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Abstract— In this paper, we consider the problem of au-
tonomous navigation with a micro aerial vehicle (MAV) in
indoor environments. In particular, we are interested in au-
tonomous navigation in buildings with multiple floors. To
ensure that the robot is fully autonomous, we require all
computation to occur on the robot without need for external
infrastructure, communication, or human interaction beyond
high-level commands. Therefore, we pursue a system design
and methodology that enables autonomous navigation with real-
time performance on a mobile processor using only onboard
sensors. Specifically, we address multi-floor mapping with
loop closure, localization, planning, and autonomous control,
including adaptation to aerodynamic effects during traversal
through spaces with low vertical clearance or strong external
disturbances. We present experimental results with ground
truth comparisons and performance analysis.

I. INTRODUCTION

We are interested in the problem of surveilling and ex-

ploring environments that include both indoor and outdoor

settings. Aerial vehicles offer mobility and perspective ad-

vantages over ground platforms and micro aerial vehicles

(MAVs) are particularly applicable to buildings with multiple

floors where stairwells can be an obstacle to ground vehicles.

A challenge when operating in indoor environments is the

lack of an external source of localization such as GPS.

For these reasons, in this work we focus on autonomous

navigation in buildings with multiple floors without requiring

an external source of localization or prior knowledge of the

environment. To ensure that the robot is fully autonomous,

we require all computation to occur on the robot without

need for external infrastructure, communication, or human

interaction beyond high-level commands. Therefore, we pur-

sue a system design and methodology capable of autonomous

navigation with real-time performance on a mobile processor

using only onboard sensors (Fig. 1); where in this work

autonomous navigation considers multi-floor mapping with

loop closure, localization, planning, and control.

The paper consists of three parts: (1) a system overview

that details our approach and places it into context with

existing methodologies (Sect. II); (2) extensions necessary

to permit operation onboard the robot in multi-floor environ-

ments and to compensate for external aerodynamic effects

(Sect. III); and (3) experiment results that characterize system

S. Shen, N. Michael, and V. Kumar are with the GRASP Laboratory,
University of Pennsylvania, Philadelphia, PA 19104, USA. {shaojie,
nmichael, kumar}@grasp.upenn.edu

We gratefully acknowledge the support of NSF grants IIS-0427313
and IIP-0742304, ARO Grant W911NF-05-1-0219, ONR Grants N00014-
07-1-0829 and N00014-08-1-0696, ARL Grant W911NF-08-2-0004, and
Lockheed Martin.

Fig. 1. The experimental platform with onboard computation (1.6 GHz
Atom processor) and sensing (laser, camera, and IMU).

performance and accuracy and demonstrate application in

multi-floor environments (Sect. IV).

We note that the topic of autonomous navigation with a

MAV is addressed by others in the community with some

similarities in approach and methodology. Relevant to this

paper is the work of Bachrach et al. [1, 2], Grzonka et al. [3],

and Blösch et al. [4] with results toward online autonomous

navigation and exploration with an aerial vehicle. The major

points of differentiation between existing results and our

work are threefold. First, all the processing is done onboard

requiring algorithms that lend themselves to real-time com-

putation on a small processor. Second, we consider multi-

floor operation with loop closure. Third, we design adaptive

controllers to compensate for external aerodynamic effects

which would otherwise prohibit operation in constrained

environments.

II. METHODOLOGY AND RELATED LITERATURE

We are interested in real-time autonomous navigation in

multi-floor indoor environments using an aerial vehicle with

pragmatic constraints on available computational resources

(speed and memory). Therefore, we must address the prob-

lems of mapping, localization, planning, and control given

these system requirements. Each of these topics covers a

breadth of literature and as such we focus here only on

research that directly impacts our system design and method-

ology. We evaluated many strategies in the development of

the system and will motivate algorithm selection based on

this evaluation but will restrict any quantitative analysis to

only those methods used in the experiments (Sect. IV). The

discussion follows the logical flow of the system design

(Fig. 2), but first we provide relevant notation.
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Fig. 2. Architecture diagram showing the important software modules with update rates.

A. Notation

The world frame, W , is defined by axes xW , yW , and zW ,

with zW pointing upward. The body frame, B, is attached

to the center of mass of the quadrotor with xB coinciding

with the preferred forward direction and zB perpendicular to

the plane of the rotors pointing vertically up during perfect

hover. We use ZYX Euler angles to model the rotation of the

quadrotor in the world frame. To get from W to B, we first

rotate about zW axis by the yaw angle, ψ, then rotate about

the intermediate y-axis by the pitch angle, θ, and finally

rotate about the xB axis by the roll angle, φ. The rotation

matrix that transforms coordinates from B to W is given by

R = RψRθRφ

where Rφ, Rθ, and Rψ are elementary rotation matrices with

respect to the x, y, and z axes. The six degree-of-freedom

(DOF) pose of the center of mass in the world frame is

defined by {x, y, z, φ, θ, ψ}.

B. Pose Estimation

A scanning laser range sensor retrofitted with mirrors for

beam redirection to the floor and ceiling serves as a primary

source of information for position and yaw estimation. We

evaluated several laser-based methods for pose estimation

such as exhaustive search [5] and feature-based approaches

[6, 7]. However, as the vehicle dynamics require pose es-

timates with update rates of 20 Hz and our limited onboard

computational resources, we chose the Iterative Closest Point

(ICP) algorithm [8], which yields a robust and inexpensive

continuous pose estimate. We make use of a grid based

search [9] to speed up the computationally expensive closest

point search in ICP. The result of the ICP algorithm is an

estimate of {x, y, ψ}. The algorithm implementation is able

to run at 20 Hz and requires approximately 20% of the total

CPU time of the onboard processor.

A Kalman Filter (KF), similar to [3], fuses IMU data with

redirected laser scans to provide altitude estimation (Sect. III-

B). The remaining state variables, {φ, θ}, are estimated using

the onboard IMU.

C. Simultaneous Localization and Mapping

We address the problems of mapping and drift compensa-

tion via an incremental simultaneous localization and map-

ping (SLAM) algorithm. Both particle filter-based occupancy

grid [10] and feature-based [11, 12] methods perform well

in practice. However, after evaluating these approaches, we

found the demands too strenuous for the onboard processor.

Therefore, we pursue a simplified occupancy grid-based

incremental SLAM algorithm.

Given the incremental motion of the robot provided by

ICP-based scan matching and the IMU, we correct the error

in {x, y, ψ} by aligning incoming laser scans against the

existing map using a windowed exhaustive grid search. The

cost-map generated from the obstacles in the existing map

are approximated by an image distance transform [13]. If a

stable floor transition is detected by the pose estimator, we

create a new layer in a multi-layered occupancy grid. The

incremental SLAM algorithm runs at 10 Hz and consumes

less than 30% of the total CPU time.

Unlike particle filter-based approaches, our incremental

SLAM algorithm does not embed loop closure functionality.

To correct the global inconsistency caused by incremental

SLAM, we employ vision-based techniques to enable robust

loop closure detection that does not depend on the actual

pose estimation error [14]. A fixed size visual vocabulary is

constructed offline by clustering a large number of SURF

features collected from different environments [15]. The de-

tected SURF features of each incoming image are converted

into the vocabulary format and matched against previous

images via histogram voting. Any matched loop closure

candidates are further verified by scan matching.

Loop closures add constraints to a pose graph, where each

node in the graph is a sparse sample of the robot poses and

their associated sensor data. Akin to the methods of [16],

we apply an optimization based on an Iterative Extended

Kalman Filter (IEKF) to create a globally consistent pose

graph configuration. The optimization occurs in the full

6-DOF pose space with the assumption that closure only

happens at the same floor level. From this optimization, we

resolve a globally consistent multi-floor map and pose graph.

Approximations that further speed up the optimization are

detailed in Sect. III-C.

D. Information Fusion for Control

To ensure high-rate, accurate, and drift-free pose estimates

for feedback control, we use two separate Extended Kalman

Filters (EKF) to fuse and boost the pose estimate to 100 Hz.

The first EKF combines the 20 Hz pose estimate and the
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10 Hz SLAM pose correction. The process update is:

x = f(x,u) = x ⊕ u

where x is the pose estimate, u is the incremental motion

provided by the pose estimator, and ⊕ is the pose update

function defined in [17]. The information from the pose

estimator and SLAM are not independent but the major role

of this EKF is to provide smooth compensation for delay in

the SLAM estimate introduced by large-scale loop closure

and map corrections. We additionally employ a delayed

measurement update scheme to match the timing of the

different sources of information driving the pose estimate.

The second EKF combines the 20 Hz pose estimate from

the first EKF and the 100 Hz IMU data to provide 100 Hz

pose and linear velocity estimates in world frame. The final

estimation output has an average delay of 0.01 s and feeds

directly into the feedback control loop of the robot for

position and velocity control.

E. Planning and Control

The focus of this work is primarily the mapping and

localization required for autonomous navigation. As such,

we detail preliminary approaches to planning and control

here and defer discussion of ongoing efforts to Sect. V.

Given the current pose estimate of the robot and map

of the environment, we pursue two path planning solutions:

naive waypoint following with proportional feedback control

based on a desired goal and the current state, and an

incremental sampling-based method (RRT⋆) [18]. Either case

treats the robot as a point-model kinematic system with

orientation (about zW ). We employ proportional-derivative

feedback control laws to transform these kinematic inputs to

appropriate dynamic control inputs [19]. Tuning of control

gains is accomplished via optimal control methods (LQR)

based on a linearized system model [20].

III. EXTENSIONS

In the previous section we described the system design

and discussed algorithm selection based on performance

requirements and processor/sensor constraints. We now detail

extensions to these algorithms that permit real-time operation

on multiple floors. A consequence of these extensions are

approximations that decrease resource demands but introduce

limitations. Additionally, we discuss online estimation of

aerodynamic effects that result due to wind or propeller

backwash in small corridors or near walls.

A. Environment Assumptions

As the domain of interest is indoor environments and

periphery, we assume 2.5 D environment models formed by

collections of vertical walls and horizontal ground planes,

all assumed to be piecewise constant. Let [xs, ys, zs]
T be

the laser scan endpoints in the body frame. We can project

the laser scans to a horizontal plane by:

[

xg, yg, zg
]

T = RθRφ
[

xs, ys, zs
]

T

(a) (b) (c)

Fig. 3. Loop closure optimization of Sect. III-C. A robot transitions through
pose graph nodes P1–P5 with loop closure detected between P1 and P5

(Fig. 3(a)). After continuing, loop closure occurs again between P3 and P9

(Fig. 3(b)), but any future optimization updates view the loop as previously
closed and only consider P1:5–P9 (Fig. 3(c)).

We eliminate the scans that hit the floor or ceiling, which are

generally not useful for scan matching, by comparing zg with

the deflected laser scans pointing upward and downward.

Although this approach largely simplifies the challenges of

full 3D scan matching using only 2D laser range finders, the

2.5 D environment assumption is violated in highly clustered

and outdoor environments with natural structure. In our

experiments we see that partial structure in the environment

satisfies this assumption and the overall performance is

acceptable.

B. Altitude Measurement

We measure the variation in altitude with scans pointing

to the floor and use this value to approximate the variance

used in the measurement update of the KF. If the variation is

too high, generally due to uneven surfaces or during a floor

level change, we discard the current laser measurement and

defer the measurement update until a stable measurement

is obtained. An additional mirror deflects scans vertically

upward toward the ceiling. These measurements provide

additional robustness should there be no stable downward

measurements available. When no upward or downward laser

measurements are available, we use an onboard pressure

sensor for short term measurement updates and force the

robot to lower its height. Corrections of accumulated errors

caused by frequent floor transitions are resolved through loop

closure.

C. Incremental, Approximate Loop Closure

Loop closure for large loops is typically computationally

expensive with significant memory requirements. While sev-

eral methods exist for reducing the computational burden [16,

21, 22], we found that these methods are too demanding for a

1.6 GHz processor. With the understanding that we are more

concerned with global consistency than absolute accuracy,

we propose a mild extension that results in an incremental,

but approximate approach.

As shown in Fig. 3, the general idea of this approach

follows: a robot travels from P1 to P5. Loop closure is

detected between P1 and P5; we contract this loop to P1:5.

We do not discard nodes in the pose graph as these are

required for closure detection. However, we do ignore future

iterations on this loop. Therefore, if the robot travels from

P5 to P9, where a loop closure is detected between P3 and
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P9, we do not correct any pose graph configuration inside

the loop P1:5. In this way, we only close the “new” loops.

Although the proposed method maintains a globally con-

sistent map, it does not improve any loop structure that

is already corrected, and is therefore approximate. Closing

inner loops, ignoring this approximation, yields solutions

consistent with traditional approaches. This will lead to

locally distorted maps (i.e. the walls bend slightly), but the

overall loop structure is correct. In practice, however, we find

that even a slightly distorted map is still sufficient to localize

the robot even in environments with multiple loops.

Our current IEKF optimizer has a complexity of O(n),
where n is the total number of poses in the loop. However,

it will be straight forward to adapt this approach to a more

advanced optimization technique that has a complexity of

O(log n) [22].

D. Estimating and Compensating for Unmodeled Aerody-

namics

In order to account for unmodeled aerodynamics we

consider the second order model of the robot with additive

disturbances:

m
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z̈
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0
0

−mg



 +R





0
0
F



 −





fx
fy
fz





where F is the total force output from the rotors, and

[fx, fy, fz]
T is the disturbance vector assumed to be a

slowly varying term. While this term can clearly model

changes in lift caused by changes in the aerodynamics and

effects of the downwash or constant wind gusts, it can also

model changes in the trim caused by a drift in the IMU or

other changes in the dynamic model.

Recall that lateral robot accelerations are controlled via

roll and pitch, and vertical acceleration via the thrust along

zB . To maintain hover under the effect of external distur-

bances, after linearizing the second order model about the

near hover state (ẍ = ÿ = z̈ = 0, φ ≈ 0, θ ≈ 0, F ≈ mg),
we get the z-direction acceleration and roll and pitch angles

{āz, φ̄, θ̄} required to compensate for external disturbances:

fx/m = g(θ̄ cosψ + φ̄ sinψ)

fy/m = g(θ̄ sinψ − φ̄ cosψ)

fz/m = āz

We estimate these parameters, {āz, φ̄, θ̄}, via a KF, with the

state and compensated desired control defined by

x =
[

x, y, z, ẋ, ẏ, ż, φ̄, θ̄, āz
]

T

u =





ẍd

ÿd

z̈d



 +





g(θ̄ cosψ + φ̄ sinψ)
g(θ̄ sinψ − φ̄ cosψ)

āz





We discretize the system model and use a standard discrete

KF state update equation:

xt = Axt−1 +But
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Fig. 4. The robot is commanded to hover based on feedback from the
Vicon (Fig. 4(a)) and onboard estimator (Fig. 4(b)).
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Fig. 5. Error between estimates from Vicon and onboard estimator
(Figs. 5(a)–5(b)) while the robot controls along a specified trajectory
(Fig. 5(c)).

where

A =





I3 ∆tI3 − g∆t2

2
M

03 I3 −g∆tM
03 03 I3



 , B =





∆t2

2
I3

∆tI3
03





M =





sinψ cosψ 0
− cosψ sinψ 0

0 0 1





With slow varying parameters, the estimator will converge

if the robot stays in a specific environment for a period of

time. Of course there are no guarantee if the robot operates

in environments with rapidly changing wind conditions or

sudden change in ceiling/terrain heights.

IV. EXPERIMENTAL RESULTS

A. Experiment Design and Implementation Details

Four experiments are presented: (1) a study of the es-

timator performance compared to ground truth data; (2)

navigation across two floors in an indoor environment; (3)

navigation starting in the same environment and transitioning
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Fig. 6. Percentage of CPU time used by the system (including host OS)
while following a trajectory similar to Fig. 5(c).

to the outdoor periphery; and (4) a large two-floor loop.

The motivation for each study is stated in the respective

discussions.

The robot platform is sold by Ascending Technologies,

GmbH [23] and is equipped with an IMU (accelerometer, gy-

roscope, magnetometer) and pressure sensor. We developed

custom firmware to run at the embedded level to address

feedback control and estimation requirements. The other

computation unit onboard is a 1.6 GHz Atom processor with

1 GB of RAM. The sensors on the robot include a Hokuyo

UTM-30LX (laser), and a uEye 1220SE with a Kowa 3.5

mm f1.4 lens (camera). A custom 3D printed mount is

attached to the laser that houses mirrors pointing upward

and downward (along zB). Communication with the robot

for monitoring experiment progress is via 802.11n or 802.11s

networking. All algorithm development is in C++ using ROS

[24] as the interfacing robotics middleware. The experiment

environment includes three buildings and a courtyard in the

School of Engineering and Applied Science at the University

of Pennsylvania.

B. Evaluating Estimator Performance

We wish to study the performance of the onboard estimator

as compared to ground truth, where ground truth is defined

by a sub-millimeter accurate Vicon motion tracking system

[25]. Two studies are presented. The first compares feedback

control to maintain a single position using ground truth

data for feedback as compared to the same scenario but

using the pose resulting from the onboard estimator (Fig. 4).

The standard deviations of the errors in the Vicon case are

{σx, σy, σz} = {4.16, 4.16, 4.54}, while using the onboard

estimator, the standard deviations of the hover performance

are {σx, σy, σz} = {8.49, 9.11, 5.54} (units in cm).

The second study considers the accuracy of the onboard

estimate compared to the Vicon estimate while the robot

controls along a specified trajectory (Fig. 5). In this case, the

Vicon and onboard estimate compare well with a standard

deviation of {σx, σy, σz} = {2.47, 3.23, 0.70} and σψ =
0.55 (units in cm and deg, respectively).

C. Indoor Navigation across Multiple Floors and Outdoors

We now consider autonomous navigation between multiple

floors in an indoor environment. Additionally, we consider

the case when a robot exits the indoor environment into the

(a) Indoor

(b) Indoor/Outdoor

Fig. 7. Maps generated while flying across multiple floors (Fig. 7(a)) and
into the peripheral outdoor environment (Fig. 7(b)).

surrounding area. While the quadrotor is autonomous, the

planned trajectory is determined by a user specifying goal

locations with respect to the map.

In Fig. 7(a), we see the map generated by the robot

navigating through an indoor two-floor environment. Corre-

sponding images of the robot flying are shown in Figs. 8(a)-

8(b). While we do not have ground truth for these cases,

we observe that there is minimal error or drift in the map.

The robot is commanded to return and hover at its starting

location. The error was observed to be on the order of a

couple of centimeters.

The second case leads the robot out of the indoor environ-

ment and into a courtyard (Fig. 7(b)). We see the removal

of the 2.5-D assumption and observe that the robot is able

to localize when observing multiple walls. However, further

testing suggests that these methods do not extend to com-

pletely unstructured areas with trees. Another observation,

and motivation for Sect. III-D, is that aerodynamic effects

due to changes in varying ceiling height and distance to the

floor are non-trivial when entering and exiting the building.

Figures 8(c)-8(d) show corresponding images.

D. Closing Large Multi-floor Loops

The final experiment seeks to push the limits of the

onboard processing and demands non-trivial loop closure

across multiple floors. To pursue a large scale experiment

with a length that exceeds feasible flight time, we carry the

vehicle such that it emulates flight. Maps at multiple stages of

the experiment are shown in Fig. 9. It is worth noting that

even with loop closure, the onboard CPU usage remained

on par with that shown for the trajectory following case in

Fig. 6.
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(a) (b)

(c) (d)

Fig. 8. Navigation between multiple floors (Figs. 8(a)-8(b)) and in-
door/outdoor environments (Figs. 8(c)-8(d)). See the attached video or
http://mrsl.grasp.upenn.edu/icra2011/movie.

V. CONCLUSION AND FUTURE WORK

In this paper, we considered the problem of autonomous

navigation with a micro aerial vehicle in indoor environ-

ments. In particular, we discuss autonomous navigation in

buildings with multiple floors. To ensure that the robot is

fully autonomous, we require all computation to occur on

the robot without need for external infrastructure, communi-

cation, or human interaction beyond high-level commands.

We presented a system design and methodology that enables

autonomous navigation with real-time performance on a

mobile processor using only onboard sensors We reviewed

experimental results with performance analysis and address

the adaptation to changing aerodynamic conditions induced

by wind disturbances or changes in airflow in constrained

environments.

We are interested in pursuing autonomous exploration

across multiple floors and are currently working on improved

control strategies using alternate parameterizations of the

system dynamics and robust control methods. We also wish

to further optimize our implementation to reduce unnecessary

computational complexity. Finally, we are extending this

work to multiple robots toward cooperative exploration.
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