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A majority of experimental disciplines face the challenge of exploring large and high-dimensional 
parameter spaces in search of new scientific discoveries. Materials science is no exception; the wide 
variety of synthesis, processing, and environmental conditions that influence material properties gives 
rise to particularly vast parameter spaces. Recent advances have led to an increase in the efficiency of 
materials discovery by increasingly automating the exploration processes. Methods for autonomous 
experimentation have become more sophisticated recently, allowing for multi-dimensional parameter 
spaces to be explored efficiently and with minimal human intervention, thereby liberating the 
scientists to focus on interpretations and big-picture decisions. Gaussian process regression (GPR) 
techniques have emerged as the method of choice for steering many classes of experiments. We 
have recently demonstrated the positive impact of GPR-driven decision-making algorithms on 
autonomously-steered experiments at a synchrotron beamline. However, due to the complexity 
of the experiments, GPR often cannot be used in its most basic form, but rather has to be tuned to 
account for the special requirements of the experiments. Two requirements seem to be of particular 
importance, namely inhomogeneous measurement noise (input-dependent or non-i.i.d.) and 
anisotropic kernel functions, which are the two concepts that we tackle in this paper. Our synthetic 
and experimental tests demonstrate the importance of both concepts for experiments in materials 
science and the benefits that result from including them in the autonomous decision-making process.

Arti�cial intelligence and machine learning are transforming many areas of experimental science. While most 
techniques focus on analyzing “big data” sets, which are comprised of redundant information, i.e. information 
that is not strictly needed to de�ne the model con�dently, collecting smaller but information-rich data sets has 
become equally important. Brute-force data collection leads to tremendous ine�ciencies in the utilization of 
experimental facilities and instruments, in data analysis and data storage; large experimental facilities around 
the globe are running at 10–20% utilization and are still spending millions of dollars each year to keep up with 
the increase in the amount of data storage  needed1–4. In addition, conventional experiments require scientists to 
prepare samples and directly control experiments, which leads to highly-trained researchers spending signi�cant 
e�ort on micromanaging experimental tasks rather than thinking about scienti�c meaning. To avoid this prob-
lem, autonomously steered experiments are emerging in many disciplines. �ese techniques place measurements 
only where they can contribute optimally to the overall knowledge gain. Measurements that collect redundant 
information are avoided. �ese autonomous approaches minimize the number of needed measurements to 
reach a certain model con�dence, thus optimizing the utilization of experimental, computing, and data-storage 
facilities. Autonomy, in the course of this paper, refers to the machine’s ability to self-drive measurements of an 
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experiment. Some initial parameters, such as the parameters to explore and their corresponding ranges, have to 
be de�ned by the user beforehand.

A universal goal in materials science is to explore the characteristics of a given material across the set of all 
conceivable combinations of experimental parameters, which can be thought of as a parameter space de�ning that 
class of materials. �e experimental parameters can be the characteristics of material components, their compo-
sition, processing or synthesis parameters, and environmental conditions on which the experimental outcomes 
 depend5,6. Successful exploration of the parameter space amounts to being able to de�ne a high-con�dence map, 
i.e. a surrogate model function, of experimental outcomes across all elements of the set. For two-dimensional 
parameter spaces, this is traditionally achieved by “scanning” the space, o�en on a simple Cartesian grid. Selecting 
a scanning strategy implies picking a scan resolution without knowing the model function, which will unequivo-
cally lead to inaccuracies and ine�ciencies. When the parameter space is high-dimensional, an approach based 
on intuition is o�en used, i.e., manually selecting measurements, assessing trends and patterns in the data, and 
selecting follow-up measurements. With increasing dimensionality of the parameter space, this method quickly 
fails to e�ciently explore the space and becomes prone to bias. Needless to say, the human brain is generally 
poorly equipped for high-dimensional pattern recognition.

What is needed are methods that decouple the human from the measurement selection process. �is fact 
served as a motivation to establish a research �eld called design of experiment (DOE)7, which can be traced 
back as far as the late 1800s. �ese DOE methods are largely geometrical, independent of the measurement out-
comes, and are concerned with e�ciently exploring the entire parameter space. �e latin-hyper-cube method 
is the prime example of this class of  methods8,9. Most of the recent approaches to steer experiments are part of a 
�eld called active learning, which is based on machine learning  techniques5,10–12. Others have used deep neural 
networks to make data acquisition  cheaper13. Many techniques originated from image  analysis11,14, but, as images 
are traditionally two or three dimensional, these methods rarely scale e�ciently to high-dimensional spaces. A 
useful collection of methods can be found  in15,16.

Gaussian process regression (GPR) is a particularly successful technique to steer experiments 
 autonomously17,18. �e success of GPR in steering experiments is due to its non-parametric nature; simply 
speaking, the more data that is gathered the more complicated the model function can become. �e number of 
parameters of the function, and therefore its complexity, does not have to be de�ned a priori. �is is in contrast to 
neural networks, which need a speci�cation of an architecture (number of layers, layer width, activation function) 
beforehand. �e non-parametric nature is not unique to Gaussian processes, but is characteristic to all kernel 
methods and, in an even broader scope, all methods that approximate a function by a sum of basis functions. �e 
strength of Gaussian processes comes from the fact that kernels are used to de�ne a similarity measure between 
points, which in turn is used to de�ne a covariance matrix. �erefore, GPR also naturally includes uncertainty 
quanti�cation, which is an absolute necessity in experimental sciences.

Traditional GPR has mostly been derived and applied under the assumption of independent and identically 
distributed noise (i.i.d. noise)18–23, i.e., noise that follows the same probability density function at each measure-
ment point. Since we are exclusively dealing with Gaussian statistics, this means that all measurements have the 
same variance. In Kriging, the geo-statistical analog of GPR, this concept is called the nugget e�ect, named a�er 
gold nuggets in the sub-surface. In early geo-statistical computations, the gold nuggets lead to seemingly random 
errors. �ese were assumed to be constant across the domain. However, for materials-discovery experiments the 
assumption of i.i.d. noise is an unacceptable simpli�cation. �e variance of real experimental measurements vary 
greatly across the parameter space, and this has to be re�ected in the steering process as well as in the �nal model 
creation. For instance, in x-ray scattering experiments, the variance of a raw measurement depends strongly on 
the exposure time; computed quantities can have wildly di�erent variances depending on the raw data in that 
part of the space (e.g. �t quality will not be uniform), and material heterogeneity will depend strongly on location 
within the parameter space. �ese inhomogeneities in the measurement noise need to be actively included in the 
�nal model to avoid interpolation mistakes and consequently erroneous models. Fortunately, non-i.i.d. noise can 
easily be included in the GPR  framework24,25. Large variances have to be countered with more measurements 
in the respective areas until the desired uncertainty threshold is reached. �is is naturally taken care of by the 
non-i.i.d Gaussian process since the overall posterior variance (or prediction variance) is a combination of the 
measurement variance and the variance due to distances from known data. When creating the �nal model, the 
algorithm has to incorporate that the �nal model function does not have to explain data points exactly if there 
is an associated variance. �erefore, the model function does not have to pass through every data point. A�er 
correct tuning, GPR is perfectly equipped for this situation since it keeps track of a probability distribution over 
all possible model functions; conditioning will then produce the most likely model function incorporating all 
measurement variances optimally.

Another e�ect that has a signi�cant impact on autonomous experiments is anisotropy of the parameter space, 
which is either introduced by di�ering parameter ranges or di�erent model variability in di�erent parameter-
space directions. In isotropic GPR one �nds a single characteristic length scale for the data set. �is was again 
motivated by early geo-statistical surveys in which isotropy was a good assumption. However, when one of the 
parameters is of signi�cantly di�erent magnitude, for instance, spatial directions in mm ∈ [0, 1] versus tempera-
ture in ◦C ∈ [5, 500] , we should �nd di�erent length scales for di�erent directions of the parameter space. Also, 
there might be di�erent di�erentiability characteristics in di�erent directions. It is therefore vitally important to 
give the model the �exibility to account for those varying features. �is can either be done by using an altered 
Euclidean norm, or by employing di�erent norms that provide more �exibility of distance measures in di�erent 
directions. �e general idea, including the concepts proposed in this paper, is visualized in Fig. 1.

�e proposed method can be understood as a variant of Bayesian optimization (BO) in which only Gaussian 
priors and likelihoods are considered. While, as the name suggests, BO is mostly used to �nd a maximum or 
minimum, autonomous experimentation makes no such restriction. However, since there is a variety of di�erent 
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objective functions that can be optimized in BO, the proposed method can certainly be understood as a subset 
of BO.  See26 for a good overview of Bayesian optimization.

�is paper is organized as follows: First, we introduce the traditional theory of Gaussian process regression 
with i.i.d. noise and standard isotropic kernel functions. Second, we make formal changes to the theory to include 
non-i.i.d. noise and anisotropy. �ird, we demonstrate the impact of the two concepts on synthetic experiments. 
Fourth, we present a synchrotron beamline experiment that exploited both concepts for autonomous control.

Gaussian process regression with non-i.i.d. noise and anisotropic kernels
Prerequisite. We de�ne the parameter space X ⊂ R

n , which serves as the index set or input space in the 
scope of Gaussian process regression and elements x ∈ X . We de�ne four functions over X . First, the latent 
function f = f (x) can be interpreted as the inaccessible ground truth. Second, the o�en noisy measurements 
are described by y = y(x) : X → R

d . To simplify the derivation, we assume d = 1 ; allowing for d > 1 is a 

Figure 1.  Schematic of an autonomous experiment. �e data acquisition device in this example is a beamline at 
a synchrotron light source. �e measurement result depends on parameters x . �e raw data is then sent through 
an automated data processing and analysis pipeline. From the analyzed data, the autonomous-experiment 
algorithm creates a surrogate model and an uncertainty function whose maxima represent points of high-value 
measurements; they are found by employing function optimization tools. �e new measurement parameters 
x are then communicated to the data acquisition device and the loop starts over. �e main contribution of the 
present work is that the model computation and uncertainty quanti�cation account for the anisotropic nature 
of the model function and the input-dependent (non-i.i.d.) measurement noise. �e surrogate model (bottom) 
shows how the model function is evolving as the experiment is steered and more data (N) is collected. �e red 
dots indicate the positions of the measurements and their size represents the varying associated measurement 
variances. �e numbers lx and ly indicate the anisotropic correlation lengths that the algorithm �nds by 
maximizing a log-likelihood function. �e ellipses show the found anisotropy visually. �e take-home message 
for the practitioner here is that the method will �nd the most likely model function given all collected data with 
their variances. �e model function will not pass directly through the points but �nd the most likely shape given 
all available information.
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straightforward extension. �ird, the surrogate model function is then de�ned as ρ = ρ(x) : X → R . Fourth, 
the posterior mean function m(x) , which is o�en assumed to equal the surrogate model, i.e., m(x) = ρ(x) , but 
this is not necessarily the case. We also de�ne a second space, a Hilbert space H ⊂ R

N
× R

N
× R

J , with ele-
ments [f y f0]T , where N is the number of data points, J is the number of points at which we want to predict the 
model function value, y are the measurement values, f  is the vector of unknown latent function evaluations and 
f0 is the vector of predicted function values at a set of positions. Note that scalar functions over X , e.g. f (x) , are 
vectors (bold typeface) in the Hilbert space H , e.g. f  . We also de�ne a function p over our Hilbert space which 
is just the function value of the Gaussian probability density functions involved. For more explanation on the 
distinction between the two spaces and the functions involved see Fig. 2.

Gaussian process regression with isotropic kernels and i.i.d. observation noise. De�ning a GP 
regression model from data D = {(x1, y1), . . . , (xN , yN )} , where yi = f (xi) + ǫ(xi) , is accomplished in a GP 
regression framework, by de�ning a Gaussian probability density function, called the prior, as

and a likelihood

where µ = [µ(x1), . . . ,µ(xN )]T is the mean of the prior Gaussian probability density function (not to be con-
fused with the posterior mean function m(x) ). Here dim is the dimensionality of the space over which the Gauss-
ian probability density function is de�ned. �e prior mean can be understood as the position of the Gaussian. 
f = [f (x1), . . . , f (xN )]T , Kij = k(φ, xi , xj); x ∈ X is the covariance of the Gaussian process, with its covariance 
function, o�en referred to as the kernel, k(φ, xi , xj) , where φ is a set of hyper parameters, most o�en length scales 
and signal variance, and where σ 2 is the variance of the i.i.d. observation noise. �e hyper parameters will be later 
o�en referred to as length scale l or signal variance σ 2

s  . We will omit the dependency on φ in the kernel de�ni-
tion unless necessary for clarity. �e problem here is that, in practice, the i.i.d. noise restriction rarely holds in 
experimental sciences, which is one of the issues to be addressed in this paper. �e kernel k is a symmetric and 
positive semi-de�nite function, such that k : X × X → R . As a reminder, X is our parameter space and o�en 
referred to as index set or input space in the literature. A well-known  choice19 is the Matérn kernel class de�ned by

where Bν is the Bessel function of second kind, Ŵ is the gamma function, σ 2
s  is the signal variance, l is the length 

scale, r = ||xi − xj||l2 is the Euclidean distance between input points and ν is a parameter that controls the dif-
ferentiability characteristics of the kernel and therefore of the �nal model function. �e well-known exponential 
and squared exponential kernels are special cases of the Matérn kernels for ν =

1

2
 and ν → ∞ respectively. 
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Figure 2.  Figure emphasizing the distinction between the spaces and functions involved in the derivation. (a) 
A function over X . �is can be the surrogate model ρ(x) , the latent function f (x) to be approximated through 
an experiment, the function describing the measurements y(x) or the predictive mean function m(x) . x1 and x2 
are two experimentally controlled parameters (e.g., synthesis, processing or environmental conditions) that the 
measurement outcomes potentially depend on. (b) �e Gaussian probability density function over H which 
gives GPR its name. For noise-free measurements, y = f  at measurement points, meaning that we can directly 
observe the model function. Generally this is not the case and the observations y are corrupted by input-
dependent (non-i.i.d) noise.
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Unless otherwise stated, we used the Matérn kernel with ν =
3

2
 for our tests and experiments, which translates 

to �rst order di�erentiability of the posterior mean function. �e signal variance σ 2
s  and the length scale l are 

hyper parameters ( φ ) that are found by maximizing the log-likelihood, i.e., solving

where

where I is the identity matrix. In the isotropic case, we only have to optimize for one signal variance and one 
length scale (per kernel function). �e mean function µ(x) , while formally being part of the optimization prob-
lem in (4) is o�en assumed to be constant and therefore neglected. �e mean function assigns the location of 
the prior in H to any x ∈ X ; it can therefore be used to communicate prior knowledge (for instance physics 
knowledge) to the Gaussian process. For our tests and the experiment, we assume a constant mean function 
de�ned by the mean of the data. Choosing a particular kernel function and optimizing the hyper parameters 
can be a challenging task depending on the data and the function to be approximated. �e kernel function has a 
dramatic impact on the approximation quality. It takes some practice and good knowledge of the characteristics 
of kernel functions and their e�ect on the Gaussian process to make the right decision. Provided some hyper 
parameters, the joint prior is given as

where

where κ i = k(φ, x0, xi) , K = k(φ, x0, x0) and, as a reminder, Kij = k(φ, xi , xj) . dim in (5) and (6) is again the 
dimensionality of the space the Gaussian probability density function is de�ned over. Intuitively speaking, � , 
K and k are all measures of similarity between measurement results y(x) of the input space. While y(K) stores 
this similarity between all data points, � stores the similarity between all data points and all unknown points of 
interest, and K contains the similarity only between the unknown y(x) of interest. k contains the instruction 
on how to calculate this similarity. �e reader might wonder: “How do we �nd the similarity between unknown 
points of interest?” �e answer lies in the formulation of the kernels that calculate the similarity just by know-
ing locations x ∈ X and not the function evaluations y(x) . x0 is the point where we want to estimate the mean 
and the variance. Note here that, with only slight adaption of the equation, we are able to compute the posterior 
mean and variance for several points of interest.

�e predictive distribution is de�ned as

and the predictive mean and the predictive variance are therefore respectively de�ned as

which are the posterior mean and variance at x0 , respectively. N(·, ·) stands for the normal (Gaussian) distribu-
tion with a given mean and covariance.

Gaussian processes with non-i.i.d. observation noise. To incorporate non-i.i.d. observation  noise27,28 
one can rede�ne the likelihood (2) as

where V is a diagonal matrix containing the respective measurement variances. In case the measurements hap-
pen to be correlated, the matrix V also has non-diagonal entries. However in our case this would have to be 
communicated by the instrument since we are not estimating the noise levels or their  correlations29. We will only 
discuss and use non-correlated measurement noise in this paper.
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From Eqs. (6) and (11), we can calculate Eq. (8), i.e., the predictive probability distribution for a measurement 
outcome at x0 , given the data set. �e mean and variance of this distribution are

respectively. Note here, that the matrix of the measurement errors V replaces the matrix σ 2
I in Eqs. (9) and 

(10). However, this does not follow from a simple substitution, but from a signi�cantly di�erent derivation. �e 
log-likelihood (5) changes accordingly, yielding

�is concludes the derivation of GPR with non-i.i.d. observation noise. Figure 3 illustrates the e�ect of di�er-
ent kinds of noise on an one-dimensional model function. As we can see, while some details of the derivation 
change when we account for inhomogeneous (also known as input-dependent or non-i.i.d) noise, the resulting 
equation are very similar and the computation exhibits no extra costs.

Gaussian processes with anisotropy. For parameter spaces X that are anisotropic, i.e., where di�erent 
directions have di�erent characteristic correlation length, we can rede�ne the kernel function to incorporate dif-
ferent length scales in di�erent directions. One way of doing this for axial anisotropy is by choosing the l1 norm 
as distance measure and rede�ne the kernel function as

where the superscripts m, n mean point labels, the subscript i means di�erent directions in X and d is here the 
dimensionality of X . �is kernel de�nition originates from the fact that multiplying kernels will result in another 
valid  kernel19. De�ning a kernel per direction gives us the �exibility to enforce di�erent orders of di�erenti-
ability in di�erent directions of X . �e main bene�t, however, is the possibility to de�ne di�erent length scales 
in di�erent directions of X (see Fig. 4). Unfortunately, the choice of the l1 norm can lead to a very recognizable 
checkerboard pattern in the surrogate model, but the predictive power of the associated variance function is 
signi�cantly improved compared to the isotropic case.

A second way, which avoids the checkerboard pattern in the model but does not allow di�erent kernels in 
di�erent direction, is to rede�ne the distances in X as

where M is any symmetric positive semi-de�nite matrix playing the role of a metric  tensor30. �is is just the 
Euclidean distance in a transformed metric space. In the actual kernel functions, any r/l can then be replaced 
by the new equation for the metric. We will here only consider axis-aligned anisotropy, which means the matrix 
M is a diagonal matrix with the inverse of the length scales on its diagonal. �e extension to general forms of 
anisotropy is straightforward but needs a more costly likelihood optimization since more hyper parameters 

(12)m(x0) = µ + kT (K + V)−1(y − µ)

(13)σ 2(x0) = k(x0, x0) − k
T (K + V)−1

k,

(14)
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Figure 3.  �ree one-dimensional examples with (a) no noise, (b) i.i.d. noise and (c) non-i.i.d. noise, 
respectively. For the no-noise case, the model has to explain the data exactly. In the i.i.d. noise-case, the 
algorithm is free to choose a model that does not explain the data exactly but allows for a constant measurement 
variance. In the non-i.i.d. noise case, the algorithm �nds the most likely model given varying variances across 
the data set. Note the vertical axis labels; y(x) are the measurement outcomes, m(x) is the mean function, i.e., 
the most likely model, ρ(x) is the surrogate model, o�en assumed to equal the mean function and f(x) is the 
“ground truth” latent function.
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have to be found. �e rest of the theoretical treatment, however, remains unchanged. �e mean function µ(x) 
and the hyper parameters φ are again found by maximizing the marginal log-likelihood (14). �e associated 
optimization tries to �nd a maximum of a function that is de�ned over Rd+1 , if we ignore the mean function as 
it is commonly done. We therefore have to �nd d + 1 parameters which adds a signi�cant computational cost. 
If M is not diagonal we have to maximize the log-likelihood over R(d2−N)/2+1 . However, the optimization can 
be performed in parallel to computing the posterior variance, which can hide the computational e�ort. It is 
important to note that accounting for anisotropy can make the training of the algorithm, i.e. the optimization 
of the log-likelihood, signi�cantly more costly. �e extent of this depends on the kind of anisotropy considered. 
As we shall see, taking anisotropy into account leads to more e�cient steering and a higher-quality �nal result, 
and is thus generally worth the additional computational cost.

Synthetic tests
Our synthetic tests are carefully chosen to demonstrate the bene�ts of the two concepts under discussion, namely: 
non-i.i.d. observation noise and anisotropic kernels. To demonstrate the importance of including non-i.i.d. obser-
vation noise into the analysis, we consider a synthetic test based on actual physics which we used in previous work 
to showcase the functionality of past  algorithms17. We are choosing an example given in a closed form because 
it provides a noise-free “ground truth” that we can compare to, whereas experimental data would inevitably 
include unknown errors. To showcase the importance of anisotropic kernels as part of the analysis, we provide 
a high-dimensional example based on a simulation of a material that is subject to a varying thermal history.

�e shown synthetic tests explore spaces of very di�erent dimensionality. �ere is no theoretical limit to the 
dimensionality of the parameter space. Indeed the autonomous methods described herein are most advantageous 
when operating in high-dimensional spaces since this is where simpler methods—and human intuition—typically 
fail to yield meaningful searches. However, while there is no theoretical limit, there are several practical issues that 
must be considered for high-dimensional problems. �e quality of the approximation su�ers in high-dimensional 
spaces since data density grows increasingly sparse with increasing dimensions. �erefore, in high-dimensional 
spaces o�en more data has to be gathered, which correspondingly increases computational costs.  See31–35 for an 
overview of work on methods to speed up Gaussian process computations.

Non-i.i.d. observation noise. For this test, we de�ne a physical “ground truth” model f (x) , whose correct 
function value at x would normally be inaccessible due to non-i.i.d measurement noise, but can be probed by our 
simulated experiment through y(x) . In this case, we assume that the measurements are subject to Gaussian noise 
with a standard deviation of 2% of the function value at x . �e ground-truth model function is de�ned to be the 
di�usion coe�cient D = D(r,T ,Cm) for the Brownian motion of nanoparticles in a viscous liquid consisting of 
a binary mixture of water and glycerol:

Figure 4.  Model function with di�erent length scales and di�erent orders of di�erentiability in di�erent 
directions. In x1 direction we have assumed that the model function is not di�erentiable. �erefore we used the 
exponential kernel. In x2 direction, the model can be di�erentiated an in�nite number of times. We therefore 
chose the squared exponential kernel. For other orders of di�erentiability, other kernels can be used. Fixing the 
order of di�erentiability also gives the user the ability to incorporate domain knowledge into the experiment.
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where kB is Bolzmann’s constant, r ∈ [1 , 100] nm is the nanoparticle radius, T ∈ [0 , 100] ◦C is the temperature 
and µ = µ(T ,Cm) is the viscosity as given  by36, where Cm ∈ [0.0, 100.0] % is the glycerol mass fraction. �is 
model was used  in17 to show the functionality of Kriging based autonomous experiments. �e experiment device 
has no direct access to the ground truth model, but adds an unavoidable noise level, i.e.,

To demonstrate the importance of the noise model, we �rst ignore the noise ǫ , then approximate it assuming 
i.i.d. noise, and �nally model it allowing for non-i.i.d. noise. Figure 5 shows the results a�er 500 measurements, 
and a comparison to the (inaccessible) ground truth. Figure 6 compares the decrease in the error, in form of the 
Euclidean distance between the models and the ground truth, with increasing number of measurements N, for 
the three di�erent types of noise.

(17)D =

kB T

6πµr
,

(18)D =
kB T

6πµr
+ ǫ(T ,Cm, r),

Figure 5.  �e result of the di�usion-coe�cient example on a three-dimensional input space. �e �gure shows 
the result of the GP approximation a�er 500 measurements for three di�erent nanoparticle radii. While the 
measurement results are always subject to di�ering noise, the model can take noise into account in di�erent 
ways. Most commonly noise is ignored (le� column). If noise is included, it is common to approximate it by 
i.i.d. noise (middle column). �e proposed method models the noise as what it is, which is non-i.i.d. noise (right 
column). �e iso-lines of the approximation are shown in white while the iso-lines of the ground truth are 
shown in red. Observe how the no-noise and the i.i.d. noise approximations create localized artifacts. �e non-
i.i.d. approximation does a far better job of creating a smooth model that explains all data including noise.
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�e results show that treating noise as i.i.d. or even non-existent can lead to artifacts in the surrogate model. 
Additionally, the discrepancy between the ground truth and the surrogate mode is reduced far more e�ciently 
if non-i.i.d. noise is accounted for.

Anisotropy. Allowing anisotropy can increase the e�ciency of autonomous experiments signi�cantly for 
any dimensionality of the underlying parameter space. However, as the dimensionality of the parameter space 
increases, the importance of anisotropy increases substantially, purely due to the number of directions in which 
anisotropy can occur. To demonstrate this link, we simulated an experiment where a material is subjected to a 
varying thermal history. �at is, the experiment consists of repeatedly changing the temperature, and taking 
measurements along this time-series of di�erent temperatures. �e temperature at each time step can be thought 
of as one of the dimensions of the parameter space. �e full set of possible applied thermal histories thus become 
points in the high-dimensional parameter space of temperatures.

In particular, we consider the ordering of a block copolymer, which is a self-assembling material that spon-
taneously organizes into a well-de�ned morphology when thermally  annealed37. �e material organizes into 
a de�ned unit cell locally, with ordered grains subsequently growing in size as defects  annihilate38. We use a 
simple model to describe this grain coarsening process, where the grain size ξ increases with time according to 
a power-law

where α is a scaling exponent (set to 0.2 for our simulations) and the prefactor k captures the temperature-
dependent kinetics

Here, Ea is an activation energy for coarsening (we select a typical value of Ea = 100 kJ/mol ), and the prefactor 
A sets the overall scale of the kinetics (set to 3 × 10

11
nm/sα ). From these equations we construct an instantane-

ous growth-rate of the form:

Block copolymers are known to have an order-disorder transition temperature ( TODT ) above which thermal 
energy overcomes the material’s segregation strength, and thus the nanoscale morphology disappears in favor 
of a homogeneous disordered phase. Heating beyond TODT thus implies driving ξ to zero. We describe this ‘grain 
dissolution’ process using an ad-hoc form of:

where we set kdiss = 1.0 nm s
−1

K
−1 and TODT = 350

◦
C . We also apply ad-hoc suppression of kinetics near TODT 

and when grain sizes are very large to account for experimentally-observed e�ects. Overall, this simple model 
describes a system wherein grains coarsen with time and temperature, but shrink in size if the temperature is 
raised too high. �e parameter space de�ned by a sequence of temperatures will thus exhibit regions of high 
or low grain size depending on the thermal history described by that point; moreover, there is a non-trivial 

(19)ξ = kt
α
,

(20)k = Ae
−Ea/kBT .

(21)
dξ

dt
= k

1/αξ 1−1/α
.

(22)
dξ

dt
= −kdiss(T − TODT),

Figure 6.  �e approximation errors of the surrogate model during the di�usion-coe�cient example (Fig. 5), for 
three di�erent noise models noted in the legend. �e bands around each line represent the standard deviation of 
this error metric computed by running repeated synthetic experiments.



10

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17663  | https://doi.org/10.1038/s41598-020-74394-1

www.nature.com/scientificreports/

coupling between these parameters since the grain size obtained for a given step of the annealing (i.e. a given 
direction in the parameter space) sets the starting-point for coarsening in the next step (i.e. the next direction 
of the parameter space).

We select thermal histories consisting of 11 temperature selections (temperature is updated every 6 s ), 
which thus de�nes an 11-dimensional parameter space for exploration. Each temperature history de�nes a 
point ( x ∈ X ) within the 11-dimensional input space. As can be seen in Fig. 7a, the majority of thermal 
histories terminate in a relatively small grain size (blue lines in Fig. 7a). �is can be easily understood since a 
randomly-selected annealing protocol will use temperatures that are either too low (slow coarsening) or too high 
( T > TODT drives into disordered state). Only a subset of possible histories terminate with a large grain size 
(dark, less transparent lines in Fig. 7a), corresponding to the judicious choice of annealing history that uses large 
temperatures without crossing ODT. While this conclusion is obvious in retrospect, in the exploration of a new 
material system (e.g. for which the value of material properties like TODT are not known), identifying such trends 
is non-trivial. Representative slices through the 11-dimensional parameter space (Fig. 7b, c) further emphasize 
the complexity of the search problem, especially emphasizing the anisotropy of the problem. �at is, di�erent 
steps in the annealing protocol have di�erent e�ects on coarsening; correspondingly the di�erent directions in 
the parameter space have di�erent characteristic length scales that must be correctly modeled (even though every 
direction is conceptually similar in that it describes a 6 s thermal annealing process).

Autonomous exploration of this parameter space enables the construction of a model for this coarsening 
process. Moreover, the inclusion of anisotropy markedly improves the search e�ciency, reducing the model error 
more rapidly than when using a simpler isotropic kernel (Fig. 7d). As the dimensionality of the problem and the 
complexity of the physical model increase, the utility of including an anisotropic kernel increases further still.

Autonomous SAXS exploration of nanoscale ordering in a flow-coated 
polymer-grafted nanorod film
�e proposed GP-driven decision-making algorithm that takes into account non-i.i.d. observation noise and 
anisotropy has been used successfully in autonomous synchrotron experiments. Here we present, as an illus-
trative example, the results of an autonomous x-ray scattering experiment on a polymer-gra�ed gold nanorod 
thin �lm, where a combinatorial sample library was used to explore the e�ects of �lm fabrication parameters on 
a self-assembled nanoscale structure.

Unlike traditional short ligand coated particles, polymer-gra�ed nanoparticles (PGNs) are stabilized by 
high molecular weight polymers at relatively low gra�ing densities. As a result, PGNs behave as so� colloids, 
possessing the favorable processing behavior of polymer systems while still retaining the ability to pack into 
ordered  assemblies39. Although this makes PGNs well suited to traditional approaches for thin-�lm fabrication, 
the nanoscale assembly of these materials is inherently complex, depending on a number of variables includ-
ing, but not limited to, particle-particle interactions, particle-substrate interactions, and process methodology.

�e combinatorial PGN �lm sample was fabricated at the Air Force Research Laboratory. A �ow-coating 
 method39 was used to deposit a thin PGN �lm on a surface-treated substrate where gradients in coating veloc-
ity and substrate surface energy were imposed along two orthogonal directions over the �lm surface. A 250 
nM toluene solution of 53 kDa polystyrene-gra�ed gold nanorods (94% polystyrene by volume), with nanorod 
dimensions of 70 ± 6 nm in length and 11.0 ± 0.9 nm in diameter (based on TEM analysis), was cast onto a 
functionalized glass coverslip using a motorized coating blade. �e resulting �lm covered a rectangular area of 
dimensions 50 mm × 60 mm. �e surface energy gradient on the glass coverslip was generated through the vapor 
deposition of  phenylsilane40. �e substrate surface energy varied linearly along the x direction from 30.5 mN/m 
(hydrophobic) at one edge of the �lm ( x = 0 ) to 70.2 mN/m (hydrophilic) at the other edge ( x = 50 mm). Along 
the y direction, the �lm-casting speed increased from 0 mm/s (at y = 0 ) to 0.5 mm/s ( y = 60 mm) at a constant 
acceleration of 0.002 mm/s2 . �e �lm-casting condition corresponds to the evaporative regime where solvent 
evaporation occurs at similar timescales to that of solid �lm  formation41. In this regime, solvent evaporation 
at the meniscus induces a convective �ow, driving the PGNs to concentrate and assemble at the contact line. 
�e �lm thickness decreased with increasing coating speed, resulting in transitions from multilayers through 
a monolayer to a sub-monolayer with increasing y. �is was veri�ed by optical microscopy observations of the 
boundaries between multilayer, bilayer, monolayer and sub-monolayer regions, the last of which were identi�ed 
by the presence of holes in the �lm, typically 1 µ m or greater as seen in the optical images.

�e objective of the autonomous synchrotron x-ray scattering experiment was two-fold, corresponding to 
a combination of exploration and exploitation. �e �rst aim was to explore the dependence of the nanoscale 
order of the PGN �lm on the two fabrication parameters, i.e., the substrate surface energy and the �lm coating 
speed, or equivalently on the surface coordinates (x, y), respectively. �e second aim was to exploit the knowledge 
gained from the exploration to locate and home in on the regions in the two-dimensional parameter space that 
resulted in the highest degrees of order.

�e autonomous small-angle x-ray scattering (SAXS) experiment was performed at the Complex Materials 
Scattering (11-BM CMS) beamline at the National Synchrotron Light Source II (NSLS-II), Brookhaven National 
Laboratory. As described  previously17,42, experimental control was coordinated by combining three Python 
so�ware processes: bluesky43 for automated sample translations and data collection, SciAnalysis44 for real-time 
analysis of newly collected SAXS images, and the above GPR-based optimization algorithms for decision-making. 
�e incident x-ray beam was set to a wavelength of 0.918 Å  (13.5 keV x-ray energy) and a size of 0.2 mm × 0.2 
mm. �e PGN �lm-coated substrate was mounted normal to the incident x-ray beam, on a set of motorized xy 
translation stages. Transmission SAXS patterns were collected on an area detector (DECTRIS Pilatus 2M) located 
at a distance of 5.1 m downstream of the sample, with an exposure time of 10 s/image. �e SAXS results indicate 
that the polymer gra�ed nanorods tend to form ordered domains in which the nanorods lie �at and parallel to 
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Figure 7.  Visualization of the grain size as a function of temperature history for a simple model of block 
copolymer grain size coarsening. �e �gure demonstrates that when describing physical systems in high-
dimensional spaces, strong anisotropy is frequently observed; only by taking this into account when 
estimating errors, will experimental guidance be optimal. (a) 10,000 simulated temperature histories and their 
corresponding grain size represented by color. �e majority of histories terminate in a small grain size (blue 
lines). A small select set of histories yield large grain sizes (dark red lines). (b) Example two-dimensional 
slice through the 11-dimensional parameter space. �e anisotropy is clearly visible. (c) A di�erent two-
dimensional slice with no signi�cant anisotropy present. (d) �e estimated maximum standard deviation 
across the 11-dimensional domain as function of the number of measurements during a synthetic autonomous 
experiment.
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the surface and align with their neighbors. �e �tting of SAXS intensity pro�les via real-time analysis allowed 
for the extraction of quantities such as the scattering-vector position q for the di�raction peak corresponding to 
the in-plane inter-nanorod spacing d = 2π/q ; the degree of anisotropy η ∈ [0, 1] for the in-plane inter-nanorod 
alignment, where η = 0 for random orientations and η = 1 for perfect  alignments45; the azimuthal angle χ or the 
factor cos(2χ) for the in-plane orientation of the inter-nanorod alignment; and the grain size ξ of the nanoscale 
ordered domains, which is inversely proportional to the di�raction peak width and provides a measure of the 
extent of in-plane positional correlations between aligned nanorods. �e analysis-derived best-�t values and 
associated variances for these parameters were passed to the GPR decision algorithms.

In the autonomous experiment, three analysis-derived quantities ξ , η , and cos(2χ) were used as the input 
signals utilized by the GPR algorithms to steer the SAXS measurements as a function of surface coordinates (x, y). 
For the GPR computations, the search space was restricted to 1.0 ≤ x ≤ 48.0 mm and 1.0 ≤ y ≤ 49.0 mm. �e 
objective function used was described previously, given by Eq. (11) of Ref.42. �e objective function is therefore 
of the upper-con�dence kind as described  in46, with varying trade-o� coe�cient throughout the experiment. 
For this experiment, we used the �rst-order-di�erentiability Matérn kernel. Setting up the parameter space, or 
search space, has to be done initially by the user; a�erward the experiment runs autonomously without human 
interference. For the initial part of the experiment, N < 464 (�rst 4 h), where N is the number of measurements 
completed up to a given point in the experiment, the autonomous steering utilized the exploration mode based 
on model uncertainty  maxima42 for ξ , η , and cos(2χ) . For the later part of the experiment ( 464 ≤ N ≤ 1520 or 
next 11 h), the feature maximization  mode42 was used for η , while keeping ξ and cos(2χ) in the exploration mode. 
We found that the nanorods in the ordered domains tended to orient such that their long axes were aligned along 
the x direction [ cos(2χ) ≈ 1 ], i.e., perpendicular to the coating direction, and that ξ and η are strongly coupled. 
Figure 8A (top panels) show the N-dependent evolution of the model for the grain size distribution ξ over the 
�lm surface. It should be noted that the entire experiment took 15 h, and that the GPR-based autonomous 
algorithms identi�ed the highly ordered regions in the band 5 < y < 15 mm (between red lines in Fig. 8A), cor-
responding to the uniform monolayer region, within the �rst few hours. By contrast, grid-based scanning-probe 
transmission SAXS measurements would not be able to identify large regions of interest at these resolutions in 
such a short amount of  time17.

�e collected data is corrupted by non-i.i.d. measurement noise. While all signals are corrupted by noise, we 
draw attention to the peak position q because it shows the most obvious correlation of non-i.i.d. measurement 
noise and model certainty. �e green circles in Fig. 8B (middle panel) and C (right panel) highlight the areas 
where the measurement noise a�ects the Gaussian-process predictive variance signi�cantly. Note that we have 
not used q for steering in this case, but the general principle we want to show remains unchanged across all 
experiment results. Figure 8A shows the time evolution of the exploration of the model and the impact of non-
i.i.d. noise on the model but also on the uncertainty. If q had been used for steering without taking into account 
non-i.i.d.noise into the analysis, the autonomous experiment would have been misled because predictive uncer-
tainty due to high noise levels would not have been taken into account. Figure 8 shows that the next suggested 
measurement strongly depends on the noise. We want to remind the reader at this point that the next optimal 
measurement happens at the maximum of the GP predictive variance. �e locations of the optima (Fig. 8C) are 
clearly di�erent when non-i.i.d. noise is taken into account. �e objective function without measurement noise 
(Fig. 8C, le� panel) shows no preference for regions of high noise (green circles in Fig. 8B, middle panel), where 
preference means higher function values of the GP predictive variance. In contrast, the variance function that 
takes measurement noise into account (Fig. 8C, right panel) gives preference to regions (green circles) where 
measurement noise of the data is high. �is is a signi�cant advantage and can only be accomplished by taking 
into account non-i.i.d. measurement noise. In conclusion, the model that assumes no noise looks better resolved, 
which communicates a wrong level of con�dence and misguides the steering. �e model that takes into account 
non-i.i.d. noise �nds the correct, most likely model, and the corresponding uncertainty. �e algorithm also took 
advantage of anisotropy by learning a slightly longer length scale in the x-direction which increased the overall 
model certainty. Note that the algorithm used an objective function formulation that put emphasis on high-
amplitude regions of the parameter space. �is led to a higher resolution in those areas of interest.

�e above autonomous SAXS experiment revealed interesting features from the material fabrication perspec-
tive as well. First, a somewhat surprising result is that the grain size is not observed to change signi�cantly with 
surface energy (Fig. 8A). Previous work on the assembly of polystyrene-gra�ed spherical gold  nanoparticles39 
demonstrated a signi�cant decrease in nanoparticle ordering when fabricating �lms on lower surface energy 
substrates (greater polymer-substrate interactions). Although the surface energies used in this study are similar, a 
di�erent silane was used to modify the glass surface (phenylsilane vs octyltrichlorosilane) which may di�er in its 
interaction with polystyrene. We also note that PGN-substrate interactions will be sensitive to the molecular ori-
entation of the functional groups, which is known to be highly dependent on the functionalization  procedure40. 
Second, an unexpected well-ordered band was identi�ed at 20 < x < 35 mm and y > 15 mm (between blue lines 
in Fig. 8A), corresponding to the sub-monolayer region with an intermediate surface-energy range. We believe 
that this e�ect arises from instabilities associated with the solution meniscus near the middle of the coating blade 
( x ∼ 25 mm). Rapid solvent evaporation o�en leads to undesirable e�ects including the generation of surface 
tension gradients, Marangoni �ows, and subsequent contact line instabilities. �is can result in the formation of 
non-uniform morphologies as demonstrated by the irregular region of larger grain size centered in the middle of 
the �lm and spanning the entire velocity range. Further investigations into these issues are currently in progress.

Discussion and conclusion
In this paper, we have demonstrated the importance of including inhomogeneous (i.e. non-i.i.d.) observation 
noise and anisotropy into Gaussian-process-driven autonomous materials-discovery experiments.
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Figure 8.  (top row, A) Results of an autonomous SAXS experiment probing the distribution of grain size ( ξ ) 
in a combinatorial nanocomposite sample, as a function of coordinates (x, y) representing a two-dimensional 
sample-processing parameter space, for an increasing number of measurements (N). �e sample consisted of 
a �ow-coated �lm of polymer-gra�ed nano-rods on a surface-treated substrate, where the substrate surface 
energy increased linearly from 30.5mN/m (hydrophobic) at x = 0 to 70.2mN/m (hydrophilic) at x ≈ 50mm , 
and the coating speed increased at constant acceleration ( 0.002mm/s2 ) from 0mm/s (thicker �lm) at y = 0 
to 0.45mm/s (thinner �lm) at y ≈ 50mm . �e autonomous experiment successfully identi�ed a well-ordered 
region (between red lines) that corresponded to uniform monolayer domains. Blue lines mark the region of 
solution-meniscus instability (see text). �e points show the locations of measured data points; the same axes 
and orientation are used in subsequent plots in this �gure. (middle, row B, from the le�) An exact Gaussian-
process interpolation of the complete measured data-set for the peak position q. �e data is corrupted by 
measurement errors that corrupt the model if standard, exact interpolation techniques are used (including 
GPR). �e green circles mark the regions of the largest variances in the model and the corresponding high 
errors (measurement variances) that were recorded during the experiment. On the right is the Gaussian process 
model of q, taking into account the non-i.i.d. measurement variances. �is model does not show any of the 
artifacts that are visible in the exact GPR interpolation. (bottom row, C) �e �nal objective functions for no 
noise and non-i.i.d. noise in q which has to be maximized to determine the next optimal measurement. If the 
experiment had been steered using the posterior variances in q without accounting for non-i.i.d. observation 
noise, the autonomous experiments would have been misled signi�cantly.
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It is very common in the scienti�c community to rely on Gaussian processes that ignore measurement noise 
or only include homogeneous noise, i.e. noise that is constant across measurements. In experimental sciences, 
and especially in experimental material sciences, strong inhomogeneity in measurement noise can be present 
and only accounting for homogeneous (i.i.d) measurement noise is therefore insu�cient and leads to inaccurate 
models and, in the worst case, wrong interpretations and missed scienti�c discoveries. We have shown that it is 
straightforward to include non-i.i.d noise into the steering and modeling process. Figure 5 undoubtedly shows 
the bene�t of including non-i.i.d measurement noise into the Gaussian process analysis. Figure 6 supports the 
conclusion we drew from Fig. 5 visually, by showing a faster error decline.

�e case for allowing anisotropy in the input space can be made when there is a reason to believe that data 
varies much more strongly in certain directions than in others. �is is o�en the case when the directions have 
di�erent physical meanings. For instance, one direction can mean temperature, while another one can de�ne 
a physical distance. In this case, accounting for anisotropy can be vastly bene�cial, since the Gaussian process 
will learn the di�erent length scales and use them to lower the overall uncertainty. Figure 7 shows how common 
anisotropy is, even in cases where it would normally not be expected, and how including it decreases the approxi-
mated error of the Gaussian process posterior mean. In our example, all axes carry the unit of temperature; even 
so, anisotropy is present, and accounting for it has a signi�cant impact on the approximation error.

In our autonomous synchrotron x-ray experiment, we have seen how misleading the no-measurement-noise 
assumption can be. While the Gaussian process posterior mean, assuming no noise, is much more detailed in 
Fig. 8, it is not supported by the data which is subject to non-i.i.d. noise. In addition, we have seen that the steer-
ing actually accounts for the measurement noise if included, which leads to much a smarter decision algorithm 
that knows where data is of poor quality and has to be substantiated. We showed that without accounting for 
non-i.i.d. noise this phenomenon would not arise. We would therefore place measurements sub-optimally, wast-
ing device access, sta� time, and other resources.

It is important to discuss the computational costs that come with accounting for non-i.i.d. noise and anisot-
ropy. While non-i.i.d. noise can be included at no additional computational costs, anisotropy potentially comes 
at a price. �e more complex the anisotropy, the more hyper parameters have to be found. �e number of hyper 
parameters translates directly into the dimensionality of the space over which the likelihood is de�ned. �e 
training process to �nd the hyper parameters will therefore take longer when more hyper parameters have to 
be found. However, the cost per function evaluation will not change signi�cantly. �erefore, instead of avoiding 
the valuable anisotropy, we should make use of modern, e�cient optimization methods.

During the experiment process, the GP-based autonomous experiment keeps track of the posterior variance 
function. �is function serves as validation for the scientists and can be used to con�dently terminate the process 
when an uncertainty threshold is reached. Another quantity that is available to the scientist for veri�cation and 
validation, is the change in di�erential entropy as data is collected.

While our results have shown that accounting for non-i.i.d. noise and anisotropy is highly valuable for the 
e�ciency of an autonomously steered experiment, we have only scratched the surface of possibilities. Both pro-
posed improvements can be seen as part of a larger theme commonly referred to as kernel design. �e possibili-
ties for improvements and tailoring of Gaussian-process-driven steering of experiments are vast. Well-designed 
kernels have the power to extract sub-spaces of the Hilbert space of functions, which means that constraints can 
be placed on the functions we consider as our model. We will look into the impact of advanced kernel designs 
on autonomous data acquisition in the near future.
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