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Abstract The paper deals with the problem of motion
planning of anthropomorphic mechanical hands avoid-

ing collisions and trying to mimic real human hand

postures. The approach uses the concept of “princi-

pal motion directions” to reduce the dimension of the
search space in order to obtain results with a com-

promise between motion optimality and planning com-

plexity (time). Basically, the work includes the follow-

ing phases: capturing the human hand workspace using

a sensorized glove and mapping it to the mechanical
hand workspace, reducing the space dimension by look-

ing for the most relevant principal motion directions,

and planning the hand movements using a probabilis-

tic roadmap planner. The approach has been imple-
mented for a four finger anthropomorphic mechanical

hand (17 joints with 13 independent degrees of free-

dom) assembled on an industrial robot (6 independent

degrees of freedom), and experimental examples are in-

cluded to illustrate its validity.

Keywords Motion planning, Grasping, Manipulation,
Mechanical hands.

1 Introduction

Advances in robotics are producing a number of com-

plex devices with a high number of degrees of freedom
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(DOF), lots of sensors, and sophisticated controllers to
assure stability and a good performance. These devices

include different types of robots, adapted to different

environments and tasks, and among them the most rep-

resentative instances are the humanoids (Bluethmann
et al, 2003). Particular elements of these robots are

the anthropomorphic hands, with a number of DOF

usually ranging from 12 (four fingers with 3 indepen-

dent DOF each one) to 25 (five fingers with 4 inde-

pendent DOF each one plus some DOF in the palm
(Peña et al, 2005). Examples of anthropomorphic hands

with four fingers are the Utah/MIT Hand (Jacobsen

et al, 1984), DIST Hand (Caffaz and Cannata, 1998),

LMS Hand (Gazeau et al, 2001); DLR Hand (Butter-
fass et al, 2004) and MA-I Hand (Suárez and Grosch,

2005), and examples of hands with five fingers are the

Belgrade/USC Hand (Bekey et al, 1990), Anthrobot-2

Hand (Ali et al, 1993), NTU Hand (Lin and Huang,

1996), ROBONAUT (Lovchik and Diftler, 1999), Gifu
Hand (Kawasaki et al, 2002), Shadow Hand (Shadow

Robot Company, 2003) and Bolonia Hand 3 (Lotti et al,

2005). Good discussions about robot hands have al-

ready been presented (Bicchi, 2000; Biagiotti et al, 2004).

Despite the advanced features of these mechanical
hands, one of the remaining problems in order to obtain

a good outcome from them is the autonomous deter-

mination of their movements, which are quite complex

and non-evident for the human being in the space of

generalized coordinates. This problem can be formu-
lated as a well-known motion planning problem, but

in a very large dimensional space. Thus, some new ap-

proaches are still necessary in order to find solutions in

a faster way that can be really implemented and used in
practice. This paper presents some developments in this

line, looking for procedures that allow the autonomous

motion planning of a hand-arm system, trying to mimic
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human hand postures and caring about collisions with

the environment as well as between the different parts

of the hand and the arm. The approach presented here

has been implemented on a real physical system and it

is a significant improvement and generalization of the
work first presented by Rosell et al (2009).

2 Problem Statement and Solution Overview

Let C = Ch × Ca be the configuration space of a hand-
arm system, where Ch and Ca are the configuration

spaces of the hand and of the arm, respectively. Then,

the dimension of C is equal to the number of DOF of the

hand plus the number of DOF of the arm. The problem
to be solved is the following: given an initial hand-arm

configuration cini ∈ C and a final desired one cgoal ∈ C,

which is a grasp or pre-grasp configuration, find a colli-

sion free path in C from cini to cgoal, i.e. a collision free

path for the hand-arm system. The proposed approach
looks of particular interest for the movements of the

hand-arm system once they are relatively close to the

goal configuration, where it likely exists a solution with

a linear arm movement in Ca.
The dimension of the search space for this problem

(i.e. C) is relatively large, and therefore conventional

solutions require high computational times. In this con-

text, the proposed approach is based on a reduction of

the search space dimension, which is done by looking
for a representative subspace SC

h of the hand configu-

ration space Ch, and looking for continuous valid paths

in the compound subspace SC = SC
h
× Ca. Of course,

there may be solutions in C not included in SC, thus the
selection of a proper SC (i.e. a proper SCh) is a relevant

step in the proposed approach. On the other hand, if a

solution is found in SC, for sure it is valid in C.

The main consideration that supports the reduction

of the search space is that the human hand has several
joint movements that are not (completely) independent,

and therefore there are some joint positions that can be

related in some way. A typical example is given by the

last two joints of each finger, which in general cannot
be moved independently, and, in the same way, some

other correlations can be found when the human hand

postures are carefully analyzed. These correlations can

be extrapolated to the mechanical hand in order to try

to mimic human hand postures.
In our work, a number of samples of human hand

postures are captured using a sensorized glove and then

mapped to the mechanical hand configuration space Ch.

The samples in Ch are analyzed (using a principal com-
ponent analysis) to find the direction with largest dis-

persion, which is iteratively repeated considering or-

thogonal directions until a new base of Ch is gener-

ated. Then, by selecting the first n vectors of this base

and properly choosing a bounding box Bh aligned with

these vectors and centered in the mean value of the

original set of points, a good bounded approximation

of the hand workspace in SC
h is found.

A relevant previous work in this line (Santello et al,

1998) uses an initial set of grasping configurations to
find a bidimensional grasp subspace, i.e. a reduction of

the grasp space is performed based on a set of hand

configurations used to grasp different objects, and the

dependencies between the finger joints were called pos-

tural synergies. This subspace is used in other works

for telemanipulation purposes (Tsoli and Jenkins, 2007)

and to look for grasping configurations (Ciocarlie and

Allen, 2009). In this latter case, a set of hand configura-

tions parameterized with a single parameter (even when
all the hand joints may change simultaneously) is called

an eigengrasp, and the bidimensional subspace is built

with two eigengrasps (i.e. two parameters) and used

to look for pre-grasp configurations such that, staring
from them, secure grasp are obtained closing the fin-

gers until the object is contacted. The approach can

be applied considering any number of eigengrasps, i.e.

using grasp subspaces of any dimension. One relevant

difference between these works (that are specifically ori-
ented to grasp synthesis), and that presented in this

paper (oriented to motion planning) is that here the

set of hand configurations used to determine the de-

pendencies between the motions of the finger joints is
not limited to grasping configurations, instead we use a

set of unconstrained configurations trying to cover the

whole hand workspace, thus the finger joint dependen-

cies determined in this work do not represent “grasp-

ing configurations” but general “hand movements”, for
this reason we prefer to call them “principal motion di-

rections” instead of “eigengrasps” (note that they rep-

resent “motion directions” in the hand configuration

space). The formal definition of the “principal motion
directions” is given later in Section 4.2. Dimensional-

ity reduction techniques have also been used in the se-

lection of grasping forces (Gabiccini and Bicchi, 2010)

and to synthesize human-like motion in graphic appli-

cations (Safonova et al, 2004).

The approach used in this work can be summarized
in the following steps:

1. Obtain samples of the mechanical hand configura-

tion space Ch (13 DOF) by mapping samples of the

human hand configuration space obtained using a

sensorized glove (22 DOF) (Subsection 4.1).
2. Find a representative subspace SCh of the mechani-

cal hand configuration space Ch using Principal Com-

ponent Analysis (Subsection 4.2).



3

3. Model the free space of the representative subspace

SC = SC
h
× Ca.

– Generate samples of the hand-arm subspace SC

(Subsection 5.1).

– Define a neighboring and interconnecting condi-
tion between any two samples (Subsection 5.2).

4. Build a roadmap and, given an initial and final hand-

arm configurations in C (not necessarily belonging

to SC), cini and cgoal respectively, connect them to
the roadmap and use it to find a free path between

them (Subsection 5.3).

3 Experimental Set-Up

The experimental set-up used in this work involves:

a) an anthropomorphic mechanical hand, b) an indus-

trial robot, c) a sensorized glove, d) a hand/robot sim-

ulator connected with the real elements. The main rel-

evant details about these elements are:

a) Anthropomorphic mechanical hand. We use the

Schunk Anthropomorphic Hand (SAH) (Schunk GmbH

& Co. KG, 2006), shown in Fig. 1, which is based on the
DLR hand (Butterfass et al, 2004). It has three fingers

with four joints plus the thumb with five joints, in all

of them the distal (outer) and middle flexion joints are

mechanically coupled, thus there are a total of 17 joints
with only 13 independent DOF. The extra DOF of the

thumb is called the “thumb base joint” (numbered with

“0”in Fig. 1), and moves the whole thumb with respect

to the palm.

b) Industrial robot. The hand is assembled on an in-

dustrial robot Stäubli TX 90, shown in Fig. 2, equipped

with a CS8 controller. It is a six DOF general purpose

robot arm.

c) Sensorized glove. We use a commercial sensorized

glove CyberGlove (shown in Fig. 3). It is a fully in-

strumented glove that provides 22 joint-angle measure-
ments using resistive bendsensing technology, it includes

three flexion sensors per finger, four abduction sensors

between the fingers, a palm-arc sensor, and two sensors

to measure the flexion and the abduction of the wrist.

d) Hand and robot simulator. The simulator has

been developed in our laboratory and allows the vi-

sualization of the hand, either alone or installed on the

industrial robot (shown in Fig. 4). It is used to visual-
ize the results of the planner before running the plan

in the real system. The simulator can also be used to

on-line visualize the movements of the mechanical hand

associated with the movements of the human operator
hand captured with the sensorized glove, as well as the

movements of the industrial robot associated with the

movements of the human operator wrist, which are cap-
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Fig. 1 Anthropomorphic mechanical hand SAH (each number
indicates an independent DOF).

Fig. 2 Industrial robot Stäubli TX 90 with the mechanical hand
SAH.

tured using a magnetic wrist tracker with six DOF. The
simulator includes collision detection capabilities.

The schema of the whole experimental set-up is il-

lustrated in Fig. 5, including the type of connection

between the different elements.
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Fig. 3 Sensorized glove used to capture the operator hand work-
space (each letter indicates a sensor).

Fig. 4 Hand and robot simulator including the planning envi-
ronment.

4 Hand Postures and Principal Motion

Directions

4.1 Data Acquisition and Mapping of Human Hand
Postures

The postures of a human operator hand are captured

using the sensorized glove. The operator freely moves

his/her hand in an unconstrained way, i.e. without per-
forming any specific task, trying to cover the whole

hand workspace. There is no guarantee that the op-

erator actually covers the whole workspace, but in this

way it is expected that he/she performs the most natu-
ral and evident hand movements, thus the most natural

and evident hand postures are captured. The operator

can have a continuous visual feedback of the mechanical

Motion planner
and simulator

Ethernet

Ethernet

Task manager

PCI bus

Driver card

FCU

CS8 controller

SAH

TX90

CyberGlove

Serial

Serial

Serial

Fig. 5 Schema of the experimental set-up.

Fig. 6 Human hand with the sensorized glove connected to the
mechanical hand simulator.

hand postures associated with his/her hand postures by

means of the hand simulator (Fig. 6).

In order for the mechanical hand to mimic human
hand postures, the mapping of the data obtained from

the glove sensors to the joints of the SAH mechanical

hand is done considering the following issues (see Fig. 1

and 3):

– The palm of the mechanical hand is rigid, therefore

the palm arc sensor v and the wrist flexion and ab-
duction sensors b and a are ignored.

– The mechanical hand lacks the little finger, there-

fore the sensors u, t, s and r are ignored.

– The mechanical hand has a one-to-one coupling be-

tween the medium and distal phalanx of each fin-
ger (as in general happen with the human hand),

therefore the distal phalanx sensors i, m, and q are

ignored.

– The abduction is measured in a relative way in the
glove, i.e. sensors j and n give, respectively, the rela-

tive angle between the index and the middle fingers

and between the middle and the ring fingers. There-
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Table 1 Correspondence between the joints of the SAH hand
(Fig. 1) and the CyberGlove sensors (Fig. 3).

SA Hand Joint Cyberglove Sensor

Id. Name Id. Name

0 thumb base c thumb roll
1 finger base (thumb) c thumb roll
2 proximal phalanx (thumb) e thumb inner
3 medium phalanx (thumb) f thumb outer

4 finger base (index) j index abduction
5 proximal phalanx (index) g index inner
6 medium phalanx (index) h index middle
7 finger base (medium) - medium abduction
8 proximal phalanx (medium) k medium inner
9 medium phalanx (medium) l medium medium
10 finger base (ring) n ring abduction
11 proximal phalanx (ring) o ring inner
12 medium phalanx (ring) p ring medium

fore, the mapping is done using the middle finger as

reference, i.e. the base of the middle finger (joint 7)

is fixed to zero, and sensors j and n are directly

associated to joints 4 and 10, respectively.
– The use of sensor c to control joint 1 produces a

more natural motion of the SAH hand than using

sensor d, because sensor d measures the relative ab-

duction between the thumb and the index. There-

fore sensor c is used for both joints 0 and 1.

Then, only 11 values from the 22 sensors available in the

glove are used in practice to command the joints of the
SAH mechanical hand. The complete mapping is shown

in Table 1. Note that this mapping makes the motions

of the SAH hand to be defined with 11 independent

parameters despite it has 13 DOF

4.2 Principal Motion Directions

Dimensionality reduction of a feature set is a common
preprocessing step used for pattern recognition and clas-

sification applications as well as in compression schemes.

Principal Component Analysis (PCA) is often used in

these fields to reduce multidimensional data sets to
lower dimensions for their analysis or treatment (Jol-

liffe, 2002), and it is also used as a tool in exploratory

data analysis as well as for making predictive models.

Basically, PCA involves the computation of the eigen-

value decomposition of a data covariance matrix or the
singular value decomposition of a data matrix, usu-

ally after mean centering the data for each attribute.

The larger the eigenvalues or the singular values the

larger the dispersion of the data along the correspond-
ing eigenvector direction. This analysis allows the iden-

tification of the directions of the space where the sam-

ples have larger dispersion.

Fig. 7 Top-left: Positive correlation between proximal phalanxes
(joints 8 and 11); Top-right: Negative correlation between the in-
dex and the ring abductions/adductions (joints 4 and 10); Center-
left: Positive correlation between two medium phalanxes (joints 6
and 9); Center-right: Positive correlation between a medium pha-
lanx and an abduction/adduction movement (joints 8 and 10);
Bottom-left: No correlation between the thumb base and the
medium phalanx of the index (joints 0 and 5); Bottom-right: No
correlation between the thumb base and the medium phalanx of
the ring finger (joints 0 and 12).

In this work, PCA is used to reduce the configura-

tion space Ch of the mechanical hand SAH to a more
tractable space of smaller dimension SC

h, using for that

purpose the data obtained from the hand postures of

a human operator mapped to the mechanical hand, as

described in the previous subsection. The dimension re-
duction is done based on the correlation that there ex-

ists between some joints of the mechanical hand when it

follows the hand postures of the human operator. For

instance, for a set of 13,500 hand postures captured

with the sensorized glove, Fig. 7 shows different exam-
ples of the obtained correlations between some partic-

ular pairs of joints1.

From the captured data it can be seen that the po-

sition of joint 0 of the mechanical hand (the thumb

base) is rather independent of the other hand joints
(of course, with exception of joint 1 that is completely

equivalent due to the selected mapping); two examples

are given in the bottom row of Fig. 7. This, together

1 The joint values of the SAH hand obtained from the readings
of the sensorized glove and the mapping of Table 1 are available
at http://iocnet.upc.edu/usuaris/RaulSuarez/proyectos/proa/-
PROA-Miscellanea.html.
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PMD1

PMD2

Fig. 8 Configurations of the SAH hand when it is moved along the first two PMDs.

with the fact that joint 0 moves the whole thumb with

respect to the palm and therefore changes qualitatively

the set of postures the hand can achieve, motivates the
selection of joint 0 to form part of a base of SCh. The

remaining directions of the base of SCh are obtained

applying PCA to the samples of the mechanical hand.

PCA returns a new base of the configuration space Ch,

with the base vectors ordered according to the disper-
sion of the samples along each vector direction (the first

vector indicates the direction of maximal dispersion of

the samples). The directions indicated by these vectors

in Ch are called Principal Motion Directions (PMDs).
In order to illustrate the variation of the hand configu-

ration along the PMDs, Fig. 8 shows the hand postures

along the two first PMDs, and Fig. 9 the postures re-

sulting from their linear combination.

In our experimental dataset, the first PMD repre-
sents the 42.19% of the total variance, the first two

components the 77.12%, and the first three components

the 84.71%. The total accumulated variance as a func-

tion of the number of selected first PMDs is shown in

Fig. 10. Following this result, in this work the use of up
to four PMDs has been considered enough to represent,

together with the thumb base, the desired subspace SCh

of Ch. Therefore, the search subspace SC
h is of dimen-

sion up to 5, defined by the position of the thumb base
(joint 0 of the mechanical hand) plus up to 4 PMDs

obtained from the samples of hand postures. Note that

the inclusion of the thumb base to define one of the di-

mensions of SCh is a particularity related with the use
of the mechanical hand SAH and it does not reduce the

generality of the approach, which can be applied in a

general way just considering SC
h to be defined by the

desired number of PMDs.

5 Motion Planning

The search of a collision-free path to move a robot from

an initial to a goal configuration can be performed in
different ways (Choset et al, 2005), being the sampling-

based approaches the best alternative for high DOF

problems. These approaches outperform other planners

PMD1

PMD2

Fig. 9 Configurations of the SAH hand when it is moved along
a combination of the first two PMDs.
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Fig. 10 Total variance covered when using an increasing number
of PMDs.

because they avoid the explicit characterization of the
obstacles in the configuration space C, which is a com-

plex issue even when it is done in an approximate way

for a general s ingle-chain revolute manipulator in a

polyhedric environment (Lozano-Perez, 1987). Sampling-

based approaches rely on the generation of collision-free
samples of C, in order to capture the connectivity of the

free space by connecting the samples with free paths

forming either roadmaps (Kavraki and Latombe, 1994)

or trees (Kuffner and LaValle, 2000). These approaches
are demonstrated to be probabilistic complete, and the

key issue in their performance is the ability to gener-

ate samples in those areas of C relevant to the prob-
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lem, either by using importance sampling or dimension-

reduction techniques (Geraerts and Overmars, 2006).

Some importance sampling strategies increase the

density of samples in critical areas of C by using work-

space information (e.g. van der Berg and Overmars
(2005); Kurniawati and Hsu (2006)) or information gath-

ered during the construction of the roadmap or tree

(e.g. Kavraki et al (1996); Hsu et al (2005)). Others

over-sample C and then filter non-promising configu-
rations (e.g. Boor et al (1999); Hsu et al (2003)), or

deform (dilate) the free regions of C to make it more

expansive and capture its connectivity more easily (e.g.

Saha et al (2005); Cheng et al (2006)). A more de-

tailed discussion of these strategies is given by Hsu
et al (2006). Dimension-reduction techniques, on the

other hand, focus on defining the submanifolds of C

where the solution lies (or where a solution is more eas-

ily found), and where samples are to be obtained, like
for instance submanifolds defined by those configura-

tions that satisfy kinematic closure constraints (Cortés

and Siméon, 2004), dynamic constraints (Kuffner et al,

2002), or a given set of task-dependant geometric con-

straints (Berenson et al, 2009; Murrieta-Cid et al, 2005;
Rodŕıguez et al, 2009; Stilman, 2010).

In this work, we present a new approach for the

motion planning of an anthropomorphic hand assem-

bled on a robot arm. It is of particular interest for the

hand-arm movement close to the goal configuration, i.e.
when the existence of a free path for the arm consid-

ering a bounding volume for the hand is unlikely to be

found, and therefore the movements must be planned

in the high dimensional space defined by the hand-arm
degrees of freedom. Berenson et al (2007) presented a

related work in this line, however it focuses on the de-

veloping of a cost function that takes into consideration

the surroundings of the object to be grasped and the

reachability of the manipulator when the goal grasping
configuration is selected, while the planning is done us-

ing the high-dimensional configuration space. Here, the

goal configuration is provided by grasp synthesis algo-

rithms (Rosales et al, 2011; Rosell et al, 2005), and the
contribution relies in the efficiency of the motion plan-

ning algorithm, which is done by sampling hand con-

figurations from lower dimensional subspaces defined

by subsets of PMDs, and simultaneously sampling arm

configurations around the segment that connects the
initial and the goal arm configurations. Note that, both

the initial and final configurations do not necessarily be-

long to the lower dimensional subspace since it is not an

objective in those previous works. Though, the PMDs
are embedded in the configuration space as described

in Section 2, and thus, the initial and final configura-

tion are neighbors to the samples generated using the

0 θh1

θh2

c
h = E′

sc
h + b

ê1
ê2

b

λ1

−λ1

Fig. 11 A 2-dimensional space Ch modelled with two PMDs,
ê1 and ê2, obtained from the input dataset (gray points). The
subspace SCh is 1-dimensional and defined by E′ = (ê1). Samples
(big red dots on the ê1-axis) are obtained from the sampling box
Bh that in this case is the segment [−λ1, λ1].

caini cagoal

Bh

Ba(caini) Ba(cagoal)Ba(pi) Ba(pi+1)

2ρa

≤ ρa

Rn

R6

Rdim(SCh)

Fig. 12 Samples of the hand-arm system as a composition of
arm configurations and hand configurations.

PMDs and their interconnection can be done in that
space. A different approach to solve this issue when the

interconnection is done in the lower dimensional space

was proposed in (Suárez et al, 2009), where the initial

and final configurations are used to define an additional

principal motion direction, such that they belong to the
lower dimensional space by construction. The following

subsections detail the sampling issues and the proposed

general planning algorithm.

5.1 Sample generation

The basic features of the procedure to sample hand-arm

configurations are listed below, and then the sampling
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algorithms are formally presented. The features are the

following:

1. A random sampling source is considered.

2. Hand configurations are sampled from Bh, an axis-

aligned box in SC
h, with each box side, 2λi, propor-

tional to the deviation of the data set in the corre-

sponding principal motion direction. Let:
– E′ = (ê1, . . . , êH) be a matrix with a base of

SC
h as columns,

– sc
h = (e1, . . . , eH) with ei ∈ [−λi, λi] be a sam-

ple obtained with uniform sampling inside Bh,
– b be the mean value of the data set used for the

PCA analysis.

Then, the joint values c
h of the hand are obtained

as (Fig. 11):

c
h = E′

sc
h + b (1)

In the present work, the dimension of SCh is not a

fixed parameter but a parameter that is iteratively
increased by the planning algorithm, as required by

the task. Correspondingly, the number of columns

of E′ is iteratively increased, starting with two: the

first corresponding to the motion of the thumb-base
and the second to the motion defined by the first

PMD.

3. A sampling region for the arm configurations is de-

fined around the segment sa that connects caini and

c
a
goal, the initial and the goal arm configurations.

This region is defined as the union of hypercubes,

Ba(pi), of side 2ρa centered at evenly spaced points

pi ∈ sa separated a distance d ≤ ρa (Fig. 12). The

order in which the hypercubes are swept follows the
Van der Corput sequence (Kuipers and Niederreiter,

2005), i.e. considering sa of unitary length, points pa
are located along sa at the following distances from

c
a
ini: 0, 1, 0.5, 0.25, 0.75, 0.125, . . . .

4. To obtain a collision-free hand-arm configuration,
an arm configuration is sampled from each hyper-

cube Ba(pi) and a hand configuration sampled from

Bh is associated to it, until a non-collision hand-arm

configuration is found. This is done trying up to nA

arm configurations and for each of them up to nH

hand configurations, using each time an increasing

number of PMDs.

Algorithms 1 and 2 detail, respectively, the sam-

pling procedures for the arm and the hand. They are

called from the main algorithm (detailed later in Sub-

section 5.3) that has the values nH and nA as fixed
input parameters, and ρa as an input parameter that

takes increasing values. The following functions are used

in Algorithms 1 and 2:

Algorithm 1 SampleArm
Require:

step: Real value in the range [0, 1]
ρa: Half-size of the sampling hypercube
maxtrials: Maximum number of trials to obtain a valid sample

Ensure:

ca: An arm configuration free from self-collisions if found; or
NULL otherwise

i = 0
while i < maxtrials do

ca= caini + step · (cagoal − caini) + RAND(DIM(Ca),[−ρa, ρa])

if SELFCOLLISION( c
a) = false then

return ca

end if

i = i+ 1
end while

return NULL

Algorithm 2 SampleHand
Require:

ca: A configuration of the arm
dimSCh: Dimension of SCh

maxtrials: Maximum number of trials to obtain a valid sample
Ensure:

c: A hand-arm configuration free from collisions if found; or
NULL otherwise

i = 0
while i < maxtrials do

sc
h= RAND(dimSCh,[0,1])

c
h= MAP(sch)

c=(ca, ch)
if SELFCOLLISION(c) = false then

if COLLISION(c) = false then

return c

end if

end if

i = i+ 1
end while

return NULL

– RAND(k,[a, b]): Returns a vector of dimension k whose
components have random values in the range [a, b].

– SELFCOLLISION(c): Takes as a parameter either a hand-

arm configuration or an arm configuration. In the

former case the function returns true if c makes the
hand-arm system to be in self-collision, or false oth-

erwise. In the later case the function returns true

if c makes the arm to be in self-collision, or false

otherwise.

– COLLISION(c): Returns true if the input configuration
c ∈ C makes the hand-arm system to be in collision

with the environment, or false otherwise

– DIM(S): Returns the dimension of the space S.

– MAP(sch): Returns the configuration c
h ∈ Ch corre-

sponding to sc
h ∈ SC

h, as computed by Eq. (1).
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Algorithm 3 ConnectSample
Require:

G: Roadmap
s: Sample

Ensure:

G: Updated roadmap

ADDNODE(s,G)

Neigh = FINDNEIGHBORS(s,G)

for all g ∈Neigh do

if SAMECOMPONENT(g,s,G)=false then

if LOCALPLAN(g,s) then

ADDEDGE(g,s,G)

UPDATE(G)

end if

end if

end for

return G

5.2 Sample interconnection

The main features of the interconnection procedure are

the following:

1. The maximum number of neighboring samples is
limited to the closest K samples, being K a pre-

defined value.

2. All the samples generated within the hypercube cen-

tered at c
a
ini, B

a(caini), are forced to have cini as a
neighboring configuration, irrespective of whether

c
a
ini belongs to the closest K neighbors or not. The

same is done for the goal configuration c
a
goal.

Algorithm 3 shows the procedure that performs the

connection of a sample to the roadmap. The following
functions are used in this algorithm:

– FINDNEIGHBORS(s,G): Finds the K-nearest neighbors

of s from all the nodes of the roadmapG. The neigh-
boring threshold is set equal to the distance between

cini and cgoal.

– LOCALPLAN(g,s): Returns true if the rectilinear path

connecting g and s is collision-free, or false other-

wise. The test is done by collision-checking config-
urations sampled along the path following the Van

der Corput sequence and verifying that all of them

are collision-free. The discretization is small enough

not to miss any obstacle in the environment.
– ADDNODE(s,G): Adds node s to graph G.

– ADDEDGE(s,r,G): Adds edge (s,r) to graph G.

– SAMECOMPONENT(s,q,G): Returns true if nodes s and

q belong to the same connected component of the

graph G, or false otherwise.
– UPDATE(G): Updates the connected components of

graph G.

Algorithm 4 RoadMap
Require:

cgoal: Goal configuration
cini: Initial configuration
ρa: Initial half-size of the sampling hypercubes
nA: number of arm configurations per sampling hypercube
nH : number of hand configurations per arm configuration
N : Maximum number of samples to consider

Ensure:

path: The sequence of nodes connecting cini and cgoal

G← ∅

ADDNODE(cini,G)

ADDNODE(cgoal ,G)

numSamples = 2
k = 1
repeat

ρa = k · ρa
k = k + 1

maxsteps = STEPS(ca
ini, c

a
goal , ρa)

searchRange = [0, 1]
for i = 1 to maxsteps do

step=VANDERCORPUT(i,maxsteps)

if step ∈ searchRange then

for j = 1 to nA do

if c
a= sampleArm(step, ρa) then

dimSCh = 2
for h = 1 to nH do

if c= SampleHand(ca, dimSCh) then

ConnectSample(c, G)
if SAMECOMPONENT(G,cini, cgoal) then

return FINDPATH(G,cini, cgoal)

end if

searchRange=UPDATESEARCHRANGE()

exit j-loop
else

dimSCh = dimSCh+ 1
end if

numSamples = numSamples+ 1
end for

end if

end for

end if

end for

until numSamples > N

return failure

5.3 Main algorithm

The main algorithm is a probabilistic roadmap plan-

ner that samples and interconnects the configurations
as detailed in the previous sections. It is an easy-to-tune

adaptive algorithm whose principal features are:

1. The dimension of the hand search space SC
h is it-

eratively increased when no collision-free hand-arm

configurations is found for a given arm configura-

tion in Ca, i.e. for difficult regions of the configura-

tion space C more complex hand postures are suc-
cessively tried.

2. The volume of the arm search space is iteratively in-

creased each time the attempt to connect the initial
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caini
c
a
goal

cini

cgoals0

s1s2

dini

dgoal

Ba(caini)
Ba(cagoal)Ba(ca)

Rn

R6

Fig. 13 Example of a roadmap under construction to illus-
trate the update of the search range [dini, dgoal]. Initially d ∈

[dini, dgoal] = [0.0, 1.0] but after having sampled three config-
urations there are two connected components and the range is
[0.5, 1.0]: a) dini equals 0.5 since s2 is the configuration of the
same connected component as cini that is obtained from the far-
thest hypercube, Ba(ca), with ca located at a distance 0.5 from
caini; b) dgoal remains unchanged since s1, the unique configura-
tion connected to cgoal was obtained from Ba(cagoal). The update
makes that further exploration of the sampling region for the arm
configurations be constrained to the hypercubes Ba located at a
distance d ∈ [dini, dgoal ] = [0.5, 1.0] from caini.

and the goal configurations fails, i.e. if no solution is

found by sampling all the hypercubes Ba (Fig. 12),
their size is increased and a new iteration of the

algorithm is launched.

3. The main algorithm keeps track of the connected

components that contain cini and cgoal in order to
explore only a subset of the hypercubes Ba(pi) that

define the sampling region for the arm configura-

tions. This is done as follows. Let (Fig. 13):

– dini be the maximum distance from c
a
ini to the

center of a hypercube that has generated a sam-
ple that pertains to the same connected compo-

nent as caini,

– dgoal be the minimum distance from c
a
ini to the

center of a hypercube that has generated a sam-
ple that pertains to the same connected compo-

nent as cagoal.

Then, only those hypercubes centered at points lo-

cated at a distance d ∈ [dini, dgoal] from c
a
ini are

likely to generate samples that aid to interconnect
the connected component of cini with that of cgoal,

as illustrated in Fig. 13 (take into account that the

distance from c
a
ini to c

a
goal is considered unitary and

that the hypercubes Ba are swept following the Van
der Corput sequence as explained in Subsection 5.1).

4. There are no critical parameters to be tuned, as dis-

cussed in detail in Section 7.

Algorithm 4 formally details the planning procedure

that returns a path connecting cini and cgoal. The fol-

lowing functions are used:

– STEPS(ci, cj , ρ): Computes the number of points evenly

spaced along the segment defined by ci and cj , such

that this number is a power of two and that the dis-
tance between two consecutive points is below the

given threshold ρ.

– VANDERCORPUT(i, max): Computes the value of the

ith element in the Van der Corput sequence of max

elements, with max a power of two.
– UPDATESEARCHRANGE(): Updates the range [dini, dgoal].

– FINDPATH(G,s,q): Returns a path in graphG connect-

ing nodes s and q using the A∗ algorithm. Once a

solution path is found it is smoothed by solving a
new (small) roadmap composed of the nodes of the

path and all collision-free edges between them.

6 Experimental Validation

The validation of the proposed approach has been car-

ried out both in a virtual environment with simulated

elements, as well as in a real scene with the actual hand-

arm system.

6.1 Implementation issues

A robot simulation toolkit for motion planning and tele-

operation guiding has been developed and it is used
to generate and validate the paths before executing

them on the physical devices. For the simulator de-

velopment, three guidelines were considered (Pérez and

Rosell, 2009): ability to run on different platforms, code

accessability and software modularity. The first two led
to the use of cross-platform and open-source tools such

as Qt for the user interface, Coin3D for the 3D render-

ing, PQP for the collision detection, and Boost Graph

for the graphmanagement. Regarding the software mod-
ularity, the project was conceived to be library-based,

thus, different libraries have been developed such as a

Geometric library for the treatment of the bodies and

their kinematic relation, a Sampling library with differ-

ent sampling strategies, e.g. Random, Halton (Halton,
1960), SDK (Rosell et al, 2007), a Planning library es-

sentially composed of sampling-based planners, e.g. the

approach proposed in this work, a Device library for the

communication with different devices such as sensorized
gloves, robot hands and arms and haptic devices, and,

finally the GUI library that implements the user inter-

face and library management.
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Fig. 14 Qualitative comparison between the approach that considers the full hand configuration space (top) and the proposed
approach that reduces the hand workspace using the PMDs (bottom). The use of PMDs resulted in a path composed of a smooth
sequence of human-like postures.

Fig. 15 Simulation of a solution path and real execution in the actual hand-arm system described in Section 3.

Table 2 Comparison in averaged values (over 100 runs) between
the proposed approach with the hand workspace reduced using
PMDs and the case with the search space equal to the full con-
figuration space.

Type of search space considered Reduced Full

Time to find a solution [s] 10.39 915.28
Smoothing time [s] 0.096 15.20

Final neighboring threshold (ρa) 0.0013 0.0631
Maximum num. of trials (j × h loops) 22.55 270.44

Total num. of samples (numSamples) 698.82 7274.78
Total num. of nodes in the PRM 29.18 567.22
% of PRM nodes generated with:

thumb-base + 1 PMDs 22.4% N/A
thumb-base + 2 PMDs 26.5% N/A
thumb-base + 3 PMDs 16.5% N/A
thumb-base + 4 PMDs 34.7% N/A

Total nodes in the solution path 3.66 3.22

6.2 Evaluation of the use of PMDs

As a benchmark, the task of grasping a can on a ta-

ble is suggested. The final desired configuration of the
hand is given; note that it can be either a grasp or pre-

grasp configuration, which can be obtained with differ-

ent approaches (e.g. Ciocarlie and Allen (2009); Roa

Table 3 Parameters of the planner (the values shown for the
adaptive parameters are the initial ones). The values in paren-
thesis are used when no PMDs are considered.

ρa K N nA nH

0.001 10 100 (10,000) 10 (20) 10 (20)

and Suárez (2009)). The result of the proposed planner

is compared with the case where no PMDs are used, i.e.

samples of the hand are obtained from the whole hand

configuration space.

The quantitative results for the planning approach

are summarized and compared in Table 2, that show
the values obtained for 100 runs. These results were

obtained using a desktop computer equipped with a

3.00GHz Intel Core2 CPU, running Windows operat-

ing system and using the planner parameters shown in

Table 3. The maximum number N of samples was cho-
sen large enough to allow finding a solution in all cases,

i.e. no failure runs happened.

The results show a noticeable decrease in the num-

ber of samples required when using PMDs (less than the

10% of the samples required without using PMDs), and
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also a decrease in computational time (more than 80

times faster). This is basically due to the fact that using

PMDs collision-free samples are more easily found. The

maximum number of PMDs needed to solve this task

was 4 in all the runs, i.e. the difficult parts of the path
always required samples of a 5-dimensional subspace

SC
h (generated by the thumb-base and the first four

PMDs). On the contrary, parts of the path farther from

the obstacles were sampled with lower-dimensional sub-
spaces. The mean percentage of PRM nodes generated

with 2, 3, 4 and 5-dimensional subspaces is reported in

the table. The difficult parts of the path also required

more trials to obtain free hand-arm configurations, i.e.

more passes within the h and j for-loops of the main
algorithm. Using PMDs the mean maximum number of

trials was smaller (less than 10% of the required with-

out using PMDs). Also, since using PMDs required less

passes of the algorithm, the final arm search space (de-
termined by ρa) was smaller than without using PMDs,

resulting in paths more close to the rectilinear segment

connecting cini and cgoal.

The qualitative results are also interesting (see Fig.

14). Using PMDs the solution path resembles a se-
quence of human-like postures, while the solution found

when sampling the whole hand configuration space con-

tains awkward hand postures, even though a smoothing

procedure is always applied (described above in func-
tion FINDPATH).

As it was previously mentioned, a solution path was

successfully implemented on the actual hand-arm sys-

tem described in Section 3. Fig. 15 shows the screen-

shots of both the virtual and the real path at their
equivalent points on the path (see also the accompa-

nying video for a continuous depiction of the exam-

ple). The implementation on the real hand-arm system

makes visible the usefulness of the proposed algorithms.

6.3 Performance study

Assuming a given grasp or pre-grasp configuration, the

proposed approach looks for the final approaching mo-
tion, where the collisions are more likely to occur with

the hand rather than with the arm (i.e. collision-free so-

lution paths will require finger motions and only slight

arm deviations from the straight motion). With this

in mind, the planner has been evaluated on several
problems, four of them shown in Fig. 16, with differ-

ent degrees of difficulty. In comparison with the task

of Section 6.2: a) the task in Fig. 16-1 has a narrower

passage; b) the task in Fig. 16-2 has the goal configura-
tion closer to the obstacles; c) the task in Fig. 16-3 has

the rectilinear path to the goal more obstructed by the

presence of the T-shaped object and of the shelf itself;

1 2

3 4

Fig. 16 Goal configurations of the hand-arm system for some of
the tasks used to test the planner: 1) Cans on a desk; 2) Can in
a box; 3) Cans in a shelf; 4) T-shape object in a complex scene.

d) the task in Fig. 16-4 has a more cluttered environ-

ment with a longer narrow passage (this task is similar
to that used in (Berenson et al, 2007)). The solution

paths required motions of the finger joints, maintaining

the robot configurations as close to the rectilinear path

as possible, and resulted in smooth sequences of human-
like configurations (Fig. 17). The algorithm was run in

a computer with a I5 processor with 4 cores and 4 Gb

of RAM, under Windows 7 64-bit. The testing proce-

dure was parallelized using the MPI library (Gropp W.,

1999) in order to use all cores. The quantitative results
are shown in Table 4. Note that the fourth task re-

quired the generation of more samples than the third

task, since the environment is more cluttered and many

samples resulted in collision, but could be solved with a
PRM composed of less nodes because the narrow pas-

sage was more aligned with the direction connecting

cini and cgoal. Therefore, the time to find a solution

was larger in the third task because the validation of

the PRM edges is time-consuming.

Table 4 Comparison of the performance of the planner used to

solve different problems. These values are the means from 1000
runs. Times in seconds.

Problem 1 2 3 4

Time to find a solution 21.06 7.75 71.64 24.09
Smoothing time 0.124 0.022 0.821 0.142

Number of samples 1188.7 437.7 2093.8 2205.6
Nodes in the PRM 53.6 24.6 131.7 81.9
Nodes in solution path 3.9 3.4 4.2 4.9
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Fig. 17 Some screen shots of the solution paths of two tasks. Note how the motion of the fingers avoid collisions.

7 Discussion

The value of ρa determines how far the arm path can

be from the rectilinear segment in Ca that connects caini
and c

a
goal. During the final approaching motion to grasp

an object, the potential collisions are likely to occur

with the hand, not with the arm. Therefore, finger mo-

tions are usually required to avoid collisions, although
slight arm deviations from the straight motion may

be of great help. The value of ρa also determines the

number of samples considered for each pass of the gen-

eral loop, i.e. the number of hypercubes Ba considered,

although the neighboring threshold is an independent
value and configurations sampled from non-contiguous

hypercubes can be connected in the roadmap. The value

of ρa is iteratively increased, and the initial chosen value

is not a very critical issue. It has to be neither too small
(since then its increase could be too slow and too many

samples could be required), nor to large (since then the

search space could be too large and also too many sam-

ples could be required). Good results were obtained for

different tasks using values of ρa between 0.001 and 0.05
(ρa is given as a non-dimensional parameter because the

range of each arm joint was normalized to [0, 1]).

The proposed approach determines the hand pos-

tures using as few PMDs as possible, which results in

smoother motions all along the solution path. Moreover,
the use of PMDs results in a better computational effi-

ciency because the percentage of collision-free samples

is much higher than in the case where the finger joints

are directly sampled.

The values nH and nA allow several trials in the

difficult parts of the path, giving more freedom to find a

collision-free hand-arm configuration. These values are

by no means critical, since the successive passes of the

main loop also permit the resampling of the difficult
areas.

The distance threshold used to consider two con-

figurations as neighboring samples is set equal to the

distance between the initial and the goal configuration,
it is not a user-defined parameter. In the scope of the

final approaching motion to grasp an object, and tak-

ing into account that the algorithm tightly bounds the

search space, this selection allowed to find the connec-

tivity between the initial and the goal configurations
using much less samples.

The paths generated over several runs on the same

example are obviously different but qualitatively quite
similar. The reason is that the approach always starts

by sampling within regions of increasing volume cen-

tered along the rectilinear path that connects the initial

and the goal robot configurations.

8 Conclusions

The paper has presented a motion planner for a hand-

arm robotic system. The proposal pursues efficiency
and human-likeliness in the hand postures. Human hand

workspace is captured using a sensorized glove and map-

ped to the mechanical hand workspace where the most

relevant principal motion directions that capture the

(human-like) couplings can be identified using Princi-
pal Component Analysis. Both aims can be achieved by

considering, for the finger joints, the lower-dimensional

subspace determined by the main principal motion di-

rections.

The planner is focused on the final approaching mo-

tion to a grasp or pre-grasp configuration. Planning is

done with a probabilistic roadmap planner, and the di-

mensionality reduction in the hand search space results
in lower computational times. The proposed approach

has no critical parameters to be tuned. The hand search

space is iteratively increased in dimension and the arm

search space in volume, as much as it is required by the
difficulty of the task. The validity of the approach has

been demonstrated in both simulations and real exper-

iments.
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Rodŕıguez A, Pérez A, Rosell J, Basañez L (2009)
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