can be part of many SSONs if it

offers more than one service or if it has enough resources to serve more than one

session. On the other hand, the SSONs' service paths may overlap, resulting in two or

more SSONs sharing the same physical or logical link. For example, if two SSONs share

the same routing MP with the same goal to maximize throughput, the result will be race

conditions on the shared resources. Therefore, in order to achieve a system-wide

balance, the OPDPs need to coordinate their actions. This is achieved using SPDPs.

SPDPs interact with one or more OPDPs. They pass the high-level system policies,

such as for load-balancing, to the OPDPs. Whenever they find shared goals between two

different SSONs, they send information that avoids conflicting actions. The OPDPs then

contact each other and create a Virtual Management Overlay (VMO) as illustrated in

Fig. 4.2. This VMO coordinates their actions before they are passed to their overlay

nodes.

Sharing goals is not the only reason to create VMOs. SSONs that share common

links and SSONs that belong to the same policy domain (same service class, ISP, etc.)

may also create VMOs among themselves. Additionally, SSONs that share common

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 62

nodes or links affect each other's performance as they compete for the shared resources.

This can result in degraded performance as the competition causes them to frequently

evaluate their decisions in an attempt to reach the desired performance goals. All SSONs

in a given domain (ISP) are also expected to achieve the domain-wide policies together.

VMOs allow these policies to be sent and adapted to each SSON in a way that achieves

the desired goals. VMOs also allow the sharing of control and information between

different SSONs. A set of SSONs co-located in a given vicinity (such as an area,

domain, AS) usually has independent routing decisions based on its observations for its

environment. Sharing this information results in reduced overhead for each overlay and

allows policies to be adapted and generated in order to achieve better performance.

When VMOs are created, each OPDP can obtain information of two types, the first

related to the coordination actions, the second to the common metrics in which each

OPDP is interested. Goal policies are passed from SPDPs to the OPDPs they manage.

The context information of the network, users, and services is used primarily to aid in

generating suitable policies at each level.

• SSON PDP (OPDP) #SystemPDP(SPDP)

Figure 4.2. Virtual Management Overlay (VMO) hierarchy

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 63

4.4 Proposed Architecture Details

This section describes, in detail, the central components of the proposed architecture,

and the various steps in the construction, adaptation, and termination of SSONs.

4.4.1 Policy Generator (PG)

The central component in the PG [163] is the automated policy adaptor (APA). The key

feature in APA design is to separate the mapping of abstract higher-level goals to

network-level objectives from the functionality that adapts the behavior of network

components. Although we used the same concepts as [163] to generate policies, our PG

goes beyond those concepts as follows. First, policies for system and business objectives

are derived from the relevant context information, as are policies for users and

applications. While in [163], network administrators and users/applications specify these

policies using a graphical user interface and register them with the APA, we derive these

policies from the context, thereby further automating the process. Second, instead of

sending the policies directly to the managed resources, we send them to the PDPs. This

separates the process of generating policies from the process of making decisions. This

is done because adapting an existing policy may not be sufficient to adapt an entire

SSON. In addition, adapting one policy may require adaptations in other policies in

order to achieve an SSON-wide adaptation. The separation of policy generation from

decision making allows for more flexibility to adapt SSONs dynamically based on their

specific requirements as units.

As a result, overlay management is seen as a process of learning from current

system behavior by creating new policies at runtime in response to changing

requirements. The PG generates and adapts five kinds of policies and sends them to

PDPs. These are user policies, network policies, application policies, service provider

policies, and service specific policies. The adaptation process is either triggered at pre-

set intervals or by events received from the OPDP and network monitors in the OPEP.

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 64

These events are in response to user-related or application-related events such as low

battery level, or changes in a user's location or an application's QoS requirements.

The PG considers policy adaptation to be a process of learning from current system

behavior. This learning process assembles new policies at runtime. The policy-making

passes through three main phases: Stage setting, consideration of alternative decisions,

and reassessment of the applied decision. As a final step, a feedback mechanism ensures

that the new policies are correct.

In the first phase, all necessary information is obtained from the context

information. In the second phase, the PG selects one or more actions from the action

space that best attains the specified change. The selection is made by calculating an

expected loss value for each action. Choosing the optimum policy is simply a matter of

choosing the action that minimizes the expected loss values. The third phase involves

the assembly of a new policy as a result of the actions selected in the previous step. The

newly assembled policy consists of a triggering event translated by the PG from higher-

level policies such as user location. Conditions are specified by the characteristics of the

satisfied objective and the selected action. The new policy can also be associated with a

lifetime, a duration after which it expires and is deleted. Once a policy is assembled, it is

sent to the appropriate PDP.

The final step is performed by the reassessment module that evaluates the success of

the new policy. Network monitors in OPEPs measure the average values for the actual

QoS parameters. For example, an SSON's actual throughput of traffic is calculated and

compared with the objective. The difference between the values measured by the

monitors and the required objectives is fed back to the first stage as a new objective

change. If the difference is substantial, the adaptation process is repeated.

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 65

. Plan
| history

t

V.

OPDPWIA

I
Plans

Generator

t
OCRA

CA

tf
Fig. 4.3. OPDP architecture

rS
(D O

•O =
O O

s _•<
o
•3

4.4.2 Overlay Policy Decision Point (PDP)

As shown in Fig. 4.3, the Overlay Policy Decision Point is composed of a Management

Agent (OPDPMA), an Overlay Conflict Resolution Agent (OCRA), a Plans Generator,

and a Communication Agent (CA).

The management agent receives the policies from the PG, analyses them, and makes

appropriate decisions. It assigns a unique ID to each SSON and to each flow. Flows can

then be routed independently when, for example, it is necessary to meet the required

QoS. To create or adapt an SSON, the management agent sends the IDs, the SSON's

performance requirements and the requested MP capabilities to the Plans Generator.

The Plans Generator is responsible for constructing the topology of the SSON that

meets the requested performance properties (such as low overlay path latency or a

specific overlay path bandwidth) and the requested MP capabilities (such as a caching

MP with at least 300Mb disk space). It searches for the path that best meets the QoS

constraints. For this to be done, a set of QoS metrics has to be available. These metrics

(such as link costs, delay, jitter, and bandwidth) are either part of the context information

available in the plan history or are obtainable by reusing measurement techniques

similar to those presented in [164], [165]. These costs are updated using a link state

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 66

update protocol that is outside the scope of this paper. To facilitate the process of finding

the optimal path, and to allow the network to interactively contribute to successful media

delivery, the Plans Generator includes the suitable MPs whenever necessary.

The MP location is chosen to be as close as possible to the shortest path between the

source and the sink. The Plans Generator either chooses the most suitable MP, or any

suitable MP and then searches for the optimal path from the source to the MP, and from

the MP to the sink. The former choice ensures that the MP is as close as possible to the

shortest path, yet it does not guarantee that an MP will be found. To avoid this problem,

we expand the search parameters and run the search again, accepting that this increases

the time needed to find an optimal path and consumes more resources. The latter choice

allows a parallel search for the optimal path, and reduces the management overhead, but

does not guarantee that the MP closest to the shortest path will be found. Any MP can be

chosen at random from the Media Port Directory Service, in which SMART assumes

that MPs register their locations and capabilities. But since geographically closer nodes

are expected to have fewer hops between them [166], [167], it is more efficient to

choose a MP that is geographically close to the sink. This is the approach taken in this

paper.

Once the Plans Generator finds the optimal path, it constructs a connection matrix

that represents the SSON topology and sends it to the management agent, and to the PG.

The PG generates the policies that construct or adapt the SSON and sends them to the

Management Agent.

The OCRA (is listed here for completeness and it is an object of future work)

receives the policies from the management agent, and checks them for any conflict with

previous policies. This ensures that new or adapted SSONs do not negatively affect the

operation of those already deployed. If a conflict is found, the policies are rejected and

the SSON has to enter an adaptation process. Conflicts are generally divided into two

types: Static and Dynamic. In our model, a static conflict is one that is detected at the

time a new policy is generated; a dynamic conflict is one that occurs at runtime. If no

conflicts are found, the management agent either sends the policies to the appropriate

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 67

OPEP through the Communication Agent (CA) for immediate enforcement or retains

them in the policy repository to be activated at a future time. The CA is responsible for

sending policy objects to the appropriate OPEP as well as for receiving policy objects

from OPEPs.

The SPDP's main tasks are to coordinate the actions of two or more OPDPs, and to

distribute system-level policies that guarantee system-wide performance. These policies

are derived from the network and service provider context information. SPDPs consist of

the same components as the OPDP, except that they do not contain the Plans Generator

module. They therefore receive the system policies such as load balancing from the

Policy Generator, analyze them, and send them to a conflict resolution module. This

module checks the consistency of the new policies against those already installed. In

case of conflicts, the new policies are fed back to the Policy Generator for re-adaptation.

If no conflicts are found, the policies are sent to their OPDPs through the

communication agent.

Fig. 4.4 OPEP Architecture

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 68

4.4.3 Overlay Policy Enforcement Point (OPEP)

The OPEP is the point at which policies are actually enforced. As shown in Fig. 4.4, the

OPEP is composed of four cooperating agents. It receives notifications or messages from

the monitoring agents that require a policy decision, and then constructs a request for a

policy decision and sends it to the OPDP. Once the policy decision is received, the

OPEP enforces the decision by accepting or denying as appropriate.

- Overlay Policy Management Agent (OPMA). The OPMA manages the various

aspects of the OPEP through two-way transmission of policy objects with the OPDP. It

also receives notifications and adaptation events from the Monitoring Agents. Once a

new policy object is received, the OPMA analyzes it to determine the appropriate action.

If it is a decision, it is sent to the policy enforcement agent (PEA), which decides how

the policy will be enforced. If it is an adaptation, it constructs an appropriate policy

object, and communicates with the OPDP to acquire a decision.

- Policy Enforcement Agent (PEA). The PEA is responsible for enforcing or removing

the overlay policies at the overlay node. It receives and analyzes policy decisions from

the OPMA. With the assistance of the Resource Interface Agent (RIA), it enforces them

at the appropriate overlay node component. It also sends a report to the OPMA

describing the success or failure of the enforcement.

- Resource Interface Agent (RIA). The RIA is an interface between the OPEP and the

components of the overlay node. As such, it communicates with the appropriate

component to enforce a policy. For example, it communicates with an Overlay Service

Layer (OSL) component to update a routing table entry and with the MP to reserve or

free its resources.

- Monitoring Agents (MA). MAs are placed at various layers of the system as

required. Each MA is responsible for monitoring its layer, and reporting to the main

monitoring agent in the OPEP. MAs are therefore able to monitor the available resources

and capabilities, as well as the connectivity of the overlay node to neighboring nodes.

MAs also monitor the performance of overlay nodes and MPs. Whenever reduced

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 69

performance is detected, MAs send an adaptation event to the Management Agent so

that additional resources can be freed.

4.5 Use Case Scenario

This section provides a simple illustration of how our architecture uses policies to create,

adapt, and terminate an SSON.

SSON Construction: The process of constructing an SSON starts with the service

provider (or user) defining the properties of the service to be offered. These properties

include the required QoS, the required network side functions (such as caching), and any

other requirements specific to the service. The OPEP sends the properties to an SPDP

that assigns the task to an OPDP and forwards the properties to the PG. The PG then

converts them into policies and sends them to the OPDP. For example, the PG would

generate policy (a) for a user requesting a video from a streaming video server:

If (User = "x") and (Application

Max_Bandwidth < 128 kbps,

AggregateBandwidth < 1024 kbps,

OneWay_Delay < 200ms,

Special_Functions = "caching",

Priority = 3

"video") Then

(a)

Once the OPDPMA decides, with the help of the policy repository, that this is a new

service, it assigns a unique SSONID to the service. If the service has multiple flows, it

assigns a distinct FLO W I D to each of them. The video session in our example has two

flows (video and audio). Each flow can be routed on a different path if necessary, but

our initial assumption is that both are routed on the same path. The OPDPMA therefore

constructs the following policy object and passes it to the Plans Generator.

Action

Create

SSONJD

3432

FLOWJds

Audio = 1 Video = 2

Application

video

User

X

Policies

Policy (1)

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 70

The Plans Generator searches for the optimal path, including the suitable MPs. It then

IF (SSON_ID = 3432) and (VideoFlowID = 2) and (AudioFlowID = 1)

and (User = "x") Then

Connection_MAT = {ONodeA (client), ONodeB (caching MP),

ONodeC (server)} (b)

Client = ONodeA,

Next_HOP = ONodeB,

Server = ONodeC

sends back a policy object (b) containing the proposed topology in the form of a

connection matrix.

This plan is sent to the PG that uses the relevant context to generate the policies (c)

that will make up the SSON. The first policy instructs the server's OPEP to mark each

packet with the session information. The second policy updates its routing table to route

the packets to the next overlay node in the SSON topology. The rest of the policies

update the routing tables of overlay nodes. In OnodeB, a caching media port is

configured to cache the data and to deliver it to ONodeA (the client). At that point, the

OSL component is instructed to deliver the packets to the requesting application.

Once the OPDPMA receives these policies, it sends them to the conflict resolution

agent to check for conflicts with policies and SSONs that are already installed. If there

are no conflicts, the OPDPMA constructs a policy object for each participating overlay

node. This policy object contains information about its neighboring overlay nodes in

order to facilitate routing and the enforcement of applicable policies. If a conflict is

detected, the policies are rejected and an adaptation process is triggered so that the

conflict can be overcome.

Once the policy object is received by the OPEP, it is analyzed and enforced. In our

example, the caching MP at ONodeB starts caching the video content and sending the

video to the client from the cached version. The OPEP reports to the OPDP informing it

about the success or failure of enforcing the decision. Assuming success at all overlay

nodes, the SSON is now constructed.

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 71

Server = ONodeC

If (User = "x") and (Application = "video") Then

SSON_ID = 3432,

Audio_FlowID = 1,

Video_FlowID = 2

IF (SSONID = 3432) and ((Video_FlowID = 2) or (Audio_FlowID = 1))

Then

Next_HOP_ONodeID = ONodeB,

Next_HOP_ONodeIP = xxx.xxx.xxx.xxx,

Media_Ports = none

Tarcret = ONodeB

IF (SSON_ID = 3432) and ((Video_FlowID = 2) or (Audio_FlowID

Then

Media_Ports = "Caching",

Caching = "ok"

IF (SSON_ID = 3432) and ((Video_FlowID = 2) or (Audio_FlowID

and Caching = "ok") Then

Disk_Space = 300 MB,

Freshness_Factor = 50.0,

Expiration_Time = now + lOh,

On cache miss refer to: ONodeC_IP = "xxx.xxx.xxx.xxx",

On overload refer to: ONodeC_IP = "xxx.xxx.xxx.xxx"

IF (SSON_ID = 3432) and ((Video_FlowID = 2) or (Audio_FlowID

and (User = "x") Then

Next_HOP_ONodeID = ONodeA,

Next_HOP_ONodeIP = xxx.xxx.xxx.xxx,

Sending_Rate = default

Target =0NodeA

IF (SSON_ID = 3432) and ((Video_FlowID = 2) or (Audio_FlowID = 1))

Then

Application = "video"

D)

= D)

D)

(C)

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 72

SSON Adaptation: If another user requests the same service, the overlay must be

adapted to include the new user. In our example, the new user's OPEP constructs a

policy object containing the request and user information. After authenticating the user

for security and accounting purposes (operations outside the scope of this work), the

OPDPMA checks if there is an SSON for the requested service, and when one is found,

it triggers an adaptation process by sending a message to the PG requesting any policies

specific to the user. Assuming that the new user's context information has already been

fed to the context memory, the PG generates policy (d):

If (User = "y") and (Application = "video") Then

Available_Bandwidth = 16 kbps,

One_Way_Delay < 300ms,

Special_Functions = "routing, scaling".

Priority = 2

(d)

Based on this policy, the OPDPMA decides to scale down the video frames so that

they may be routed to the new user. It therefore includes another MP with routing and

adaptation capabilities. Along with the SSON information, this is sent to the Plans

Generator that invokes the plan and decides which Media Port to include. It sends back a

policy object (e) containing the proposed topology in the form of a connection matrix.

IF (SSON ID =

and (User =

Connection

Client (y)

Next_HOP =

3432)
n
y")

MAT =

and (VideoJFlowID =

Then

2) and

{ONodeB (caching), ONodeD

MP), ONodeE (client)}

= ONodeE,

ONodeD,

Scaling,
Server = ONodeB,

caching MP

(Audio

(media

FlowID = 1)

adaptation

(e)

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 73

In our proposal, the caching Media Port is used to route the data to the new user

rather than the original streaming server. This adaptation saves network bandwidth and

resources because the same content is distributed only once for each SSON, rather than

once for each user.

The PG generates policies (f). The sending rate of the caching MP is chosen to

match the user preferences, the adaptation MP is configured to scale down the video

frames, and the video data are buffered at the client side before being forwarded to the

requesting application. The rest of the adaptation steps are the same as those in the

section on creation.

Target =ONodeB

IF (SSON_ID = 3432) and (Video_FlowID = 2) and (Audio_FlowID = 1)

and (User = "y") Then

Next_HOP_ONodeID = ONodeD,

Next_HOP_ONodeIP = xxx.xxx.xxx.xxx ,

Media_Ports = "caching" ,

Sending_Rate = lOp/lOOmls

Target = ONodeD

IF (SSON_ID = 3432) and (Video_FlowID = 2) and (Audio_FlowID = 1)

Then

Media_Ports = "Scaling",

Scaling = "ok"

IF (SSON_ID = 3432) and (Video_FlowID = 2) and (Audio_FlowID = 1)

and (Scaling ="ok") Then

Frame_rate = lOfps,

FrameSize = 320x240

IF (SSON_ID = 3432) and (Video_FlowID = 2) and (AudioFlowID = 1)

Then

Next_HOP_ONodeID = ONodeE,

Next_HOP_ONodeIP = xxx.xxx.xxx.xxx

Target =ONodeE

IF (SSON_ID = 3432) and ((Video_FlowID = 2) or (Audio_FlowID = 1))

Then

Buffer_Size > 2 MB,

Application = "video"

(f>

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 74

SSON Termination: If a user leaves a session normally, (or even unexpectedly

because of a crash), the SSON must be adapted accordingly. If the session is ended

normally, the OPDP receives a notification of leave from the user; it then sends a policy

object to the overlay nodes to uninstall the existing policies. If the notification is

received from the last user of the SSON, the session is terminated by sending policy

objects to the overlay nodes that are part of the SSON. In our example, a leave request

from user y causes the following policies (g) to be sent by the OPDP to ONodeB,

ONodeD, and OnodeE. Once these policies are received by the respective OPEPs, they

are deleted immediately and all ongoing packets are dropped.

To deal with the failures that may occur in a dynamic network, we adopt a fault

recovery mechanism similar to the one described in [168], which guards against failures

with a checkpoint technique. Each overlay node that is part of an SSON sends the

checkpoint back to the OPDP. The OPDP caches any checkpoints obtained. If an overlay

node fails, the OPDP can receive no more checkpoints, upon which, it decides whether

to re-adapt the SSON or terminate the SSON if it has no users.

Target = ONodeB

IF (SSON_ID = 3432) and (Video_FlowID = 2) and (Audio_FlowID = 1)

and (User = "y") Then

D e l e t e _ P o l i c y

Targe t = ONodeD
IF (SSON_ID = 3432) and (Video_FlowID = 2) and (Audio_FlowID
Then

Media_Por ts = "None", Sca l ing = "No",
D e l e t e _ P o l i c y

IF (SSON_ID = 3432) and (VideoFlowID = 2) and (AudioFlowID
Then

D e l e t e _ P o l i c y

Ta rcre t = ONo deE

IF (SSON_ID = 3432) and ((VideoFlowID = 2) o r (Audio_FlowID = 1))
Then

Delete_Policy

= 1)

= 1)
(g)

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 75

4.6 Simulation Details and Results

This section summarizes simulation results of the proposed scheme. In our simulation,

the topology was constructed using the BRITE [169] topology generator, and the

network was simulated using the J-Sim network simulator [170], a simulator with a

Java(tm)-based engine. We conducted two experiments to test our architecture; the first

simulated a moderate-sized network to test a mobility scenario, the second a large

network to test the response to heavy demand.

— — 3rd Scene
— • - Movement path | | j LB, Routing MP. ® HB, Caching MP.

Fig. 4.5 Mobility Scenario

4.6.1 Experiment 1: Mobility Scenario

In the first experiment, three interconnected networks were simulated as shown in Fig.

4.5. One was a LAN with randomly generated topology, and the other two were WLANs

with different bandwidth capacities. WLAN A had a higher bandwidth capacity (15

Mb/s) than WLAN B (5 Mb/s). The scenario consisted of three scenes, the first showing

the creation of the overlay, and the second and third showing the dynamic adaptation

and routing. In the first scene, a user tunes her office PC into a video server and starts to

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 76

view a video. A SSON that requires a high bandwidth MP is created. In the second

scene, the user moves to a cafeteria during her lunch break. When she enters the

cafeteria's coverage area, the network detects her PDA and its wireless headset. The

SSON adapts by choosing a splitting MP that splits the audio and video of the session

into different flows. The audio flow is sent through a routing MP to the headset.

Assuming that the user previously established her context by stating that she has a

meeting in a conference room after lunch, a caching MP close to the conference room's

wireless LAN is selected and automatically configured to catch the video flow. In the

third scene, the user moves to the conference room and the SSON is automatically

reconfigured. The video flow from the caching MP is resumed, thereby reducing

transmission delays. The throughput for each scene appears in Fig. 4.6.

1200000

1000000

800000

Scene 1

3

a
3
O

400000

200000

-Video

- Audio

Scene 3

(A

V.

mmm\

^
J

Scene 2

Vv^

100 200 300
Time

400 500 600

Fig. 4.6 Mobility Scenario Result

We observe that as the user moves to the cafeteria, the throughput decreases until it

reaches its minimum. As the throughput starts decreasing, the OPEP sends an adaptation

request to its SSON OPDP. The OPDP then decides, based on user and network context,

to split the session into video and audio flows. It then it adapts the SSON to route the

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 77

audio flow to the new location. This is shown as Scene 2 in Fig. 4.6 where the audio

throughput is less than the original video and audio throughput. When the user moves to

the conference room, the monitoring agents in the user OPEP detect the move and report

to the SSON OPDP. The OPDP then readapts the SSON to the new context and resumes

the transmission of the session from the cached version. Our architecture dynamically

handles the adaptations of SSONs to the available context information since all

adaptations are done transparently and with no explicit interaction from the user.

0.18

0.16

I 0.14
u

•S 0-12
TO

_ l

5 0.1
«
Q.

£0.08
TO

| 0.06

^0.04
<

0.02

0

Random ,

Geographical • #

•

, - ' ^ ^

. ' ' ^ ^

,<'' ^ ^

/ ^ ^

i i i i" i

2 4 6 8

Number of MediaPorts

Fig. 4.7 Average Overlay Path Latency

10 12

4.6.2 Experiment 2: Large Scale Network

The topology used in the second experiment has 1000 nodes. The bandwidth assigned to

each node is randomly selected between 128 and 512 Kbits/s, and the links propagation

delay is fixed at 1 ms. Each source generates packets according to a Poisson process

with a bitrates of 3400 kbit/s, and a uniform random selection of destination nodes.

Following a flash crowd characteristic, all nodes request their sessions at a random point

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 78

during the first 2 seconds while the simulation lasts for another 1000 seconds. We ran

the simulation 10 times and collected the results after each run. The first run simulated

100 SSONs with each subsequent run adding 100 SSONs. To reach steady state

behavior, each SSON issued one adaptation request randomly 30 seconds after the start

of the simulation. As previously described, each SSON has one or more MPs when

created and different MPs when adapted. In our selection of MPs, we compared two

approaches. In the Geographical approach, we selected MPs that were geographically

close to the shortest path between the source and the destination. In the Random

approach, MPs were selected at random. We measured the overlay latency, packet

stretch and management overhead.

1) Overlay Latency: Figure 4.7 illustrates the average latency incurred by 1000 overlays

with varying numbers of MPs. MPs join the overlays until the desired number is

reached; the measurements are taken after the system stabilizes. The Random approach

has the worst performance, especially for large sessions. Three factors contribute to the

latency overhead. First, the encapsulation and decapsulation time depends on overlay

node capabilities such as CPU speed and memory. Second, as overlay packets add more

information to the header of the normal IP packets, the packet size increases, thereby

increasing the time needed for delivery. The solution is to equip devices, especially

small ones such as PDAs, with faster CPUs and more memory in order to maintain, or if

possible to reduce, latency level. Third, the processing time needed at MPs, for example

to record the data into caches. The average overlay path latency increases linearly with

the number of MPs in the path. Although each MP adds its own latency depending on

how fast it can provide its service, the average latency incurred by each MP is 0.01s.

Therefore, in order to compensate for the delay in multimedia transmission at the source

and its presentation at the destination, we need to set a buffer size at the destination

relative to the number of MPs used in the SSON.

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 79

0-100 0-200 0-300 0-400 0-500 0-600 0-700 0-800 0-900 0-1000

Number of Sessions

Fig. 4.8 The Average Overlay Path Stretch

2) Packet stretch: The stretch of the SSONs' topologies is defined as the number of

physical hops taken by an overlay packet divided by the number of hops a packet takes

when using an IP-layer path between the same source and destination. A high stretch

value indicates an inefficient SSON topology as their packets have longer routes and

delays. Fig. 4.8 shows the simulation results for the average overlay path stretch and Fig.

4.9 shows the distribution of the actual stretch values for the geographical approach. The

results show that the stretch for the geographical approach ranges from 1.73-1.79. This

low stretch value is not significant considering the gains obtained by using policies. The

distribution of the actual stretch values shows that 3.6% of sessions have a stretch

greater than 3 and 76.8% have a stretch less than 2. Although the geographical approach

improves the overlay path stretch, the improvement is not significant compared to the

random approach. This is due mainly to the limitation that results from using an MPDS.

The MPDS is a centralized entity that, in addition to its disadvantage of being a single

point of failure, frequently registers MPs services and capabilities. In a dynamic

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 80

network, this is not sufficient as the services change over time. The capacities of MPs

are also dynamic as they change when sessions are added and removed. In order to

decrease the stretch, therefore, there is a need to design a resource location mechanism.

This would integrate the search for an optimal overlay path that satisfies a certain QoS

metric with the search for the MPs needed to construct the SSON. The resource

discovery approach should be decentralized and should exploit the semantics of the

services offered by MPs.

0-1 1-1.5 1.5-2 2-2.5 2.5-3 3-3.5 3.5-4 4-4.5
Stretch Interval

Fig. 4.9 The Distribution of the Actual Stretch

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 81

3) Management Overhead: The management overhead of the architecture consists of (a)

the time needed to generate and enforce policies, (b) the time needed to exchange

messages between the SSON OPDP and OPEPs, as well as between the SSON OPDP

and the System OPDP, and (c) the time needed to access information in the policy

repository and plan history. Fig. 4.10 shows the average management overhead and the

95% confidence interval. For the geographical approach results show that, while the

number of sessions increases, the mean management overhead increases only slightly.

For a small number of sessions, stretch is a significant factor as it results in larger delays

and thereby increases the management time. For example, the second simulation run

shows that the average management overhead is nearly 0.278s and the stretch is 1.75

(see fig. 4.8). As more sessions are added, therefore, the average stretch decreases and

the time needed to generate policies and to access the repository and plan history

outweighs the effect of the stretch. We also observe a similar behavior in the random

approach. The exception is that in the random approach the management time increases

U.^93 '

"2 0.290 -
TO

0)

>
2 0.285 -
c
u
E
o

<H 0.280 -

S
O)

^ 0.275 -

0.270 -

C

r ^

—•— Geographical

• O •• Random

-L'O. . O n

°"2' ^
I

^••o-o^

1 1 1 —

.o'

I

T

p..<

" ^

O

>.o-o"J

i • m i
t m • l

r*

- 1 - 1 • '

200 400 600 800

Number of Connections

1000 1200

Figure 4.10. The Average Management Overhead

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 82

faster than the geographical approach where the management overhead time slightly

increases. However, the average increase is insignificant compared to the gain achieved

by the architecture itself.

Fig. 4.11 shows that the time needed to process and enforce policies is nearly 42%

of the total time consumed in creating or adapting an SSON. Exchanging messages

between the OPDP and OPEPs takes 32% of the time, and the remaining 26% is used to

access information in the policy repository and plan history. This indicates that the

overhead caused by introducing policies is compensated for by the gain achieved by the

context-aware architecture and the dynamic deployment of SSONs. Since the extra time

is needed only once to create an SSON and once for each adaptation, it is insignificant

for overlays that do not require adaptation, or that have a long operation time between

creation and adaptation.

35% -I

c

Q)

CO

5
a

£ 15% •

s:

c
o
B 5%-

Q_

:

Ex
M

changi
essagc

ng
>s

R< jposito
Access

ry Pr
I
ocessi
'olicies

ng E
I
nforcing
3olicies

Figure 4.11. The Time Needed to Create or Adapt an SSON

CHAPTER 4. AUTONOMOUS MANAGEMENT INFRASTRUCTURE 83

4.7 Summary

In this chapter, a novel scheme for SSONs network management has been presented.

The context-aware management architecture automates the task of managing overlay

networks through flexible and policy-based adaptation. The creation, adaptation, and

termination of overlay networks were controlled by the OPDP and the OPEP, which

were used to dispatch and enforce policies. Simulation results show the flexibility and

the efficiency of constructing SSONs using our scheme; it shows that on average,

SSONs will be composed of 2-4 MPs. This contributes to the scalability of the scheme

as low management overhead is needed by SSONs. However, MPs discovery is curried

out using a MPDS. All MPs registers their services in it, and whenever a service is

needed, a request is sent to the MPDS. This is clearly inefficient and centralized, and a

more flexible and distributed solution is needed to cope with the dynamicity of

networks, users, and applications.

Chapter 5

Semantic Overlay for MediaPorts Resource Discovery

As illustrated in the previous chapter, resource discovery represents a key component in

assisting SSONs construction and adaptations. This chapter presents a novel scheme for

MediaPorts resources discovery that can locate the needed MPs accurately and

efficiently. The rest of this chapter is organized as follow: Section 5.1 introduces

resource discovery challenges. Design goals are discussed in section 5.2. Section 5.3

introduces MPs modeling, while section 5.4 reviews the optimal chordal ring that

represents the main building block for the proposed resources discovery mechanism.

Section 5.5 discusses the semantic overlay construction, and section 5.6 discusses the

routing of service replies on the constructed SORD. In section 5.7, we present

algorithms to query, join, leave, and break SORD. Degrees of freedom in constructing

SORD are discussed in section 5.8. In section 5.9, we present simulation details and

results. Scalability of the resource discovery scheme is discussed in section 5.10.

Finally, the chapter is concluded with a brief summary.

5.1 Introduction

Given the many sources of heterogeneity (of networks, users and applications), SSON

construction uses network side functions called MediaPorts (MPs) to provide the

flexibility to modify the content and services such as caching, adaptation, and

synchronization [47].

In large, distributed networks, media content usually requires adaptation before it is

consumed by clients. For example, video frames must be dropped to meet QoS

constraints. A client with PDA, for example, requires a scaled-down version of the

84

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 85

video; a mobile user requires the content to be cached for viewing. We illustrate the type

of applications we are targeting with the following example. Consider a user

(MediaClient, or MC) trying to view a movie from a streaming video server

(MediaServer, or MS) on his PDA, where the MC terminal can accept Mpeg and English

subtitles, and the movie at the MS is available in DivX and French subtitles. Since the

available video format is not directly usable at the MC side, an MP (or possibly more

than one MP) is needed to convert the video to the needed format. SMART creates an

SSON for this video flow, which consists of the MC, MS and the set of MPs that are

needed to establish the service. A first step in any of these applications is for them to

learn that the required services exist. In other words, they need to know "what are the

services that are needed?", "where are these services located?" and "how are they

found?" This is clearly a resource discovery problem. This example represents a large

category of applications that pose the following challenges when designing a resource

discovery system.

1. The required resources (MPs) are not known beforehand. In our example, there

might be no single MP that converts DivX into Mpeg, and French subtitles into

English. However, the SSON can be constructed using three MPs: The first

converts DivX into RM, and the second converts RM into Mpeg. A third

buffering MP is needed to remove the jitter introduced by processing the media.

2. To construct an efficient SSON with multiple MPs, the selected MPs locations

should avoid looping in the overlay path. In our example, if two MPs are used

to construct the SSON, the MP that provides the final acceptable video format

should be closer to the MC.

There are various approaches to resource discovery. Centralized approaches

maintain a mapping between the resources and the nodes offering them, but this creates

bottlenecks and is not scalable in dynamic networks. De-centralized approaches, such as

the popular P2P DHT approaches, improve scalability by avoiding dependency on

centralized entities. But they offer limited functionality by supporting exact lookups

only. They are also inefficient in that they produce a large message overhead, especially

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 86

if nodes fail. To reduce the message overhead, queries need to be routed efficiently,

which leads to the proposal of semantic approaches. Generally, semantic approaches

create an overlay network that connects resources based on predefined criteria. Queries

are routed on the overlay only; response time is improved and message overhead is

reduced. But these approaches are designed with a specific application in mind, and

overlays are hard to maintain. They also broadcast service descriptions on the overlay,

thereby adding to the message overhead.

We believe that these systems are not flexible enough in dynamic networks where

resource properties (such as computational power, memory and available storage) vary

very frequently over time. SMART'S many SSONs, for example, commonly require

updated resource information, both in the construction stage and during their life time in

order to adapt to the ever-changing topology. Resource discovery techniques therefore

need to be both resilient to the dynamic topology (i.e. made up of multiple paths

between network nodes and service nodes), and efficient in terms of query responses,

network communication, and accuracy. This is particularly important in SMART, where

the discovery algorithm is used repeatedly to obtain updated information with which to

construct and adapt SSONs. Resources should not therefore depend on other nodes to

advertise or register their services. Unfortunately, existing service discovery techniques

are not well suited to SMART; they are either centralized, or they produce an enormous

message overhead. Nor are they resilient when failures occur.

In this chapter, we propose a novel resource discovery service for MPs, which we

have named the Semantic Overlay Resource Discovery (SORD). SORD meets the

challenges described above and considers not only the semantics of the services offered

by MPs, but also their physical location. It provides SMART with an overlay that can be

efficiently queried without using service announcements. SORD ensures that nodes

without services, or those not located on the route to the desired resource, are not

involved in the discovery process. Importantly, SORD is based on a widely-studied

family of chordal rings called the optimal chordal ring. The result is a fault-resilient and

efficient structure.

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 87

5.2 Design Goals

1) Decentralization. SORD should not depend on central entities because, in a

dynamic network, these entities may not always be available.

2) Adaptability. SORD should adapt to a changing topology with low overhead. If

faults occur, or as nodes leave or join, SORD should maintain its normal

operations.

3) Semantic Overlay. The semantic properties of Media-Ports should minimize the

overhead of routing queries.

4) Optimal Routing. SORD should avoid flooding, yet provide correct results

wherever they exist.

5) Efficiency. SORD should be efficient in query response time, message

overhead, and accuracy.

5.3 MediaPorts (MPs) Modeling

SSON construction involves the following main tasks:

1) Expressing in objective terms the media end points (MC, MS).

2) Discovering the MPs needed to process the media flow so that it is usable at the

MC. This step requires a suitable MP service description.

3) Routing the media stream through the selected MPs.

Our work does not assume a specific MP service description. Services can be

described using standard Web Service Description Language (WSDL) [171], for

example, and extended with semantic metadata. For simplicity, an MP service can be

described using a service identification ID, an input/, an output O , and the function /

that the service provides. Using this simple representation, a service S always receives

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 8 8

/ and produces O as a result of applying f on I. Each service used incurs a cost and

each MP provides one or more services. We assume that the media end points do not

alter the media flow. Therefore, they are described using their / and O only. For an

MC, / refers to the possible input format and O refers to the content output channel

(ex. Display). For an MS, / refers to the content input and O refers to the encoding

scheme. Using this simple description scheme, an MC requesting content from an MS,

can be served directly only if the input / of the client is compatible to the output O of

the server. In the case of non-compatibility, an MP (or perhaps more than one) has to be

inserted between the MS and the MC to establish the media delivery. Discovering these

MPs is the focus of this paper. Given an input media / and a requested output media

O , the problem is to find a set of services (or MPs) that transforms / into O and

minimizes or maximizes a cost criterion. The result is that the MPs are chained to

process the media flow.

M

B

• Independent

»ps i p—•

iS2

Partially Chained

S1

S1 S2

Completely Chained

3S1)a—^ns2

1 Single

M Splitter

1 Joiner

S1JJ PS2

(a) (b)

Fig. 5.1 (a) Types of MPs, and (b) MPs Chaining

To facilitate this chaining, as shown in Fig. 5.1a, MPs can be described according to

their input and output ports: single, splitters, or joiners [115]. Single MPs have only one

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 89

input port and one output port. They take a media flow as input and transform it into a

different output flow according to the service function that they offer. Splitters have one

input and several outputs. They take one media flow as an input and produce a number

of output flows. A splitter might, for example, take a video as an input and produce

audio and video as an output. Joiners have several inputs that they merge into one

output. Similarly, a joiner might take an audio and a video flow as input and produce a

video flow as its output. MP services can therefore be independent, or partially or

completely chained. As shown in Fig. 5.1b, independent MPs can perform a service

without help from other MPs. Partially chained MPs consist of at least two MPs where

the output and inputs of the first can be composed with some of the inputs and outputs of

the second. They are partially chained in the sense that they need other MPs to provide a

complete service. Completely chained MPs are made up of at least two MPs where all

the output and input ports of the first are composed with all the input or outputs ports of

the second. Also completely chained are MPs where all the outputs of the first are

composed with some of the inputs of the second, and where the remaining inputs are

composed with all the inputs of a third MP. In other words, completely chained MPs are

those that provide a complete service. Since media descriptions have been well studied

[172], we will not attempt to provide a complete description.

5.4 Optimal Chordal Ring

Because of their simplicity, expandability, and regularity, chordal rings have been

studied for many years as an interconnection architecture for parallel and distributed

systems [173]. In this chapter, we focus on a widely-studied family of degree 4 chordal

rings. They are called optimal chordal rings because of their network properties of

symmetry, high fault-tolerance, low broadcast time, and ease of routing. All these

properties contribute productively to the efficiency of our discovery mechanism. In an

optimal chordal ring, each node knows about 4 neighbors, specifically two ring nodes

and two chord nodes [174]. We prefer the optimal chordal ring because the low

reliability of traditional rings makes them highly vulnerable. For example, the

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 90

connectivity of a unidirectional ring of N nodes is 1 because the failure of any node /

would break down the direct path from node (*-l) to node(/ + l) . Moreover, the

diameter of unidirectional rings (the maximum distance between any pair of nodes) is as

big as(N-\). This negatively affects the performance: A large diameter would contribute

to the latency between these two nodes. The extra chord connections in the optimal

chordal ring are an additional overhead when compared to a traditional ring. But this

overhead is offset by the low diameter, the ease of routing, and the resiliency. An

optimal chordal ring can be defined as follows.

Definition 1: Optimal chordal ring of degree 4

Given two positive integersN, C, where 2<c<N. The graph Rt(N,c) is an optimal

chordal ring of degree 4 whose node set is {0,1,..., N-\\ and

edge set { [i, (i +1) mod N] ,[/',(/' + c) mod N\ i e {0,1,..., Af-1 } }

\N = 2k
2
+2k + l

[C = 2k + 1

Where k is the diameter of the network, the ring Rk(N,c) is regular and of degree 4

(N is odd
If \ i OR

[N is even&C*N/2

Each node in an optimal chordal ring is connected to its two nearest neighbors: node

/, for example, is connected to nodes (i -1) and (i +1), and node 0 is connected to nodes 1

and(;v-l). In addition, each node has two other chordal connections defined by the

edges connecting the nodes at distance C in the ring to other nodes. The symmetry

makes all nodes equivalent. For any k > 1, the ring Rk(N,c) has a diameter equals to k

[175]. See R2 in Fig. 5.2.

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 91

Fig. 5.2 An Optimal Chordal Ring R2(13,5)

5.5 SORD Construction

MPs either provide value-added services such as caching, media adaptation, flow

splitting, and synchronization, or they provide special routing capabilities. During the

setup phase of a media delivery service, MPs are selected to be in the optimal location in

the end-to-end path. SORD searches only those MPs most likely to have a positive

answer. By constructing semantic rings for each type of service offered, efficiency is

increased. Requests are routed through the semantic rings only. Studies [166] and [167]

have shown that link latencies are extremely affected by geographical locations,

demonstrating that geographically closer nodes are expected to have fewer hops and

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 92

latencies between them because a path on the overlay network consists of a series of

application-level (not IP-level) hops between the source and destination nodes. This can

lead to inefficient routing because routing on the overlay usually uses the neighboring

nodes on the overlay to forward messages. These overlay neighbors might be

considerably far from each other in the IP-level. To improve performance, it is necessary

to avoid placing distant nodes as neighbors on the overlay. To this end, we have used

nodes' Geographical locations to ensure that neighboring nodes on the overlay are also

neighbors in the underlying IP-level network topology. The semantic rings are thus

composed of a set of local rings connected to a global ring. The local rings group

semantically similar MPs in a geographical sub-area, and one of the MPs represents the

access point for the local ring. The set of access points forms the global ring, an optimal

chordal ring of degree 4. SORT) construction therefore consists of two steps: 1)

Classifying MPs semantically, and 2) Constructing global and local rings.

5.5.1 Classifying MPs

MPs can be easily grouped into hierarchies, each of which representing a semantic

overlay network. MPs can be classified, based on the services that they offer, into

caching, adaptation, synchronization, and routing. Those MPs with semantically similar

services in a given sub-area are connected. For example, MPs offering a caching service

establish a connection among themselves. This organization improves query

performance while maintaining a high degree of node autonomy. MPs can belong to

more than one classification if they offer more than one service.

One important aspect of MP classification is the level of granularity. For example,

caching MPs can be classified as "caching only". Or granularity can be increased by

properties such as connectivity, location, cost, and capacity. Excessive granularity

implies that queries will be answered with a small number of messages, but at greater

maintenance cost. Poor granularity implies more message overhead and less

maintenance cost; the granularity of MPs should therefore be a tradeoff between the

number of messages at a given SORD and the maintenance cost at each MP. Simply

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 93

put, it should be straightforward to look at the properties of each MP and distinguish

between dynamic properties that change over time (such as capacity, cost, and location)

and static properties that are maintained through the MP operational time (mostly related

to the type of offered services such as caching and synchronization). We believe that

dynamic properties should not be included in the granularity of the overlay semantic

segmentation. Including them implies that, each time they change, their logical location

in the overlay should change too which is costly in a dynamic environment. Our choice,

therefore, is to decrease the MPs' granularity which results in an overlay that has well-

defined service semantics with fewer dynamic properties. The choice to provide a

service is left entirely to the MP that has the most up-to-date knowledge about its

availability, cost, capacity, and other properties.

Another important and related challenge is how to perform comparison and logical

transformations on media endpoint descriptions [115]. Using the description in Section

5.3, it should be straightforward to look at MS and MC descriptions and to tell whether

or not the content is in a form that can be received by the client; it should also be

possible to determine the effect that a MP will have on a content description. We

therefore assume the existence of a function sim(MDl,MD2) that computes the

difference between two media descriptions. For instance, we can use a modified X-Diff

[176] algorithm to analyze the similarity between two media endpoint descriptions as

well as between a media description and a MP description. For example, sim(MC,MS) -

<|> implies that the input of the MC is compatible to the output of the MS. There is

therefore no need to insert MPs in the media flow. On the other hand, if sim(MC.MS) =

X, then X represents the mismatch between MC and MS description. It also represents

the set of required adaptations for the media flow to be viewable at the MC. The same

function can be used to compute the similarity between MPs. For example, if a media

flow is passing through M P 1 , then sim(MS,MPl) = y represents the set of required

adaptations after passing the media flow through MP1. If MP1 is going to be used, y

should be less than X. In other words, the set of required adaptations after passing the

media flow through MP1 is less than the original set.

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 94

12 13

21

14

l

15 16

21 22 23 24

20 21 22 23 24

I Y

Fig. 5.3 Geometrical Representation of R3

10

14 15 16 17 18 19 20 21

10 11 12 13 14

5.5.2 Constructing Local and Global Rings

5.5.2.1 Rk Geometrical Representation

We assume that each node knows its geographical location, and that the geographical

area is two-dimensional. If we consider a geometrical representation of Rk already used

in [175], we define a representation in the Euclidian plane that is divided into squares of

size 1 and centered at integer coordinate. Each square is labeled with a node of Rk as

follows. The square in coordinate (0,0) is labeled 0; for any square with label /, the

square to the right is labeled (/ + l), and the square to the left is labeled (/-1). The square

above is labeled i + ik + \, and the square below is labeled l-2k-\ (all operations are

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 95

performed mod N). A ring edge between nodes u,v in the chordal ring is represented by

a horizontal line of length 1 between the centers of the adjacent squares labeled u,v . The

chordal edges are represented by a vertical line of length 1 between the centers of the

adjacent squares. Fig. 5.3 shows a tile (dotted lines), a collection of contiguous squares

such that every node of the optimal chordal ring appears only once as a label of a square.

This tile includes all shortest paths from node 0 to all other nodes in the R3 geometrical

representation. From the tile, we see that the shortest path is 0(k) hops in the worst case.

At node 0, we see that 4 nodes are one hop away, 8 nodes are 2 hops away, 12 nodes are

3 hops away, etc. Therefore, the average lookup cost is

AvgCost =
f k

 ' ' 2k + \
$ > 2 / t f - l

V;=i

(5.1)

The average cost in (5.1) is equivalent to:

AvgCost = V2*2 logJV-l/3 (5.2)

Since the optimal chordal ring is symmetric, the same tile can be used to find all the

shortest paths from any node V to all other nodes by re-labeling the plane with node V in

the center. The geometrical representation is complete; different tiles with different

properties, or routing between ring nodes, can be represented in the same plane.

5.5.2.2 Global Ring

By dividing the geographical area into sub-areas, the sub-areas match the Rk geometrical

representation. The result is that routing paths between geographical sub-areas

correspond to the routing paths in the matching geometrical representation. Since the

network geographical area is two-dimensional, the geographical area fits in the Rk

geometrical representation. To do so, the x coordinate is divided into sub-areas equal to

C (the distance of chords inj^). Fig. 5.3 shows a tile (the solid rectangle) in the

geometrical representation of R3 that is equivalent to the two-dimensional geographical

area. Each square in the tile represents a geographical sub-area and, at the same time, a

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 96

node in Rk. From this tile, we observe the following: 1) All ring edges are adjacent in

the tile, and they are also adjacent in the geographical plane, except on the left and right

edges. For example, node 6 connects to node 7, while sub-area 6 is distant from sub-area

7. That means in SORD, global ring nodes labeled {0, C, 2C, 3C ...} are connected to

nodes {(C-l), 2C-1, 3C-1 ...} respectively. We should therefore avoid using those

connections whenever possible as they result in long latency. To solve this problem, we

can also connect nodes labeled {C-l, 2C, 3C-1 ...} to nodes {2C-1, 3C, 4C-1 ...}

respectively, 2) All chord edges are adjacent in the tile as well as in the geographical

plane. The exception is chords on the top/down edges, where one chord is adjacent and

the second is not. This type of connection is not considered a problem in the two-

dimensional network, as the nodes are actually some distance from each other and the

communication cost is paid anyway. However, these connections can be used efficiently

to deliver messages to distant nodes.

Using this representation, we preserve the geographical proximity of ring nodes. As

a result, a small number of hops are expected to connect global ring nodes, and less

network latency is expected for the communication between them.

Each sub-area should be represented by one node. Therefore, one MP in each sub-

area is identified as the access point. The selection of the access point may be based on

criteria such as highest bandwidth, connectivity, or connection life time. All access

points connect to each other to form an optimal chordal ring of degree 4 referred to as

the global ring.

An important aspect of this matching between the geographical sub-areas and Rk

nodes is that we need the same number of sub-areas during the life time of SORD. It is

therefore important to carefully choose k that decides the number of nodes in Rk and to

provide a solution for network evolution. & is a system parameter that depends on: 1) the

actual number of MPs present in the network (n), 2) the expected growth rate (r) of

MPs, 3) the expected operational period (p). Therefore, k is given by:

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 97

k> ^2(n + nrp)-l-l/2 (5.3)

SinceN - (n + nrp), the total number of MPs is greater than the actuals, the extra

(N - n) are virtually hosted by other MPs.

When network size dramatically increases, it is advantageous to increase the

number of sub-areas, thus decreasing granularity. To do so, we can choose an initial Rk,

such that a large number of sub-areas is present to support network evolution. The extra

sub-areas can be virtually hosted by existing nodes, and when enough nodes are present

in these areas, they can be split from the hosted nodes. This corresponds to a larger k in

(5.3).

5.5.2.3 Local Rings

In SORD, semantically similar MPs are connected to each other if they belong to the

same geographical sub-area. One of these MPs in each sub-area is the access point for

its sub-area. Since multiple MP types can be present in the same geo-graphical sub-area,

different rings are constructed for each type. The node that is serving as the access point

for a given sub-area should be aware of all different rings; it should know at least one

node from each ring, and the MP types for each ring. To increase robustness, this

knowledge can be replicated within the rings.

In its basic form, SORD has two levels: Global ring that connects sub-areas, and a

local ring at each sub-area. To increase its scalability, we can recursively construct Rk

rings in each sub-area. The maximum number of hierarchical levels is set to (&-1),

where k is the parameter used to construct the global ring. Therefore, the hierarchy of

the local rings is of the form: Rk_i,Rk_2,...,R2 •

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 98

The choice to build more or less hierarchical levels in a given sub-area depends on

the number of MPs in it. The lowest hierarchical level is R2 that contains 13 nodes. For

a lower number of MPs, we either create a traditional ring or a star topology.

Algorithm 1: Routing on SORD

Once a MP is discovered by S, S uses this algorithm to rout the query on SORD

Status: = {INITIATOR, GIOBALRING, LOCALRING, ASLEEP, WAITING,DONE}

Sinit = {INITIATOR, IDLE}' initial states

Sterm = {Done} 'termination state

INITIATOR ' the source node that request the session

Spontaneously

{ Send(Q, MCd,MSd, a) to MP ' empty chain history

Become ASLEEP }

GIOBALRING ' any node in the optimal chordal ring that receives a query

ReceivingfQ, MCd,MSd, a)

{ i f (withina) { SendfQ, MCd,MSd, a) to LOCALRING, Become WAITING}

else { do ROUT(Q, MCd,MSd, a), Become DONE } }

LOCALRING 'any node in a sub-area rings

If ReceivingfQ, MCd,MSd, a)

{ I f (Withina) { Process(Q), send(Q) to L.succ, become DONE} else send(Q) to L.succ}

WAITING 'optimal chordal ring node receiving Qfrom its local ring.

do ROUT(Q, MCd, MSd, a)

procedure ROUTfQ, MCd, MSd, a)' used by optimal chordal ring node to rout Q.

{ i f (InMSArea) Send (Q, MCd,MSd, a) to MS 'this prevents Qfrom being sent beyond the MS

else {

Candidates <- {WithinScopeAngle(G.succ,G.pred, CHI, CH2, MC, MS, a) ' choose ring neighbors

that is within a and if a candidate is known to be failed remove it from Candidates

Send(Q, MCd, MSd, a) to Candidates(x) - [received]}}

Fig. 5.4 Routing in SORD Algorithm

5.6 Routing of Service Replies

When a node sends out a query, results must be sent back to that node. Replies can be

routed back to the requesting node in two ways: 1) MPs can use the shortest path

algorithm to route the reply without a major use of SORD. 2) Using a reverse routing

technique, the reply can retrace the query path. In the former case, the new route to the

requesting node generates an additional network load. This load is reduced and system

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 99

efficiency is increased [177] if the path that already exists from the querying node is

reused. In the latter case, the reverse routing is either symmetric or asymmetric. In

symmetric routing, we can retrace the exact original routing path from the requesting

node to the MP. This is possible by forcing each message to save the last address of the

optimal chordal node that sent it. But failure is possible if any number of nodes in the

previous path have disappeared or moved. In asymmetric routing, the service reply is

routed on SORD, but along a path different from the original one since the optimal

chordal ring owns a number of paths between any two nodes. Our strategy is to combine

both symmetric and asymmetric approaches. Service replies in SORD are routed using

the reverse routing (symmetric) approach. Whenever a failure is detected, the

asymmetric approach is used until the reply reaches the requesting node.

5.7 Algorithms In SORD

In this section, we present the algorithms that ensure the validity of SORD, and we

demonstrate how they can be efficiently used for resource discovery.

5.7.1 Querying SORD

To find the service path between source S and destination!), all the required MPs must

be located. The most suitable MPs are located in the shortest path between S and/).

Querying SORD therefore consists of two stages, 1) discovery, and 2) routing.

If S has no previous knowledge of the existing SORD, or if its knowledge has

expired, it has to run a discovery algorithm, which is based on flooding. Since each sub-

area has its own local ring of MPs, discovery takes at most a number of messages equal

to the message cost of flooding in a single sub-area. In most cases, especially in sub-

areas with many MPs, this cost can be expected to be very low. This is because any MP

can complete the algorithm successfully. After discovering a SORD node, the

information is cached locally for subsequent queries, and the actual routing for the query

starts at stage two, as shown in Fig. 5.4. When a node wants to search for a service, it

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 100

sends the query to the closest MP (established in stage one). The query is then sent along

the global ring to all the destination sub-areas. The query consists of the MC and MS

descriptions, the search scope angle (a) and a chain history. The chain history (initially

Fig. 5.5 Network Geographical Area and Search Scope Angle

empty) accumulates all the possible adaptation from all MPs that this query visits, which

basically results in a list of paths; each path representing a possible solution for the

media flow.

Any global ring node that receives the query sends it to its local ring nodes only if it

is within a .It waits until it receives the query again, then it forwards the query to each

neighbor in the global ring if it falls within a.

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 101

To know that it is within the search scope angle, the shaded area in Fig. 5.5, a global

ring node A computes the angles P and <j) using the following formula:

»--,•„-(\(x2-xlfol-yO)-(xl-xOXy2-yl)) (5 4)

[V(*2 - *i)2 + (y2 - yif * V(xi - xof + (ji - ^o)2
 /

Where (xl, y\) is the MC location, {xl, yl) is the MS location, and (xO, yO) is the

location of A . The computation of § is similar to the computation of p except that the

MC and MS locations will be switched in (5.4).

A is within the scope angle if /? < a
/L A ^ < 85

When a local ring node receives a query, it processes the query only if it is within

the search scope or. Processing the query involves: 1) Retrieving incomplete paths from

the chain history, 2) the current node adding itself along with its costs, if it can provide a

service for the path, 3) the current node creating a new path and adding that path to the

chain history, if it can provide a complete or partial service for the MC and MS. The

node then forwards the query to its next neighbor in the local ring. Query forwarding

will be terminated when the query is received by the MS. Since the MS might not be a

MP, each global ring node checks to see if it is in the same area as the MS, and if so, it

will serve the query and send it to the MS. At this point, the MS investigates the chain

history and computes the best path for the media flow, then sends a constructFlowPath

message through it to the media client. If no solution is found, the MS sends a failure

message to the MC, and the MC can then reinitiate the query with a greater a.

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 102

Generally, the algorithm avoids sending the query to large parts of the network

where answers are not likely to be found, and also, it considers only MPs in the direct

path between the source and the destination. The algorithm also exploits the resiliency of

the optimal chordal ring by routing around failed nodes. This is particularly important in

a dynamic network, since it ensures that resources are discovered even in the event of

failures.

Algorithm 2: Joining SORD

Node S is a MP joined the network. Therefore it has to Join SORD.

Status: = {INITIATOR, ASLEEP, DONE}

Sinit = {INITIATOR}' initial states

Sterm = {Done} 'termination state

INITIATOR ' the node S

Spontaneously

{ send(JoinRequest, TTL) to S(x) 'all nodes reachable within one hop

Become ASLEEP }

ANY 'any node independent from its current status

Receiving(JoinRequest,TTL) {

If (localRingNode) reply(JoinOffer) 'if not an optimal chordal ring node

' contains its access point, Succ, Pred, and Service Type

else if (globalRingNode) {

if (globalRingNode.SubArea = S.SubArea) reply(JoinOffer) 'same sub-area as S

'JoinOffer contains globalRingNode's Succ, Pred in local ring

else (globalRingNode.SubArea = S.SubArea -1)

reply(JoinAccessPoint) ' if S is the first in its sub-area

'JoinAccessPoint contains the 4 global ring connections

} else if (TTL>0) send(JoinRequest,TTL) to its S(X) - [received from] }

ASLEEP'the node S

{collect(JoinOffer) messages

if (3 JoinAccessPoint A ~3 JoinOffer £ S.SubArea)

become an access point for its sub-area

else {

S chooses a node V that offers the same (or close) Service type

Send(OfferAccept) to V

V sends a message to V.Succ informing it to change its pred to S

V sets V.succ = S

S.succ and S.pred sends(ConfirmJoin) to S

S sets its succ and pred. accordingly and become DONE }}

Fig. 5.6 Joining SORD Algorithm

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 103

Algorithm 3: Leaving SORD

Node S is a MP that wants to leave the network.

Status: = {INITIATOR, DONE}

Smit = {INITIATOR}' initial states

Sterm = {Done} 'termination state

INITIATOR ' the node S

Spontaneously

If (s € LocalRing) Sends(LeaveMessage) to S.succ

'S.succ and S.pred connect to each other

And S.pred

else { 'S an optimal chordal ring node or an access point

If (3 LocalRing) {

S.succ become the new Access point

send (newAccessPoint) to S.succ, S.pred, S.chordl, S.chord2

} else {'S.GSucc in the global ring virtually hosts this subArea because it is empty

Send(HostVirtualAccessPoint) to S.Gsucc' contains all S connections

S.succ acquires all the connections of S }

Become DONE

Fig. 5.7 Leaving SORD Algorithm

5.7.2 Joining and Leaving SORD (Intentionally)

When a new MP joins the network, it does not become part of the existing SORD, and

does not receive search messages. To correct this, it has to join SORD using the Join

algorithm in Fig. 5.6.

The new MP sends a join request to its neighbors, which will forward that request to

their neighbors, until the request reaches a SORD node or a node that is aware of a

SORD node. The SORD node that receives a join request sends a join offer only if it is a

local ring member, otherwise it sends its known local ring members to the MP. The MP

then collects join offers and selects the suitable local ring type and joins it. According to

the algorithm, an MP is only allowed to join the local ring in its sub-area. This

minimizes the messages exchanged and ensures the stability of the global ring. If a MP

joins from a sub-area where there is no local ring, it becomes the access point for its sub-

area and acquires its connections from its global ring successor that was virtually hosting

the empty sub-area. When an MP wants to leave the network, it calls the Leave

algorithm in Fig. 5.7; it simply sends a leave message instructing its successor and

predecessor to connect to each other. If it is an access point, its successor in the local

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY

ring becomes the new access point. If it is the last node in its sub-area, the global

successor virtually hosts it. In the worst case, the Leave algorithm costs 4 messages.

Algorithm 4: Broken Global Ring
Status:= {INITIATOR, IDLE, ASLEEP, WAITING, DONE}

MPinit = {INITIATOR, IDLE}
MPterm = {Done}

INITIATOR ' an optimal chordal ring node
Spontaneously {

Send(GlobalRingCheck,TTL) to MP(x) 'to 4 ring neighbors
Set timer T
Become ASLEEP ' until T expires or receive OK}

IDLE
Receiving(GlobalRingCheck,TTL) {

Return(OK)' to the sender
if (received from CHI or CH2)

Send(GlobalRingCheck,TTL-l) to S(x) - {sender}
Else if (received from a ring peer i.e not CHI or CH2)
lf(TTL-2!=0)
Send(GlobalRingCheck,TTL-l) to ring peers - {sender}

Set timer T
Become ASLEEP}

ASLEEP
If Receiving(OK) Become DONE

' from all peers that this node sent messages to.
Else If T>\

If Not ping(predecessor(k))'assume a broken link
Do BrokenLink(k)

4/vy'any node independent from its status
Receiving(BrokenCheck) {

If Ping(predecessor) send BrokenCheck to predecessor
Else return predecessor(v) }

Receiving(BrokenCheckOnChord){
send BrokenCheck to successor
' successor pings its CHI peer and save the result and
' sends the message to its' successor}

WAITING
Receiving(predecessor(v)) {

If (v = k) do singleRepair(k)
Else do multipleRepair(k,v) }

receiving(BrokenCheckOnChord) {
'assign a node for each failed node. And instruct them to

'take their rolls.}
Become DONE

procedure BrokenLink(k)
{Send(BrokenCheck) to CHI peer

Become WAITING}
procedure singleRepair (k)

{'take the rolls of k by connecting to its successor and chords.
Become DONE}

procedure multipleRepair(k,v)
{Send(BrokenCheckOnChord) to CH2 peer
Become WAITING}

Fig. 5.8 Broken Global Ring Algorithm

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 105

5.7.3 Broken SORD

In a dynamic network, nodes not only join and leave the network; they may also

unexpectedly disappear, which causes SORD to break. If a MP unexpectedly leaves

SORD, its negative effect depends on the ring it belongs to.

Algorithm 5: Broken Local Ring

MP didn't receive a periodic check message from its Local Peer.

Status:= {INITIATOR, DONE}

MPinit = {INITIATOR}

MPterm = {Done}

INITIATOR ' the MP

Spontaneously

Begin

if (NOT Ping(MP.pred)) {' if unable to ping its pred. i.e MP.pred failed

if (Ping(MP.pred.pred)) { ' known from previous LocalRingCheck

if (AccessPoint(MP.pred)) MP uses algorithm 2 to join global ring

else {set MP.pred = MP.pred.pred, send(changeSucc) to MP.pred }

} else {repeat until (Ping(Mp.pred.?)),

'ping the next pred until we reach a live one

set MP.pred = ?, send(changeSucc) to MP.pred.? }

}
Become DONE

End

Fig. 5.9 Broken Local Ring Algorithm

If the node is a global ring member, its local ring may become disconnected. MPs in

that sub-area cannot be reached by search messages. However, all the other sub-areas are

reachable. This is because of the fault-resilient property of the optimal chordal ring—the

multiple paths between any two nodes. However, the problem must be detected and

corrected in order to restore SORD to its normal operations. The detection is done by a

periodic GlobalRingCheck Message sent on the global ring. If a MP does not receive

this message after a certain amount of time, it assumes a broken ring and runs the

algorithm in Fig. 5.8.

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 106

If the node is a local ring member, the global ring is unaffected, and search

messages are routed normally. The local ring, however, is disconnected. Using the

LocalRingCheck message and the algorithm in Fig 5.9, local ring nodes are able to

detect and correct broken links.

The Broken Global Ring algorithm makes use of the optimal chordal ring's low

broadcast time. Traditional algorithms forward the periodic ring check message to one

node after another. This makes use of all possible links, and forwards the check message

through a maximum subset of links that guarantees ©(z')time units. The result is a

substantial decrease in time complexity compared to traditional methods that

requires Q\2\/ +iJJ . The algorithm also checks for group failures, by sending a

BrokenCheckOnChord message to the opposite direction of the ring. It can therefore

detect up to c — 1 failures using C — 1 messages for periodic checks, and Ac - 5

messages for failure checks. Since the optimal chordal ring is symmetric, and the edge

and the node are transitive, the algorithm can be initiated by any node. The algorithm

therefore alternates between all nodes in each consecutive N periodic check to guarantee

that all links are being tested.

5.8 Degrees of Freedom for SORD

All the algorithms presented here assume that each local ring member knows only its

predecessor and successor in the ring, and the four neighbors for each access point in the

global ring. While this establishes the locality of updates, it restricts the ring structure.

Not all nodes in a local ring are likely to bring the media closer to its destination. We

can assume that the access point knows all its sub-area members, but it can choose to

send the query message only to a subset of them (though not if a sub-area contains a

large number of MediaPorts).

Alternatively, we can subdivide each sub-area, which allows each local ring to be

constructed in such a way that geographically close nodes are connected to each other.

This is similar to the construction of the global ring, except that each local ring is

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 107

traditional. The degree of freedom this provides is most appropriate if there are a large

number of MediaPorts in each sub-area. A hybrid approach can also be used to construct

a star-like structure in sub-areas with a small number of MediaPorts and a ring structure

in sub-areas with a large number.

Another degree of freedom lies in choosing the access points to the sub-areas.

Access points have an upper arm connecting the global ring and a lower arm connecting

the local rings. Using both rings, they should therefore be able to handle a large number

of requests. Additionally, their location inside their sub-areas should allow for and

contribute to global ring construction. Techniques for choosing super-peers in P2P

networks can therefore be reused without the need to modify SORD algorithms.

Another degree of freedom is to use the number of failures (f) to enhance SORD's

robustness. If the number of failures is high, the value of f is increased. When f exceeds

a certain threshold value, the number of nodes that have a backup of the global ring node

information is increased. This is done by requiring neighboring network nodes to host

the same type of connections and information. For example, when f = 0, no immediate

network node is required to host the global ring node information, and when f > 2, the

direct neighbors of the global ring node host the information. Although this duplicate

information is a clear overhead, it provides SORD with the following advantages: 1) The

global ring becomes more robust to node failures, 2) the discovery cost (Fig. 5.5) is

significantly low, as many nodes in a given sub-area have knowledge of SORD, and 3)

the load on the original global ring node may be distributed to neighboring nodes when

the original node is unable to handle the incoming requests.

Another degree of freedom is to improve the way queries are processed in SORD.

Due to the lack of knowledge about the needed MPs, queries in SORD are processed in a

sequential-chain. This can be parallelized by sending the query to global ring nodes

(access points) all at once. Each ring node sends the query to its local ring, based on

whether it provides a service or not. Each access point then sends replies to the MS,

either using SORD or a shortest path algorithm. The MS retrieves the path history and

builds a service graph that can be searched for the best solution.

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 108

Lastly, since each MP may belong to more than one SORD, and may provide more

than one service, a multi-dimensional routing algorithm can be used to route queries

efficiently. This is achieved by using different SORDs, though only one SORD is used

for the answer. This knowledge can be also used to discover a specific SORD by

routing the discover message to all known SORDS in a given MediaPort.

5.9 Simulation Details and Results

We used a discrete event simulator to evaluate the performance and efficiency of SORD.

The topology was constructed using the BRITE [169] Topology Generator, and the

network was simulated using the J-Sim network simulator [170], a simulator with a

Java(tm)-based engine. SORD's structure is built in a way that supports the construction

of SSONs. Constructing SSONs has been proposed by several methods, while SORD's

structure is similar to DHT approaches. Thus, evaluation of SORD consists of assessing

its efficiency in constructing SSONS compared to existing methods; determining the

effect of SORDs' specific parameters and their relation to each other; and comparing

SORD to DHT approaches. To this end, we conducted three experiments. The first

compares SORD's discovery mechanism with Limited-Flooding (LF) and Path-Directed

(PD) approaches [178], [179]. Limited-flooding has been predominantly used to

discover services in environments such as ad hoc and pervasive networks. The path-

directed protocol starts from the source and expands along the end-to-end routing path

towards the destination node, with a sideway expansion of a given distance (e.g. based

on the number of hops, delay, etc..) After visiting the nodes defined by the protocol, it

contracts towards the source node, gathering the requested information (depending on

the resources/services we are looking for). The sideway expansion parameter of the

protocol controls the scope of the search and thus limits the number of nodes to be

probed. To examine the effect of granularity, R3(25,7), R5(61,ll) and Rio(221,21)

optimal chordal rings were simulated. None of these approaches have advertisements for

the offered services. In the following, we use SORD to denote R3, R5 and Rio unless the

distinction is necessary. The second experiment evaluates the efficiency of SORD under

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 109

various parameters such as mobility, search angle, and service density. And the last

experiment compares the message cost of SORD to two popular DHT based approaches.

100 200 300

Search Scope

Fig. 5.10 Average Response Time

400 500

5.9.1 Simulation Setup

The topology used hosted 3000 nodes in a 5000 X 5000 node two-dimensional overlay

space. The bandwidth assigned to each node was randomly selected between 128 and

512 kbits/s. Each node had a random geographical location. To follow a flash crowd

characteristic, all nodes issued their queries at a random point during the first 30

seconds, with the simulation lasting for another 1000 seconds. We ran the simulation a

number of times with different search scope values, which can be any metric useful to

measure the network distance of an end-to-end service path between source and

destination. Examples are the number of hops or the aggregate delay. In our case, we

have used the end to end delay, measured as the Round Trip Time (RTT) in

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 110

milliseconds. For each run, a random number of queries (between 2000 and 4000) were

requested. The results were collected after each run.

5.9.2 Experiment 1

In the first experiment, we measured response time, query cost, and success rate. In this

experiment, the search scope angle in SORT), a, is fixed at 35 for all queries.

5.9.2.1 Average Response Time

The response time for discovery requests is the difference between the starting time of

the search and the arrival of the complete result set. Fig. 5.10 shows that the average

response time of LF approach is at least one and a half times higher than the average

response time of the PD approach. The average response time observed in R3, R5, and

Rio is much lower still. We believe that the decrease in response time is primarily due to

two factors: First, the decrease in the overhead of service replies (see Fig. 5.12). This is

because in LF and PD, service replies travel a greater number of hops than in SORD

where the number of hops is reduced. Second, the decrease in the overhead due to search

messages (see Fig. 5.11). This is mostly because service requests were routed directly to

the nodes where answers were most likely to be found. Furthermore, the average

response time observed in Rio is lower than that of R3 and R5. The reduced granularity

in Rio results in a small local rings at each sub-area. Thus service requests and replies

take less time to go through the entire local ring.

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 111

»
D)

«
</>
a>
S
O

d
z

6000

5000

4000

3000

2000

1000

LF

PD

-e -R3

R5

—i—R10

/
/

/
/

•

•

•

i
i
i
i
i

i

v y

^ M * • ^ • • • ^ ^ ^ ' ^ ^ * <

, " " "
. - '

/ ~ ~ "

/

/

/ ŷ ""

—• -

100 200 300

Search Scope

400 500

Fig. 5.11 Overhead Due to Search Messages

900

800

700

w
o> 600
(0
V)
CD

s
.>
Q.
0)
a:

500

400

o
z

300

200

100

LF

— PD

-e -R3
R5

—i—R10

.— •*'
*

/
/

/
/

/
/

/
/

/ > ' ~

* ^ I —
. / - ^ '

r ' y ^T _ _ _ _ . ,
, . '" / A<^ / " ft ,1

< ^ ^

100 200 300

Search Scope

400 500

Fig. 5.12 Overhead Due to Query Responses

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 112

5.9.2.2 Query Cost

This quantifies the cost of searching SORD for services. Query cost is composed of 1)

the total number of search messages (the total number of hops taken by all queries

divided by the number of queries) and 2) the total number of reply messages (the total

number of hops taken by all reply messages divided by the number of replies). In SORD,

the total number of hops is the sum of the total number of hops in the discovery stage

and the total number of hops taken by the query. The discovery stage is present only in

SORD and is required only once for each node. Fig. 5.11 shows that LF has the worst

performance: It produces a greater number of search messages, except in searches with

small scope values. This is because we need to discover SORD first before we can use it

to route the query. Understandably, the discovery stage in SORD is similar to LF with

small TTL values. The consequence is that, with small search scope values, there will be

an overlap between the discovery and routing stages. So to reduce the message cost for

small search scope values, the discover message should also be considered as a service

request, which increases the chances of finding a service match before the query is

routed on SORD. But as the search scope increases, the number of messages in LF and

PD is at least two times higher than the number of messages in SORD. For search scope

values less than 350, Rio produces less number of messages compared to R3 and R5.

With larger scope values, Rio tends to generate more messages while R3 and R5 behave

similarly. This is because in Rio the number of sub-areas is much higher than in R3 and

R5. This increases the number of sub-areas between the media end points, thereby

increasing the number of messages routed in the global ring.

The overhead due to query response is shown in Fig. 5.12. For small search scope

values (below 230), SORD has a larger overhead. This is because SORD routes service

requests to all the available MPs in targeted sub-areas, resulting in a larger number of

service replies. However, for larger search scope values, SORD outperforms both PD

and LF approaches. Rio also produces larger replies than R5, and R5 produces larger

replies than R3. We believe that this is primarily due to 1) the way the service replies are

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 113

routed on SORD as discussed in section (5.6) and 2) the increase in the number of the

global ring nodes.

5.9.2.3 Success Rate

Success rate measures the accuracy of SORD, and is defined as the number of requests

that receive positive responses, divided by the total number of queries. Fig. 5.13 shows

that SORD results in a higher success rate, except for small search scope values, for

which LF is more effective (though it did not reach the 100% success rate that the PD

approach attains after a certain search scope value). However, SORD reaches the 100%

success rate earlier. We believe that this is due to the huge network load generated by

LF. For large search scope values, LF generates a large number of messages and

receives a large number of reply messages. As a consequence, messages are dropped or

lost due to collisions. In the PD approach, the messages are controlled by the distant

100

90

80

70

I 60

"> e n
in 50

1 40

30

20

10

0

LF

PD

— - e - R 3

R5

-4 -R10

y^-^
: / /

^

— $ —

" * » _ - • '

<!)""

+ ' "

~S^^

' / /

Iff i
f '

i/J1 .
i.

u
y/j /

J!s s'

100 200 300

Search Scope

400 500

Fig. 5.13 Success Rate

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 114

function that reduces their number. By contrast, SORD generates the lowest number of

messages; as we have seen, this is by routing service requests only to sub-areas located

in the direct geographical path between the end points. R3, R5 and Rio have almost the

same success rate. This is because all MediaPorts in the direct path between the media

end points will be reached by R3, R5 and Rio regardless of their differences in the

response time and query cost.

5.9.2.4 Initial Cost

Since LF and PD have no initial cost for building a structure, the results are presented

without the initial construction cost for SORD as well. Generally, we can construct

SORD by building a spanning tree between MPs and broadcasting the geographical sub-

areas, node address in SORD, and the connections for the global ring in that spanning

tree. The cost of these steps is the initial construction cost of SORD and is given by:

M{SORD/INl)=4m-2n + 3(n-k) + 2 (5.5)

Where m is the number of links, n is the number of nodes and k is the number of

MediaPorts. Then, assuming k « n , the cost becomes:

M{SORDIINl) = 4m + n-\ (5.6)

Therefore, the initial cost complexity is 0(m) and the time complexity is&(d),

where d is the diameter of the network. Generally, the cost is equivalent to about 50-60

queries, which indicates that SORD is most suitable for applications where a high

number of queries is expected. The initial construction cost is compensated for by the

low query cost, the improved response time, and success rate.

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 115

Alternatively we can use a mechanism similar to the bootstrap mechanism proposed

by [180]. We assume that SORD has an associated DNS domain name, and that it

resolves to the IP address of one or more SORD bootstrap nodes; this maintains a list of

SORD nodes that are currently present in the system. To join SORD, the new node uses

the DNS to retrieve a bootstrap node that will supply it with several SORD nodes

currently in the system. The new node then sends the join requests to one of these nodes

to be forwarded to its geographical access point.

Fig. 5.14 Success Rate as a Function of Scope and Search Angle

5.9.3 Experiment 2

In the second experiment, we evaluated the efficiency of SORD with extensive

measurements of the success rate and the overlay path stretch as a function of the

following parameters: 1) Search scope, 2) search scope angle a, 3) service density, 4)

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 116

number of mobile nodes. The search scope is the same as in the previous experiment.

Angle a defines how many sub-areas are being searched in a given search query.

Intuitively, increasing a increases the success rate but also increases the query cost. It is

therefore essential to decide on the best initial a to be used. Service density refers to the

number of distinct services in the network. We assume that each MP offers only one

service drawn randomly from a set of 600. Each query searches for a service selected

randomly from the same set. Even if the service is not present in the network explicitly,

it can be provided by chaining two or more MPs. Finally, to test the efficiency of the

SORD in the presence of churns, mobile nodes are introduced. The topology parameters

in this experiment are the same as in section 5.9.1. The only difference is that each node

is equipped with a wireless interface. The MAC layer uses the IEEE 801.11 protocol and

the mobility model for each node is a Random Waypoint. Each mobile node moves

average speed of 5 km/hour [181].

5.9.3.1 Scope vs. Search Angle a

Fig. 5.14 shows the success rate of SORD when both scope and a are variables. Service

density and mobility are set to 600 and 30% respectively. Increasing both (scope and a)

increases the success rate. This figure suggests that choosing a in the range [30-40]

guarantees a 100% success rate for scopes greater than 3000. While a in [15-30] attains

a 100% success rate for larger scope values. Although a in [40-50] has a higher success

rate than [30-40], the increase is not substantial. These observations suggest that

applications should use 30 as an initial search scope angle, and if the desired results are

not found, a should be increased by 5.

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 117

Fig. 5.15 Success Rate as a Function of Scope and Service Density

5.9.3.2 Scope vs. Service Density

Fig. 5.15 shows the success rate of SORD when both scope and service density are

variables, a and mobility are set to 30 and 30% respectively. Increasing the service

density increases the success rate. However, even for low service densities, SORD

achieves a 100% success rate for scopes greater than 550. This observation supports the

previous finding that a = 30 is a good initial choice.

5.9.3.3 Scope vs. Mobility

Mobility is an important challenge in a dynamic network. The MC (or user) might move

to another location and the MP providing the service might be mobile or become

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 118

unavailable due to a power limitation. The mobility of nodes affects SORD in that each

time a node moves away from its sub-area, the Leave algorithm will be executed and

each time a node enters a different sub-area, the Join algorithm will be executed. This

varies depending on whether the moving node is a local or global ring member.

Fig. 5.16 Success Rate as a Function of Scope and Mobility

Fig. 5.16 shows the success rate of SORD when both scope and mobility are

variables, a and service density are set to 30 and 600 respectively. We ran the simulation

12 times. Each run increased the number of mobile nodes by 5% by random selection. In

each run and for each scope value, we issued 25 queries and computed the success rate.

We observe that mobility < 35% has a limited effect on success rate. An observable

effect appeared for mobility > 50, though SORD still achieves the 100% success rate.

We believe that this is due to: 1) The small routing table that SORD maintains because

less time and messages are needed to fix changes, 2) new nodes are only allowed to join

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 119

the local ring which leaves the global ring unchanged and operational. Only a small

number of existing nodes in a very small locality are affected, 3) the ability to route

around failures.

Fig. 5.17 Overlay Path Stretch as a Function of Scope and Service Density

5.9.3.4 Stretch

Stretch is defined as the number of hops taken by an overlay packet divided by the

number of hops the packet takes when using an IP-layer path between the same source

and destination. A high stretch value indicates an inefficient SSON topology as longer

routes delay the packets. Fig. 5.17 shows the stretch when both scope and service

density are variables, a and mobility are set to 30 and 30% respectively. The figure is

rotated so that the higher service density and scope values are shown in the front. When

the number of services increases, the stretch decreases. The results show that for search

scope values > 250 and service density > 250, stretch varies from 1.04-1.1. For smaller

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 120

values it varies from 1.1-1.22. Generally, the stretch is not significant considering the

gains in other measurements.

40 1

o

SP 3 0
CO

0)

° 20

£ 10

CAN4D
CAN 8D
CAN 12D

•A ^ A A / \ / \ /' \ / \ , . , , A

SORD
CHORD
CAN 2D

A-y^^w^v
n n - i r -

0 20 40 60 80 100 120 140

Time (Minutes)

Fig. 5.18 Overhead as a Function of Time

5.9.4 Experiment 3

In this experiment, we compared flat SORD, CAN [116], and CHORD [54] protocols.

For the sake of realistic comparison, SORD nodes stores <key,value> pairs and the

network has 106 keys. Key lookups are generated according to a Poisson process at a

rate of one per second. Joins and failures are modeled by a Poisson process with the

mean arrival rate of one per 60 seconds. For CAN and CHORD, each node periodically

runs the stabilization routines at randomized intervals averaging 30 seconds; all finger

table entries are updated on every invocation of the stabilization routine (Both CAN and

CHORD use the same stabilization algorithm proposed originally by the CHORD

protocol). The stabilization algorithm maintains a successor list at each node; a

successor list of size r maintains r connections at each node pointing to the first r

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 121

successors in the CHORD ring. The network is strongly stabilized when r = 2logN . As a

result, the total number of states maintained by each node is the sum of the routing table

size and the successor list size.

6e+5

5e+5 H

S) 4e+5 -

I 3e+5
o
ft 2e+5
S

CAN 2D
SORD
CHORD

/

_ . ^ - . ^ • • r t r r ' " "

1 1 1 1 1 1 1

256 512 Ik 2k 4k 8k 16k

Number of Nodes

Fig. 5.19 Overhead as a Function of Network Size

Fig. 5.18 plots the total number of messages generated by each protocol during a 2

hour interval. The total number of messages is normalized by the network size (4096

nodes), and computed as the sum of the messages generated due to lookups and

maintenance. CHORD maintains a successor list of size log N. In addition to the periodic

refreshes sent by each node to its neighbors, CAN maintains a successor/predecessor list

of size 2. We observed that SORD generated the lowest message overhead. Increasing

the CAN dimensions to a certain limit decreases the total number of messages. We

observed that this limit occurs when d = l2 = logN. (Increasing the dimension decreases

the lookup cost). Total message cost is well beyond that of SORD due to the CAN large

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 122

maintenance cost. CHORD maintains more nodes in the successor list, thus incurring the

highest message overhead.

Fig. 5.19 shows the total number of messages (averaged over 2 hours) as a function

of network size. Although SORDs' lookup cost increases at a greater rate than CHORD,

the maintenance cost in SORD is very low compared to CHORD. We believe that, in

addition to the low number of connections per node, this is due to the symmetry of the

optimal chordal ring of degree 4. A 2 dimensional CAN maintains 4 connections per

node and 2 connections for the successor list. While this is close to the 4 connections in

SORD, the lookup cost in a 2 dimensional CAN grows faster than that of SORD. These

results show that the increase of lookup costs in SORD is compensated by the decrease

in maintenance cost.

5.10 Scalability

One common way to improve the performance of a network is to increase its

connectivity and decrease its diameter, and this can be done by adding links. However,

we want to add as few links as possible since their cost has practical implications in the

design. Additionally, the number of links going out of a node must be small to allow for

fast maintenance. The links must be added in a homogeneous way so that nodes can be

easily inserted, and messages can be routed systematically.

Dynamic Hash Table (DHT) approaches are decentralized. They support scalable

and distributed storage, and retrieval of (Key, Data) pairs on the overlay network. In a

network of N nodes, where each node maintains O(logAf) routing entries, DHTs generally

perform lookups using only 0(\ogN) overlay hops (CAN [116] is an exception). In

contrast, the proposed discovery approach, SORD, has only 4 links per node

independent of N (the number of nodes in the network). It routes in 0(&) hops (where k

is the diameter of the optimal chordal ring). For relatively small N , k< logN . For

larger AT, k = c*log
2
N (where c is a variable increasing with N). For N = 190000, c = 1

CHAPTER 5. SEMANTIC OVERLAY FOR MEDIAPORTS RESOURCE DISCOVERY 123

and for # = 1 0 , c= 1.8. CAN [116] is an exception in that it routes in 0\dN^
d
) hops

(where d is the dimension) with a routing table size 0(dr) which is independent of N.

Setting d = log iV allows CAN to match the scaling properties of other DHT systems in

that it routes in OQogN) hops and requires a routing table size that is 0(\ogN). However,

CAN is not designed to vary d as N (and thus O(logTV)) varies, therefore this match will

only occur for the "right" N corresponding to a fixed d. Setting d = 2 allows CAN to

match SORDs' routing table size of 0(4) but increases the lookup cost to 0(2N^
2
). This

implies that while SORD lookups is more expensive compared to DHT systems (except

CAN with d = 2), SORD topology is more stable in a dynamic network. This is because

SORD uses a small routing table size that requires less work and less time to fix any

change in the topology. These results are evident in figures 5.18 and 5.19. However, to

increase scalability and fault isolation, hierarchies are introduced. It can be seen that

SORD trades lookup cost for more efficiency and flexibility.

5.11 Summary

In this chapter, a novel scheme for semantic resource discovery has been presented. The

proposed scheme allows services to be found without relying on centralized directory

servers, and also minimizes query cost and response time. The approach is targeted for

SMART [2], but it can be adapted to a wide variety of applications, such as P2P and ad

hoc networks. The proposed overlay structure is based on a widely-studied family of

chordal rings (the optimal chordal ring of degree 4), the semantics of the offered

services, and the physical location of nodes. It is fault-resilient because of the multiple

paths between ring nodes, allowing queries to be routed optimally between any two

nodes. It has been shown that the proposed scheme is efficient in query cost, accuracy,

and query responses. In addition, results suggest that decreasing the granularity will

decrease the response time but increase the query cost. Moreover, an initial search angle,

a, of 30 degrees is sufficient to give an acceptable success rate.

Chapter 6

Towards an Autonomic Service Architecture

As discussed earlier, IT professionals must reinforce the responsiveness and resiliency

of service delivery, by improving quality of service while reducing the total cost of their

operating environments. Yet, information technology (IT) components over the past

decades are so complex that they increase the challenges to effectively operate a stable

environment. Overlay networks management complexity is turn increased by the huge

number of users, terminals, and services. Although Human intervention enhances the

performance and capacity of the components, it drives up the overall costs—even as

technology component costs continue to decline. Due to this increased management

complexity, this chapter gives an overview of autonomic SSONs; it proceeds as follows:

Section 6.1 introduces autonomic overlays management challenges. Section 6.2

discusses Autonomic overlays. Section 6.3 identifies required knowledge and their

types, while section 6.4 proposes different policy types used to realize autonomic

entities interactions. Finally, section 6.5 presents a discussion and summary for the

chapter.

6.1 Introduction

A service delivered to a customer by a Service Provider (SP) is usually formed from

a composition of different services. Some services are basic in the sense that they cannot

be broken down further into component services, and they usually act on the underlying

resources. Other services are composed of several basic services, each consisting of an

allocation of resource amounts to perform a function. However, with the increasing

demands for QoS, service delivery should be efficient, dynamic, and robust. Current

124

CHAPTER 6. TOWARDS AN AUTONOMIC SERVICE ARCHITECTURE 125

manual approaches to service management are costly, and consume resources and IT

professionals' time, which leads to increased customer dissatisfaction; with the advent of

new devices and services, the complexity is further increased. With a large number of

overlays, the management task becomes harder to achieve using traditional methods.

Therefore, new solutions are needed to allow SPs to support the required services, and to

focus on enhancing these services, rather than their management. Autonomic Computing

(AC) helps address this complexity by using technology to manage technology.

The concept of autonomic computing (AC) [93] was proposed by IBM to enable

systems to manage themselves through the use of self-configuring, self-healing, self-

optimizing, and self-protecting solutions. It is a holistic approach to computer systems

design and management, aiming to shift the burden of support tasks, such as

configuration and maintenance, from IT professionals to technology. Therefore, AC is a

key solution for SSON management in heterogeneous and dynamic environments.

Establishing a SSON involves 1) Resource discovery to discover network-side

nodes that support the required media processing capabilities, 2) an optimization

criterion to decide which nodes should be included in the overlay network, 3)

configuring the selected overlay nodes, and 4) adapting the overlay to the changing

network context, user, or service requirements, and joining and leaving nodes. In AC,

each step must be redesigned to support autonomic functions. In other words, in

Autonomic Overlays (AO), each step imposes a set of minimum requirements. For

example, the resource discovery scheme should be distributed and not rely on a central

entity; it needs to be: Dynamic to cope with changing network conditions; efficient in

terms of response time and message overhead; and accurate in terms of its success rate.

The optimization step is mapped into a self-optimization scheme that selects resources

based on an optimization criterion (such as delay, bandwidth, etc.) and should yield the

cheapest overlay, and/or an overlay with the least number of hops, and/or an overlay that

is load-balanced, and/or a low latency overlay network, and/or a high bandwidth overlay

network. The configuration of the selected overlay nodes in a given SSON is mapped

into a self-configuration and self-adaptation. Self-configuring SSONs dynamically

CHAPTER 6. TOWARDS AN AUTONOMIC SERVICE ARCHITECTURE 126

configure themselves on the fly. Thus they can adapt their overlay nodes immediately to

the joining and leaving nodes and to the changes in the network environment. Self-

adapting SSONs self-tune their constituent resources dynamically to provide

uninterrupted service. Our goals are to automate overlay management in a dynamic

manner that preserves the flexibility and benefits that overlays provide, to extend

overlay nodes to become autonomic, to define the inter-node autonomic behavior

between overlay nodes, and to define the global autonomic behavior between SSONs.

This chapter proposes a novel Management Architecture for overlay networks.

There are two main contributions brought about by the Architecture: First, we introduce

the concept of Autonomic Overlays (AO), in which SSONs and their constituent overlay

nodes are made autonomic and thus become able to self-manage. Second, autonomic

entities are driven by policies that are generated dynamically from the context

information of the user, network, and service providers. This ensures that the creation,

optimization, adaptation, and termination of overlays are controlled by policies, and thus

the behaviors of the overlays are tailored to their specific needs.

rv. .->•;,
i\ i ' • . i . > j|.i

Kno.'.lo(.'[;i 1

C.HSf

i

Context |

System Autonon

r

O
SSON Autonomi

Q
G

Overlay Nodes

O
Resolute*

| M L '
l_ J

nic Managers (SAM)

c Manners (SSON AM)

$ $ VMO

o

G

j Mb 1 | M f

\

6

o
- ; " • •

o

o

1 [OSL j

l ' " i l l •> i

Coordination
1

1

Confirjuiation

Adaptation
I

I

Regulation

Confi^UMlion

Adaptation

i

Fig. 6.1 Autonomic overlays architecture

CHAPTER 6. TOWARDS AN AUTONOMIC SERVICE ARCHITECTURE 127

6.2 Autonomic Overlays

To tackle the complexity of overlay management, each SSON is managed by an SSON

Autonomic Manager (SSON-AM) that dictates the service performance parameters. This

ensures the self.* functions of the service. In addition to this, overlay nodes are made

autonomic to self-manage their internal behavior and their interactions with other

overlay nodes. In order to ensure system wide performance, System Autonomic

Managers (SAM) manages the different SSON managers by providing them with high

level directives and goals. The following sections detail the different aspects of our

architecture.

6.2.1 Architecture Overview

The set of components that makes up our architecture is shown in Fig. 6.1. The lowest

layer contains the system resources that are needed for multimedia delivery sessions. In

particular, the Overlay Support Layer (OSL) receives packets from the network, sends

them to the network, and forwards them on to the overlay. Overlay nodes implement a

sink (MediaClient, or MC), a source (MediaServer, or MS), or a MediaPort (MP) in any

combination. MPs are special network side components that provide valuable functions

to media sessions; these functions include, but are not limited to, special routing

capabilities, caching, and adaptation. These managed resources can be hardware or

software and may have their own self-managing attributes.

The next layer contains the overlay nodes. Overlay nodes are physical Ambient

Network nodes that have the necessary capabilities to become part of the SSON. They

consist of a control plan and a user plan. The control plan is responsible for the creation,

routing, adaptation, and termination of SSONs, while the user plan contains a set of

managed resources. The self-management functions of overlay nodes are located in the

control plan. The Ambient Manageability interfaces are used by the self-managing

functions to access and control the managed resources. The rest of the layers automate

CHAPTER 6. TOWARDS AN AUTONOMIC SERVICE ARCHITECTURE 128

the overlays' management in the system using their autonomic managers. SSON-AMs

and SAMs may have one or more autonomic managers, e.g. for self-configuring and

self-optimizing. Each SSON is managed by an SSON-AM that is responsible for

delivering the self-management functions to the SSON. The SAMs are responsible for

delivering system wide management functions; thus, they directly manage the SSON-

AMs. The management interactions are expressed through policies at different levels.

All of these components are backed up with a distributed knowledge. The following

sections describe each component in detail.

Receive External Events/Policies Report / Export Events

Analyze/Learning
Agent

t

Conflict Resolution
Agent

I
Policy Generator

Agent

Monitoring Agents

Policy Enforcement A

Agents

I

Resource Interface Agents

Fig. 6.2 Autonomic control loop

6.2.2 Autonomic Elements

6.2.2.1 Overlay Nodes Autonomic Manager (ONAM)

Each overlay node contains a control loop similar to the IBM control loop [90], as

shown in Fig. 6.2. The Autonomic Manager (AM) collects the details it needs from its

managed resources, analyzes those details to decide what actions need to change,

generates the policies that reflects the required change, and enforces these policies at the

correct resources. As shown in the figure, the ONAM consist of the following:

CHAPTER 6. TOWARDS AN AUTONOMIC SERVICE ARCHITECTURE 129

Monitoring Agents (MAs): These agents collect information from the overlay

node resources, such as packet loss, delay jitter, and throughput. A MA also correlates

the collected data according to the installed policies, and reports any violation to the

Analyze/Learning Agent (ALA). For example, an MA for a Caching MP collects

information about the MP's available capacity, and whenever the available capacity

reaches 10%, it reports to the ALA. Another example is the MA for a routing MP that

relays data packets between overlay nodes: Its MA collects information about the

throughput and reports to the ALA whenever the throughput reaches a high value. These

collected data will be used to decide the correct actions that must be taken to keep the

overlay node performance within its defined goals. The MAs interact with the Resource

Interface Agents (RIAs) to monitor the overlay node resources availability, and to

collect data about the desired metrics. They also receive policies regarding the metrics

that they should monitor as well as the frequency in which they report to the ALA.

Analyze/Learning Agent (ALA): This agent observes the data received from the

MAs, and checks to see whether a certain policy with which its overlay node is

associated is being met. It correlates the observed metrics with respect to the contexts,

and performs analysis based on the statistical information. In the case that one of

policies is violated, it sends a change request to the Policy Generator (PG). This

component is an objective of future work.

Policy Generator (PG): The difference between this control loop and the IBMs'

control loop lies in the use of a PG instead of a Plan component. The Plan function -

according to IBM [90] - is to select or create a procedure that reflects the desired change

based on the received change request from the Analyze Agent. This is not sufficient in

our case, where each overlay node receives high level policies and it is up to the overlay

node to decide how to enforce these policies based on its available resources. Therefore,

we envisioned a PG instead. The PG reacts to the change request in the same way as in

the Plan component, although it also generates different types of policies in response to

the received high level policies. For example, based on the goal policies received by the

overlay node, the policy generator generates the tuning polices and passes them to the

CHAPTER 6. TOWARDS AN AUTONOMIC SERVICE ARCHITECTURE 13 0

MAs (more about this in Section 3.4). Upon generating new policies, the policy

generator consults a Conflict Resolution Agent (CRA) that ensures the consistency of

the new generated policies with those that already exist. Generally, we divide conflicts

into two types: Static and dynamic. In our model, a static conflict is a conflict that can be

detected at the time of generating a new policy, while a dynamic conflict is one that

occurs at run time.

Policy Enforcement Agent (PEA): The PG generates suitable policies to correct

the situation in response to a change request, and passes these policies to the PEA. The

PEA then uses the suitable RIA to enforce them. This includes mapping the actions into

executable elements by forwarding them to the suitable RIA responsible for performing

the actual adjustments of resources and parameters. The enforced policies are then stored

in the Knowledge Base (KB).

Resource Interface Agents (RIAs): These implement the desired interfaces to

the overlay node resources. The MAs interacts with them to monitor the availability of

overlay node resources and the desired metrics in its surrounding environment. Each

resource type has its own RIA that translates the policy actions into an adjustment of

configuration parameters that implements the policy action.

External Interfaces: Each overlay node has a set of interfaces to receive and

export events and policies to other overlay nodes. These interfaces are essential to

enable multiple overlay nodes to cooperate to achieve their goals. In particular, these

interfaces are used by the SSON-AM to interact with the overlay nodes that had agreed

to participate in the SSON. The SSON-AM sends the system policies to the overlay

nodes through these interfaces, through which it also receives reports on their current

status.

CHAPTER 6. TOWARDS AN AUTONOMIC SERVICE ARCHITECTURE 131

6.2.2.2 SSON Autonomic Managers (SSON-AM)

SSON-AMs implement the intelligent control loop in much the same way as ONAMs.

They automate the task of creating, adapting, configuring, and terminating SSONs. They

work directly with the ONAM through their management interfaces. They perform

different self-management functions, such as self-configuring, self-optimizing, and self-

adapting. Therefore, they have different control loops. Typically, they perform the

following tasks:

Self-configuration: SSON-AMs generate configuration policies in response to

the received system policies. They use these policies to configure overlay nodes that are

participating in a given SSON.

Self-optimization: during SSON construction, SSON-AMs discover the overlay

nodes required to set up a routing path for the multimedia session. Therefore, they are

responsible for optimizing the service path to meet the required QoS metrics induced

from high level policies as well as the context of the service.

Self-Adaptation: SSON-AMs monitor the QoS metrics for the multimedia

session and keep adapting the service path to the changing conditions of the network,

service, and user preferences. They also monitor the participating overlay nodes and find

alternatives in case one of the overlay nodes is not abiding to the required performance

metrics.

SSON-AMs receive goal policies from the SAMs to decide the types of actions that

should be taken for their managed resources. A SSON-AM can manage one or more

overlay nodes directly to achieve its goals. Therefore, the overlay nodes of a given

SSON are viewed as its managed resources. In addition, they expose manageability

interfaces to other autonomic managers, thus allowing SAMs to interact with them in

much the same way that they interact with the ONAMs.

CHAPTER 6. TOWARDS AN AUTONOMIC SERVICE ARCHITECTURE 132

This is illustrated in Fig. 6.3. Where the lower part represents an SSON that consists of a

Source (S), a Destination (D), and a MediaPort (MP). The SSON is managed by a

SSON-AM. Since the SSON-AM can manage multiple SSONs, it has its own

Knowledge Base (KB). It contains also a PG backed up with a CRA. The PG has access

to the available context information that assists it in achieving its goals. The upper part

represents a SAM and its components. The SAM is able to manage one or more SSON-

AMs. Therefore, it has its own KB, and PG. The context information of the user,

network, and service is assumed to be available to these autonomic managers as they can

acquire it from the Context Functional Area in the Ambient Control Space [46].

KB

Context

Policy Generator (PG)

1
Conflict Re-solution

(CRA)

Iffii

KB

* • Policy Generator (PG) *

s
" "^.. Content

' D
S % Ml* '

SSON X

Conflict Resolution

(CRA)

Fig. 6.3 The relation between an SSON, SSON-AM, and SAM

6.2.2.3 System Autonomic Managers (SAM)

A single SSON-AM alone is only able to achieve self-management functions for the

SSON that it manages. If a large number of SSONs in a given network with their

autonomic managers is considered, it is observable that these SSONs are not really

CHAPTER 6. TOWARDS AN AUTONOMIC SERVICE ARCHITECTURE 133

isolated. On the one hand, each overlay node can be part of many SSONs if it offers

more than one service or if it has enough resources to serve more than one session. On

the other hand, the SSONs' service paths may overlap, resulting in two or more SSONs

sharing the same physical or logical link. For example, consider two SSONs sharing the

same routing MP with the same goal to maximize throughput. This will lead to a

competition between autonomic managers that are expected to provide the best

achievable performance. Therefore, and in order to achieve a system wide autonomic

behavior, the SSON-AMs need to coordinate their self-managing functions. Typically

this is achieved using SAMs. SAMs can manage one or more SSON-AMs. They pass

the system high level policies, such as load balancing policies, to the SSON-AMs.

Moreover, whenever they find shared goals between two different SSON-AMs, they

inform them to avoid conflicting actions. The involved autonomic managers then contact

each other to coordinate their management actions before they are passed to their

overlay nodes.

Sharing goals is not the only reason for the coordination step; SSONs sharing

common links as well as SSONs that belong to the same policy domain (same service

class, ISP, etc.) may also need to coordinate their management actions. Moreover,

SSONs that share common nodes/links affect each other's performance, as they compete

for the shared resources. This might result in a degraded performance as the competition

will cause the control loop to be invoked frequently in an attempt to reach the desired

performance goals. Also, all the SSONs in a given domain (ISP) are expected to achieve

the domain wide policies together. Coordination allows these policies to be dispatched

and adapted to each SSON in a way that achieves the desired goals. Moreover, it also

allows the sharing of control and information between different SSONs. A set of SSONs

that are co-located in given vicinity (such as an area, domain, AS, etc.) are usually

equipped with independent route decisions based on its observations of its environment.

Sharing this information will result in a reduced overhead for each overlay to compute

this information, and will allow for adapting and generating policies to achieve better

performance.

CHAPTER 6. TOWARDS AN AUTONOMIC SERVICE ARCHITECTURE 134

6.3 Distributed Knowledge

Each autonomic manager obtains and generates information. This information is stored

in a shared Knowledge Base (KB) (see Fig. 6.3). The shared knowledge contains data

such as SSON topology, media type descriptions, the set of policies that are active, and

the goal policies received from higher level autonomic managers. The shared knowledge

also contains the monitored metrics and their respective values. When coordination is

needed, each autonomic manager can obtain two types of information from its peers.

The first is related to the coordination actions and the second is related to the common

metrics in which each autonomic manager is interested. Therefore, knowledge evolves

over time; the autonomic manager's functions add new knowledge as a result of

executing their actions, obsolete knowledge is deleted or stored in log files. Also, goal

policies are passed from high level autonomic managers to their managed autonomic

managers. The context information of the network, users, and services is also used

primarily to aid in generating suitable policies at each level of autonomic managers.

6.4 Policies

The use of policies offers an appropriately flexible, portable, and customizable

management solution that allows network entities to be configured on the fly. Usually,

network administrators define a set of rules to control the behavior of network entities.

These rules can be translated into component-specific policies that are stored in a policy

repository and can be retrieved and enforced as needed. Policies represent a suitable and

efficient means of managing overlays. However, the proposed architecture leverages the

management task to the overlays and their logical elements, thus providing the directives

on which an autonomic system can rely to meet its requirements. Policies in our

autonomic architecture are generated dynamically, thereby achieving an automation

level that requires no human interaction. In the following, we will highlight the different

CHAPTER 6. TOWARDS AN AUTONOMIC SERVICE ARCHITECTURE 135

types of policies specific to autonomic overlays. These policy types are generated at

different levels of the system.

Configuration policies: These are policies that can be used to specify the

configuration of a component or a set of components. The SSON-AMs generate the

configuration polices for the service path that meets the SSON's QoS requirements. The

ONAMs generate the specific resource configuration policies that, when enforced,

achieve the SSON QoS metrics. The user, service, and network context are used by these

autonomic managers to generate configuration policies.

Adaptation policies: Thesre policies that can be used to adapt the SSON to

changing conditions. They are generated in response to a trigger fired by a change in the

user, service, or network context. SSON-AMs receive these triggers either from the

SAMs or from the ONAMs, while the ONAMs receive these triggers either from the

SSON-AMs or from their internal resources. Whenever a change that violates the

installed policies occurs, an adaptation trigger is fired. The autonomic manager that first

detects this change tries to solve the problem by generating the suitable adaptation

policies; if it does not succeed, it informs the higher level autonomic manager.

Coordination policies: Are policies that can be used to coordinate the actions of

two or more SSON-AMs. They are generated by the SAMs to govern the behavior of

SSON managers that have conflicting goals to avoid race conditions.

Regulation policies: These are generated by the overlay nodes themselves to

control the MAs' behavior with respect to their goals. For example, a MA that measures

throughput has a policy to report throughput < 70%. Another regulation policy can be

installed to replace this policy and report throughput < 90%. The second regulation

policy can be generated in response to an adaptation policy that requires throughput to

be at least 90%. The MAs therefore are made more active to contribute to achieving the

required tasks.

CHAPTER 6. TOWARDS AN AUTONOMIC SERVICE ARCHITECTURE 13 6

System
Level

Service
Level

System Policies - Goals

1

s

'

SON A

• '

SSONX

^
Autonomic

Elements
Level

ONode M

Resource
Level

Fig. 6.4 Different Policy Levels

Figure 6.4 shows how these policies are related to our autonomic architecture. At

the highest level, the SAMs define the set of system polices. These policies represent the

system-wide goals and do not describe either the particular devices that will be used to

achieve the system goals, or the specific configurations for these devices. SAMs pass

these policies to the SSON-AMs. SSON-AMs refine the system policies and generate

service specific policies. They do so by adding further details to the system policies.

These details are induced from the system policies as well as from the context

information of the users, the network, and the service. At this level, the goals of the

SSON under discussion, such as the permitted QoS metrics, are defined. These goals are

still device independent policies. The set of service polices is then passed to the

ONAMs. These autonomic managers further refine the received policies and generate

the overlay node polices and their respective resource specific policies. Overlay node

policies represent the goals that this overlay node is expected to achieve, while resource

CHAPTER 6. TOWARDS AN AUTONOMIC SERVICE ARCHITECTURE 137

specific policies represents the actual actions that the resources of the overlay node has

to do to achieve the overlay node goals. This separation of policies allows each

autonomic element to focus on its goals and how to achieve them using its current

resources while contributing at the same time to the overall system performance. By de-

coupling the functionality of adapting overlay node resources policies from the task of

mapping system objectives and abstract users' requirements, the policy separation offers

users and IT professionals the freedom to specify and dynamically change their

requirements. The hierarchical policy model is used to facilitate the mapping of higher

level system policies into overlay node objectives. Given sets of user, service and

network context and constraints, as well as sets of possible actions to be taken, decisions

for policy customizations are taken at run time based on values obtained from MAs to

best utilize the available overlay node resources.

In addition to generating policies from high level goals, the policy generator located

in each autonomic manager serves as a Policy Decision Point (PDP) for the low level

autonomic manager. For example, the SSON-AM serves as a PDP for the ONAM.

Whenever an ONAM detects that one of the configuration policies has been violated, it

tries to solve the problem locally. If it is unable to do so, it consults the SSON-AM to

which the overly node is providing a service. The SSON-AM then tries to solve the

problem by either relaxing the goals of the services or by finding an alternative overlay

node that is able to achieve the SSON's goals. The SSON-AM then informs the ONAM

of its decision, and may also consult its designated SAM to acquire decisions on

situations that it cannot handle locally. The autonomic manager acting as a PDP decides

which policies, if any configuration or adaptation policies have been violated, were most

important and what actions to take. It uses information about the installed policies and

the current context of the user, network, and service.

6.5 Summary

In this chapter, a novel scheme for SSONs autonomic management has been presented.

This work provides a complete integrated architecture for autonomic SSONs

CHAPTER 6. TOWARDS AN AUTONOMIC SERVICE ARCHITECTURE 13 8

management; it illustrates the benefits of avoiding the complexity of existing service

management systems. The road towards fully autonomic system architecture is still long;

however, and this chapter presents an autonomic overlay architecture that represents the

basic building blocks needed by autonomic overlay systems.

The success of autonomic computing relies on systems' ability to manage

themselves, and to react to changing conditions. The proposed layered architecture for

autonomic overlay provision enables autonomy and dynamic overlay construction

through multi-level policies. The architecture components can self-assemble into an

overall autonomic system—flexibility is crucial to the system. Therefore, individual

overlay nodes should be able to self-organize to form diverse SSONs. This is possible

through the investigation of the different media types and QoS requirements for each

media delivery session, which allows for the dynamic self-composition of the

fundamental services needed by SSONs. This will lead to the ultimate dynamic self-

management, and will require the dynamic assignment of SSON-AMs and SAMs.

Chapter 7

A Self-Organizing Composition towards Autonomic Overlay

Networks

As illustrated in the previous chapter, a major challenge for autonomic computing is

composing multiple autonomic entities to achieve system-wide goals. In autonomic

overlays, the challenge involves composing multiple autonomic overlay nodes to

construct SSONs, which achieves the required QoS. This chapter presents a novel self-

organizing composition scheme that can compose overlay nodes to realize SSONs using

a self-organizing principle. The rest of this chapter is organized as follows: Section 7.1

introduces autonomic composition challenges. Section 7.2 summarizes related work.

Section 7.3 introduces design goals, composition model, self-organizing rules, and the

composition algorithm. In Section 7.4, we present simulation details and results, and

finally, the chapter is concluded with a brief summary.

7.1 Introduction

Recently, considerable research has been exhausted on self-managing systems, including

work from IBM's autonomic computing initiative. As illustrated in Section 3.2.4, IBM

introduced the concept of Autonomic Computing (AC) [93], which allows systems to

manage themselves. IBM identified the complexity of current computing systems as a

major burden that hinders its growth [90]. AC simplifies and automates many system

management tasks that are otherwise traditionally carried out manually. Systems that

manage themselves are able to adapt to changes in their environment in accordance with

business objectives. The result is a great saving in management costs and in the time of

IT professionals. Liberated from manual operations, these professionals can focus on

139

CHAPTER 7. A SELF-ORGANIZING COMPOSITION 140

improving their overall service. A major challenge in their work [90], [92] is to compose

multiple autonomic entities to achieve system-wide goals. We faced a similar challenge

when we attempted to compose multiple autonomic overlay nodes to construct SSONs.

Service composition has been proposed within service-oriented environments [182]. It

allows simple services to be dynamically combined into more complex services. Service

composition is usually defined as a directed acyclic graph G(N, L, W), where N is the

number of services in G, and L is the set of links in which a link l(u, v) represents a

service composition between u and v, with W as its cost. A service path is defined as a

path in Gthat minimizes a cost criterion. In a highly dynamic network such as SMART,

MPs' services are dynamic and change over time. The number of services N is therefore

not known beforehand. Assuming there is a large number of MPs, the set of links L that

represents all the possible service compositions, changes dynamically. It is impractical

to rely on a predefined set of services, as we need an accurate view of the network at any

time. These problems can be solved using a registrar entity in which all MPs register

their services. The service path is then found by searching G for the best path that

minimizes the cost criterion (delay, jitter, throughput, e t c .) . Most service composition

schemes use this model, but it has become unsuitable for media delivery because of its

poor scalability and reliability. The central entity is a single point of failure; it also

consumes bandwidth because each MP has to re-register its services and resources each

time a change occurs. This also means that G has to be re-computed, and another search

performed for the best service path. Clearly, this solution is not cost efficient, and in a

dynamic network where the topology is always changing, a central entity is not reliable

as it may unpredictably leave the network.

This chapter builds on the previous one, where we proposed Autonomic Overlays,

and developed the service specific autonomic architecture, and focuses on the problem

of composing different autonomic elements to achieve system wide goals.

CHAPTER 7. A SELF-ORGANIZING COMPOSITION 141

7.2 Related Work

Service Composition is the orchestration of a number of existing services to provide a

richer composite service assembled to meet some user requirements. In particular, if no

single service can satisfy the functionality required by the user, it should be possible to

combine existing services together in order to fulfill the request. This has triggered a

considerable number of research efforts on composition. Composition techniques can be

classified into static and dynamic. In static composition, available services are combined

by adding a central coordinator that is responsible for invoking and combining the single

sub-services. This means that the requester should build an abstract process model

before the composition starts. The model includes a set of tasks and their data

dependency. On the other hand, the dynamic composition composes services on

demand, based on requests from users. For instance, by dynamically composing services

on demand, services do not need to be configured or deployed in advance. In addition,

by composing services based on requests from users, it is possible to customize the

services to individual user profiles. The dynamic composition of services requires the

placement of services based on their capabilities and the recognition of those services

that can be matched to create a composition.

Several dynamic service composition systems have been proposed. In [183], an

architecture that obtains intuitively the semantics of the requested service, is proposed. It

discovers the components required to compose a service, and composes the requested

service based on its semantics and the semantics of the discovered components.

Unfortunately, discovery and execution of the service are carried out by a central

middleware. SpiderNet [184] is a QoS-aware service composition framework that

provides a Bounded Composition Probing (BCP) scheme to achieve QoS-aware service

composition. The basic idea of BCP is to examine a small subset of good candidate

compositions according to the users' service requirements and current system

conditions. The BCP scheme executes a hop-by-hop distributed composition protocol to

achieve its goals. However, the user has to be aware of the required services and

specifies them before hand.

CHAPTER 7. A SELF-ORGANIZING COMPOSITION 142

Work flow systems [185], [186], [187], [188], [189], and [190] require a user to

request a service by choosing or creating a service template that describes the structure

of the service in a flowchart-like diagram. They compose the requested service through

discovering the components necessary to convert the template into an executable

workflow. For example, eFlow[185] uses a static workflow generation method. A

composite service is modeled by a graph that defines the order of execution among the

nodes in the process. The graph is created manually but it can be updated dynamically.

Many research efforts tackling service composition problem via AI planning have

been reported. Methods in [191], [192], and [193] adapt and extend the Golog language

for automatic construction of Web services that are built on top of the situation calculus.

The general idea of this method is that software agents could reason about Web services

to perform automatic Web service discovery, execution, composition, and inter-

operation. Existing systems [194], [195], [196], [197], and [198] require a user to

request a service using a logic language. For example, the system described in [198]

requires a user to choose a meta-program described in Golog logic programming

language. Similarly, in SWORD [194], a service is modeled by its preconditions and

post conditions. They are specified in a world model that consists of entities and

relationships among entities. A web service is represented in the form of a Horn rule that

denotes the post conditions are achieved if the preconditions are true. To create a

composite service, the service requester only needs to specify the initial and final states

of the composite service, and then the plan generation can be achieved using a rule-

based expert system. However, rule-based chaining can sometimes generate "uncertain"

results if a precondition cannot uniquely determines a post condition. AI planning

systems compose the requested service in a logic language through a form of planning.

However, understanding logic programming languages may not be an easy task.

Service composition has been also addressed by systems such as GriPhyN [199],

Libra [200], Ninja [201], and CANS [202]. GriPhyN considers compositions as a static

graph of services, and assumes prior knowledge of the participating services and their

interaction patterns. The Libra framework aims to automate the optimal composition of

CHAPTER 7. A SELF-ORGANIZING COMPOSITION 143

services across the wide-area network using service-specific knowledge. Ninja is a path-

based approach that allows services to be automatically discovered and composed into a

path. CANS uses type-based specification of components and network resources to

enable service access paths to be dynamically and automatically constructed. A

mechanism that constructs all possible compositions based on their semantic and

syntactic descriptions was proposed in [182]; in this approach, all available services are

grouped into directories. The approaches in [203], [204], and many others, mandate the

service requests to describe the structure of the service. The composition is carried out

by discovering the necessary components. Projects [205], [206] compose services if their

basic components are present in the network. If one component is missing, an extended

discovery stage is required. Such and other research projects (e.g., [207], [208], and

[209]) attempt to generate a global system configuration, under specific optimization

criteria. Most see composition as a discovery problem, but they either rely on a

centralized composition entity—which has scalability limitation—to carry out the

discovery, integration and composition of services, or they assume a prior knowledge of

a service graph that defines the basis for their composition algorithms. Moreover,

previous work only supports linear composition topology and fixed composition order,

which greatly limits the applicability and efficiency of service composition. Our work

addresses these limitations and proposes the composition of autonomic elements in

which each autonomic element is self-managed.

7.3 Self-Organizing Composition

Autonomic elements inherently guarantee self-management functions for their own

resources. However, SSONs are made up of many autonomic elements. The need is

therefore to develop tools and environments that facilitate the automated composition of

elements into more complex services. Our scheme is based on self-organizing principles

found in many biological systems [210]. The requirements for SSON composition are

listed below.

CHAPTER 7. A SELF-ORGANIZING COMPOSITION 144

• Decentralized: A mechanism is needed to dynamically and automatically select

different overlay nodes first to construct an SSON and then be manageable by

SSON managers. This achieves automatic operation and avoids a single point of

failure.

• Efficient: The overlay nodes should be selected with minimal disruption to

existing services. The use of extensive real-time communications should be

limited, while maintaining the QoS requirements.

• Robust: Automatic and self-organizing selection and reselection of overlay nodes

is needed in order to avoid both the failure of nodes (due to the network's high

mobility and heterogeneity) and a single point of failure.

• Dynamic: No set of autonomic managers in the network should be permanently

responsible for a particular management task. Tasks should be automatically

transferable so that loads are balanced and scalable.

• Distributed and self-organized: The selection of the overlay nodes required to

construct an SSON should be distributed in order to minimize overhead on the

node responsible for management. The selection of the set of nodes with which

SSONs are constructed should use local knowledge only.

Fig. 7.1 Types of MPs Services Composition

CHAPTER 7. A SELF-ORGANIZING COMPOSITION 145

7.3.1 Composition Model

Our work does not assume a specific service description; services can be described using

standard Web Service Description Language (WSDL) [211], for example, and extended

with semantic metadata. For clarity, we use the same MPs modeling presented in Section

5.3. To summarize, a service S can be described using service identification ID, an

input/, an outputO, and the function / that the service provides. Using this simple

representation, a service S always receives / and produces O as a result of applying

/ o n / . Each service used incurs a cost and each MP provides one or more services.

Given an input media / and a requested output media O, the problem is to find a service

path that transforms / into O and minimizes or maximizes a cost criterion.

As shown in Fig. 7.1a, MPs can be described according to their input and output

ports: Single, splitters, or joiners [212]. Single MPs have only one input port and one

output port. Splitters have one input and several outputs. Joiners have several inputs that

they merge into one output. Services can therefore be independent, or partially or

completely composed. As shown in Fig. 7.1b, independent MPs can perform a service

without help from other MPs. Partially composed MPs are those that need other MPs to

provide a complete service. Completely composed MPs are those that provide a

complete service.

7.3.2 Definition of the Problem

In a dynamic network, each of a set of MPs may offer one or more services. Each MP

has knowledge of only its services and of those offered in its vicinity. A Media Client

(MC) requests media from a Media Server (MS). Media are characterized by the input

(I) that represents the type of media that the MS has, the output (O) that the client can

accept, and the required QoS. The composition problem is to determine the media flow

that transforms I into O.

CHAPTER 7. A SELF-ORGANIZING COMPOSITION 146

Knowledge is defined by the vicinity of each MP. The vicinity can be as small as

the direct neighbors of a MP or as large as the whole network. The smaller the vicinity,

the more local the knowledge and the lower the cost needed to acquire it. Operating at

either end of this range is impractical: Knowledge of the whole network poses similar

problems to using a central entity, and the direct neighbors of a given MP might not be

MPs themselves. We therefore define the vicinity as the set of MPs in a sub-area of the

network. Each sub-area must be large enough to contain multiple media ports and small

enough to minimize the cost of acquiring the local knowledge. Generally, a service path

should meet the required QoS, that is, it should minimize or maximize a cost criterion.

We do not impose strict parameters on these criteria because they are application and

user-dependent. For example, one user might be interested in maximizing the

throughput, while another user might wish to minimize delay. Moreover, only the input

and the output of each requested media flow are known beforehand, while the service

path composition and the order of service are determined dynamically.

(xl,.yl)

Fig. 7.2 Network Geographical Area and Search Scope Angle

CHAPTER 7. A SELF-ORGANIZING COMPOSITION 147

7.3.3 Self-composing Assumptions and Rules

We assume that each node knows its geographical location, and that the network

geographical area is two-dimensional. This can be obtained by mapping IP to

geographical locations [213]. We also assume that the area is further divided into sub-

areas of equal size as shown in Fig. 7.2. It is the same as Fig. 5.5. We repeat it here for

clarity. Note that although the computation is similar, it is being used differently in this

chapter. In this chapter we don't maintain any form or structure between nodes.

Therefore, the only needed knowledge is the geographical location. While in Chapter 5,

the resource discovery, we form an optimal chordal ring between nodes and the

computed nodes inside a given search angle are the nodes on that ring. Moreover,

routing is based on the connections of the optimal chordal ring. In contrast, routing here

is based on flooding and the search angle limits the propagation of the flooded request to

those nodes inside the angle scope. The sub-areas are fixed for sufficient time to allow

each node to become aware of them. This knowledge can be broadcast once to all nodes

in the network; new nodes acquire the knowledge from neighboring nodes. As stated

previously, each MP knows its own services and those offered by MPs in its sub-area.

This knowledge is also obtained by broadcasting it in each sub-area. Although this step

is a clear overhead, it is required only once by each MP. Initially, the service request is

forwarded based on local knowledge only, that is, only to nodes that can provide a value

for the service request and for its output service. We also forward the service request

only to MPs in the direct path between the MC and the MS (the shaded area shown in

Fig. 2). This is because service composition is useful only when it can bring the media

flow closer to its goal. Looping of a service path is undesirable because of its clear

performance problem, and because closer nodes can be expected to require fewer hops

than those further away. Finally, each MP has a distance function that is used to

produce the list of required adaptations for a media flow based on its input and output.

Using these assumptions, a MediaPort A has a list of other MPs that provide services

(called the ActiveList). A may be able to compose with all of these services, with some

of them, or with none at all. The composition may be partial or complete. Whenever A

receives a composition task during its lifetime, if it is unable to execute the task

CHAPTER 7. A SELF-ORGANIZING COMPOSITION 148

independently, it forwards the composition task to the highest ranked MP that it can

compose with in its ActiveList. The rank between MPs A and B is R(A, B) and is

calculated using the following rules:

• R(A, B) — 4, If A knows that B can compose with A to provide a complete service

• R(A, B) = 3, If A knows that B can compose with A to provide a partial service

• R(A,B) = 2, IfA knows that B can provide a complete service by itself without

composing with A

• R(A,B) = I, If A knows that B can provide a partial service by itself without

composing with A

• R(A,B) = 0, If A knows that B can't provide a service at all

These ranks can be viewed as virtual links with a strength value. A rank of 0 means

that the link has no chance to be selected in the composition process as it provides no

useful service. However, the link is maintained, as it might be needed to forward the

request if the current node is not aware of any other node that it can compose with. The

higher the strength, the more chances the MP has to be selected. The ranks represent the

initial view of MP A to its vicinity. The ActiveList becomes dynamic, as the ranks

based on the actual selection of nodes are modified and as links are added or removed.

Since the network is dynamic, MPs may leave or join it. Whenever a new MP joins the

network, it broadcasts its availability to its vicinity allowing other nodes to update their

ActiveLists and whenever a MP discovers that one of its ActiveList members is

unavailable, it removes it from the list. By the use of learning rules, new members from

neighboring sub-areas can be added to the ActiveList as described later.

CHAPTER 7. A SELF-ORGANIZING COMPOSITION

1. If 4̂ is within the search scope, it Computes the list of adaptations A[i] that are

needed to transform I into O,

2. Extracts the elements in the composition history and adds to the list of adaptations

A[i] all the available partial adaptations.

3. For each adaptation in A[i]

3.a If A can provide a complete service it will add to the composition history its

ID, the service cost, and the available information that is relevant to the QoS

metrics (ex. The delay between itself and the node that it composes with)

3.b If A can provide a partial service then it will add to the composition history the

above information in addition to the output partial service.

3.c If A can provide both complete and partial adaptation it will add both to the

composition history.

3.d If A doesn't provide any type of adaptation, it adds nothing.

4. Forwarding the service request: A checks its ActiveList to decide where to send the

service request. Generally, A prefers MPs with highest ranks. To further limit the

forwarding and to reduce the cost of sending messages it do the following:

4.a If A knows a MP that it can provide a complete service it forward the message

to it.

4.b If A knows a MP that it can compose with, it forward the message to it.

4.c If the activeList has all ranks zero, then A has no clue about where it should

forward the message. Therefore, A sends it to all of its ActiveList Members.

5. Any node that receives a forwarded message deals with it in the same way as A did.

The only exception is for the receiver node to be the MS, in which case, the MS

waits for a period of time T, and retrieves the composition history from each

received message. It then selects a path that meets the cost metric for the media flow,

and sends a ConstructPath message through the path to the MC in a reverse order. If

no path is retrieved, the MS sends a failure message to the MC that will resubmitted

composition request after increasing a.

Fig. 7.3 Composition Algorithm

CHAPTER 7. A SELF-ORGANIZING COMPOSITION 150

7.3.4 Self-organizing Composing Algorithm

A media flow is constructed when a MC requests a service composition task. The MC

broadcasts a composition request to its vicinity containing the request ID (RID), the

MediaClient Input (I), the MediaServer Output (O), the QoS requirements, and the angle

a [0,180] that determines the search scope between the MC and the MS (see Fig. 7.2).

The larger a is, the more sub-areas are included in the search. The message contains the

task information as well as the composition history accumulated as the message is sent

through the network. To prevent the uncontrolled forwarding of a service request, each

node keeps a record of received requests and compares any new request with this record.

If the request has already been dealt with, it is discarded. MP A processes a request as

shown in Fig. 7.3.

To know that it is within the search scope, A computes the angles p and <j> using the

following formula:

. J \(x2-xl)(yl-y0)-(xl-xO)(y2-yl)
p = sin — (7 n

i k V(*2 - *02 + (y2 - yi)
2
 * V(*i - *°)2 + G* ~ y°f J

Where (xl,yl) is the MC location, (x2,yl) is the MS location, (x0,y6) is the location of A .

A is within the scope area if /? < °fy A ^ < 85

If A is not within the search scope, it discards the message.

This composition algorithm relies on the message being broadcasted from the MC

to MPs in its vicinity and from any MP with an ActiveList of zero to its vicinity. But the

clear overhead of broadcasting renders this undesirable. We therefore combine the

algorithm with learning rules induced from biological systems [210]. These rules are:

1. Learning from interaction: Since the service request is sent to all sub-areas in the

search angle a, an MP in one sub-area may learn about MPs that it can compose with

in other sub-areas. Step 3.b of the algorithm shows that this knowledge can be

CHAPTER 7. A SELF-ORGANIZING COMPOSITION 151

acquired with no extra cost. Because each MP adds its own adaptations to the

adaptation list A[i], any MP can decide which of the MPs that it can compose with

are not listed in its ActiveList. Those MPs can be added to the ActiveList for future

use and the same rules can be used to rank them. In the first few requests, this rule

does not reduce the message cost, and the algorithm still uses the broadcasting option.

As the number of requests increases, so does the number of useful links added. The

message overhead is thereby reduced. Typically, each MP has limited space in which

to store information about its neighboring MPs. Adding more MPs fills the available

space quickly. We therefore use a replacement strategy whereby any new MP is

added to the ActiveList if the ActiveList is not full. If it is full, the MP with the

lowest rank is replaced by the new one.

2. Positive and negative feedback: in step 4 of the algorithm, a MP forwards the service

request to nodes in its ActiveList. Although our filtering rules reduce the number of

nodes to which the message is forwarded, the number of candidate nodes could still

be high and the resulting overhead is undesirable. Nor are all candidate nodes really

needed, as some may not be willing to participate in the new media flow (either

because they do not have enough resources or because they have their own policies

that do not allow them to participate). In fact, a dynamic network implies that not all

nodes are available all the time. We therefore extend our algorithm to include positive

feedback: We increase the rank of links to nodes that are known to be cooperative and

have actually participated in a media flow. This is simple knowledge to acquire, and

comes with no cost. In step 5 of the algorithm, each node receiving a ConstructPath

message executes an UpdateRanks function that increases the rank of nodes that a MP

is composing with. Conversely, if a MP is known to fail frequently or not to have

participated in a media flow for some time, its rank is decreased. This positive and

negative feedback reduces the number of nodes that receive composition requests. It

also becomes much more probable that messages are received by a MP that has more

opportunity to participate usefully and cooperatively in the media flow.

CHAPTER 7. A SELF-ORGANIZING COMPOSITION 152

3. Orientation-based modulation: from Fig. 7.2, it can be seen that the composition

request moves to its destination in a specific direction. A node therefore selects nodes

from its ActiveList that reflect that direction. This ensures that each receiving node is

closer to the destination than the transmitting node and prevents the message from

going into loops.

7.3.5 Discussion

After waiting for a period of time T, the MS may receive several media flow paths, both

valid and incomplete. Using an optimization criterion, the MS computes the cost of each

complete flow, and selects the one that meets the required cost. The media flow paths,

either complete or partial, are of great importance for autonomic systems. Since the

network is dynamic, an established path may not be available for the duration of the

session. Participating nodes may run out of resources; they may also fail or leave the

network. It is therefore essential for autonomic systems to be able to recover from these

and similar situations. The MS keeps a record of all the possible media flow paths

returned when the algorithm is executed. Once it receives a leave notification from a

current path member, it looks for an alternative node as a replacement or for an

alternative path from those already available.

In the previous chapter, an SSON autonomic manager is responsible for self-

configuring and self-optimizing the SSON overlay path or media flow. Our composition

algorithm assumes that the MS plays this role. However, if a different node claims the

SSON autonomic manager, it receives the media flow paths. To obtain the best

performance, the SSON autonomic manager should be close to the media flow path. And

since the flow path is not known beforehand, the SSON autonomic manager should be

located in one of the sub-areas between the MC and MS.

Although alternative media flow paths are important, accounting for all possible

alternatives and partial solutions increases the size and overhead cost of the request

message. The following rule can therefore be added to the algorithm at steps 3.a and 3.b

CHAPTER 7. A SELF-ORGANIZING COMPOSITION 153

IF A can provide a complete OR partial service (S)

IF S ~3 in the composition history OR (S 3 and the number of similar services < S)

Add the service to the composition history

This rule limits the number of similar services in a path history to a predefined

threshold value (S). The value of S depends on how dynamic the network is and how

much bandwidth is available. In a highly dynamic network, nodes leave and join

frequently. We need more alternatives in order to avoid service breakdown. We

therefore set S to a greater value. Setting 8 to a lower value reduces the number of

alternatives, but does not eliminate them completely. For example, if 8 =0, there are no

alternative solutions in the current message. But the algorithm allows a number of

messages with the same service request to be forwarded along different paths.

In the proposed composition algorithm, QoS has been generically addressed through

using a cost metric, where its value decides if a node will be selected in a final media

flow path or not. While this allows for a wider use of QoS parameters, it doesn't

explicitly address the intelligibility of the media flows after being processed by the

composed MPs [214] and leaves this topic as a future work.

7.4 Experimental Evaluation

We used a discrete event simulator to evaluate the performance and efficiency of the

algorithm. A large-scale network was used to test measurements such as network load,

composition time, stretch, and success rate. We first compared the self-organizing

algorithm (Self-Org) with limited-flooding (LF) and Graph Based (GB) approaches. In a

LF protocol, a composition request is broadcast to all direct neighbors. Close neighbors

send it on to their neighbors with the propagation controlled by a TTL value. In a GB

approach [182], all services register with a central directory. The service advertisement

contains a graph that represents the service to be registered, and the directory maintains

a global graph of all registered services. Composition requests are then sent to the

CHAPTER 7. A SELF-ORGANIZING COMPOSITION 154

directory. In the interests of a more realistic comparison with the GB approach, we

considered a service model that transforms one alphabet into another [182] (for example,

a service that accepts a as input and transforms it to b, a —>• c,..., b —> a,...etc.). This

results in a total of 625 different services. We then examined the effect of learning rules

on the same measurements by simulating the self-organizing algorithm enhanced with

the rules we developed (Self-Org+).

TJ

N
e
tw

o
rk

 L
o
s

10000 i

8000

6000

4000

2000

0 -

— • — OGIT-\jrg-r
...o... QB ^

—r— LF X

/ /

/ . . • ° ' * ' -^^M *"" +-~ •—-*•""*"'~^*"

I I I I I I

100 200 300 400 500 600

Service Density

Fig. 7.4 Network Load

7.4.1 Simulation Setup

The simulation topology was constructed using the BRITE [169] topology generator.

The topology had 2000 nodes in a 1000x1000 node two-dimensional overlay space;

bandwidth assigned to each node was randomly selected between 128 and 512 kbits/s;

links propagation delay was fixed at 1 ms; each node had a random geographical

location. To simulate a flash crowd, all nodes issued their composition requests at a

random point during the first 15 seconds, with the simulation lasting for another 10000

CHAPTER 7. A SELF-ORGANIZING COMPOSITION 155

seconds. We ran the simulation 13 times with varying service densities, and varying

values for the search angle a , and for search scope. (This value is similar to TTL

except that it measures how far the composition request travels in the network in terms

of network distance. This is a relatively stable characteristic.) For each run, a random

number of compositions (between 1800 and 2000) was requested. The results were

collected and averaged after each run. In the GB approach, updates are triggered every

minute. In Self-Org and Self-Org+, 8 is set to 2, the ActiveList size is 15, and each sub-

area is 40x40.

Fig. 7.5 Self-Org+ Network Load as a Function of Scope and Search Angle

CHAPTER 7. A SELF-ORGANIZING COMPOSITION 156

100 200 300 400 500 600

Service Density

Fig. 7.6 Composition Time

7.4.2 Network Load

Network Load quantifies the cost of using the composition scheme. It represents the

total number of generated messages (the total number of hops taken by all composition

requests divided by the number of requests).

Fig. 7.4 shows that LF has the worst performance, as it produces a greater number of

messages; the GB approach performs better than LF with small service densities. This is

because the network load in GB is determined by the number of services because each

service produces many service advertisements, while in LF, the network load is

determined by the TTL value. The figure shows that the Self-Org approach has a lower

load than LF and GB, and the Self-Org+ algorithm has the lowest network load. This is

because the Self-Org+ load is determined not only by the number of services but also by

the search scope angle a. Fig. 7.5 shows a 3D mesh for Self-Org+ with a and scope

varying simultaneously. The figure shows that increasing a and the scope increases the

CHAPTER 7. A SELF-ORGANIZING COMPOSITION 157

network load. However, after a = 40 and scope = 550, the increase is only slight. This

means that the network is stabilizing due to the learning rules and that all composition

requests are being served with a bounded number of messages.

Fig. 7.7 Self-Org+ Composition Time as a Function of Search Angle and the
Scope

CHAPTER 7. A SELF-ORGANIZING COMPOSITION 158

4.5

4.0

3.5

3.0

I 2.5

2.0

1.5

1.0 \

0.5

\ — • -

\ o

\ — * -

\ _. .^. .
\

"TV. .

a — • • —

mis^^^o o < > • • •

... .

— Self-Org

LF

— SeIf-Org+

— GB

- A A _ . _^

^ — A A—..J,

— * • • • a a —*l
•o o o o o o ••^5

v yr- .•* a .
r- -r v -y r ^ (r

1 I I

0 100 200 300 400

Service Density

Fig. 7.8 SSON Overlay Path Stretch

500 600

600

Fig. 7.9 Self-Org+ Overlay Path Stretch as a Function of the Search Angle and
the Scope

CHAPTER 7. A SELF-ORGANIZING COMPOSITION 159

7.4.3 Average Composition Time

The composition time is the difference between the starting time of the composition

request and the arrival of the complete results. Fig. 7.6 shows that the average

composition time of the GB approach is at least three times higher than of the LF

approach when the number of services is small. This is because composition time in GB

greatly depends on the number of requests. The average composition time observed in

Self-Org+ is slightly lower than Self-Org for a large number of services and slightly

higher for a small number of services. We believe that this increase is primarily due to

the reduced amount of learning. Fig. 7.7 shows the 3D mesh for Self-Org+ when both

the scope and the angle a are varied.

7.4.4 Packet stretch

Stretch is defined as the number of hops taken by an overlay packet divided by the

number of hops the packet takes when using an IP-layer path between the same source

and destination. A high stretch value indicates an inefficient SSON topology as longer

routes delay the packets. Fig. 7.8 shows the simulation results for the average stretch,

and Fig. 7.9 shows the 3D mesh for Self-Org+ when both the scope and the angle a are

varied. GB displays the worst stretch, especially for a low number of services. When the

number of services increases, the stretch decreases. The results show that the stretch for

the Self-Org+ approach ranges from 1.01-1.2 for large search scope values, and from

1.01-1.8 for smaller values. The results also show that the angle a has little effect on the

stretch. This is because the path that best minimizes the stretch lies directly between the

source and the destination; increasing a will therefore not affect the stretch. Generally,

the stretch in Self-Org+ is not significant, considering the gains in other measurements.

CHAPTER 7. A SELF-ORGANIZING COMPOSITION 160

•— Self-Org+

o GB

T__ |_p

•— Self-Org

100 200 300 400 500 600

Service Density

Fig. 7.10 Service Composition Success Rate

•— Self-Org+

5% 10% 15% 20% 25% 30% 40% 50% 60%

Mobile Nodes

Fig. 7.11 Service Composition Success Rate with Mobility

CHAPTER 7. A SELF-ORGANIZING COMPOSITION 161

7.4.5 Success Rate

Success rate is defined as the number of requests that receive positive responses, divided

by the total number of queries. Fig. 7.10 shows that Self-Org+ results in a higher success

rate, except when the number of services is relatively small. In that case, LF is more

effective, though the success rate is still less than 100%. GB is also more effective than

Self-Org+ for a small number of services and attains a 100% success rate after a certain

number of services. However, Self-Org+ reaches the 100% success rate earlier.

Mobility is an important challenge in a dynamic network. The MC (or user) might

move to another location and the MP, which is providing the service, might be mobile or

become unavailable due to power limitation. Therefore, we measured the success for

Self-Org+ compared to LM under mobility situations. The topology parameters in this

experiment are the same as in section 7.4.1. The only exception is that each node is

equipped with a wireless interface. The MAC layer is using the IEEE 801.11 protocol

and the mobility model for each node is a Random Waypoint. Each mobile node moves

with at a speed of 6 meters/second. Service density and the search angle a are fixed at

500 and 35 respectively.

Mobility of nodes affects the multimedia sessions in progress as well as those sessions

that are being composed. Therefore, when a mobile node moves, an alternative node

must replace it immediately in order to reduce service disruption. Fortunately, increasing

the value of 5 in Self-Org+ algorithm can be of a great help in this situation. To this end

we set 5 to be proportional to the number of mobile nodes. We ran the simulation

multiple times with varying the number of mobile nodes. Fig. 7.11 shows the success

rate of the mobility experiment. We observed that Self-Org+ outperforms LF and attains

the 100% success rate with mobility less than 10%. Increasing the number of mobile

nodes decreases the success rate in both Self-Org+ and LF. For 50% mobility (that is

CHAPTER 7. A SELF-ORGANIZING COMPOSITION

1000 nodes in our simulated topology), Self-Org+ attains 70% success rate

attains only 44%.

120

100

80
N

a>
+ j
VI

41

s O"

-2
6X1

>
<

60 -

40

20

-+— Sdf-Org+
o Self-Org

,8i..

100 200 400 300

Scope

Fig. 7.12 Average Request Size

500 600

35

30

•S 25
OH

u
v

•a

s
3

z
3

15

10

-"•-- Self-Org+,<J = 6
-T— Self-Org+,<5 = 2
o Self-Org

,.T-—-r—i-

Fig. 7

0 100 200 300 400 500 600

Scope

13 Average Number of Paths Returned at the MS

CHAPTER 7. A SELF-ORGANIZING COMPOSITION 163

7.4.6 Additional results

As illustrated, the composition request accumulates the possible compositions while the

request flows from the source to the destination. This indicates that both composition

request size and the number of returned paths are vital to the success of the algorithm.

First, a very large request size is not desirable because it consumes bandwidth. Second, a

large number of paths is not desirable also because it generates so many messages. Fig

7.12 shows the measured average request size and Fig. 7.13 shows the average number

of paths. For these figures, the search angle was fixed at 35. We observed that the

average request size is greatly reduced by Self-Org+. It increases with the search scope,

but varies between 10 and 30 Kbytes, over 50% less than Self-Org. We also observed

that the average number of paths is much lower when we decrease 8 from 6 to 2. It

varies from 2 to 5, which results in a great saving for the bandwidth.

7.5 Summary

In this chapter, a novel scheme for SSONs self-organizing composition has been

presented, in which, autonomic elements can organize themselves into SSONs using a

self-organizing algorithm. The algorithm is powered by learning rules derived from

biological systems, and composition requests are forwarded based on the knowledge

acquired from previous requests. The scheme also accounts for alternative media flow

paths, as well as for partial media flow paths, and provides rules to control the growth of

possible solutions to an acceptable level. It was shown that the proposed scheme is

efficient in composition cost, accuracy, and composition time.

Chapter 8

Conclusions and Future Work

This chapter identifies contributed research work and discusses planned and future

directions; it is organized into two sections: Section 8.1 gives a summary of research

contributions in the area of autonomous SSONs management. Section 8.2 sheds light on

future research directions.

8.1 Dissertation Contributions

The focus of the conducted research has been the development of an autonomous

management system for SSONs. The first step towards achieving that goal demanded a

literature study of the autonomous management problem and management difficulties.

More precisely, we aimed to address two questions: 1) What are the requirements of an

autonomous management system? 2) Why is it difficult to satisfy these requirements

with the current approaches? Answering these questions materialized into a state-of-the-

art survey of major research directions and efforts in the areas of autonomous overlay

networks management and resource discovery schemes. Based on the identified

limitations of current research work, a novel framework for an automated SSONs

management system has been designed. The framework has been presented as a multi-

layered model that utilizes context of users, applications, and the underlying network to

perform autonomous management functionalities. The main contributions of the current

research work can be summarized as follows:

1. A state-of-the-art survey of management approaches.

2. A complete design and functional specification of an autonomous SSON

management framework. The framework makes use of the available context

164

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 165

information such as user, network, and service provider context information to

automate the creation, adaptation, and termination of SSONs. The performance

of the proposed scheme has been evaluated through simulation.

3. A novel scheme for a semantic MPs resource discovery has been presented, and

is based on a widely studied family of chordal rings called the optimal chordal

ring. The semantics of MPs, as well as their geographical locations, were used to

achieve the highest possible performance. In contrast to existing approaches, the

proposed approach requires the lowest number of states maintained at each

node, and produces an acceptable message overhead. Simulation results have

merited the efficiency of the proposed scheme.

4. Due to the increased management complexity, a novel, autonomic overlays

architecture for SSONs management has been presented; SSONs and their

constituent overlay nodes are made autonomic, and thus become able to self-

manage. Autonomic entities are driven by policies that are generated

dynamically from the context information of the user, network, and service

providers. This ensures that the creation, optimization, adaptation, and

termination of overlays are controlled by policies, and thus the behaviors of the

overlays are tailored to their specific needs.

5. To tackle a major challenge in autonomic computing, a Self-organized

composition for autonomic entities has been presented. Overlay nodes are

composed of SSONs using a self-organizing algorithm to achieve system-wide

goals. The algorithm is powered by learning rules induced from biological

systems, and endowed with filtering rules to achieve the highest possible

performance. The performance of the proposed composition scheme has been

evaluated by simulation.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 166

8.2 Future Research Work

The main focus of our future research work can be divided into two key directions as

follows: Semantic QoS Composition and Case-Based & Reinforcement Learning

Adaptive Management.

8.2.1 Semantic QoS Composition

A subject for future work is the intelligibility of media flows after being processed by

the MPs along the composed path. By incorporating the semantics of offered services

and the QoS requirements into MPs composition, one can further enhance the quality

and performance of an autonomous management system. One way to achieve that is

through the utilization of the technical quality and semantics of the media content.

Consider, for example, a media content that has been converted from DivX into RM and

finally into MPEG. The quality of MPEG media can be very low compared to the

original media encoding quality. Therefore, it is essential to consider not only the

required conversions for the content but also the quality of the complete chains of

concatenated conversions. A model is thus needed to evaluate the assumed outcome of

such media conversions, and to automatically propose the most suitable way of

conversion and delivery, which might require the adaptation of methods from the area of

automatic decision making, and also algorithms for selecting and configuring the

composition path.

8.2.2 Case-Based & Reinforcement Learning Adaptive Management

By incorporating the experience gained from applying different management strategies,

one can further enhance the performance of autonomous management systems by

(among other methods) the utilization of Case-Based Reasoning (CBR), as well as

Reinforcement Learning (RF) concepts. CBR is a problem solving and learning

paradigm that has received considerable attention over the last few years [215].

Reinforcement learning (RL) is a promising new approach for automatically developing

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 167

effective policies for self-* management Systems [216]. RL has the potential to achieve

superior performance to traditional methods while demanding less built-in domain

knowledge.

On one hand, an agent in RF learns effective decision-making policies through an

online trial-and-error process, which works by observing the environment's current

state, performing some legal action, and receiving a reward (a numerical value that the

user would like to maximize) followed by an observed transition to a new state. RL

might need to observe a huge number of (state, action) pairs and state transitions to

converge to optimal policies. This prohibits an online training approach (due to initial

poor policies), and is not suitable for highly dynamic environment. On the other hand,

CBR suffers from scalability of Case Memory because it requires huge number of cases.

We plan to investigate the feasibility of representing policies as cases, and to learn new

policies using RF. We also plan to address the difficult challenge of coordinating

decisions between different, and possibly conflicting, Autonomic Managers. To resolve

this challenge, we will need to better characterize their actions. We will also need to

develop a technique to coordinate the various evaluation metrics, and to determine a

coordination policy to ensure coherent action among them.

8.3 Scalability of Proposed Autonomous Management Framework

Scalability in our proposed autonomous management framework can be viewed

from different perspectives. On one hand scalability might refer to the number of

messages generated by our resource discovery protocol, the number of policy objects

exchanged between the OPEP and the OPDP, and the number of messages generated by

our self-organization composition scheme. On the other hand scalability might refer to

the maximum number of concurrent SSONs that could coexist in the same network

while fixing its resources.

Although we don't provide a mathematical model that proves the scalability of our

resource discovery protocol we showed in Section 5.9.4 that the proposed protocol is

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 168

scalable because it generates less number of messages compared to two well known

scalable protocols. These are Chord and CAN. This is evident in Fig. 5.19 where we

compared the total message overhead of our resource discovery protocol to that of Chord

and CAN. The total overhead is computed as the number of messages needed for the

lookup phase and the maintenance messages generated by each protocol to preserve its

structure integrity.

The number of policy objects generated by our autonomous management

framework is another factor that affects its scalability. Usually these policy objects are

generated due to a change in the network environment. For example, when the resources

being monitored by the OPEP are fallen below a threshold, the OPEP constructs a policy

object that reflects this change and sends it to the OPDP. The OPDP in turn construct a

decision stating how to react to the noticed change and sent back to the OPEP to be

enforced. Since SSONs usually consists of a limited and small number of overlay nodes,

the number of such policy objects is expected to be very small. Fig. 4.10 shows the

average management overhead of using our proposed policy architecture. It shows that

in average 0.278 seconds are needed to react to any single change in a given SSON.

While Fig 4.11 shows that 32% of this time is being used for message exchange.

Considering the low number of overlay nodes and thus the low number of needed

adaptations, these figures implies that our system is scalable in terms of the number of

policy objects needed to adapt an SSON.

The number of messages generated by our self organization composition algorithm

is another factor that affects the scalability of our proposed autonomous management

framework. Once a composition request is sent from the MC, it will be kept forwarded

inside the search scope angle until it is received by the MS. Although the basic

forwarding mechanism is based on broadcasting and learning, many factors support the

scalability of our composition technique. First, the composition request forwarding is

limited to those nodes that lie in inside the search scope angle (see Fig 7.2). Second, the

composition request is being forwarded selectively to those nodes that are expected to

provide a service for the request. And finally, learning rules were used to prevent the

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 169

composition request from going into loops in the network. This is evident in Fig. 7.4

were our proposed composition algorithm produced a very low number of messages

compared to most popular techniques.

Viewing scalability as the maximum number of concurrent SSONs that could

coexist in the same network while fixing its resources results in a different way to

analyze and proof our autonomous management framework scalability. Although it is

really hard to come up with a measure that quantifies the number of concurrent SSONs

that can coexist while providing the best requested QoS, a deep look at how SSONs are

being constructed can give us a strong hint on whether the system is scalable or not. As a

matter of fact, the most efficient SSON is the one that uses the least possible packet

latency, and any system will not be scalable if the SSONs latencies are way above the

minimum possible latency. Fortunately, the minimum possible latency for an SSON can

be measured by the shortest path latency between the MC and the MS. Since no system

could ever produce latency smaller than the shortest path latency, dividing the SSON

latency by the shortest path latency will give us a measure, called the stretch, of how

efficient and scalable our framework in constructing SSONs. Fig. 4.8 shows that the

average overlay path stretch is 1.76 when the resource discovery is centralized and Fig.

7.8 shows that the average overlay path stretch for our composition technique is 1.1. It is

worth noting that when the stretch was 1.76, the resource discovery were carried out

separately from the construction phase of the SSONs, while it was integrated in the

construction phase when we reached the 1.1 stretch which is relatively low proves that

our framework is constructing SSONs with latencies very close to optimal shortest path

latency.

8.4 Research Work Limitations

As we explained earlier, the focus of the conducted research has been the development

of an autonomous management system for SSONs. We identified the requirements for

an autonomous management system and proposed a framework for the automation of

SSONs management system. The framework has been presented as a multi-layered

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 170

model that utilizes context of users, applications, and the underlying network to perform

autonomous management functionalities. The main limitations of the current research

work can be summarized as follows:

1. The focus throughout this dissertation was on automating the management

functions of SSONs. We have considered all the possible phases that the SSON

go through during its life time. More specifically, we considered the creation,

optimization, adaptation, and termination phases. Although SSONs represents a

special type of overlay networks, they cannot be treated in the same fashion.

One limitation is that, SSONs usually consists of limited number of nodes, these

includes the MS, MC, and a set of MP that are needed to transform the requested

media- located at the MS- from its current state to a state acceptable by the MC.

Our study and experiment showed that the length of an SSON in terms of the

number of participating nodes varies from 2 to 6 nodes. However, SSONs are

customized and tailored to the specific demands of the users. In contrast overlay

networks such as P2P networks consists of thousands up to millions of users and

nodes. But they are generic and don't represent or satisfies the users specific

requirements.

2. Although MPs provides value added functions to SSONs such as caching,

synchronization and routing, they can be considered as a limitation for overlays

in general. This is due to the fact that these MPs are located inside the network,

i.e. not at the network edges, and their ownership is usually belongs to a certain

service provider. Mandating that the multimedia session has to go through one or

multiple media ports implies that the SSON is no longer controlled by the users

but rather by the service providers that own, install, and control MPs. The rapid

deployment of MPs thus might results in decreasing the number of new services

that evolves over time. Although this might be desirable from the service

providers' perspective, it limits the growth of the technologies.

3. The semantic resource discovery technique presented in Chapter 5 is being

designed for the specific needs of SSONs. Although it provides comparable

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 171

results to the most popular protocols such as Chord and CAN, it might not be a

ready solution for just any resource discovery problem. The reason is that, the

design and implementation of our resource discovery technique considers and

exploits the specific properties of SSONs. For example, the chaining of MPs to

realize SSONs has to be in a specific order and this order starts from the MS and

ends at the MC. Therefore we focus our search for resources in those areas

located between the MS and MC. This might not be the case for many other

applications.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 172

List of Publications

Journal Publications

1. I. Al-Oqily, A. Karmouch, "Towards Automating Overlay Networks

Management", Journal of Network and Computer Applications (Elsevier), to

appear in Special Issue on Service Oriented Computing: A New Horizon for

Internet Appl Applications. Accepted.

2. I. Al-Oqily, A. Karmouch, "SORD: a Fault-Resilient Semantic Overlay for

MediaPorts Resource Discovery" in IEEE Transaction on Parallel and

Distributed Systems, Revised and Submitted June,l, 2008.

3. I. Al-Oqily, A. Karmouch, "QoS Composition of Autonomic Entities", Journal

of Network and Systems Management, Springer. Under preparation.

Conference Publications

1. I. Al-Oqily, A. Karmouch, "Automating Overlay Networks Management,"

aina, pp. 386-393, 21st International Conference on Advanced Networking

and Applications (AINA '07), May, 2007.

2. I. Al-Oqily, A. Karmouch, "A Lightweight Semantic Overlay Resource

Discovery", the 14' IEEE International Conference On Telecommunications

(ICT-MICC07), May, 2007.

3. I. Al-Oqily, A. Karmouch, "Policy-Based Context-Aware Overlay Networks",

IEEE Global Information infrastructure symposia (GIIS'07). July, 2007.

4. I. Al-Oqily, A. Karmouch, "Towards an Autonomic Management for Service

Specific Overlay Networks", 5th IEEE Latin American Network Operations

and Management Symposium (LANOMS'07), Sep. 2007.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 173

5. I. Al-Oqily, A. Karmouch, "A Self-Organization Composition for Autonomic

Entities", 20
th

 IEEE/IFIP Network Operations & Management Symposium.

NOMS'08.

6. I. Al-Oqily, A. Karmouch, "An Autonomic Service Architecture for Service

Specific Overlay Networks," 2008 IFIP Conference on Wireless Sensors and

Actor Networks (WSAN 08).

Bibliography

[1] Niebert, N.; Schieder, A.; Abramowicz, H.; Malmgren, G.; Sachs, J.; Horn, U.;

Prehofer, C; Karl, H., "Ambient networks: an architecture for communication

networks beyond 3G," Wireless Communications, IEEE , vol.11, no.2, pp. 14-22,

Apr 2004.

[2] RHartung, S-Herborn, MXampmann, and S.Schmid, "Smart Multimedia Routing and

Adaptation using Service Specific Overlay Networks in the Ambient Networks

Framework," WWRF #12 ,Toronto. Nov 4-5,2004.

[3] K.Sripanidkulchai, B.Maggs, and H.Zhang, "An Analysis of Live Streaming

Workloads on the Internet," In ACM IMC, Oct. 2004. pp. 41-54.

[4] K.Yang, A.Galis, T.Mota, and S.Gouveris, "Automated Management of IP Networks

through Policy and Mobile agents," Proc. of 4th Int. Workshop on Mobile Agents for

Telecommunication Applications. LNCS-2521, Springer, Spain, Oct. 2002. Pp. 249-

258.

[5] N.Damianou, N.Dulay, E.Lupu, and M.Sloman, "The Ponder Specification

Language," Lecture Notes in Computer Science, Springer, Vol. 1995/2001. pp. 18-

38.

[6] I. Al-Oqily, A. Karmouch, "Automating Overlay Networks Management," aina, ,

21st International Conference on Advanced Networking and Applications (AINA

'07), pp. 386-393,May, 2007.

[7] Al-Oqily, I.; Karmouch, A., "Policy-Based Context-Aware Overlay Networks,"

Global Information Infrastructure Symposium, 2007. GIIS 2007. First International,

pp.85-92, 2-6 July 2007.

[8] I. Al-Oqily, A. Karmouch, "Towards Automating Overlay Networks Management",

Journal of Network and Computer Applications (Elsevier), Special Issue on Service

Oriented Computing: A New Horizon for Internet Applications. Accepted.

[9] Al-Oqily, I.; Karmouch, A., "A lightweight semantic overlay resource discovery,"

Telecommunications and Malaysia International Conference on Communications,

174

BIBLIOGRAPHY 175

2007. ICT-MICC 2007. IEEE International Conference on, pp.702-707, 14-17 May

2007.

[10] I. Al-Oqily, A. Karmouch, "SORD: a Fault-Resilient Service Overlay for

MediaPorts Resource Discovery" in IEEE Transaction on Parallel and Distributed

Systems, Revised and Submitted June, 1, 2008.

[11] I. Al-Oqily, A. Karmouch, "Towards an Autonomic Management for Service

Specific Overlay Networks", 5th IEEE Latin American Network Operations and

Management Symposium (LANOMS'07), Sep. 2007.

[12] I. Al-Oqily, A. Karmouch, "An Autonomic Service Architecture for Service

Specific Overlay Networks," 2008 IFIP Conference on Wireless Sensors and Actor

Networks (WSAN 08).

[13] I. Al-Oqily, A. Karmouch, "A Self-Organization Composition for Autonomic

Entities", 20th IEEE/IFIP Network Operations & Management Symposium.

NOMS'08.

[14] Akyildiz, I.F.; McNair, J.; Ho, J.S.M., Uzunalioglu, H.; Wenye Wang, "Mobility

management in next-generation wireless systems," Proceedings of the IEEE, vol.87,

no.8, pp. 1347-1384, Aug 1999.

[15] I.F.Akyildiz, J.Xie, S.Mohanty "A survey of mobility management in next-

generation all-IP-based wireless systems," IEEE Wireless Communications, August

2004, pp. 16-28.

[16] Saha, D.; Mukherjee, A.; Misra, I.S.; Chakraborty, M.; Subhash, N., "Mobility

support in IP: a survey of related protocols," Network, IEEE , vol.18, no.6, pp. 34-

40, Nov.-Dec. 2004.

[17] H. Schulzrinne, "Personal mobility for multimedia services in the Internet," in

European Workshop on Interactive Distributed Multimedia Systems and Services

(IDMS), (Berlin, Germany), Mar.4-6,1996. pp. 143-161.

[18] C. Perkins, "IP Mobility Support for IPv4," IETF RFC 3344, August 2002;

http://www.ietf.org/rfc/rfc3344.txt

[19] C. Perkins, "Mobile Networking Through Mobile IP," In IEEE Internet

Computing, Jan. - F e b . 1998. pp. 58-69.

http://www.ietf.org/rfc/rfc3344.txt

BIBLIOGRAPHY 176

[20] C. Perkins , D. B. Johnson/'Route Optimization in Mobile IP". IETF Internet

draft, version 11, September 2001; http://www.ietf.org/proceedings/02mar/I-D/draft-

ietf-mobileip-optim-11 .txt

[21] G. Montenegro, "Reverse Tunneling for Mobile IP, revised," IETF RFC 3024,

January 2001; http://www.ietf.org/rfc/rfc3024.txt

[22] G. Montenegro, "Sun's SKIP Firewall Traversal for Mobile IP," IETF RFC 2356,

June 1998; http://www.ietf.org/rfc/rfc2356.txt

[23] K. D. Wong, H. Wei, A. Dutta, K. Young, "Performance of IP Micro-Mobility

Management Schemes using Host Based Routing," Proc. 4th IntT Symp. Wireless

Personal Multimedia Communications (WPMC'01), 2001.

[24] E. Gustafsson, A. Jonsson, C. Perkins "Mobile IP Regional Registration",

Internet Draft, IETF, December 2004; http://www.ietf.org/internet-drafts/draft-ietf-

mipshop-hmipv6-04.txt

[25] Misra, A.; Das, S.; Dutta, A.; McAuley, A.; Das, S.K., "IDMP-based fast

handoffs and paging in IP-based 4G mobile networks ," Communications Magazine,

IEEE, vol.40, no.3, pp.138-145, Mar 2002.

[26] Das, S.; Mcauley, A.; Dutta, A.; Misra, A.; Chakraborty, K.; Das, S.K., "IDMP:

an intradomain mobility management protocol for next-generation wireless

networks," Wireless Communications, IEEE, vol.9, no.3, pp. 38-, June 2002.

[27] A. Valko, Design and Analysis of Cellular Mobile Data Networks, Ph. D.

Dissertation, Technical University of Budapest, 1999.

[28] A.T.Campbell, J.Gomez, S.Kim, A.G.Valko, "Design, Implementation, and

Evaluation of Cellular IP," IEEE Personal Communications, August 2000, pp. 42-49.

[29] Ramjee, R.; Varadhan, K.; Salgarelli, L.; Thuel, S.R.; Shie-Yuan Wang; La

Porta, T., "HAWAII: a domain-based approach for supporting mobility in wide-area

wireless networks," Networking, IEEE/ACM Transactions on , vol.10, no.3, pp.396-

410, Jun 2002.

[30] Dutta, A.; Wong, K.D.; Burns, J.; Jain, R.; McAuley, A.; Young, K.;

Schulzrinne, H., "Realization of integrated mobility management protocol for ad-hoc

networks," MILCOM2002. Proceedings , vol.1, pp. 448-454 vol.1, 7-10 Oct. 2002.

http://www.ietf.org/proceedings/02mar/I-D/draft-
http://www.ietf.org/rfc/rfc3024.txt
http://www.ietf.org/rfc/rfc2356.txt
http://www.ietf.org/internet-drafts/draft-ietf-

BIBLIOGRAPHY 177

[31] J. Rosenberg et. al. "SIP: Session Initiation Protocol", IETF RPC 3261, June

2002; http://www.ietf.org/rfc/rfc3261 .txt

[32] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, "RTP: A Transport

Protocol for Real-Time Applications," IETF RFC 3550, July 2003;

http ://www. ietf.org/rfc/rfc3 5 5 0 .txt

[33] D.R. Wisely, "SIP and conversational Internet applications," BT Technol J, Vol

19. No 2. April 2001, pp. 107-118.

[34] H.G. Schulzrinne and J.D. Rosenberg, "The Session Initiation Protocol:

Providing Advanced Telephony Services Across the Internet," Bell Labs Tech. J.,

vol. 3, no. 4, October-December 1998, pp. 144-160.

[35] Wong, K.D.; Dutta, A.; Burns, J.; Jain, R.; Young, K.; Schulzrinne, H., "A

multilayered mobility management scheme for auto-configured wireless IP

networks," Wireless Communications, IEEE, vol.10, no.5, pp. 62-69, Oct 2003.

[36] F. Vakil, A. Dutta, J. C. Chen, S. Baba and Y. Shobatake, H. Schulzrinne,

"Supporting Mobility for TCP with SIP," IETF internet draft, June 2001, work in

progress; draft-itsumo-sipping-mobility-tcp-00.txt

[37] Politis, C; Chew, K.A.; Tafazolli, R., "Multilayer mobility management for all-

IP networks: pure SIP vs. hybrid SIP/mobile IP," Vehicular Technology Conference,

2003. VTC 2003-Spring. The 57th IEEE Semiannual , vol.4, no., pp. 2500-2504

vol.4, 22-25 April 2003.

[38] K. Chew, C. Politis, and R. Tafazolli, "Performance Evaluation of Micromobility

Protocols for All-IP Based Infrastructures," Wireless World Research Forum

(WWRF), 7th meeting, Eindhoven, The Netherlands, 3-4 December 2002.

[39] H. Schulzrinne and E. Wedlund, "Application Layer Mobility using SIP," ACM

Mobile Computing and Communications Review, Vol. 4, No. 3, July 2000, pp. 47-

57.

[40] TS 23.228, "IP Multimedia Subsystem (IMS)," 3GPP, Release 6.

[41] P. Kim and W. Boehm, "Support for Real-Time Applications in Future Mobile

Networks: the IMS Approach," Proceedings of WPMC'03, Oct. 2003.

[42] T.Renier, L.KimLynggarg, G.Castro, H.P.Schwefel, "Mid-Session Macro-

http://www.ietf.org/rfc/rfc326
http://ietf.org/rfc/rfc3

BIBLIOGRAPHY 178

Mobility in IMS-Based Networks," in IEEE Vehicular Technology Magazine, vol 2,

Iss 1, pp. 20-27, March 2007.

[43] K.L.Johnson, J.F.Carr, M.S.Day, M.F.Kaashoek, "The Measured Performance of

Content Distribution Networks," Computer Comra., vol. 24, nos. 1-2, 2001, p. 202;

www.cs.bu.edu/pub/wcw01/206.

[44] D. Kaye, Strategies for Web Hosting and Managed Services, John Wiley & Sons,

2002.

[45] I. Lazar and W. Terill, "Exploring Content Delivery Network," IEEE IT

Professional, vol. 3, no. 4, 2001, pp. 47^19.

[46] Niebert, N.; Schieder, A.; Abramowicz, H.; Malmgren, G.; Sachs, J.; Horn, U.;

Prehofer, C ; Karl, H., "Ambient networks: an architecture for communication

networks beyond 3G," Wireless Communications, IEEE , vol.11, no.2, pp. 14-22,

Apr 2004.

[47] W.T.Ooi, R.V.Renesse, and B.Smith, "The design and implementation of

programmable media gateways", In Proc.NOSSDAV'OO, Chapel Hill, NC, June

2000.

[48] DAndersen, H.Balakrishnan, F.Kaashoek, and R.Morris , "Resilient Overlay

Networks," Proc. 18th ACM Symp. on Operating Systems Principles (SOSP), Banff,

Canada, pp. 131-145, Oct. 2001.

[49] J.Jannotti, D.Gifford, KJohnson, M.Kaashoek, and J.O'Toole, "Overcast:

reliable multicasting with an overlay network" Proc. USENIX OSDI, pp. 14-14,

Oct. 2000.

[50] L.Subramanian, I.Stoica, H.Balakrishnan, and R.Katz, "OverQoS: An overlay

based architecture for enhancing Internet QoS," Proc. NSDI, pp. 6-6, California

2004.

[51] Yang-hua Chu; Rao, S.G.; Seshan, S.; Hui Zhang, "A case for end system

multicast," Selected Areas in Communications, IEEE Journal on , vol.20, no.8, pp.

1456-1471, Oct 2002.

[52] Beichuan Zhang; Jamin, S.; Lixia Zhang, "Host multicast: a framework for

delivering multicast to end users," INFOCOM 2002. Twenty-First Annual Joint

http://www.cs.bu.edu/pub/wcw01/206

BIBLIOGRAPHY 179

Conference of the IEEE Computer and Communications Societies. Proceedings.

IEEE, vol.3, no., pp. 1366-1375, 23-27 June 2002.

[53] Akamai Corporation, http://www.akamai.com. August. 2008.

[54] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, "Chord: A

scalable peer-to-peer lookup service for internet applications," in ACM SIGCOMM

2001, pp. 149-160 , August 2001.

[55] Agarwal, S.; Chen-Nee Chuah; Katz, R.H., "OPCA: robust interdomain policy

routing and traffic control," Open Architectures and Network Programming, 2003

IEEE Conference on , vol., no., pp. 55-64, 4-5 April 2003.

[56] A.Nakao, L.Peterson, and A.Bavier, "A routing underlay for overlay networks,"

in Proc. of ACM SIGCOMM, pp. 11-18, Aug. 2003.

[57] K. Shen, "Saxons: Structure management for scalable overlay service

construction," In USENIXNSDI '04, pages 281-294, 2004.

[58] P. Francis, "Yoid: Extending the internet multicast architecture."

http://www.aciri.org/yoid/docs/index.htm.

[59] Planetary Network Testbed, "http://www.planet-lab.org."

[60] Braynard, R.; Kostic, D.; Rodriguez, A.; Chase, J.; Vahdat, A., "Opus: an

overlay peer utility service," Open Architectures and Network Programming

Proceedings, 2002 IEEE, vol., no., pp. 167-178, 2002.

[61] Xbone, "http://www.isi.edu/xbone."

[62] L. Subramanian, I. Stoica, H. Balakrishnan, and R.H.Katz, "Overqos: Offering

internet qos using overlays," SIGCOMM Comput. Commun. Rev. 33, iss.l, Jan.

2003, pp. 11-16.

[63] Z. Duan, Z. Zhang, and Y. T. Hou, "Bandwidth provisioning for service overlay

networks," in SPIE ITCOM Scalability and Traffic Control in IP Networks (II),

vol. 4868, pp. 139-150,2002.

[64] J. Shin, J. W. Kim, and C. J. Kuo, "Quality-of-service mapping mechanism for

packet video in differentiated services network," IEEE Trans. Multimedia, vol. 3, no.

2, pp. 217-230, Jun. 2001.

[65] M. Sloman, Policy Driven Management for Distributed Systems, Plenum Press

http://www.akamai.com
http://www.aciri.org/yoid/docs/index.htm
http://www.planet-lab.org
http://www.isi.edu/xbone

BIBLIOGRAPHY 180

Journal of Network and Systems Management, vol 2, no. 4, Dec. 1994, pp. 333-360

[66] N. Damianou, N. Dulay, E. Lupu, M Sloman: Ponder: A Language for

Specifying Security and Management Policies for Distributed Systems, Imperial

College Research Report DoC 2001, Oct. 2000

[67] E. Lupu and M. Sloman Conflict Analysis for Management Policies, Fifth

IFIP/IEEE International Symposium on Integrated Network Management IM'97,

San-Diego, May 1997, Chapman & Hall Publishers, pp 430-443

[68] M. Sloman. & J.D. Moffett, Domain Management for Distributed Systems, In

Proc of the IFIP Symposium on Integrated Network Management, May 1989 pp

505-516.

[69] J. Moffett, M. Sloman, "Policy Hierarchies for Distributed Systems

Management," IEEE Journal on Selected Areas in Communications, Vol. 11 No. 9,

Dec. 1993, pp. 1404-1414

[70] R. Wies. Policies in Network and Systems Management - Formal Definition and

Architecture. Journal of Networks and Systems Management, Vol. 2, No. 1, March

1994, pp.63-83

[71] Edwards, W. K. Policies and Roles in Collaborative Applications. In Proc. ACM

CSCW'96, Nov. 16-20, Boston, MA, USA, pp. 11-20.

[72] Y. R., R. Guerin, and D. Pendarakis, "A Framework for Policy-based Admission

Control," in IETF RFC 2753, Informational, Jan. 2000.

[73] A.Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Herzog, M.

Huynh, A. Carlson, J. Perry, and S. Waldbusser, "Terminology for Policy Based

Management," in IETF RFC 3198, Nov. 2001.

[74] D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan, and A. Sastry, "The COPS(

Common Open Policy Service) protocol," in ETF RFC 2748, Jan. 2000.

[75] A.Ferdinando, P.McKee and A.Amoroso, "A Policy Based Approach for

Automated Topology Management of Peer To Peer Networks and a Prototype

Implementation," Proc of the IEEE 4th Inter Work, on Policies for Distributed

Systems and Networks (POLICY 2003). Italy, pp: 235-238, 2003.

[76] M.Massimi and U.Wolz, "Peer-to-Peer Policy Management System for Wearable

BIBLIOGRAPHY 181

Mobile Devices," Proc of the 17th IEEE Int. Symp. on Wearable Computers

(ISWC'03), pp: 246-247, 2003.

[77] K.L. Calvert, An architectural framework for active networks, dARPA active

nets document, 2001. Available from: <http://protocols.netlab.uky.edu/~calvert>.

[78] M. Solarski, E. Moeller, Challenges in active service deployment, in:

ANTA'2002 (The First International Workshop on Active Network Technologies

and Applications),Tokyo, Japan, March 2002

[79] A. Galis, S. Denazis, C. Brou, C. Klein (Eds.), Programmable Networks for IP

Service Deployment, Artech House Books, 2004, ISBN 1-58053-745-6, p. 450.

Available from: <http://www.artechhouse.com>.

[80] M.Solarski, M.Bossardt, and T.Becker, "Deployment and management of

component-based services in active networks," The International Journal of

Computer and Telecommunications Networking, Vol 50, Iss. 14, pp. 1389-1286,

October, 2006.

[81] C.Dhillon, M.Bond, J.Griffioen, and K.L.Calvert, "Building layered active

services," The International Journal of Computer and Telecommunications

Networking, Vol. 50 , Iss. 14,pp. 2475 - 2487, October 2006.

[82] G. Cortese, R. Fiutem, P. Cremonese, S. D'antonio, M. Esposito, S. P. Romano,

and A. Diaconescu, "Cadenus: creation and deployment of end-user services in

premium IP networks," Communications Magazine, IEEE, vol. 41, pp. 54 - 60, Jan.

2003.

[83] S. Khaldoon, M. Damien, and L.Pascal, " A Scalable Middleware for Creating

and Managing Autonomous Overlays," 2nd International Conference on

Communication Systems Software and Middleware (COMSWARE 2007), pp. 1-8,

7-12 Jan. 2007

[84] K.Ragab, N.Y.Horikoshi, H.Kuriyama, and K.Mori, "Autonomous

Decentralized Community Communication for Information Dissemination", IEEE

CS Internet Computing magazine, Vol.8, Iss.3 , pp.29-36 , May-June 2004.

[85] K.Ragab, Y.Horikoshi, H.Kuriyama, and K.Mori, "Multi-layer autonomous

community overlay network for enhancing communication delay," Proceedings of

http://protocols.netlab.uky.edu/~calvert
http://www.artechhouse.com

BIBLIOGRAPHY 182

the Ninth International Symposium on Computers and Communications (ISCC

2004), Vol.2, pp. 987-992, 28 June-1 July 2004.

[86] S.Ratnasamy, M.Handley, R.Karp, and S.Shenker, "Topologically-aware overlay

construction and server selection," Proceedings of the Twenty-First Annual Joint

Conference of the IEEE Computer and Communications Societies (INFOCOM

2002). Vol. 3, pp. 1190-1199, 2002

[87] C.J.Lin, Y.T.Chang, S.C.Tsai, and C.F.Chou, "Distributed Social-based Overlay

Adaptation for Unstructured P2P Networks," IEEE Global Internet Symposium, pp.

1-6, 11 May 2007.

[88] J. A. Pouwelse, P. Garbacki, J. W. A. Bakker, J. Yang, A. Iosup, D. Epema,

M.Reinders, M. R. van Steen, and H. J. Sips, "Tribler: A social-based based peer to

peer system," in 5th IntT Workshop on Peer-to-Peer Systems (IPTPS), February

2006.

[89] P. Androutsos, D. Androutsos, and A. Venetsanopoulos, "Small world

distributed access of multimedia data: an indexing system that mimics social

acquaintance networks," Signal Processing Magazine, IEEE , vol.23, no.2pp, pp.

142-153, Mar, 2006.

[90] IBM Corporation, "An architectural blueprint for autonomic computing," White

Paper, Jun. 2006.

[91] IBM Corporation,"Autonomic computing - a manifesto,"

http://www.research.ibm.com/autonomic/manifesto/, Oct. 2001.

[92] J.Kephart, "Research Challenges of Autonomic Computing," Proc. of the 27th

int. conf. on Software Engineering (ICSE'05), St. Louis, Missouri, P. 15 - 22,

May 15-21, 2005.

[93] J.Kephart, and D.Chess, "The vision of autonomic computing," IEEE Computer

Mag.. Vol. 36, No.l , PP.41-50. Jan. 2003. Forum, "Autonomic communication."

http://www.autonomic-communication.org.

[94] R.Farha and A.Leon-Garcia, "Blueprint for an Autonomic Service Architecture"

2006

[95] J.Nichols, H.Demirkan, and M.Goul, "Autonomic Workflow Execution in the

http://www.research.ibm.com/autonomic/manifesto/
http://www.autonomic-communication.org

BIBLIOGRAPHY 183

Grid," IEEE Tran. on Systems, Man, and Cybernetics—Part C: Applications And

Review, VOL. 36, NO. 3, MAY 2006.

[96] E.Kasten and P.McKinley, "MESO: Supporting Online Decision Making in

Autonomic Computing Systems," IEEE Trans, on Knowledge And Data

Engineering, VOL. 19, NO. 4, April 2007.

[97] Bahati, R.M.; Bauer, M.A.; Vieira, E.M.; Baek, O.K.; Chang-Won Ahn, "Using

policies to drive autonomic management," World of Wireless, Mobile and

Multimedia Networks, 2006. WoWMoM2006. International Symposium on a , vol.,

no., pp. 5 pp.-, 26-29 June 2006.

[98] Pena, J.; Hinchey, M.G.; Sterritt, R.; Ruiz-Cortes, A.; Resinas, M., "A Model-

Driven Architecture Approach for Modeling, Specifying and Deploying Policies in

Autonomous and Autonomic Systems," Dependable, Autonomic and Secure

Computing, 2nd IEEE International Symposium on , vol., no., pp. 19-30, Sept. 2006.

[99] F.Zhang, J.Gao, B.Liao, "Policy-Driven Model for Autonomic Management of

Web Services Using MAS," Proc. of the 5th Int. Conf. on Machine Learning and

Cybernetics, Dalian, 13-16 Aug. 2006. pp. 34-39.

[100] Balasubramaniam, S.; Barrett, K.; Donnelly, W.; van der Meer, S.; Strassner, J.,

"Bio-inspired Policy Based Management (bioPBM) for Autonomic Bio-inspired

Policy Based Management (bioPBM) for Autonomic," Policies for Distributed

Systems and Networks, 2006. Policy 2006. Seventh IEEE International Workshop on

,pp.3-12.

[101] P.McKinley, F.Samimi, J.Shapiro, and C.Tang, "Service Clouds: A Distributed

Infrastructure for Constructing Autonomic Communication Services," Proc. of the

2nd IEEE Int. Symposium on Dependable, Autonomic and Secure Computing

(DASC'06), 2006. pp. 341-348

[102] D. Xiangdong, S.Hariri, L.Xue, H.Chen, M.Zhang, S.Pavuluri, and S.Rao,

"Autonomia: an autonomic computing environment," in Proc. of the IEEE Int.

Performance, Computing, and Communications Conf., pp. 61-68, Apr. 2003.

[103] P.Grace, G.Coulson, G.Blair, L.Mathy, W.Yeung, W.Cai, D. Duce, and C.

Cooper, "GRIDKIT: pluggable overlay networks for grid computing," in Proc. of the

BIBLIOGRAPHY 184

distributed objects and applications conf. (DOA'04), Cyprus, pl463-81, October

2004.

[104] M.Parashar, H.Liu, Z.Li, V.Matossian, C.Schmidt, G.Zhang, and S.Hariri,

"AutoMate: enabling autonomic applications on the grid," Cluster Computing, Vol.

9, No. 6,PP.161-174,2006.

[105] Chess, D.M.; Segal, A.; Whalley, I.; White, S.R., "Unity: experiences with a

prototype autonomic computing system," Autonomic Computing, 2004. Proceedings.

International Conference on , pp. 140-147, 17-18 May 2004.

[106] S.Dobson, S.Denazis, A.Fernandez, D.GaTti, E.Gelenbe, F.Massacci, P.Nixon,

F.Saffre, N.Schmidt, F.Zambonelli and A.Fernandez, "A survey of autonomic

communications," ACM Transactions on. Autonomous and Adaptive Systems, Vol.

l ,No.2,P.223-259,Dec.2006.

[107] Napster: http://www.napster.com/

[108] M. Ripeanu, M.Bowman, J.S.Chase, I. Foster, and M. Milenkovic, "Globus and

PlanetLab Resource Management Solutions Compared." Proc. of The 13th IEEE

International Symposium on High Performance Distributed Computing, pp. 246-

255,Jun. 2004.

[109] R. V.Renesse, "Scalable and Secure Resource Location", in Proceedings of IEEE

Hawaii International Conference on System Sciences, January 2000. pp.4-7.

[110] E. Simonton, K.C. Byung, and S.Seidel, "Using Gossip for Dynamic Resource

Discovery," Proc. of the 2006 Int. Con. on Parallel Processing (ICPP'06), pp: 319-

328, 14-18 Aug, 2006.

[I l l] Dimakopoulos, V.V.; Pitoura, E., "Performance analysis of distributed search in

open agent systems," Parallel and Distributed Processing Symposium, 2003.

Proceedings. International, pp. 22-26 April 2003.

[112] M. Abolhasan, T. Wysocki, and E. Dutkiewicz, "A Review of Routing Protocols

for Mobile Ad Hoc Networks," Ad Hoc Networks, vol. 2, no. 1, pp. 1-22, Jan. 2004.

[113] Gnutella RFC, http://rfc-gnutella.sourceforge.net, 2003.

[114] V. Dimakopoulos, and E. Pitoura, "On the Performance of Flooding-Based

Resource Discovery," IEEE Trans on Parallel and Distributed Systems, Vol. 17, No.

http://www.napster.com/
http://rfc-gnutella.sourceforge.net

BIBLIOGRAPHY 185

11, Nov. 2006.

[115] S. Herborn, Y. Lopez, and A. Seneviratne, "A Distributed Scheme for

Autonomous Service Composition," MSC'05, ACM, Nov. 11, 2005. pp. 21-30.

[116] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, "A Scalable

Content-Addressable Network", in Proceedings of ACM SIG-COMM 01, vol.31, iss.

4, pp. 161 -172, Sep. 2001.

[117] A. Rowstron and P. Druschel, "Pastry: Scalable, decentralized object location

and routing for large-scale peer-to-peer systems," in Proceedings of the 2001

IFIP/ACM International Conference on Distributed Systems Platforms (Middleware

2001), ser. Lecture Notes in Computer Science, vol. 2218. Springer-Verlag, 2001,

pp. 329-350.

[118] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, "Tapestry: An infrastructure

for fault-tolerant wide-area location and routing," Univ. California, Berkeley, CA,

Tech. Rep. UCB/CSD-01-1141, 2001.

[119] P. Maymounkov and D. Mazieres, "Kademlia: A peer-to-peer information

system based on the xor metric," In IPTPS, Cambridge, vol. 2429, pp.53-65, Mar

2002.

[120] D.Karger, E.Lehman, T.Leighton, M.Levine, D.Lewin, R.Panigrahy, "Consistent

Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots

on the World Wide Web," Proc. 29th Annual ACM Symp. Theory of Comp., May

1997, pp. 654-63.

[121] National Institute of Standards and Technology (NIST), "Secure hash standard,"

U.S. Department of Commerce, National Technical Information Service FIPS 180-1,

Apr. 1995.

[122] C. Plaxton, R. Rajaraman, and A. Richa, "Accessing Nearby Copies of

Replicated Objects in a Distributed Environment," Proc. 9th Annual ACM Symp.

Parallel Algorithms and Architectures, 1997. Pp. 311 - 320.

[123] P. Trunfio, D.Talia, P. Fragopoulou, C. Papadakis, M. Mordacchini,M.

Pennanen, K. Popov, V. Vlassov, and S. Haridi, "Peer-to-Peer Models for Resource

Discovery on Grids," CoreGRID Technical Report Number TR-0028, URL:

BIBLIOGRAPHY 186

http://www.coregrid.net, Mar. 17, 2006.

[124] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a DHT.

Technical Report UCB//CSD-03-1299, University of California, Berkeley, June

2004.

[125] P. Reynolds and A. Vahdat, "Efficient peer-to-peer keyword searching," in

Proceedings of the 2003 ACM/IFIP/USENIX International Middleware Conference

(Middleware 2003), ser. Lecture Notes in Computer Science, vol. 2672. Springer-

Verlag, 2003, pp. 21-40.

[126] Balazinska, M., Balakrishnan, H., Karger, D.: INS/Twine: a scalable peer-to-peer

architecture for intentional resource discovery. In: Pervasive 2002 — 1st International

conference on Pervasive computing, pp. 26-28. Zurich, Switzerland, 2002.

[127] O. D. Gnawali, "A keyword-set search system for peer-to-peer networks,"

Master's thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts,

United States, June 2002.

[128] F. Zhou, L. Zhuang, B. Y. Zhao, L. Huang, A. D. Joseph, and J. Kubiatowics,

"Approximate object location and spam filtering on peer-to-peer systems," in

Proceedings of the 2003 ACM/IFIP/USENIX International Middleware Conference

(Middleware 2003), ser. Lecture Notes in Computer Science, vol. 2672. Springer-

Verlag, 2003, pp. 1-20.

[129] C. Tang and S. Dwarkadas, "Hybrid global-local indexing for efficient peer-to-

peer information retrieval." in Proceedings of the First Symposium on Networked

Systems Design and Implementation (NSDI 2004). USENIX, 2004, pp. 211-224.

[130] S. Shi, G. Yang, D. Wang, J. Yu, S. Qu, and M. Chen, "Making peerto- peer

keyword searching feasible using multi-level partitioning," in Proceedings of the 3rd

International Workshop on Peer-to-Peer Systems (IPTPS 2004)., ser. Lecture Notes

in Computer Science, vol. 3279. Springer-Verlag, 2005, pp. 151-161.

[131] P. Ganesan, Q. Sun, and H. Garcia-Molina, "Adlib: A self-tuning index for

dynamic peer-to-peer systems," in Proceedings of the 21st International Conference

on Data Engineering (ICDE'05). IEEE Computer Society, 2005, pp. 256-257.

[132] S.G.Doudane, and N.Agoulmine, "Enhanced DHT-based P2P Architecture for

http://www.coregrid.net

BIBLIOGRAPHY 187

Effective Resource Discovery and Management," Jour, of Network and Systems

Management, Springer, Vol.15, Iss.3, pp. 335-354 , Sept., 2007.

[133] Y.Joung, Li.Yang, and C.Fang, "Keyword search in DHT-based peer-to-peer

networks," IEEE Journal on Selected Areas in Comm., Vol.25, Iss.l, pp. 46-61, Jan.

2007.

[134] Lintao Liu, Lintao Liu, Kang-Won Lee, "Keyword fusion to support efficient

keyword-based search in peer-to-peer file sharing," ccgrid, Fourth IEEE

International Symposium on Cluster Computing and the Grid (CCGrid'04), pp. 269-

276, 2004.

[135] Li, J., Loo, B.T.: On the feasibility of peer-to-peer web indexing and search. In:

Proceedings of the 2nd IPTPS, pp. 20-21. Berkeley, CA, USA (2003)

[136] Ganesan, P.; Gummadi, K.; Garcia-Molina, H.; "Canon in G Major: Designing

DHTs with Hierarchical Structure", Distributed Computing Systems, 2004.

Proceedings. 24th International Conference on , pp. 263-272, 2004.

[137] Alan Mislove and Peter Druschel. "Providing Administrative Control and

Autonomy in Structured Peer-to-Peer Overlays". Proc. IPTPS04, San Diego, CA,

vol. 3279 , pp. 162-172, February 2004.

[138] Zhiyong Xu; Rui Min; Yiming Hu, "HIERAS: a DHT based hierarchical P2P

routing algorithm," Parallel Processing, 2003. Proceedings. 2003 International

Conference on , pp. 187-194, 9-9 Oct. 2003.

[139] Artigas, M.S.; Lopez, P.G.; Ahullo, J.P.; Skarmeta, A.F.G., "Cyclone: a novel

design schema for hierarchical DHTs," Peer-to-Peer Computing, 2005. P2P 2005.

Fifth IEEE International Conference on , pp. 49-56, 31 Aug.-2 Sept. 20.

[140] Z.Haiyang, and M.Huadong, " An Efficient Hierarchical Dht-Based Complex

Query For Mul-timedia Information," IEEE Int. Conf. on Multimedia and Expo,

pp.568-571, 2-5 July 2007.

[141] A. Crespo and H. Garcia-Molina, "Semantic Overlay Networks for P2P

Systems," Stanford University, Tech. Rep., 2002.

[142] K. Aberer and P. Cudr'e-Mauroux. Semantic overlay networks. In VLDB

Tutorial, page 1367, Aug. 2005.

BIBLIOGRAPHY 188

[143] B. Bloom, "Space/time trade-offs in hash coding with allowable errors," in

Communications of the ACM, July 1970, vol. 13(7), pp. 422-426.

[144] S. C. Rhea and J. Kubiatowicz, "Probabilistic location and routing," in Proc.

INFOCOM, vol. 3, New York, NY, June 2002, pp. 1248-1257.

[145] I. Podnar, M. Rajman, T. Luu, F. Klemm, and K. Aberer. Beyond term indexing:

A P2P framework for web information retrieval. Informatica,30(2),pp.l53-161, June

2006.

[146] K. Aberer, P. Cudr'e-Mauroux, M. Hauswirth, and T. V. Pelt, "Gridvine:

Building Internet-Scale Semantic Overlay Networks," in Proceedings of

International Conference on Semantic Web (ISWC'2004), 2004.

[147] W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaden. DL meets P2P - distributed

document retrieval based on classification and content. In ECDL, pp. 379-390, Sep.

2005.

[148] C. Tempich, S. Staab, and A. Wranik, "REMINDIN': Semantic Query Routing

in Peer-to-Peer Networks based on Social Meta-phors," in Proceedings of

WWW'2004, pp. 640 - 649, 2004.

[149] S. Yinglin, S.liang, X.Haung, and Y.Lin, "Resource discovery in locality-aware

group-based semantic overlay of peer-to-peer networks," 1st Int. Conf. on Scalable

information systems, Hong Kong, ACM Vol. 152, 2006.

[150] X.Tong, D. Zhang, and Z. Yang, "Efficient Content Location Based On Interest-

Cluster in Peer-to-Peer System," Proc. of the 2005 IEEE International Conference on

e-Business Engineering (ICEBE'05) 0-7695-2430-3/05, 2005.

[151] M. Klein and B. Konig-Ries. "Multi-layer clusters in ad-hoc networks - an

approach to service discovery," In Proc.of 1st Intl Work.on P2P Computing (Co-

Located with Networking 2002), Pisa, Italy, pp. 187-201, 2002.

[152] M. Ruta, T.D.Noia, E.D.Sciascio, and F.M Donini, "Semantic enabled resource

discovery, Composition and substitution in pervasive environments," IEEE Conf. on

Electrotechnical, (MELECON'06), pp. 754- 760, 16-19 May 2006.

[153] M.Klein, B.Konig-Ries, and P.Obreiter, "Service rings - a semantical overlay for

service discovery in ad hoc networks". In: The Sixth International Workshop on

BIBLIOGRAPHY 189

Network-Based Information Systems (NBIS2003), Workshop at DEXA 2003,

Prague, Czech Republic,pp. 180, 2003.

[154] M. Cardei, I. Cardei, and D.Z.Du, "Resource Management in Wireless

Networking," Book Chapter "Efficient Resource Discovery in Wire-less AdHoc

Networks: Contacts Do Help", in Springer; 1st edition, Jan 2005.

[155] M. Hauswirth, and R. Schmidt, "An overlay network for resource discovery in

Grids," Proceedings of Sixteenth Workshop on Database and Expert Systems

Applications, pp. 343-348, 22-26 Aug., 2005.

[156] Juan Li; Son Vuong, "A semantics-based routing scheme for grid resource

discovery," e-Science and Grid Computing, 2005. First International Conference on

, pp. 8 pp.-, 5-8 Dec. 2005.

[157] M.Klein, B.Konig-Ries, and P.Obreiter, "Lanes - a lightweight overlay for

service discovery in mobile ad hoc networks," Technical Report 2003/6, Universitat

Karlsruhe, Faculty of Informatics, 2003.

[158] J.Tchakarov, and N.Vaidya, "Efficient Content Location in Wireless Ad Hoc

Networks," Proceedings of IEEE International Conference on Mobile Data

Management, pp: 74-85, Aug. 2004.

[159] B. Karp and H. T. Kung, "GPSR: greedy perimeter stateless routing for wireless

networks," in Proc. ACM Mobicom 2000, pp. 243-254.

[160] M. Mauve, J. Widmer, and H. Hartenstein, "A survey on position-based routing

in mobile ad hoc networks," IEEE Network Mag., vol. 15, pp. 30-39, Nov./Dec.

2001.

[161] K.Batos, T.Szydlo, R.Szymacha, and K.Zielinski, "Context Dissemination and

Aggregation for Ambient Networks," 1st European Conference on Smart Sensing

and Context, Netherlands, vol. 4272, pp. 54-66,Oct. 26-27, 2006.

[162] J.Salo, A.Tarlano, and A.Galis, "Context Sources and their presentation in the

WWI System Architecture," Wireless World Research Forum- WWRF18, Helsinki,

Finland, June 13-15, 2007.

[163] N.Samaan, and A.Karmouch, "An automated policy-based management

framework for differentiated communication systems," IEEE Jour. On Selected

BIBLIOGRAPHY 190

Areas in Comm, Vol.23, Iss.12, PP.2236 - 2247, Dec. 2005.

[164] Z.Li and P.Mohapatra, " QRON: QoS-Aware Routing in Overlay Networks,"

IEEE Jour. On Selected Areas In Comm., VOL. 22, NO. 1, Jan. 2004.

[165] B.Vleeschauwer, F.Turck, B.Dhoedt, and P.Demeester, "Dynamic algorithms to

provide a robust and scalable overlay routing service", Proc Int. Conf. on

Information Networking (ICOIN 2006), Sendai, Japan, vol. 3961, pp. 945-954, 16-

19 Jan, 2006.

[166] A.Lakhina, J.W.Byers, M.Crovella, and I.Matta,"On the geographic location of

Internet resources," IEEE Journal on Selected Areas in Communications, Vol. 21,

Iss. 6, PP.934 - 948, Aug. 2003.

[167] T.Melodia, D.Pompili, and I.F.Akyildiz, "On the interdependence of distributed

topology control and geographical routing in ad hoc and sensor networks" IEEE

Journal on Selected Areas in Communications, Vol. 23, Iss. 3, PP.520 - 532. March

2005.

[168] Chakraborty, D., Perich, F., Joshi, A., Finin, T. W., and Yesha, Y. 2002. A

Reactive Service Composition Architecture for Pervasive Computing Environments.

In Proceedings of the IFIP Tc6/Wg6.8 Working Conference on Personal Wireless

Communications (October 23 - 25, 2002). C. G. Omidyar, Ed. IFIP Conference

Proceedings, vol. 234. Kluwer B.V., Deventer, The Netherlands, 53-62.

[169] A.Medina, A.Lakhina, I.Matta, and J.Byers, "BRITE: Universal topology

generation from a user's perspective," Boston University, Tech. Rep. 2001-003, 1

2001.

[170] H.Y.Tyan and C.J.Hou, JavaSim On-Line Manuals and Tuto-rials. Available on-

line at <http://j-sim.cs.uiuc.edu/>.

[171] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, "Web Services

Description Language (WSDL) 1.1," http://www.w3.org/ TR/wsdl, Mar., 2001.

[172] X. Gu, K. Nahrstedt, W. Yuan, D. Wichadukal, D. Xu, "An XMLbased quality

of service enabling language for the web", Tech. Rep UIUCDCS-R-2001-2212, Uni.

Illinois at Urbana-Champaign, 2001.

[173] Narayanan, L., Opatrny, J., and Sotteau, D. 1999. All-to-all optical routing in

http://j-sim.cs.uiuc.edu/
http://www.w3.org/

BIBLIOGRAPHY 191

optimal chordal rings of degree four. In Proceedings of the Tenth Annual ACM-

SIAM Symposium on Discrete Algorithms (Baltimore, Maryland, United States,

January 17 - 19, 1999). Symposium on Discrete Algorithms. Society for Industrial

and Applied Mathematics, Philadelphia, PA, 695-703.

[174] B. Parhami, "Chordal Rings Based on Symmetric Odd-Radix Number Systems,"

Proc. International Conf. on Communications in Computing, Las Vegas, NV, pp.

196-199, June 27-30, 2005.

[175] R. Beivide, C.Martinez, C.Izu, J.Gutierrez, J.Gregorio, and J.Miguel-Alonso,

"Chordal Topologies for Interconnection Networks," Jour. Lect. notes comput. Sci,

pp. 20-22, Oct. 2003.

[176] Y. Wang, D. DeWitt, J. Cai, "X-Diff: An effective change detection tool for

XML documents", In Proc. ICDE, 2003.

[177] C. Dipanjan, A.Joshi, and Y. Yesha, "Toward Distributed service discovery in

pervasive computing environments", IEEE Tran. On Mobile Computing, Vol. 5, No.

2, Feb. 2006.

[178] D.Xu, K.Nahrstedt, and D.Wichadakul,, "MeGaDiP: A wide-area media

gateway discovery protocol", Proc. of IEEE Int. Conf. on Performance, Computing,

and Communications (IPCCC). PP.257 - 263, 20-22 Feb 2000.

[179] E. Asmare, S.Schmid, and M.Brunner, "Setup and Maintenance of Overlay

Networks for Multimedia Services in Mobile Environments." In Proc. of MMNS

2005, Barcelona, Spain, vol. 3754, pp. 82-95, October 2005.

[180] S.Ratnasamy, " A Scalable Content-Addressable Network," PhD thesis,

University of California, Berkeley, October 2002.

[181] S.Tabbane, "An Alternative Strategy for Location Tracking," IEEE Jour. On

Selected Areas in Comm., vol. 13, no. 5, pp. 880-892, June 1995.

[182] S.Kalasapur, M.Kumar, and B.A. Shirazi, "Dynamic Service Composition in

Pervasive Computing," IEEE Transactions On Parallel And Distributed Systems,

VOL. 18, NO. 7, JULY 2007.

BIBLIOGRAPHY 192

[183] k. Fujii and T. Suda, "Semantics-Based Dynamic Service Composition," IEEE

Jour. On Selected Areas In Comm., Vol. 23, No. 12, December 2005

[184] G. Xiaohui and K. Nahrstedt, "Distributed Multimedia Service Composition

With Statistical QoS Assurances," IEEE Trans. On Multimedia, vol. 8, no. 1,

February 2006.

[185] F. Casati, S. Ilnicki, L.-J. Jin, V. Krishnamoorthy, and M.-C. Shan, "Adaptive

and dynamic service composition in eFlow," in Proc. IntConf Advanced Inf. Syst.

Eng., Stockholm, Sweden, vol. 1789, pp. 13-31, Jan. 2000.

[186] D. Mennie and B. Pagurek, "An architecture to support dynamic composition of

service components," in Proc. 5th Int. Workshop Component-Oriented Program.,

Sophia Antipolis, France, 2000.

[187] M. Minami, H. Morikawa, and T. Aoyama, "The design and evaluation of an

interface-based naming system for supporting service synthesis in ubiquitous

computing environment," Trans. Inst. Electron., Inf. Commun. Eng., vol. J86-B, no.

5, pp. 777-789, May 2003.

[188] Sheng, Q. Z., Benatallah, B., Dumas, M., and Mak, E. O. 2002. SELF-SERV: a

platform for rapid composition of web services in a peer-to-peer environment. In

Proceedings of the 28th international Conference on Very Large Data Bases (Hong

Kong, China, August 20 - 23, 2002). Very Large Data Bases. VLDB Endowment,

1051-1054.

[189] P. Doshi, R. Goodwin, R. Akkiraju, and K. Verma, "Dynamic workflow

composition using Markov decision processes," in Proc. 2nd Int. Conf. Web Serv.,

San Diego, CA, Jul. 6-9, 2004, pp. 576-582.

[190] P. Traverso and M. Pistore, "Automated composition of semantic web services

into executable processes," in Proc. 3rd Int. Semantic Web Conf., Hiroshima, Japan,

, vol. 3298, pp. 380-394, Nov. 7-11 2004.

[191] S. Mcllraith and T. C. Son, "Adapting Golog for composition of Semantic Web

services," In Proceedings of the 8th International Conference on Knowledge

Representation and Reasoning(KR2002), Toulouse, France, pp. 482-496, April 2002.

BIBLIOGRAPHY 193

[192] Stollberg, M.; Haller, A., "Semantic Web services tutorial," Services Computing,

2005 IEEE International Conference on , vol.2, no., pp. xv vol.2-, 11-15 July 2005.

[193] S. Narayanan and S. Mcllraith, "Simulation, verification and automated

composition of Web service," In Proceedings of the 11th International World Wide

Web Conference, Honolulu, Hawaii, USA, pp. 77-88, May 2002. ACM. presentation

available at http://www2002.org/presentations/narayanan.pdf.

[194] S. R. Ponnekanti and A. Fox, "SWORD: A developer toolkit for web service

composition," in Proc. 11th World Wide Web Conf. (Web Eng. Track), Honolulu,

Hawaii, May 7-11, 2002.

[195] E. Sirin and B. Parsia, "Planning for semantic web services," in Proc. Semantic

Web Services Workshop 3rd Int. Semantic Web Conf., 2004.

[196] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau, "Automating DAML-S web

services composition using SHOP2," in Proc. 2nd Int. Semantic Web Conf., Sanibel

Island, FL, vol. 2870, pp. 195-210, Oct. 2003.

[197] B. Limthanmaphon and Y. Zhang, "Web service composition with case-based

reasoning," in Proc. 14th Australasian Database Conf., K.-D. Schewe and X. Zhou,

Eds., Adelaide, Australia, 2003, pp. 201-208.

[198] S. Mcllraith and T. Son, "Adapting Golog for composition of semantic web

services," in Proc. 8th Int. Conf. Knowl. Representation Reasoning, Apr. 2002, pp.

482-493.

[199] M.Wilde, I.T.Foster, J.Vckler and Y.Zhao. "Chimera: A Virtual Data System for

Representing, Querying, and Automating Data Derivation," In SSDBM, pp. 37-46.

2002.

[200] Huang, An.-C; Steenkiste, P., "Building self-configuring services using service-

specific knowledge," High performance Distributed Computing, 2004. Proceedings.

13th IEEE International Symposium on , pp. 45-54, 4-6 June 2004.

[201] S.D.Gribble, M.Welsh, R.von Behren, E.A.Brewer, D.Culler, N. Borisov,

S.Czerwinski, R.Gummadi, J.Hill, A.Joseph, R.Katz, Z.Mao, S. Ross, and B.Zhao,

"The Ninja Architecture for Robust Internet-Scale Systems and Services," IEEE

http://www2002.org/presentations/narayanan.pdf

BIBLIOGRAPHY 194

Computer Networks, Special Issue on Pervasive Computing, vol.35, iss.4, Mar.

2001.

[202] F.Xiaodong, and K.Vijay, "Automatic creation and reconfiguration of network-

aware service access paths," Elsevier, Computer Communications Vol.28 , pp. 591—

608, 2005.

[203] P. Doshi, R. Goodwin, R. Akkiraju, and K. Verma, "Dynamic workflow

composition using Markov decision processes," in Proc. 2nd Int. Conf.Web Serv.,

San Diego, CA, pp. 576-582, Jul. 2004.

[204] P. Traverso and M. Pistore, "Automated composition of semantic web services

into executable processes," in Proc. 3rd Int. Semantic Web Conf., Hiroshima, Japan,

vol. 3298, pp. 380-39, Nov. 7-11, 2004.

[205] X. Gu, and K. Nahrstedt, "Distributed Multimedia Service Composition With

Statistical QoS Assurances," IEEE Trans, on Multimedia, VOL. 8, NO. 1, Feb. 2006.

[206] J. Robinson, I. Wakeman, and T. Owen, "Scooby: Middleware for Service

Composition in Pervasive Computing," Proc. Second Workshop Middleware for

Pervasive and Ad Hoc Computing, pp. 161-166, 2004.

[207] A. P. Black, J. Huang, J.Walpole, and C. Pu, "Infopipes: An abstraction for

multimedia streaming," Multimedia Syst. (Special Issue on Multimedia

Middleware), vol. 8, no. 5, pp. 406-419, 2002.

[208] B. Raman and R. H. Katz, "An architecture for highly available wide area service

composition," Comput. Commun. J. (Special Issue on Recent Advances in

Communication Networking), Vol. 26, Iss. 15, pp. 1727-1740 , May 2003.

[209] D. Xu and K. Nahrstedt, "Finding service paths in a media service proxy

network," in Proc. SPIE/ACM Multimedia Computing and Networking Conf.

(MMCN'02), San Jose, CA, Jan. 2002.

[210] S.Camazine, J.Deneubourg, N.R.Franks, J.Sneyd, G.Theraulaz, and E.Bonabeau,

Self-Organization in Biological Systems, Princeton University Press, Princeton, UK,

ISBN:0-691-11624-5, 2003.

[211] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, "Web Services

Description Language (WSDL) 1.1," http://www.w3.org/ TR/wsdl, Mar., 2001.

http://www.w3.org/

BIBLIOGRAPHY 195

[212] S.Herborn, Y.Loez, and A.Seneviratne, "A Distributed Scheme for Autonomous

Service Composition", Proc. of the 1st ACM Int. Work, on Multimedia Service

Composition, MSC'05,Singapore, pp. 21-30, Nov.l 1, 2005.

[213] A.Lakhina, J.Byers, M.Crovella, and I.Matta, "On the geographic location of

Internet resources," IEEE Jour. On Selec. Areas In Comm., Vol. 21, No. 6, Aug.

2003.

[214] T.Pfeifer, Automatic conversion of communication media, Ph.D. Thesis, TU-

Berlin, GMD 2000.

[215] Kolodner, Case-based reasoning. Morgan Kaufmann Publishers Inc., 1993.

[216] G.Tesauro, "Reinforcement Learning in Autonomic Computing: A Manifesto

and Case Studies," Internet Computing, IEEE, vol.11, no.l, pp.22-30, Jan.-Feb.

2007.

