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Abstract

This paper presents a fully autonomous navigation solution for urban, pedestrian environ-

ments. The task at hand, undertaken within the context of the european project URUS,

was to enable two urban, service robots, based on Segway RMP200 platforms and using

planar lasers as primary sensors, to navigate around a known, large (10000 m2), pedestrian-

only environment with poor GPS coverage. Special consideration is given to the nature

of our robots, highly mobile but two-wheeled, self-balancing and inherently unstable. Our

approach allows us to tackle locations with large variations in height, featuring ramps and

staircases, thanks to a 3D map-based particle filter for localization and to surface traversabil-

ity inference for low-level navigation. This solution has been tested in two different urban

settings, the experimental zone devised for the project, a University Campus, and a very

∗Videos illustrating the navigation framework during the experimental sessions are available in: http://www.iri.upc.edu/

people/etrulls/jfr10. A description of the videos is available in section 9 as well as in the website.

http://www.iri.upc.edu/people/etrulls/jfr10
http://www.iri.upc.edu/people/etrulls/jfr10


crowded public avenue, both located in the city of Barcelona, Spain. Our results total over

6 km of autonomous navigation, with a success rate on go to requests of nearly 99%. The

paper presents our system, examines its overall performance and discusses the lessons learnt

throughout development.

1 Introduction

Large, modern cities are becoming cluttered, difficult places to live in, due to noise, pollution, traffic con-

gestion, security and other concerns. This is especially true in Europe, where urban planning is severely

restricted by old structures already laid out. Ways to alleviate some of these problems include enhancements

to public transportation systems and car-free areas, which are becoming common in city centers. In May

2010 New York City closed to motor vehicles two key sections of midtown, Times Square and Herald Square,

after a pilot program in 2009 that reduced pollution, cut down on pedestrian and bicyclist accidents, and

improved overall traffic by rerouting. A Green Party initiative to close to vehicles 200 streets in the center

of Geneva, Switzerland, has been approved in principle in early 2010. Barcelona already features an iconic

hub in La Rambla, a prominently pedestrian-only thoroughfare over 1 km in length running through the

historic center of the city.

It is expected that urban service robots will be deployed in such areas in the near future, for tasks such as

automated transportation of people or goods, guidance, or surveillance. The study of these applications was

a basic requirement of URUS: Ubiquitous networking Robotics in Urban Settings (Sanfeliu and Andrade-

Cetto, 2006; URUS project website, ) (2006-2009), a European IST-STREP project of the Sixth Framework

Programme, whose main objective was to develop an adaptable network robot architecture integrating the

basic functionalities required to perform tasks in urban areas. This paper is concerned with autonomous

navigation for a mobile service robot in pedestrian environments.

In recent years significant advances have been experienced in the area of autonomous navigation, specially

thanks to the efforts of the scientific and engineering teams participating in the DARPA Urban Challenge

(Montemerlo et al., 2008; Rauskolb et al., 2008), as well as other contests (Luettel et al., 2009; Morales

et al., 2009). Even if most of this body of work is designed for car-like vehicles running on roads, some

important ideas translate to robots of different configurations operating in pedestrian areas, specially in

terms of navigation architecture and software integration. However, urban pedestrian areas present additional

challenges to the robotics community, such as narrow passages, ramps, holes, steps and staircases, as well



as the ubiquitous presence of pedestrians, bicycles and other unmapped, dynamic obstacles. This leads to

new challenges in perception, estimation and control. For instance, GPS-based systems remain an unreliable

solution for mobile robots operating in urban areas, due to coverage blackouts or accuracy degradation

(Levinson et al., 2007; Yun and Miura, 2007), so that additional work is necessary for robot localization.

This paper presents a fully autonomous navigation solution for urban service robots operating in pedestrian

areas. In this context, the navigation framework will receive go to queries sent by some upper-level task

allocation process, or directly by an operator. The go to query will indicate a goal point on the map

coordinate frame. The system is designed as a collection of closely-interrelated modules. Some of them have

been applied successfully on other robots during the URUS project demonstrations, while the lower-level

modules are geared toward our Segway robots and take into account their special characteristics. The main

contribution of this paper is the presentation of a set of techniques and principles that jointly yield a valuable

experimental field report: (1) the consideration of real-world urban pedestrian environments, with inherent

features such as ramps, steps, holes, and pedestrians and other dynamic obstacles, (2) the use of Segway-based

platforms, which provide high mobility but create perception and control issues successfully addressed by our

approach, (3) real-time 3D localization, without relying on GPS, using state-of-the-art techniques for on-line

computation of expected range observations, (4) the successful integration of all navigation software modules

for real-time, high-level actions, and (5) extensive field experiments in two real-world urban pedestrian

scenarios, accomplishing more than 6 Km of autonomous navigation with a high success rate.

The paper is organized as follows. Section 2 describes the locations where the experiments were conducted.

Section 3 presents the robots at our disposal and the sensors on-board. Section 4 presents the architecture of

the navigation system. Sections 5 and 6 present our path planning and path execution algorithms. Section 7

summarizes the localization algorithm, a 3D map-based particle filter. Section 8 is concerned with our low-

level navigation module, an obstacle avoidance (OA) system capable of dealing with terrain features such as

ramps. Field results are summarized in section 9, while section 10 presents the main lessons learnt by the

scientific team and identifies critical aspects to work on in the future.

A previous version of this work was presented in (Corominas Murtra et al., 2010b). A new localization

algorithm, using full 3D information, and several improvements on the path execution and obstacle avoidance

modules allowed us to increase our success rate on go-to requests from 79% to nearly 99%. We also present

experiments in two urban areas, instead of one. All experimental data presented in this paper is new.



2 Sites available for experimentation

Most of the experiments were conducted at the Campus Nord of the Universitat Politècnica de Catalunya

(UPC), located in Barcelona, where a large section was outfitted as an experimental area (Barcelona Robot

Lab) for mobile robotics research. This installation covers over 10000 m2 and is equipped with wireless

coverage and 21 IP video cameras. Our robots are currently self-contained, using only on-board sensors for

navigation. A more thorough overview about the capabilities of this lab is available in (Sanfeliu et al., 2010).

Additional experiments were carried out at Passeig de Sant Joan in the district of Gràcia, also in the city

of Barcelona, with the cooperation of the city’s administration. This area comprised a 1900 m2 section of a

pedestrian-only boulevard, with bicycle lanes on both sides and a large monument in the middle. Figure 1

shows an aerial view of both locations.

Figure 1: Campus site (blue) and Gràcia site (red).

The main experimental site, the Campus, is situated on a hilly region, close to a mountain range. It features

differences in height of up to 10 m within the experimental area, resulting in ramps – which the robot must

be able to navigate – sudden level changes and staircases – which should be avoided – and other obstacles

such as bulletin boards, bicycle stands, trashcans or flower pots. A GIS map with elevation data was built

for the project, and later extended to a full 3D model. All tests made during the robots’ development stage

were conducted in this area. Figure 2 presents a top view of the 3D model and some photographs of the area.

Campus buildings are situated over a four-row, six-column grid and labeled according to row (letters from A



to D, bottom to top) and column (numbers from 1 to 6, left to right), e.g. A1 or D6. The experimental area

covers the eastern part of the campus. The main features found on this area are the terrace at the bottom

of the map, the FIB (Computer Faculty) square and cafeteria, and a promenade with another terrace above

it, between rows B and C.

The site at Passeig de Sant Joan does not feature ramps or staircases, but is again on sloped terrain, rising

more than 2 m in height along 70 m of length, with a relatively even slope of nearly 2◦. This poses a problem

for two-wheeled robots such as ours, as will be further explained in section 3. It is of particular interest that

there are few clear landmarks such as walls, as most of the area is encircled by hedges on either side, and the

monument in the middle was at the time (spring) surrounded by rose bushes. While the campus scenario

is somewhat controlled and mostly populated by students, the Gràcia environment is a very crowded public

street in the middle of a large city, frequented by pedestrians, children and bicyclists. A 3D model of the

area was built from scratch, in much lesser detail. The area is pictured in figure 3. We placed four fences

below the monument for safety reasons, which were included in the 3D map. Later on we had to put other

fences in place to reroute part of the traffic, but these were not included in the map.

3 Robots

Two mobile service robots, designed to operate in urban, pedestrian areas, were developed for the URUS

project. These are Tibi and Dabo, pictured in figure 4. They are based on two-wheeled, self-balancing

Segway RMP200 platforms, and as such are highly mobile, with a small footprint, a nominal speed up to

4.4 m/s, and the ability to rotate on the spot (while stationary).

They are equipped with the following sensors:

• Two Leuze RS4 2D laser range finders, scanning over the local XY plane, pointing forward and

backward respectively, at a height of 40 cm from the ground. These scanners provide 133 points

over 190◦ at the fastest setting, running at approximately 6 Hz. This device has a range of 64 m,

but in practice we use a 15 m cap. Front and back laser observations are notated as ot
LF

and ot
LB

respectively.

• A third 2D laser scanner, a Hokuyo UTM-30LX, mounted at a height of 90 cm., pointing forward

and rotated 90◦ over its side, scanning over the local XZ plane. This scanner provides 1081 points

over 270◦ at 40 Hz, and has a range of 30 m, again capped to 15 m. Aperture is limited to 60◦ to



Figure 2: Top view of the 3D model for the campus site, with a set of pictures highlighting certain features
of the environment. Note the many ramps (3, 4), the steps around the square (7, 8), changing obstacles such
as the cafeteria terrace (7), narrow passages such as around the trees at the square (8), and the prevalence
of glass windows at waist- and foot-level (3, 4) and the transparent plastic balcony on (5). Note also the
ubiquitous presence of pedestrians.



Figure 3: Top view of the 3D model for the Gràcia site, with some pictures of the area. The wide lanes on
either side of the map are the road, with buildings beyond. Note the lack of clear landmarks. The site is
encircled by vegetation (1, 4), and the elevation around the monument (1, 2, 3) rises to either below or just
at laser height (cf. section 3).

ignore points interfering with the robot’s frame or aiming too high for our needs. This observation

is notated as ot
LV

.

• Wheel encoders, providing odometry readings ot
U , from the Segway platform.

• Inclinometers from the Segway platform, providing pitch and roll data, ot
I .

The robot also features two stereo camera pairs and a GPS receiver, which are not used in this work. The

user can interact with the robot through a touchscreen, entering go-to requests manually. Two off-the-

shelf laptop computers running Ubuntu Linux are on-board the robot, one for navigation and the other for

communications and human-robot interaction. Experiments were performed using only one robot at time,

Tibi or Dabo.

The Segway RMP200 is in many ways an ideal platform to build an urban robot. Humanoid robots are not

yet ready for outdoor environments, and four-wheeled vehicles have a much larger footprint and are more
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Figure 4: On the left, Tibi (left) facing Dabo. On the right, on-board devices used in this work, and the
robot coordinate frame.

restricted in their mobility. Moreover, Segway robots can carry heavy payloads, up to 45 kg for this model.

On the downside, Segway platforms are statically unstable, keeping their balance using embedded gyroscopic

sensors to track and correct their tilt. The robot will pitch forward or backward to accelerate or decelerate,

or simply to keep its balance while stationary. This behavior presents two issues for their use in robotics.

On one hand, it creates a perception issue for on-board 2D laser scanners. A 2D laser range finder scanning

over the local XY plane, a very common solution in robotics for navigation or SLAM, may point higher

towards the sky/roof or, more critically, lower towards the ground. Using this configuration may result in

spurious features or obstacles, unless some kind of filtering is used. Figure 5 displays a sequence of 2D range

data over time, starting with the robot in a stationary, upright position, which is then instructed to move

forward and later to stop. The front laser visibility is reduced significantly due to the platform’s tilt, up to

2 m on a flat surface and less on a ramp. The figure also shows velocity commands and the estimation for

velocity and pitch from the Segway platform, for the same sequence. This data was taken under laboratory

conditions, on a flat, regular surface. In outdoor environments this behavior is much more pronounced,

especially on slopes and changes in slope.

The second issue in using Segway platforms is control: the platform’s own control algorithm takes precedence

over the user’s instructions, as its first priority is to stay upright. This problem, present in all Segway

platforms, is compounded by the fact that our robots weigh about 120 Kg, which slows them down. In

practice, the platform typically takes one to two seconds to react to the user’s commands, or even more in

extreme situations such as when moving from a flat surface to a slope or vice-versa. This ultimately means
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Figure 5: On top, left to right, sequence of horizontal laser scans with the robot accelerating forward on a
flat surface. Time between scans is about 0.6 s. On the bottom left, commands for translational velocity
(v) in red, and its estimation from the Segway platform in blue. On the bottom right, pitch estimation from
the Segway platform.

it is not possible to execute previously planned trajectories with a high degree of accuracy. An example can

be seen in figure 5.

Our navigation solution deals effectively with these issues. To solve the perception problem caused by the

platform tilt, we use full 3D information for localization, and the vertical scanner to determine surface

traversability for navigation. The control problem is tackled with a loose low-level navigation scheme. These

procedures are explained in further detail in sections 7 and 8.

4 Navigation architecture

Our complete navigation framework for Tibi and Dabo is diagrammed in figure 6. This solution is divided

into four different blocks, in decreasing level of abstraction: path planning, path execution, localization, and



obstacle avoidance. The obstacle avoidance module consists of three blocks: traversability inference, local

planning, and motion control.

The path planning module is tasked with finding a global path between the platform’s current position

and a goal upon a go to request, in the form of a list of waypoints WM = {XM
g1
. . . XM

gNw
} in global (map)

coordinates. The localization, path execution and obstacle avoidance modules constitute two different control

loops. The obstacle avoidance module is the only component in direct control of the robot’s motion, and

constitutes by itself the reactive loop. Its mission is to move the robot to a local goal, expressed in the

robot coordinate frame, XR
gi

. It is important to point out that this loop does not depend on the localization

estimate since it only ensures that the robot will arrive to a local goal while avoiding the obstacles perceived

by on-board sensors. The second loop is deliberative, and is tasked with guiding the robot through the

waypoints computed by the path planning module. The deliberative loop includes the localization module,

a map-based particle filter, and the path execution process, which uses the current localization estimate X̂M
r

to transform the waypoints from map coordinates XM
gi

, to robot coordinates XR
gi

. This local goal is the input

to the obstacle avoidance module, thus closing the deliberative loop. This is a particularly suitable solution

for our Segway robots, for which it is only possible to execute planned trajectories loosely.
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Figure 6: Process diagram for our navigation architecture. Each block is an independent process. Arrows
are TCP connections.



We use two different environment models, a 2D map and a 3D map. The 3D map is a model containing

the environment’s static geometry. The 2D map is inherited from previous work (Corominas Murtra et al.,

2010b) and is required for path planning. The reactive loop runs at 10 Hz and the deliberative loop runs at

5 Hz. Since the platform moves at speeds up to 1 m/s these rates are deemed sufficient.

Each sensor has an associated data acquisition process. All navigation and data acquisition processes run

concurrently in the same computer. The software framework follows a publish/subscriber architecture, with

the aim to ease software integration between developers: each block of figure 6 has been implemented

as an independent process, accessible through an interface. The resulting specification runs over YARP

as middleware, a free, open-source, platform-independent set of libraries, protocols and tools aimed at

decoupling the transmission of information from the particulars of devices and processes in robotic systems

(Metta et al., 2006). For a further description of our software architecture, please refer to (Corominas Murtra

et al., 2008).

5 Path planning

Our planning algorithm has been developed in the context of the URUS project, having as a key requirement

the ability to effectively deal with the diversity of platforms involved in the project. Thus, we have privileged

reliability and flexibility over other concerns such as on-line replanning. That said, it is worth noting that

limited on-line planning capabilities are actually fulfilled by the local planning component of our architecture

(cf. 8.1).

The global planner takes as input a global cost two-dimensional gridmap (fig. 7), as well as the physical

properties of the robot such as its size and kinematic constraints. The cost we have used in our experiments

is the distance transform (i.e. distance to the nearest obstacle), computed from a binary map of the static

obstacles in the environment. By using such a cost, we maximize the distance between the path and the

obstacles in the same way as using a Voronoi Graph, with the advantage that the cost is defined also for

points that are not part of the graph. Another advantage of the distance transform is that a single map can

be used for coarse collision testing on all the different platforms by simply comparing the cell’s value against

the radius of the platform’s bounding sphere.

The planner computes a search graph in which nodes represent robot poses and graph edges represent

collision-free motion arcs which are deemed as feasible according to the robot’s kinematics. In order to limit



Figure 7: On the left, the cost map for the UPC campus. Warmer tones indicate high costs, white indicates
unreachable places. On the right, three sample paths displayed using our simulation environment. Red dots
indicate the path computed by the path planning module. Red circles correspond to the circle path, which
will be introduced in the following section. Green and blue dots correspond to the localization estimate and
mark the starting position for each iteration. Further examples are available in the videos introduced in
section 9.

the size of the search space, graph expansion is performed using a fixed arc-length and a discrete number of

arc curvatures. The graph is explored using the A∗ algorithm, where the heuristic is the näıve grid-distance

to the goal, computed on the cost map using Dijkstra’s algorithm.

It is worth noting that using a fixed arc length and angle discretization implies, in most cases, that the plan

is not able to reach the exact goal pose making it necessary to use an acceptance threshold. However, in

practice this has not been a problem. We have used a threshold of 30 cm, which is precise enough for our

particular application.

As stated above, this module was common to all robotic platforms in the project. Our navigation system

defers on-line replanning to the obstacle avoidance module, and has simpler requirements for global path

planning: the distance between waypoints is set to 2 m for Tibi and Dabo, and we disregard heading angle

data for the waypoint. Examples of its application are displayed in figure 7.

6 Path execution

The task of the path execution algorithm is to provide local goal points to the robot so that the trajectory

computed by the global planner is followed in a smooth manner, even with the presence of unmapped



obstacles that force the robot to stray out of the path. Our approach consists in defining circle-based search

zones centered on the plan’s waypoints. The localization estimate is then used to determine which circle the

robot lies on, if any, and the next waypoint to target, which is then transformed into robot coordinates and

sent to the obstacle avoidance module as a local goal.

The circle path is created upon receiving a new path from the global planner, once per go to request, and is

defined as a list of circles {C1 . . . CNw
} with center each waypoint and radius the distance to the following

waypoint. The radius for the last circle, with center the goal, is defined as the goal tolerance dg, a global

parameter set to 0.5 m. The algorithm stores an index to the circle currently being followed, k, which is

initialized to 2, as XM
g1

is the robot’s starting position. During runtime, the algorithm determines whether

the circle currently being followed and its adjacent circles Ck−1, Ck+1 contain the localization estimate X̂M
r ,

starting from the higher index and moving down. Whenever this is true the process stops and k is set to the

index of the compliant circle. The waypoint to target is in every case the center of the next circle, Ck+1,

which by definition lies on the circumference of Ck. That is, when a robot nears a waypoint (enters its

associated circle), the goal will switch to the next waypoint (the center of the next circle). We check only

the next circle to enforce smoothness, and the previous circle as a safeguard against small variations on the

localization estimate. This procedure is illustrated in figure 8.

Figure 8: Illustration demonstrating the behavior of the path execution algorithm under normal operating
conditions. Waypoints and the circle path are plotted in red when considered by the path execution algorithm,
in purple when not. The localization estimate and an arrow signaling the current target are plotted in green.
The environment (unbeknown to the path execution module) is plotted in black. On the left, the circle
currently being followed is CN−2, centered on waypoint XM

N−2, and so the current target is XM
N−1. The

algorithm considers this circle and its neighbors, in this order: first CN−1, then CN−2 and finally CN−3. As
the first circle that contains the localization estimate is CN−2, the target does not change. On the right, the
robot moves forward and enters circle CN−1, so that the new circle being followed is CN−1 and XM

N becomes
the new target.

If no circle contains the localization estimate we compute its distance to the path, defined as the shortest



distance to a waypoint. If this distance is smaller than the recovery distance dr, set to 3 m, the path

execution algorithm will enter recovery mode, sending the robot to the closest waypoint. When the robot is

farther away than the recovery distance we presume recovery is not possible, stop the robot, and request the

path planning module for a new path to the same global goal. These situations are illustrated in figure 9.

Figure 7 displays examples of circle paths in the campus area.

Figure 9: Illustration demonstrating the behavior of the path execution module when the robot strays off
the path. The dashed circles determine the recovery zone. On the left, the robot is following circle CN−2,
targeting waypoint XM

N−1, but moves off the circle path and is instructed to return to XN−2. On the right,
the robot strays farther off the path and moves out of the recovery zone, prompting the algorithm to stop
the robot and request a new path from the global planner, plotted in blue. The old path is discarded.

This approach is valid for obstacle-free environments, but may fail if an unmapped object rests over a

waypoint which thus cannot be reached. We solve this by computing not one but an array of goal candidates

GR, which are offered to the obstacle avoidance module as possible targets. Being XM
j the current target,

we consider all waypoints {XM
i |i ∈ [j,Nw]}. We take a maximum of NOA points, and only candidates closer

to the robot than dOA are considered valid. The first candidate that violates this rule is truncated to dOA

and the rest are ignored. For our implementation we use dOA = 5.5 m, and NOA = 8. This guarantees at

least three goal candidates within range. The obstacle avoidance module considers one candidate at a time,

starting from the lower index, and selects the first candidate that may be reached, as explained in section 8.

7 Map-based localization

Localization is the process in charge of closing the deliberative loop (fig. 6), thus allowing the path execution

module to convert goal points from the global planner, in map coordinates, to local goal points, in robot

coordinates. Localization plays a key role in autonomous navigation for mobile robots and a vast amount



of work can be found in the literature. It is accepted by mobile robot researchers that GPS-based solutions

are not robust enough in urban environments due to insufficient accuracy and partial coverage. This fact

has forced the mobile robotics community to design alternative or complementary methods for localization

(Thrun et al., 2001; Georgiev and Allen, 2004; Levinson et al., 2007; Yun and Miura, 2007; Nuske et al.,

2009).

In recent years, researchers worldwide have opted for particle filter-based solutions for localization (Thrun

et al., 2001; Levinson et al., 2007; Nuske et al., 2009), which offer design advantages and greater flexibility

than approaches based on the Kalman Filter (Arras et al., 2003; Georgiev and Allen, 2004; Yun and Miura,

2007). However, when particle filter localization is developed for autonomous navigation, it has to deal

with real-time requirements. Particle filters need to compute expected observations from particle positions.

Computations can be performed off-line and then stored in large look-up tables discretizing the space of

positions, so that during on-line executions these look-up tables will be queried from particle positions

(Thrun et al., 2001; Levinson et al., 2007). However, when the robot operates in large environments and the

position space has a dimensionality greater than 3, precomputing expected observations becomes a critical

database issue.

In this section we describe a 3D map-based localization method, consisting of a particle filter that computes

the expected observations on-line by means of fast manipulation of a 3D geometric model of the environment,

implemented using the OpenGL library (OpenGL website, ). Using OpenGL for on-line observation model

computations has already been proposed by some researchers (Nuske et al., 2009). However, in that paper

the authors use an edge map of the environment and compute only expected edge observations. Our approach

does not perform any feature extraction step and deals with on-line computation of the full sensor model, so

that real sensor data is directly compared with expected sensor data to score the particles in the filter loop.

This approach overcomes the issue of feature occlusion due to the ubiquitous presence of pedestrians and

other unmodeled obstacles around the robot, achieving robust tracking of the robot’s position. Our solution

runs at 5 Hz, enough for our platform’s speed.

7.1 State Space

The state space considered in our approach, X, is that of 3D positions, parametrized as a (x, y, z) location

referenced to the map frame, and the three Euler angles, heading, pitch and roll, (θ, φ, ψ), defined starting

with the heading angle with respect to the x map axis. In this section, all positions will be referenced to the

map frame if no specific mark or comment indicates otherwise.



At each iteration t, the filter produces a set of particles, P t, where each particle is a pair formed by a position

in the state space and a weight:

P t = {st
1 . . . s

t
NP
}; st

i = (Xt
i , w

t
i); X

t
i = (xt

i, y
t
i , z

t
i , θ

t
i , φ

t
i, ψ

t
i) (1)

where st
i is the ith particle produced by the tth iteration, Xt

i ∈ X, and wt
i ∈ [0, 1].

7.2 3D environment model

The environment model used by the localization module, also referred to as the map, and notated asM, is a

geometric 3D representation of the static part of the area where the robot operates. In both the Campus and

Gràcia areas, the static part considered includes buildings, stairs, ramps, borders, curbs, some important

vegetation elements and urban furniture such as benches or streetlamps. Our implementation uses the .obj

geometry definition file format (OBJ file format, ), originally developed for 3D computer animation and

scene description, which has become an open format and a de facto exchange standard.

Both maps were built by hand, taking measurements with laser distance meters and measuring tape, which

were used to build a coherent 3D model. Even if the maps incorporate the most important geometrical

elements of each experimental area, they are always considered incomplete models: for instance, trees were

only modeled partially, due to the difficulty of doing so, and minor urban furniture was not always mapped.

Thus, the localization approach should be robust enough to address this issue. Further details are available

in (Corominas Murtra et al., 2010a).

7.3 Kinematic model

In particle filtering, having a motion model allows to propagate the particle set, thus limiting the search

space to positions satisfying the motion model constrained to given sensor inputs. Probabilistic kinematic

models (Thrun et al., 2005) compute a new sample set, called the prior, P t− , based on the previous set,

P t−1, constrained to the platform’s motion. We define the platform wheel odometry readings as:

ot
U = (∆t

ρ,∆
t
θ) (2)

where ∆t
ρ is the translational 2D increment in the local XY plane, and ∆t

θ is the rotational increment around

the local Z axis of the platform. Both increments are the accumulated odometry from iteration t − 1 up



to iteration t. The Segway RMP200 platform also features embedded inclinometers that provide a pitch

increment measure from t− 1 to t:

ot
I = ∆t

φ (3)

With these two input observations, at the beginning of each iteration, the state of the ith particle is moved

according the probabilistic kinematic model described by:

∆̃t
ρ,i = N (∆t

ρ, σ
t
ρ); σ

t
ρ = ǫρ∆

t
ρ

∆̃t
θ,i = N (∆t

θ, σ
t
θ); σ

t
θ = ǫθ∆

t
θ

∆̃t
φ,i = N (∆t

φ, σ
t
φ); σt

φ = ǫφ∆t
φ

xt
i = xt−1

i + ∆̃t
ρ,i cos

(

θt−1
i +

∆̃t
θ,i

2

)

yt
i = yt−1

i + ∆̃t
ρ,i sin

(

θt−1
i +

∆̃t
θ,i

2

)

θt
i = θt−1

i + ∆̃t
θ,i

φt
i = φt−1

i + ∆̃t
φ,i

(4)

where the first three lines draw, for each particle, random data with normal distribution centered at the

platform data (∆t
ρ,∆

t
θ,∆

t
φ) with standard deviation depending linearly with each respective increment by

parameters ǫρ, ǫθ, ǫφ, so that large increments imply a more sparse propagation. Epsilon values were set to

ǫ{ρ,θ,φ} = 0.2 during the experimental sessions.

Please note that the orientation angles of a Segway robot do not necessarily indicate a displacement direction

since the platform is unconstrained in pitch. Thus, this kinematic model approximates displacements in the

local plane provided by the platform odometry as displacements in the global (map) XY plane. This

approximation leads to an error that is negligible in practice since the slopes in our test environments have

at most an inclination of 10%. Note also that the kinematic model does not modify zt
i and ψt

i since these

two variables are constrained by gravity, as will be explained in the next subsection.

7.4 Gravity Constraints

A wheeled robot will always lie on the floor, due to gravity. For relatively slow platforms, as those presented

in section 3, it can be assumed as well that the whole platform is a rigid body, so that a suspension system,

if present, does not modify the attitude of the vehicle. With these assumptions, and for two-wheeled self-



balancing platforms, there are constraints on the height z and roll ψ dimensions of the position space, given

a (x, y, θ) triplet and the environment modelM. Both constraints will be computed using OpenGL for fast

manipulation of 3D models.

The height constraint sets a height, z, for a given coordinate pair (x, y). To compute it, the floor part of

the map is rendered in a small window (5×5 pixels) from an overhead viewpoint at (x, y, zoh), limiting the

projection to a narrow aperture (1◦). After rendering we obtain the depth component of the central pixel,

dc, and compute the constrained z value as z = zoh − dc.

The roll constraint fixes the roll component, for a coordinate triplet (x, y, θ). Its computation is based on

finding zr and zl, the height constraints at two points to the left and to the right of (x, y, θ). These points

are separated a known distance L (i.e. size of the platform), so that the roll constraint can be computed as

ψ = atan2(zl − zr, L).

The computation of the roll constraint is based on computing height constraints, which can be viewed as a

simple 2D height map, relating (x, y) pairs with a height value z. This leads us to precompute, off-line, a

height grid of the environment, so that during on-line executions gravity constraints will be resolved with

simple and fast queries to a table. Figure 10 shows the height grid for the UPC Campus site. Cell size of

this grid is 0.2× 0.2 m2.

Figure 10: Height grid for the UPC Campus site.

Note that this approach is valid for maps with a single traversable z-level, such as ours, and while our



algorithms can be directly applied to multi-level maps further work would be required in determining the

appropriate map section to compute. To avoid discretization problems, specially when computing the roll

constraint using the height grid, we use lineal interpolation on the grid.

7.5 Range Observation Model & Similarity Metrics

Fast and accurate computation of observation models is a key issue for successful particle filtering. The

result of computing an observation model is an expected observation computed from a particle position,

denoted as os
L(Xt

i ) for a laser scanner. Given this expected observation, the conditional probability of an

actual laser observation given that the robot is in particle position Xt
i can be approximated as:

p(ot
L|Xt

i ) ∼ L(ot
L, o

s
L(Xt

i )), ∈ [0, 1] (5)

where L is a similarity function measuring the closeness of two laser observations. This subsection first

details how the expected observations os
L are computed and then presents the similarity function used to

compare real and expected laser scanner data.

We propose a method using the OpenGL library for fast on-line computation of expected laser scanner

observations. The method is based on rendering the 3D model from the viewpoint of the sensor’s position

given the particle position Xt
i , and reading the depth buffer of the computer graphics card. The rendering

window size has been minimized to reduce the computation time while keeping the sensor’s accuracy given

by the scanner aperture, ∆α, and the number of scan points NL. Algorithm 1 outlines the procedure to

compute an expected laser scan from a particle position Xt
i , given a 3D environment modelM and a set of

sensor parameters (∆α, NL, rmin, rmax), being respectively: the angular scan aperture, the number of scan

points, and range limits.

Since the Leuze scanner has an aperture greater than 180◦, we divide the computation in two sectors. For

the Hokuyo scanner we use only an aperture of 60◦, so that a single sector is enough. According to the

device parameters detailed on section 3, the resulting window sizes are 88×5 pixels for the Leuze device (for

each sector) and 265×5 pixels for the Hokuyo scanner. This optimized implementation allows the filter to

run at 5 Hz while computing at each iteration NP × (133 + 133 + 241) ranges. For NP = 50 particles, this

implies 126750 ranges per second. Further details on computing such expected range observations can be

found at (Corominas Murtra et al., 2010a).



Algorithm 1 Laser Scanner Observation Model.

INPUT: Xt
i ,M, (∆α, NL, rmax, rmin)

OUTPUT: os
L(Xt

i )

w = 2rmintan(∆α

2 ); h = 2rmintan(
∆β

2 ); ρ = w
h ; //metric dimensions [m] and aspect ratio of projection

setProjection(1◦, ρ, rmin, rmax); //rendering volume: 1◦ of vertical aperture, aspect ratio, depth limits
δα = ∆α

NL
; //sensor’s angular resolution [deg]

pα = (int)2 tan(∆α/2)
tan(δα) ; // compute window width [pixels]

setWindowSize(pα, 5); //set window size [pixels]
Xs = Transform(Xt

i , X
R
s ); //transform sensor’s position from robot frame to map frame

renderUpdate(M, Xs); //render the model from the sensor’s position
bz = readZbuffer(CENTRALROW ); //read normalized depth values of the central image row
for j = 1 . . . NL do

αj = ∆α(0.5− j
NL

); //ray angle [deg]

k = (int)
(

0.5− tan(αj)
2tan(∆α/2)

)

pα; //pixel index corresponding to jth ray

dj = rminrmax

(rmax−bz(k))(rmax−rmin) ; //screen depth [m]

rj =
dj

cos(αj)
; //range of the jth ray [m]

end for

return {r1, . . . , rNL
};

Once both the expected and real observations are available, a similarity function L computes their similarity.

We use the mean over all scan points of the complementary error function (erfc) of the difference between

actual and expected range data, so that given real and expected observations, denoted respectively by

ot
L = {rt

j} and os
L = {rs

j}, the similarity function is:

L(ot
L, o

s
L(Xt

i )) =
1

NL

NL
∑

j=1

erfc

( |rt
j − rs

j (X
t
i )|

σL

√
2

)

(6)

where σL is the standard deviation of the range observation, set to 5 cm. This similarity function has the

desired property that its value is limited to the [0, 1] interval, evaluating to 1 for two identical scans and

approaching 0 when the scans diverge, while the function depends only on the standard deviation associated

to laser range measurements.

7.6 Particle Filter

The previous subsections have introduced the kinematic model, the gravity constraints, a method for on-line

computation of expected laser observations and a similarity function to compare them with actual laser data.

Algorithm 2 overviews how to combine these elements to build a particle filter to estimate the 3D position

of the robot within the map coordinate frame.

The filter is initialized with a 2D position provided by the user, (x0, y0, θ0). The first particle set is initialized



Algorithm 2 Particle filter localization algorithm

INPUT: (x0, y0, θ0),M, ot
U , o

t
I , o

t
LF
, ot

LB
, ot

LV

OUTPUT: X̂t
r, Ĉ

t
r, τ

t //robot position, associated uncertainty and time stamp

t = 0; //iteration counter
P 0 = initialization(x0, y0, θ0); //initialization with prior knowledge
while running do

t← t+ 1
for i = 1 . . . NP do

(xt
i, y

t
i , θ

t
i , φ

t
i) = f(Xt−1

i , ot
U , o

t
I); //kinematic model

zt
i = heightConstraint(Xt

i ); //gravity height constraint
ψt

i = rollConstraint(Xt
i ); //gravity roll constraint

end for

τ t = timeStamp(NOW );
for i = 1 . . . NP do

wt
i = L(ot

LF
, os

LF
(Xt

i )) · L(ot
LB
, os

LB
(Xt

i )) · L(ot
LV
, os

LV
(Xt

i )); //correction
end for

for i = 1 . . . NP do

wt
i ← wt

i
PNP

j=1
wt

j

; //normalization

end for

(X̂t
r, Ĉ

t
r) = gaussianParameters(P t);

publish(X̂t
r, Ĉ

t
r, τ

t); //publish produced data
P t ← resampling(P t); //draw a new particle set resampling the current one

end while

within a square of 4 m2 around the (x0, y0) location, within heading range θ0±3◦, and with pitch equal to zero

(we initialize the localization algorithm with the robot stopped and on flat terrain). After the propagation

and correction steps, in order to output a close estimation of the filter, a gaussian parametrization of the

particle set is performed. The robot position estimate, X̂t
r, is computed as the weighted mean of the particle

positions, while the covariance parameters, Ĉt, are computed as the weighted sample variance. The following

equations detail the computations for x and θ. The y and z coordinates are computed as for x, and the

φ and ψ coordinates are computed as for θ:

x̂t
r =

NP
∑

i=1

xt
i · wt

i ; (σ̂t
x)2 =

NP
∑

i=1

(xt
i − x̂t

r)
2 · wt

i

θ̂t
r = atan2

(

NP
∑

i=1

sinθt
i · wt

i ,

NP
∑

i=1

cosθt
i · wt

i

)

; (σ̂t
θ)

2 =

NP
∑

i=1

(acos(cos(θ̂t
r)cos(θ

t
i) + sin(θ̂t

r)sin(θt
i)))

2 · wt
i

(7)

We consider all cross-covariances to be zero, except for σ̂t
xy that results from:

σ̂t
xy =

NP
∑

i=1

(xt
i − x̂t

r)(y
t
i − ŷt

r) · wt
i (8)

In the last step of the filter, a resampling function draws a new particle set keeping the mean of the current



one. Resampling is necessary to avoid particle depletion (Doucet et al., 2001; Arulampalam et al., 2002),

an undesired phenomenon of particle filters where the particle set collapses to a single state point rendering

the filter no longer capable of exploring new solutions for the estimation, and therefore compromising its

robustness.

As an aside, the vertical laser is integrated into the correction stage only when appropriate. Most unmodeled

obstacles, such as pedestrians or bicyclists, have a relatively small footprint on the XY plane, so that the

horizontal lasers remain usable despite numerous occlusions (as our experiments demonstrate). The vertical

scanner on the other hand can be nearly fully occluded by a single pedestrian a few meters in front of the

robot. In that scenario the filter attempts to match actual and expected observations by pitching the robot

forward, lifting the floor surface towards the part of the scan corresponding to the pedestrian, and thus

increasing the similarity between scans. This is clearly inadequate and compromises the filter’s performance,

so we use the vertical laser only when the difference between actual and expected observations, as computed

by the similarity function, is smaller than a threshold, determined experimentally. We do not want to

perform feature extraction or segmentation over the raw scan, but there exist more elaborate solutions, such

as iteratively considering sets of data removing the points further away from the robot until the threshold

is met. These shall be explored in the future.

Section 9 summarizes the field work and discusses in depth the two failures we experienced during the

experiments, both due to localization issues.

8 Obstacle avoidance

The motion planning problem is well known and studied when using a priori information (Latombe, 1991).

However, many techniques are not applicable when the environment is not known or highly dynamic. This

problem is compounded by the fact that both the environment (i.e. the real world) and the robot carry

uncertainties due to sensing and actuation, respectively, so that it is not feasible to treat motion planning

separately from its execution. To solve these problems it is necessary to incorporate sensory information

in the planning and control loop, making possible reactive navigation. A real-time approach based on

the artificial potential field concept was presented in (Khatib, 1986), was later extended in (Khatib and

Chatila, 1995) and became widely used, as for instance in (Haddad et al., 1998). Other methods extract

higher-level information from the sensor data, such as for instance (Minguez and Montano, 2004), a reactive

obstacle avoidance system for complex, cluttered environments based on inferring regions from geometrical



properties. None of these methods take into account the physical properties of the robot platform itself:

two common approaches which do so are the curvature velocity method (Simmons, 1996) and the dynamic

window approach (Fox et al., 1997).

Our proposal consists of an obstacle avoidance method that combines a local planner with a slightly modified

dynamic window approach so as to generate motion control commands suitable for the robot platform.

Decoupling planning and execution is a common practice in mobile robotics, as the full path planning

problem is typically too complex for real-time processing. This is particularly appropriate in our case, as our

Segway robots cannot execute trajectories with a high degree of accuracy. Inputs to the local planner are

a set of local goal candidates, provided by the path execution module and notated as GR, and sensor data:

the front laser scan ot
LF

and odometry updates ot
U . The output of the local planner is an obstacle-free goal,

denoted by XR
f . This goal is the input of the motion controller unit which computes suitable commands for

translational and rotational velocities.

This approach would be sufficient for traversing flat environments. This is not the case, as urban environ-

ments contain features such as ramps, which the robot must be able to navigate, and drops and staircases,

which should be avoided. Notably, a configuration of front and back lasers only is not capable of navigating

a ramp upwards, as a ramp is seen from its base as a wall at a distance determined by the ramp’s slope and

the laser’s mounting height. In addition, our robots suffer from the tilt problem, introduced in section 3, so

that navigation on ramps, or even on flat surfaces when accelerating or decelerating is impaired as well.

One possible solution lies in using an additional planar laser scanner somewhat tilted towards the ground,

as introduced in (Wijesoma et al., 2004), where it is used for detection and tracking of road curbs. A

similar approach is used in (Morales et al., 2009) for navigating cluttered pedestrian walkways. In the latter,

the authors use two planar laser scanners tilted towards the ground so that on a flat surface the beams

intersect the floor at 1 and 4 m from the robot, respectively. This information is used to perform traversable

road extraction, and allows the robot to navigate on outdoor paths. We found this technique challenging

to implement on our robots, for two reasons. Firstly, its application on two-wheeled robots is much more

involved than on statically stable robots, due to the additional degree of freedom (pitch). Secondly, this

approach requires the robot to move towards an area of space to determine its traversability. This may

negate one of the main advantages of our platform: its ability to rotate on the spot. We should also be able

to ensure map consistency in time, and deal explicitly with occlusions and dynamic obstacles.

We instead opt for a reactive solution, based on the vertical laser scanner, positioned as explained in section 3,



to perform traversability inference. We introduce the local planner and motion controller first, and later

present the traversability inference component. The obstacle avoidance module’s block diagram is pictured

in figure 11.
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Figure 11: Obstacle avoidance module with local planner, motion controller and traversability inference.
ot

LF

′
is the front laser scan after traversability inference, and lH the length of the traversable surface in front

of the robot.

8.1 Local RRT-based planner

The local planner has been implemented using a Rapidly-exploring Random Tree (RRT) (LaValle and Ku,

2001). This technique explores a workspace by incrementally building a tree, creating new branches by

generating points randomly in the workspace and linking them to the closest point already in the tree

if an obstacle-free transition to the point exists. The presence of obstacles is determined by the front

laser scanner. Range measurements are transformed into cartesian coordinates and each point is made

into a circle with radius rc, the clearance parameter for our robot (half its width plus safety room), set

to 1 m. The search space S is restricted to sectors of a circle centered on the robot with radius the

distance to the goal, in order to better deal with occlusions. The search sectors are initially restricted in

angle, to favor solutions going forward, and are expanded on each iteration until reaching the maximum

sensor workspace, determined by the laser scanner’s aperture ΦH (190◦). That is, in polar coordinates

(r, ϕ), for a goal XR
g , S = {(r, ϕ)|r ∈ [0, rg], ϕ ∈ [ϕmin, ϕmax]}, where ϕmin = max{ϕg − ϕ0,−ΦH/2}

and ϕmax = min{ϕg + ϕ0,ΦH/2}. We expand the search space around ϕ by ∆ϕ in each direction every

time a random point is generated, whether it is possible to add it to the tree or not, while enforcing

ϕ ∈ [−ΦH/2,ΦH/2]. The parameter ϕ0 determines the initial sector’s width and is set to 15◦, and ∆ϕ is

set so that the whole search space will be used before we determine there is no solution and the RRT is not

allowed to expand further.



Every time a new branch is added to the tree we check for an obstacle-free transition to the goal. If it

exists, we store the path to the goal and discard the rest of the tree. The path is smoothed, if possible, by

determining obstacle-free transitions between pairs of points and eliminating redundancies. The resulting

path is denoted P. The first point in the path is provided to the motion controller as its current local goal,

XR
f . Note that while further points may not be reachable due to occlusions in the laser scan, this point is

in sight and thus guaranteed to be obstacle-free. The process is illustrated in figure 12.

Figure 12: Local RRT planner with incremental search space S, depicted in gray. Obstacles, defined as the
front laser scan points with clearance rc, are depicted in red. The figure on the left shows the tree, in blue,
after a few iterations. The figure on the middle shows the tree after finding a solution. The figure on the
right shows the RRT path in blue and the final, smoothed path in purple, the first point of which is the
obstacle-free goal XR

f .

We opt for RRTs for ease of use and efficiency. Unlike potential fields or Voronoi-based approaches, or

hybrid techniques (Dolgov et al., 2010), they do not offer a “best” solution. We defer this step to the

motion controller, whose only requirement is an obstacle-free goal. As we do not perform any kind of feature

extraction or tracking, the local planning step is very fast to compute.

As can be inferred from these constraints, we do not allow the robot to move backwards. On one hand, our

Segway robots can rotate 180◦ with ease, which is preferable, and secondly, the vertical laser scanner is a

requirement for safe navigation and is facing forward. If the goal is behind the robot, we stop and rotate the

robot until the goal lies within sensor range. Likewise, if the local planner is unable to find a path to the

goal we stop the robot and allow it to rotate to attempt to find a solution. This process will be described in

section 8.4.



8.2 Motion controller

Our motion controller is based on the dynamic window approach (Fox et al., 1997). This method circumvents

the complexity of the full path planning problem by considering small time increments periodically, at a high

rate. The approach considers only those configurations (in our case, (v, ω) pairs) reachable within a single

time increment ∆t for the current state (the dynamic window), implicitly complying with the robot’s dynamic

constraints. This workspace is then discretized into a number of cells, for which an objective function G is

maximized. This function considers a trade-off between velocity, target heading and clearance to obstacles:

G(v, ω) = αvfv(v, ω) + αϕfϕ(v, ω) + αcfc(v, ω) (9)

The clearance value function fc is a measure of time until collision for the cell’s configuration, relative to

the platform’s breaking time, as proposed in (Philippsen, 2004). We define:

fc =























0 if tcol ≤ tstop

tcol−tstop

Tstop−tstop
if tstop < tcol < Tstop

1 otherwise

(10)

Where tcol is the time to collision if the robot continued in a straight line, Tstop the time required to stop

the robot at maximum speed, and tstop the time required to stop the robot at the current speed.

The value functions for velocity and heading, fv and fϕ, are a measure of closeness to the configurations that

maximize translational velocity and minimize the angle to the goal, respectively. The platform’s dynamics

must be incorporated into the velocity value function so as not to overshoot the goal, and into the target

heading value function to avoid oscillations around the desired trajectory. We achieve this by defining:

TT
stop = vt

amax
v

TT
goal =

dg

vt
KT =

T T
goal

T T
stop

=
dgamax

v

v2

t

(11)

TR
stop = ωt

amax
ω

TR
goal =

ϕg

ωt
KR =

T R
goal

T R
stop

=
ϕgamax

ω

ω2

t

(12)

Where vt and ωt are the translational and rotational velocities of the robot and amax
v and amax

ω the maximum

accelerations. KT and KR give us a measure of the difficulty of stopping the robot in either case. For values



of |K| ≫ 1 the robot may accelerate at the maximum rate, while for values greater than and close to 1, time

to stop the robot is critical. We determined adequate acceleration rates for different values of KT and KR

and used them to devise a control law experimentally, as we find the behavior of the Segway robots highly

dependent on external factors and thus too hard to model. We define the target translational velocity ṽt+∆t

as:

ṽt+∆t =























min(vt + amax
v ∆t, vmax) if KT ≥ KB

T

min(vt + amax
v ∆t

KT −KA
T

KB
T
−KA

T

, vmax) if KA
T < KT < KB

T

max(vt − amax
v ∆t, 0) if KT ≤ KA

T

(13)

Analogously, we define the target rotational velocity ω̃t+∆t as:

ω̃t+∆t =















































min(ωt + amax
ω ∆t, ωmax) if KR ≥ KB

R

min(ωt + amax
ω ∆t

KR−KA
R

KB
R
−KA

R

, ωmax) if KA
R < KR < KB

R

0 if −KA
R ≤ KR ≤ KA

R

max(ωt + amax
ω ∆t

KR+KA
R

KB
R
−KA

R

,−ωmax) if −KB
R < KR < −KA

R

max(ωt − amax
ω ∆t,−ωmax) if KR ≤ −KB

R

(14)

Where KA
T , KB

T , KA
R and KB

R are derived experimentally for our robot with its particular weight distribution.

The velocity and heading value functions are then a measure of closeness to targets ṽt+∆t and ω̃t+∆t,

respectively. For this we use simple triangular functions centered on the target values with a given width.

The weight distribution for the value functions depends on the robot’s capabilities and the formulation of the

value functions. Our implementation is weighted as follows: αv = 1, αϕ = 2, αc = 3. Prioritizing clearance

to obstacles is typical, and weighting the heading value more than the velocity value function allows for

tighter bends, which our robot can do easily. We settled on this distribution after some experimentation.

The values for maximum velocities and acceleration rates are provided in table 1.

vmax [m/s] ωmax [rad/s] amax
v [m/s2] amax

ω [rad/s2]
Platform 4.4 3.15 Undetermined Undetermined
Our implementation 0.85 0.8 4 2.5

Table 1: Physical and practical limits for our Segway robots.

By equations (11) and (13), KA
T is the parameter that determines when the robot starts decelerating, which

may cause the robot to overshoot the goal if too conservative. In practice, the robot is commanded to

stop whenever it reaches the goal, decelerating at the platform’s maximum rate. This happens likewise for

equations (12) and (14), when we set ω̃t+∆t to 0 regardless of its current value. This violates the limits



listed in table 1, but not the platform limits, thus still observing the dynamic window principle. We find

this allows for better control of the platform.

8.3 Traversability inference

False obstacles due to, for instance, ramps may be detected by incorporating the localization estimate and

using the 3D map to identify the situation, but this solution dangerously couples the robot’s reactive behavior

to the robustness of the localization process. This would compromise the safety of our navigation system.

Thus, our approach is based on the vertical laser scanner, used to infer whether the robot can traverse this

region of space. It also enables the robot to detect some obstacles outside the field of view of the horizontal

laser scanners.

The campus features three different kinds of traversable surfaces: flat, sloped with a relatively even incline,

and transitions from one to the other. The Gràcia environment does not feature noticeable changes in

inclination, while being sloped throughout. The vertical laser observations in these environments can thus

be modeled with one or two line segments. Linear regressions are extracted from the sensor data by least

squares fitting, using the average regression error to determine its quality. Prior to this computation, the

vertical laser scan is pre-processed by removing points beyond the range of the obstacle avoidance module

(8 m), or due to interference with the robot chassis. The inference process is divided into three steps, executed

in order, and is terminated whenever one of these steps produces a satisfactory solution. We consider:

1. A single regression using all data.

2. Two regressions, using all data sorted over x and divided into two sets by a threshold, for a set of

thresholds over x, until conditions are met.

3. A single regression, iteratively removing the points farthest away from the robot over x, until con-

ditions are met.

In any case, a maximum regression error and a minimum regression length must be satisfied. In the second

case two additional conditions are enforced in order to ensure the compatibility between segments: the

vertical gap and the angular difference between regressions must be sufficiently small. These thresholds were

determined empirically for our sensors at the campus environment.

This inference process enables the robots to enter and traverse ramps by removing points from the front

laser scan incorrectly indicating the presence of obstacles prior to local planning. To do this, we use the



linear regressions and the front laser mounting height to determine where the scanner’s central point should

intersect the floor. We call this distance the sensor’s horizon. Range measurements are then transformed

into cartesian coordinates, and points such that {X = (x, y)|x > xth,−yth < y < yth} are removed from the

scan. xth is shorter than the horizon to account for noise, while yth determines the points to consider and is

set to 4 m. Results are shown in figure 13.

Figure 13: Demonstration of the traversability inference component on the campus site. The first row shows
the action captured by a handheld camera, for reference. The second row shows the vertical laser scan as
green dots and the linear regressions in red. Note that the coordinate frame in this figure is that of the
laser scanner. Vertical lines indicate the central range measurement for the front laser in green, the horizon
in blue, and the actual threshold applied over the front laser range data in red. The third row shows the
front laser scan after filtering, where points in the green area are to be ignored. The first column shows
the robot attempting to enter a ramp. In the second column, the robot is already traversing the ramp, its
visibility reduced to approximately 2.5 m. The red dots in front and to the right of the robot correspond
to pedestrians. The third column shows the tilt problem of our Segway robots on a flat surface. In any of
these situations the robot would be unable to reach the goal without traversability inference.

The processed laser scan, ot
LF

′
, is required by both the local planner and the motion controller, as illustrated

in 11. The length of the traversable surface lH is used as an additional parameter for the motion controller,



limiting the translational speed or directly stopping the robot. The robot is also commanded to stop if the

slope is too steep for the platform. Staircases are easy to discriminate when seen from the bottom, but from

the top the laser’s accuracy presents a problem and some observations are close enough to those of a ramp

to fall under the threshold. The staircase’s steep incline is then used to disambiguate.

8.4 Integration

The different components of the obstacle avoidance module are integrated as diagrammed in figure 14. First,

we check for new goal candidates GR from the path execution module. If none exist, we update the current

set of goal candidates with odometry updates only, closing the reactive loop. We also update the RRT path,

if any. If the robot has reached the goal, it stops and waits for further instructions. Otherwise, we perform

traversability inference over the vertical laser scan ot
LV

, obtaining a filtered laser scan, ot
LH

′
, and the length

of the traversable surface in front of the robot, lH . If lH is too small the robot enters recovery mode: it stops

and then turns around in the direction of the goal (ϕg). After a certain number of iterations stuck in this

step, we desist and notify upper-level modules. This step is required due to the robot’s limited perception

capabilities, and is equivalent to sweeping the space around the robot with the vertical laser scanner. The

rotation is controlled by a version of the motion controller which only allows for (v, ω) pairs such that v = 0.

If no new front laser scan is available, we use the commands computed in the last iteration. This does

happen, as the module runs at a frequency higher than the horizontal laser scanners, and lower than the

vertical scanner. Otherwise we proceed to local planning. If the goal is behind we want the robot to rotate

until it lies within sensor range, using again recovery mode. If the goal is within sensor range we attempt to

find a path to a goal candidate in three ways, stopping when a valid solution is found:

1. First, we check for line-of-sight to any goal candidate, in the order determined by the path execution

module.

2. If a path, updated by odometry data, exists, and is valid for the current laser scan, we follow it.

3. Otherwise, we try to find a new path to a goal candidate.

If the local planner cannot find a solution, we enter recovery mode. This happens specially when a pedestrian

walks right in front of the robot and remains too close for the robot to move. In this case, we allow it to

rotate.
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Figure 14: Obstacle avoidance module diagram. Parameters are: goal candidates from the path execution
module GR,t, laser scans ot

LF
and ot

LV
, and odometry updates ot

U . The process stores the last set of goal

candidates GR,t−1 and the last path computed by the local planner PR,t−1. Blocks painted blue, green and
red belong to the traversability inference algorithm, the local planner and the motion controller, respectively.
Gray blocks are process logic.



9 Experiments and assessment of results

The navigation system was validated over the course of four experimental sessions, one on the Gràcia site

and three at the Campus. An external computer, connected to the on-board computer via wireless, was

used to send manual go-to requests (XY coordinates over the map) to the navigation system, and for on-line

monitoring using our GUI. Note that these are high-level requests, equivalent to “send a robot to the south-

east door of the A5 building”. Goals in the experiments include both long distances across the campus (the

longest possible path between two points being around 150 m), and goals closer to each other to force the

robot (and thus the path planning algorithm) through more complex situations such as around the trees in

the square or around the columns in the A5/A6 buildings. Requests were often chained to keep the robot in

motion, sending the robot to a new location just before reaching the current goal. We typically chose closer

goals to keep some control over the trajectories and have the robot explore all of the area.

Runtime for all experiments added up to 2.3 hours, with over 6 km of autonomous navigation. We set a

speed limit of 0.75 m/s for the first session, and increased it to 0.85 m/s for the following three sessions –

note that this is a soft limit, and the robot often travels faster due to its self-balancing behavior. We used

Tibi and Dabo without distinction.

Results are displayed in tables 2 and 3. Table 2 lists the navigation distance D, as estimated by the

localization module, and the total navigation time tnav, understood as that spent with the robot attending

a go-to request. This measure is divided in time spent on obstacle-free navigation tfree, active obstacle

avoidance tOA, safety stops tstop, and rotation on recovery mode trot. The ratio ROA is a measure of the

time spent avoiding obstacles, computed as ROA = (tOA + tstop + trot)/tnav, and v̂ is an estimation of the

average translational speed computed using the previous values, v̂ = D/tnav. Table 3 displays the number

of requests, failures, and success rate, as well as the average navigated distance per request d̂req.

Table 2: Experimental results (1)
Place & Date D [m] tnav [s] tfree [s] tOA [s] tstop [s] trot [s] ROA [%] v̂ [m/s]

Gràcia, 20-May-2010 777.7 1107.9 978.9 40.1 15 73.9 13.2 0.71
Campus, 3-Jun-2010 858.5 1056.2 903.3 91.9 19.9 41.1 14.5 0.81
Campus, 22-Jun-2010 2481.8 3426.3 2481.1 541.3 174.3 229.6 27.6 0.72
Campus, 23-Jun-2010 2252.5 2727.3 2325.8 186.8 75.4 139.3 14.7 0.83

Accumulated 6370.5 8317.7 6689.1 860.1 284.6 483.9 19.6 0.77

We were allowed three days (mornings only) to conduct experiments at the Gràcia site, the last of which

was dedicated to a public demonstration, and so the scope of that session is limited, totaling less than

1 km of autonomous navigation. Even so it must be noted that, due to time constraints, these experiments



Table 3: Experimental results (2)

Place & Date Requests [#] d̂req [m] Errors [#] Success rate [%]
Gràcia, 20-May-2010 33 23.6 0 100
Campus, 3-Jun-2010 23 37.3 0 100
Campus, 22-Jun-2010 55 45.1 0 100
Campus, 23-Jun-2010 60 37.5 2 96.7

Accumulated 171 37.3 2 98.8

were conducted with little to no prior in-site testing. Moreover, while part of the area was fenced, many

pedestrians and bicyclists disregarded instructions and crossed the area anyway. This proves the robustness

of our navigation system in new environments under similar conditions.

The four runs are plotted in figure 15. For the session at the Gràcia site, we fenced the rightmost passageway

and allowed pedestrians and bicyclists to use the one on the left. The rest of the area was left as-is except for

four fences placed below the monument, at y = 20 (fig. 15, top left), as a safety measure. The second session,

already at the Campus site, starts at (90,38), and ends at (17,69) when the robot encounters a large section

occupied by public works and thus unmapped. In the third session we ventured once to the passageway

between C and D buildings, which is on the verge of the experimental area and was roughly mapped, and

hence did not revisit. We also had the opportunity to navigate the narrow passageway to the right of the FIB

square, which is usually occupied by the cafeteria’s terrace. Please note that areas where the localization

estimate is within a building, such as for A5, A6 and C6, are covered (fig. 2, picture number 2).

The fourth run contains the only two errors we encountered. Both are related to the localization algorithm,

and were mainly due to features of the terrain. Subsection 9.1 analyzes these two failures in detail.

The first and second sessions are documented by one video each, available on the following website: http:

//www.iri.upc.edu/people/etrulls/jfr10. The video for the second session contains the session in its

entirety. Figure 16 provides a sample screenshot with an explanation of the different data shown.

All navigation processes run concurrently on a single laptop. The localization process runs at 5 Hz, and

the obstacle avoidance process runs at 10 Hz. Traversability inference is typically computed in less than

1 ms, while the local planner takes 1-10 ms per iteration, up to about 50 ms for the worst-case scenario (five

goal candidates, no solution). The computational cost for the dynamic window computation depends on its

granularity, taking an average of 10 ms for 175 cells. The path execution module carries a negligible compu-

tational load, and the path planning module is only executed upon a go-to request and takes approximately

one second, which does not interfere in real-time navigation.

http://www.iri.upc.edu/people/etrulls/jfr10
http://www.iri.upc.edu/people/etrulls/jfr10


Figure 15: Localization results for the four experimental sessions. Red circles in the bottom right figure
mark failure points.

9.1 Failure Analysis

Having failures gives us the chance to learn, advance and improve our system. Therefore, this subsection

provides insights to the two localization failures that occurred during the last session, at the Campus site.

This analysis was made possible by the off-line study of the logged data for that session, automatically stored

by our software framework. Our localization module can be run off-line using dummy sensors, which publish

logged sensor data under the same interfaces as during on-line executions, while keeping synchronization.

This allows us to run new real-time, off-line executions of the localization process with the data collected

during on-line executions.

The first failure happened approximately at XY point (90,50). The robot was traveling from left to right

along y = 38 and turned to its left to go up the ramp at x = 90 (fig. 15). The turning point can be seen



Figure 16: Sample screenshot. Clockwise, starting from the top left: (1) 3D map from the localization
viewpoint; (2) handheld camera; (3) vertical laser and regressions; (4) horizontal laser scans in green, and
expected front laser scan in red; (5) logo; (6) obstacle avoidance and path execution output; (7) path
planning output (red) and particle set from the localization algorithm (blue); and (8) path planning (red),
accumulated odometry (green), and localization estimate (blue) on the full 2D map, for reference.

in figure 2, picture number 3. After turning, the localization uncertainty grew larger, while the position

estimate deviated very clearly from the true position as perceived by the team members, finally causing a

navigation error. This was due to two causes. Firstly, the robot passed over a big terrain irregularity (a

crack on the pavement) just before starting the turning maneuver, reported by odometry data as a period

with high roll oscillations (fig. 17) and noisy heading increments. Our current approach constrains the roll

component to the 3D model, assuming that the platform is a rigid body, so that roll oscillations caused by

surface irregularities are not tracked well by the filter, as can be seen in figure 17. Secondly, this happened

around the bottom-right corner of the B6 building, which has large, floor-to-ceiling glass windows, which we

modeled as walls. Off-line inspection of the front laser data shows how in many instances the laser beam

penetrates the windows before the robot turns to face the ramp (fig. 17). Modeling this behavior would

require a complex observation model, since it depends on outdoor and indoor window lighting, as well as on

ray incidence, this being one of the main limitations for laser devices. Figure 17 also shows the presence of

three pedestrians (team members) close to the robot, blocking three important sectors of the back laser scan.

The odometry issue led to noisy particle propagation, while the laser issue led to poor filter correction. The

combination of both events caused a localization error. We have performed 20 real-time, off-line executions of

the localization filter at this point with the logged data, resulting in a failure ratio of 45%, clearly indicating



that this was a challenging situation.

Figure 17: On the left: pitch (top) and roll (bottom) data provided by the platform (red) and estimated
(blue) at the surroundings of the first failure. On the right: four consecutive laser scans just before the
failure. Note how the front laser beams penetrate in many instances the windows at yR ∼ 6 m, and the
pedestrians blocking three large sectors of the back laser scan.

The second localization failure was due to faulty odometry data, again after passing over a big terrain irreg-

ularity. Our localization approach can filter noisy data peaks, but this case was extreme as odometry data

was clearly incorrect for both translation and rotation for approximately 1.2 seconds, providing odometry

increments around 0.4 m and -8◦ for an odometry acquisition period of Todo = 0.1 s. This data is clearly

erroneous as the robot was at this time moving straight ahead at a speed of approximately 1 m/s (fig. 18).

This was the first time that such an error was reported on our platforms, and the localization filter did

not check the coherency of odometry data before using it for particle propagation (see equation 4). Using

faulty data for about 6 consecutive iterations caused the localization estimate to advance and turn right

with no chance for recovery in the filter’s correction step. This can be clearly seen in figure 15, where the

robot jumped from (16,37) to (13,42). After acknowledging the error we relocalized the robot manually and

resumed the experiments, hence the second jump to the correct position. The terrain irregularity that caused

this error was another crack in the pavement. These are frequent throughout the campus and occasionally

cause the robot to take a small jump and thrash sideways. This behavior can be seen in the Campus video.

These two failures teach us that robust navigation is still an open issue for mobile robots operating in urban



Figure 18: Odometry increments and velocities provided by the Segway platform during the second local-
ization failure. Acquisition period is Todo = 0.1 s. After a first peak in translation at τ = 518.8 s, odometry
increments are faulty during the time period [519.3, 520.5] s, while platform velocities remain coherent. The
robot was moving straight ahead at approximately 1 m/s.

pedestrian areas. We are currently working on improving the localization module in several directions:

• Use the translational and rotational velocities provided by the Segway platform instead of the odom-

etry increments, in order to avoid the integration of faulty odometry data. Velocities are the outcome

of an embedded filter and as such are more stable (fig. 18).

• Integrate the roll increment provided by the platform in the propagation step, as is done for pitch.

In the correction step we plan to add a similarity function related to the expected roll, given (x, y, θ)

and the gravity constraint on the floor map.

• Investigate the trade-off between the number of particles and the filter rate. Relaxing the filter

rate, while keeping the navigation requirements, leads to the possibility of increasing the number of

particles, thus exploring a larger area of the state space.



An early, improved version of the particle filter is giving promising results after a series of real-time, off-line

executions when the robot passes over the two failure situations.

10 Lessons learnt and future work

Despite many recent advances, reliable autonomous navigation in urban, pedestrian environments remains

a major challenge in robotics. This paper presents a solution geared towards two-wheeled robots, highly

mobile and with a small footprint, and deals effectively with problems in both perception and control due to

their self-balancing behavior. It has been extensively tested in two different urban scenarios, covering over

6 km with a 99% success rate.

The main issue to be addressed in the future is one of perception. We rely on 2D laser scanners for

localization and obstacle avoidance, because (1) they provide an immediate perception stage with no need

for feature extraction, and (2) they are robust to varying illumination conditions. On the downside, they are

by definition limited to a 2D plane. This impairs the visibility of horizontal laser scanners on urban scenarios

with ramps, which has been addressed by means of the vertical laser scanner and the traversability inference

algorithm. But obstacles outside either plane remain a problem. We find in practice that objects or terrain

features lying low on the floor, such as curbs or steps, are the most problematic, as the vertical scanner

can only sense forward and the wheels extend approximately 30 cm to either side. 3D laser scanners are

costly and bulky, and current time-of-flight cameras are not usable under direct sunlight. We plan to explore

the use of multiple laser scanners tilted to the floor to build local obstacle maps, using feature matching

and/or in conjunction with the localization estimate. Note that with this configuration the platform’s tilt

would again pose a problem, and the mobility of the robot may be reduced because of blind spots when

turning on its axis, as explained in section 8. We would also have to deal with occlusions and dynamic

obstacles explicitly. We also plan to explore the use of stereo cameras in hybrid laser-camera solutions, for

both localization and obstacle avoidance.

Future research also includes the identification and tracking of moving objects for better motion planning

on the local domain, and the extension of the path planning and path execution algorithms from 2D to

3D. The latter would enable us to deal with multi-level environments: while the Campus setting presents

great variations in height, there is at most one traversable surface for a (x, y) point. Higher-level extensions

include the segmentation of unmapped objects for incorporation to the 3D map, by extending past and

current work on mapping the Campus area (Valencia et al., 2009). The robot may then deal with situations



such as the one encountered in the second experimental session, where most of a passageway was blocked by

public works (see the end of the Campus video). Lower-level work includes redesigning the robot to reduce

its weight and accomplish a better response, specially when traversing ramps.
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