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Autonomous Navigation in Interaction-Based

Environments—A Case of Non-Signalized

Roundabouts
Maradona Rodrigues , Andrew McGordon, Graham Gest, and James Marco

Abstract—To reduce the number of collision fatalities at cross-
roads intersections, many countries have started replacing inter-
sections with non-signalized roundabouts, forcing the drivers to
be more situationally aware and to adapt their behaviors ac-
cording to the scenario. A non-signalized roundabout adds to
the autonomous vehicle planning challenge, as navigating such
interaction-dependent scenarios safely, efficiently, and comfort-
ably has been a challenge even for human drivers. Unlike traffic
signal-controlled roundabouts, where the merging order is cen-
trally controlled, driving a non-signalized roundabout requires the
individual actor to make the decision to merge based on the move-
ment of other interacting actors. Most traditional autonomous
planning approaches use rule-based speed assignment for gener-
ating admissible motion trajectories, which work successfully in
non-interaction-based driving scenarios. They, however, are less
effective in interaction-based scenarios as they lack the necessary
ability to adapt the vehicle’s motion according to the evolving driv-
ing scenario. In this paper, we demonstrate an adaptive tactical
behavior planner (ATBP) for an autonomous vehicle that is capa-
ble of planning human-like motion behaviors for navigating a non-
signalized roundabout, combining naturalistic behavior planning
and tactical decision-making algorithm. The human driving sim-
ulator experiment used to learn the behavior planning approach
and the ATBP design is described in this paper.

Index Terms—Adaptive tactical behaviour planner, adaptive
control, human factors, naturalistic driving, trajectory planning.

I. INTRODUCTION

C
URRENTLY autonomous or self-driving vehicles are at

the heart of academia and industry research because of

their multi-faceted advantages that include improved safety,

reduced congestion, lower emissions, greater mobility etc. Sig-

nificant advancement in digital technology (sensing, processing

etc.) has pushed the autonomous technology in ground vehicle
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applications from idealistic conceptual projects such as Navlab

[1], VaMP [2], the PROMETHEUS Programme [3], ARGO

Project [4] to the demonstration of realistic fully autonomous

vehicle technology in the DARPA completion events [5], [6].

Since the DARPA challenges, the autonomous ground vehicle

technology has been demonstrated in numerous public roads.

Some of the most publicised of these include the VisLab In-

tercontinental Autonomous Challenge (VIAC) in 2010 [7], the

Hyundai Autonomous Challenge in 2010 [8], the autonomous

drive with Mercedes Bertha-Benz in 2013 [9], the Public Road

Urban Driverless (PROUD) car testing in 2013 [10] and the

Google self-driving car testing since 2009 [11]. The above-

mentioned trials have since been followed by many other players

joining the efforts to move the autonomous vehicle technology

closer to reality [12]. Nonetheless, the number of autonomous

disengagements and incidences reported every month [13], [14],

highlights that autonomous vehicle technology has still not fully

matured. The analysis of these autonomous disengagement and

collision reports show that most of them were in situations

of high traffic activity which include intersections such as at

T-junctions, crossroads, roundabouts etc., highlighting the lim-

itations of the current state-of-art autonomous motion planning

systems in successfully dealing with such real-world scenarios.

With potential benefits of reducing collisions, waiting time at

intersections, improving fuel efficiency and reducing emissions

of air pollutants, and improving traffic flow [15], [16], countries

around the world have started to replace traffic signal controlled

intersections with non-signalised roundabouts [17], [18]. The

non-signalised roundabouts are high-interaction based driving

environments, and the capability of the autonomous vehicle to

navigate such scenarios depends greatly on their ability to gen-

erate adaptive motion behaviours in the continuously evolving

driving environments. Successful autonomous navigation plan-

ning in such merging scenarios should also ensure that their

motion behaviour does not create confusion among other road

users, which will be the critical determinant of their co-existence

with other semi-autonomous and manually driven vehicles. This

paper describes a novel approach to autonomous behaviour plan-

ning called Adaptive Tactical Behaviour Planner (ATBP). The

ATBP is part of the research work in developing human-like be-

haviour planning method for autonomously navigating highly

dynamic interaction based scenarios safely, efficiently and with

good driving comfort.
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Fig. 1. Vehicle spatial behaviours on a global path.

Fig. 2. Vehicle temporal behaviours at intersection.

A. The Behaviour Planning Concept

Naturalistic behaviour planning for an autonomous vehicle

as defined in this work is an effort to imitate human-like motion

behaviours while staying within the bounds of safe driving. The

vehicle behaviours in this work are represented as consisting

of two parts, the “spatial” which describes how the vehicle

manoeuvres in space, and the “temporal” which describes the

speed of the vehicle in the manoeuvres. The spatial part of

the behaviour planning for a non-holonomic ground vehicle

allows it to execute manoeuvres in space of the type “turning-

left”, “turning-right”, “following” a straight/curved road etc. A

planned path for an autonomous vehicle is therefore made up of

a series of successive spatial behaviours that connect the vehicle

start point to its desired destination, as shown in Fig. 1.

The temporal part of the behaviours involves a combina-

tion of the operational motions such as “acceleration”, “cruis-

ing”, “deceleration” and “stopping”, enabling the vehicle to

travel along a planned spatial path. For example, a temporal be-

haviour at an intersection can be a combination of deceleration-

cruising-acceleration, or deceleration-stopping-acceleration etc.

The choice of the temporal behaviour is highly influenced by the

dynamics of the real-world environment. Fig. 2 shows three il-

lustrative temporal behaviours for vehicle motion, i.e., “Follow-

On” at the same speed, “Follow-On” at reduced speeds and

“Stop-n-Go” motion.

The behaviour chosen by the vehicle to execute in a scenario

determines whether its motion will be safe, efficient, comfort-

able etc. The temporal behaviours that take the vehicle on the

path of other road users increase the risk of collision and are con-

sidered unsafe. The choice of temporal behaviours that involve

frequent stopping even when opportunities exist to continue

the motion can lead to increased travel times and can result in

traffic congestion. Temporal behaviours involving rapid accel-

eration/deceleration, or travelling at high speed on curved roads

can affect driving comfort. For successful autonomous naviga-

tion planning, vehicle safety is the primary requirement, and

within the safety envelope, the behaviours that give optimal re-

sults on the chosen set of objectives such as driving efficiency,

driving comfort etc., should be planned for autonomous vehicle

motion.

B. Related Work

In the last couple of decades, autonomous vehicle trajectory

planning efforts as discussed in Paden et al. [19] and Rodrigues

et al. [20] have generally focused their efforts on firstly finding

an optimal and safe spatial manoeuvers and then using a rule-

based speed assignments to form a target trajectory that is eval-

uated for collision avoidance. These approaches, designed with

a predefined rate of acceleration and deceleration are not effec-

tive for highly interactive environments with potential conflicts

such as in intersection scenarios, where the vehicle does not al-

ways have the right-of-way/priority of motion. In such scenarios

with potential conflicts, the manoeuvrable space for the vehicle

motion is also highly dynamic, limiting the vehicles motion af-

fordances. The rule-based speed planning approaches also put

the responsibility of maintaining driving comfort on the motion

controller, resulting in the motion controller having to define

additional constraints on the vehicle motion. These constraints

on the motion controller can sometimes significantly affect the

motion controller’s ability to successfully execute the planned

motion behaviour plan, which is a critical safety concern. The

vehicle motion in different road scenarios is also governed by

the road geometry, i.e., curvy roads force the driver to slow

down the vehicle to reduce the driving discomfort caused by

increasing lateral accelerations. Gu and Dolan [21], proposed a

geometry based speed planning approach in which a reference

path was generated for the autonomous vehicle by combining

the smooth and peak-value-reduced curvature and a parame-

terized speed model that was fitted from human driving data.

While this was a step towards achieving the human-like natural-

istic driving behaviours, the reference speed model used in their

work was solely built on the geometric nature of the reference

path and ignored other factors such as the motion of other ac-

tors and their interaction. Dong et al. [22], proposed a combined

behaviour planning and trajectory planning method, where sam-

pled trajectories were grouped by topological properties in the

spatial-temporal domain to create different high-level manoeu-

vres patterns. This method has some similarities to our approach,

wherein it combines the behaviour planning and trajectory plan-

ning to improve planning coherency and scalability, however,

it currently lacks the reasoning capability required for negotiat-

ing interaction-based scenarios. Apart from the road geometry

that constraint the maximum speed possible at each section

of the scenario, the motion of the vehicle is also influenced by

the traffic rules including motion priority among the vehicles at

interaction-based scenarios such as crossroads, roundabouts etc.

De Beaucorps et al. [23], developed a temporal speed planning
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approach for crossroad intersection scenario using the behaviour

patterns learned from human drivers in a simulator experiment.

The speed profiles from a crossroads intersection scenario were

extracted to develop temporal behaviour plans using k-means

clustering technique. As the clustered profiles were directly used

in planning without real-time adaptations capability, this made

them effective only for the specific type of intersection scenario

in which the data was recorded. In addition, their approach also

did not account for driving comfort, and the behaviour choices

were limited to the number of speed clusters generated from

data. Wei et al. [24], proposed a cooperative merging method

for highway ramp merging using learned behaviour patterns

of human driving. While this method simplifies the merging

decision-making problem that is crucial for highly dynamic

scenarios, the approach in the present form suits well for less

ambiguous scenarios such as highway, where other actor’s mo-

tion are generally predictable, which is not the case with inter-

sections. Gindele et al. [25] proposed a tactical decision-making

approach using continuous Partially Observable Markov Deci-

sion Process (POMDP), that based its autonomous vehicle be-

haviour selection on the predicted motion of other actors. Sefati

et al. [26] proposed another tactical decision-making approach

for autonomous vehicle behaviour selection using POMDP, that

incorporated the uncertainty estimation. While both the above-

mentioned approaches described a good decision-making ap-

proach for autonomous vehicle behaviour selection, they were

not complemented by adaptive temporal behaviour plans that

are critical for achieving motion efficiency and driving com-

fort. Successful autonomous vehicle navigation in dynamic, un-

predictable and ambiguous real-world scenarios such as non-

signalised roundabouts requires firstly the ability to predict the

scenario evolution using contextual information and secondly

the ability to plan adaptive temporal motion behaviour that leads

to the autonomous vehicle achieving safe motion, driving effi-

ciency and acceptable driving comfort. To achieve the above-

mentioned objectives, a novel behaviour planning approach was

developed called Adaptive Tactical Behaviour Planner (ATBP),

which combines an adaptive, context-based dynamic temporal

behaviour candidate generation with tactical decision-making

ability to create adaptable behaviour plans. The ATBP algorithm

development also involved the design and running of a human

driving experiment on a simulator to collect naturalistic driving

behaviour patterns to aid the design of adaptive temporal be-

haviour generation algorithm. The work presented in this paper

is the second phase of a two-phase research project dedicated to

the development of human-like behaviour planning approaches.

In the first phase of the ATBP algorithm development presented

in Rodrigues et al. [27], the naturalistic driving behaviours were

learned from human drivers navigating different dynamic vari-

ations of the non-signalised roundabout scenarios on a desktop

simulator. The learned patterns were later used to design the

temporal candidate behaviours for both the “Follow-On” and

“Stop-n-Go” as a three-part temporal behaviour profile using

the Bezier curve method. A risk-aware multi-objective tactical

decision-making algorithm was then used to select the optimal

candidate temporal behaviour for the vehicle to execute during

the autonomous navigation of the non-signalised roundabout. In

this work it was demonstrated that the behaviour planner per-

formed better than the human drivers on the desired objectives of

safety (no collisions), drive efficiency (reduced travel times) and

drive comfort (slower average speed in curves). The experiment,

however, had a limited sample size of 10 human driving partic-

ipants. Other limitations of the first phase include a low-fidelity

vehicle model and limited vehicle motion feedback to the driver

(only a visual), resulting in some driver behaviours that were

not representative, limiting the useful behaviour dataset. In the

phase-II of the ATBP development, greater emphasis was laid

on improving both the driving environment (improved vehicle

model and motion feedback) and also the participant number

to enable collection of a wide and more realistic representation

of naturalistic human driving behaviours. The ATBP algorithm

developed in the phase-I was improved to incorporate the “Situ-

ational Awareness” and “Behaviour Prediction” functions which

were integrated according to the behaviour planning framework

designed in previous work [20]. The structure for the rest of this

paper is as follows: Section II describes the ATBP algorithm

design. In Section III the details of the human driving simu-

lator experiment design and its running procedure are given.

Section IV gives the analysis of human driving behaviours ex-

tracted from the experiment. Section V gives the description of

the ATBP algorithm implementation. Section VI contains the

performance analysis of the ATBP algorithm and discussion of

the results. Finally, in Section VII the research work presented

in the paper is summarised with appropriate conclusions.

II. ADAPTIVE TACTICAL BEHAVIOUR PLANNER

A non-signalised roundabout is a highly dynamic environ-

ment where the behaviours of other road users can massively in-

fluence the autonomous manoeuvre planning. As the behaviours

of actors in roundabout scenarios can change quickly and are

difficult to predict accurately for long time horizons, the be-

haviour planning for an autonomous vehicle needs to be adapt-

able. Roundabouts can have different shapes and sizes and when

combined with the variation in motion behaviours of other road

users, it results in a dynamically changing drivable space. Such

changing drivable space affects the motion affordances of the

autonomous vehicle, limiting the motion behaviours possible

in the scenario. At non-signalised roundabouts, the vehicles

decision to merge is not governed by a centralised controller,

and the actors have to merge into the roundabout according to

the availability of gaps and their individual interpretation of

priority to merge. Successful autonomous motion planning in

such environments requires the ability to generate multiple be-

haviour plans and a tactical decision-making algorithm to select

the optimal behaviour according to the existing dynamic situ-

ation. Generating multiple behaviour plans enables the vehicle

to switch to a different behaviour if the changing environmental

dynamics make the currently selected behaviour unusable. It can

also ensure that the autonomous vehicle will always have a fea-

sible future motion plan, thus avoiding unnecessary stops when

opportunities exist to continue its motion. A tactical decision-

making algorithm is required to enable the autonomous ve-

hicle to select the best motion behaviour to execute at every
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iteration of the planner, as the changes in the environment can

alter the importance of the design objectives (drive comfort, mo-

tion efficiency etc.). The ATBP combines an affordance-based

naturalistic behaviour candidates generation with a risk-aware

adaptive tactical decision-making to enable an autonomous ve-

hicle to navigate highly dynamic, interaction-based scenarios

safely, efficiently and with acceptable driving comfort. The con-

cepts used in the design and implementation of the ATBP were

first discussed in our publication [20], and the phase-I imple-

mentation of the novel Adaptive Tactical Behaviour Planner was

illustrated in our publication [28]. The focus of phase-II devel-

opment was only on the temporal behaviour planning, and the

spatial behaviours are assumed to be fixed and known. The three

functions of the ATBP algorithm, i.e., Situational Awareness,

Behaviour Prediction and Behaviour Selection are, therefore,

discussed in the context of temporal behaviour planning.

A. Situation Awareness

Situational Awareness (SA) is a term first defined by Endsley

[29] as a combination of environment perception in time/space,

understanding their meaning, and their subsequent projection

in time. In our work, we attempt to develop an autonomous

planning system that can mimic expert human driver’s ability

of decision-making and manoeuvre planning. In this regards the

Situation Awareness represents the process by which the ATBP

algorithm abstracts only the relevant information from the dy-

namic scenario to gain the necessary understanding needed to

make informed behaviour choices. It is important to note that SA

implementation does not replace the world representation map,

which is an essential perception system activity of collating the

sensed world data into a usable map of the vehicle surround-

ings. The SA algorithm implemented in this work firstly entails

estimating the motion state (position, heading, speed etc.) for

the actors of interest within the roundabout and those approach-

ing from other directions. The actors of interest are those that

are identified to be in potential conflict with the future motion

plan of the subject vehicle. The second part of the SA involves

identifying the priority for actors approaching the roundabout

according to the driving guidelines (which for the UK are de-

fined by regulation 184-190 of the Highway Code [30]). These

guidelines are defined to solve the conflict in the decision mak-

ing when actors arrive from different entry points at roundabout

entry at the same time. However, in real-world situations, the

actors can arrive at different times and at different speeds and

it is therefore left to the interpretation of the individual driver

to determine its priority to merge. In ATBP algorithm the SA

function calculates a decision variable called “Interpreted Prior-

ity” (IPrty), which is estimated for all actors approaching the

intersection and also for the subject vehicle based on their time

of arrival at the Give way line

IPrty = sortascend (alli ( TTAGW L,i))

i = 1, 2 . . . n

where, “TTAGW L,i” is the predicted time to arrival of the ac-

tors at the Give way line and “n” is the number of actors. The

“IPrty” estimate uses a sort function to arrange the drivers in

the ascending order of priority. The IPrty variable evaluated

in this work is different from the priority rules defined by the

Highway Code [30], only when the actor vehicle is approaching

their respective Give way line. If the actor vehicle reaches the

Give way line either before or at the same time as the subject ve-

hicle, or has already entered the roundabout, the regulatory rules

defined by the Highway Code are strictly followed, implying the

actor vehicle on the right has priority.

B. The Behaviour Prediction

The Behaviour Prediction (BhvPrd) function predicts the in-

tention of the identified critical actors that are potentially in

conflict with the subject vehicle’s future motion. The prediction

is based on the actor vehicle’s past and present motion state, its

position in the scene and the existing scenario dynamics. Thus,

an actor moving away from the roundabout or past the potential

conflict zones is considered non-critical. In the present imple-

mentation of the BhvPrd module, the actor vehicle intention is

deduced into one of the three possibilities: “Advancing” (where

the actor vehicle was predicted to continue its motion without

stopping at the roundabout), “Stopping” (where the actor vehi-

cle was predicted to come to a stop at the Give way line) or “No

Estimate”. The prediction is performed by comparing the actor’s

current behaviour to the average temporal behaviour profiles for

“Follow-On” and “Stopping” obtained from the human driving

experiment. The driving intention is then determined using the

following rules

1) If the actor has priority and its motion matches closely

with the average “Advancing” temporal behaviour then

the actor’s future intention is predicted as “Follow-On”

2) If the actor does not have priority and its motion matches

closely with the average “Stopping” temporal behaviour,

then the actor’s future intention is predicted as “Stopping”.

3) If the actor behaviour is mixed and does not conclusively

match closely with either “Advancing” or “Stopping” be-

haviour, irrespective of priority the expected motion in-

tention is interpreted as “No Estimate”.

C. The Behaviour Selection

The Behaviour Selection (BhvSel) function involves two sub-

functions, the generation of the temporal behaviour candidates

and the decision to select a tactically optimal behaviour to exe-

cute. These two BhvSel functions are discussed below.

1) Temporal Candidate Generation: The temporal be-

haviours of the human drivers during a roundabout navigation

are highly dependent on their manoeuvre choice. If an actor

chooses to continue without stopping at the Give way line, then

its speed profile at the roundabout results in a non-zero speed and

continuous behaviour. On the other hand, if the driver decides to

stop to yield to an oncoming actor before proceeding to merge

after the actor vehicle, the navigation is in two discontinuous

motion behaviours; one to bring the vehicle to a stop and the

other to drive off from the stopped position. These two distinct

behaviour types were termed as “Follow-On” and “Stop-n-Go”

respectively in the phase-I ATBP algorithm development work

[28]. A 3-part temporal behaviour profile construction used in
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Fig. 3. Temporal behaviour extrema. (a) Acceleration. (b) Deceleration.

phase-I was found to be limited only to scenarios that had the

possibility to stop. Due to the specific nature of the Stop-n-Go

profile construction, it was also not directly applicable to other

interaction-based scenarios such as overtaking, lane change etc.

In this phase-II ATBP algorithm development, we decided to

use a 2-part temporal behaviour construction in the generation

of candidate’s behaviours, to go from the current vehicle state

to just another state in the future. As interaction scenarios can

sometimes present emergency situations, where the other actors

deviate significantly from the predicted behaviours, an addi-

tional behaviour profile for “emergency stop” was also added

to give the vehicle the possibility to safely stop. Therefore, in

total three behaviour profiles were constructed using the Bezier

curve method, the two behaviour affordance extrema (“Follow-

On” and “Comfort Stop”) and the third for Emergency Stop.

Bezier curve method was chosen for speed profile construction

as it provides the flexibility of defining the individual control

points to create a smooth, piece-wise continuous temporal pro-

file, whose shape and gradients can be governed through the

definition of the control points. The method avoids the prob-

lem of high-order polynomials and achieves continuously dif-

ferentiable connections between the control points resulting in

smooth trajectory profiles, which are easily tractable with the

motion controller. The constructions of the speed profile for

the situations of ‘acceleration’ and ‘deceleration’ are shown

in Fig. 3(a) and Fig. 3(b) respectively. The control points suf-

fixed by “F” are for “Follow-On” and “C” and “E” are for

comfort and emergency stop temporal profiles respectively. The

parameter “δSS ” is the steady state parameter used for creating

a smoother transition between successive temporal behaviour

Fig. 4. Generated temporal behaviour candidates. (a) Acceleration. (b) De-
celeration.

plans. Parameters “δcmf t” and “δemrg ” are the stopping dis-

tances for comfort-stop and emergency-stop respectively and

are a function of the vehicle motion capability.

For the “Follow-On” temporal behaviour, the upper bound is

influenced by the regulatory maximum speed. Therefore if the

vehicle is currently at a lower speed than the regulatory speed,

the control points that govern the shape of the upper extrema and

the distance “δaccel” of the control point P4F are calculated ac-

counting for the maximum acceleration the vehicle can achieve

and similarly “δdecel” for deceleration. The parameter “δs” is

the calibrated profile shape parameter, which is estimated from

human driving data for intersection scenarios. To generate natu-

ralistic behaviour profiles, the patterns from the human driving

experiment are used to influence the control points selection.

A vehicle cannot always maintain the regulatory speeds due

to the presence of other actors and other environmental factors

such as sharp/tight road curvature etc. The behaviour planner,

therefore, takes the current speed of the vehicle as the starting

point of the temporal behaviour profile and creates affordance-

based motion candidate profiles within the “Follow-On” and

Comfort “Stop” profile envelope. The intermediate candidate

profiles within this affordance envelope are generated using an

interpolation method, as depicted in Fig. 4(a) and Fig. 4(b) re-

spectively.

2) Risk-Aware Tactical Decision-Making: A decision-

making algorithm was required for the ATBP to choose the

optimum motion behaviours that were “Safe”, “efficient” and

result in an acceptable “motion comfort”. In the ATBP, a multi-

objective optimisation approach was used to continuously select

a behaviour to execute from all affordable safe temporal motion

behaviour candidates that optimised the objectives of driving

efficiency and drive comfort. The safe candidate profile set was
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Fig. 5. Risk aware tactical decision-making algorithm.

first established from the affordance behaviour candidate set by

calculating the Time-To-Give-way-line (TTGwl) parameters

for each candidate and comparing it against the actor vehicles

in potential conflict with the subject vehicle motion on those

candidates. The behaviour selection decision-making algorithm

then establishes an objective risk index for each candidate pro-

file based on the time gap method. The risk index is re-calculated

iteratively every fixed sampling time and involves estimating the

TTGwl using the constant speed projection method.

TTY lact = dpath,act ∗ vact

where, dpath,act is the distance of the actor along its path to the

“Give way line”, and vact is the estimated velocity of the ac-

tor. The same parameter is then calculated for every behaviour

candidates of the subject vehicle (i.e., TTGwlsub,i) to establish

the set of candidate profile that result in non-conflicting motion.

The overall behaviour selection function to choose the optimal

behaviour from the safe candidate behaviour set was then for-

mulated as an objective function,‘Q’, which was minimized to

find the optimal candidate with the lowest penalty.

min
all,candidates

Qcand = a ∗ CIlat + b ∗ CIlong + c ∗ WTI

where, ‘CI’ and ‘WTI’, are comfort index and the waiting time

index (efficiency index) respectively. Coefficients ‘a’, ‘b’ and

‘c’ are tuning parameters to weight the objectives of “Lateral

comfort”, “Longitudinal comfort” and “Waiting Time” at Give

way line based on a design preference. With the defined indexes

and the objective function, the flow of the ATBP algorithm for

selecting the optimal behaviours for a roundabout navigation is

depicted in Fig. 5.

In this work, the algorithm was designed to recalculate the

optimal behaviour plan every 200 ms, and therefore it itera-

tively selected the best tactical temporal behaviour, giving the

autonomous vehicle the ability to take all merging opportunities.

Fig. 6. The simulator driving environment set-up.

III. THE HUMAN DRIVING EXPERIMENT

The objective of the simulator experiment was to gain insight

into naturalistic human driver’s temporal behaviours during the

navigation of a non-signalised roundabout. Learning from the

limitations of the phase-I of this research work, this experi-

ment was designed with the aim of extracting more representa-

tive human driving behaviour profiles. Three specific improve-

ments were made in this driving simulator experiment, which

included (a) An improved driving environment (high-fidelity ve-

hicle model, real-world calibrated driver controls and improved

motion feedback cues), (b) Increased navigation scenario sets

(with variation in both the static and dynamic environment), and

(c) A larger and more representative human driving participant

sample. These improvements and the analysis are described in

this section.

A. The Driving Environment

The driving simulator was built using PreScan [31], an envi-

ronment modelling toolkit for creating representative real-world

driving scenarios. The background models were developed in

Matlab Simulink and a multicore PC was used for high compu-

tation capability. Powered by a high-capacity graphics card, the

visualisation output from PreScan was projected on a white

background through a multi-projector set-up, as depicted in

Fig. 6. The driving run consisted of 3 single-lane 4-exit non-

signalised roundabouts of different sizes. The “subject vehicle”

driven by the human driver and the “actor vehicle” controlled by

the autonomous settings approached the intersection from two

different entry points.

Fig. 7 depicts the bird’s eye view of the three roundabouts

of radius 20 meters, 25 meters and 15 meters respectively. The

roundabouts were connected with a long straight approach road,

allowing the drivers enough driving length to get to the desired

speeds before a roundabout was in sight. Within each round-

about, a maximum travel speed was suggested to the drivers as

an indicative speed for driving stability and comfort. The speed

that the drivers actually maintain at the roundabout, however,

was according to their natural driving.

B. The Scenario Dynamics

The combination of the subject vehicle regulatory speed varia-

tions and the different speed settings for the actor vehicle created
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Fig. 7. The scenarios for the human driving experiment.

TABLE I
SCENARIO SETTINGS FOR HUMAN DRIVING EXPERIMENT

nine dynamically different driving scenarios at each of the three

non-signalised roundabouts. This resulted in 27 different sce-

narios for each human driver participant to navigate. The actor

vehicle motion was controlled by automated with a pure-pursuit

based lateral control and a PID based longitudinal control and

had a dynamic vehicle model. The speed settings for the nine

scenarios are shown in Table I. The target plan for the human

driver in each scenario was to achieve the regulatory speed when

on the straight road and then navigate the roundabout according

to the existing dynamic scenario and to their natural driving

style.

The priority rule defined in the Highway code [30] is designed

to solve the conflict situation only, and it was shown in phase-I

that human drivers tend to make the decision on various other

factors including the actor vehicles approach behaviour, the size

and shape of the roundabout etc. The human driver’s decision

to merge into the roundabout before the actor vehicle or to stop

at the Give way line to allow the actor vehicle to pass before

it was a result of the individual’s ability to assess the situation

and make a decision on its behaviour. The order of the scenarios

presented to drivers was randomized, thus the driver had no prior

knowledge of the actor vehicle behaviour. This randomization

Fig. 8. Tata HEXA vehicle model designed in Matlab Simulink [32].

TABLE II
TATA HEXA VEHICLE SPECIFICATIONS

of the scenarios eliminated the possibility of the human drivers

pre-meditating their decision and therefore only adapting their

behaviours based on the existing scenario.

C. Vehicle Model

A vehicle plant model was necessary to provide the human

driver with a realistic feedback of the vehicle motion to their

control inputs. The schematic of the vehicle model built in Mat-

lab Simulink and integrated into PreScan is shown in Fig. 8.

More details on the vehicle model are in our previous publica-

tion [32].

A dynamic bicycle modelling approach [23] was used to rep-

resent the TATA HEXA vehicle whose behaviour was co-related

with real-world driving data. A brief list of specifications of the

TATA Hexa vehicle is shown in Table II.

D. Vehicle Control

The vehicle control is an important aspect of realistic data

acquisition of naturalistic human driver motion behaviours. In

the simulator, the drive controls were set up using a gaming

unit. The drive pedal feel was calibrated with the tuning of the

stiffness, damping and spring coefficients to achieve realistic

force feedback.

1) The Lateral Control: Human drivers show variability in

the lateral control of the vehicle, which can lead to differ-

ences in the travelled distance, and also, acts as a source
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of variation in the longitudinal behaviour. As in this study,

the objective was to understand the variation in the lon-

gitudinal behaviour; the lateral control was automated,

resulting in all drivers travelling exactly the same path.

The human drivers were then only required to control the

vehicle’s longitudinal motion.

2) The Longitudinal Control: The driver’s accelerator pedal

demand was processed through the vehicle’s powertrain

model into traction force. The accelerator pedal and brake

pedal latency were estimated from real-world data of

HEXA vehicle and incorporated into the drive-by-wire

model. Familiarity with the vehicle also plays a cru-

cial role in drivers exhibiting naturalistic behaviours, and

therefore before any behaviours were recorded, the drivers

were given multiple runs to familiarise themselves with

the driving controls and the motion feedback cues in the

experiment.

E. Participant Selection

As a mandatory requirement, only drivers having the full UK

driving licence and only drivers with a minimum of at least

1-year driving experience in the UK were considered. The plan

for the phase-II experiment was to get a wider representation

of the participants in the categories of age groups, gender etc.,

than the one of the phase-I experiment. As this study’s inter-

est lies in understanding human drivers behaviour planning and

decision-making, it was desirable to have some representation

of participants who have undergone advanced driver training.

Another desirable attribute used during the search for potential

participants was their familiarity to the video gaming controls,

and/or vehicle testing experience, as that would mean lesser time

to get used to the driver controls. Another improvement over the

phase-I study was to have a greater spread of the participants

driving experiences in the UK. The participant’s distribution

in the categories of gender, age, driving experience, advanced

driving skill, vehicle testing experience and video gaming ex-

perience are shown in Fig. 9.

IV. ANALYSIS OF HUMAN TEMPORAL BEHAVIOURS

A. Key Findings From the Temporal Behaviour Profiles

In the rest of the paper, the three roundabouts are termed R15,

R20 and R25 for roundabouts of radius 15m, 20 m and 25 m

respectively. The temporal behaviour profiles for all the human

driver participants at each roundabout for the three regulatory

speeds are shown in Fig. 10, Fig. 11 and Fig. 12 respectively.

The key observations in the human driver’s motion behaviours

are broadly summarised as follows:

1) Yielding without stopping: Fig. 10, Fig. 11 and Fig. 12

show that some drivers slowed down considerably at a

distance of up to 25 meters before the Give way line

to yield for the actor vehicle. This behaviour of slow-

ing down enables the drivers to continue the navigation

without stopping after the actor vehicle has passed.

2) Stopping away from the Give way line: Some drivers

stopped up to 10 meters away from the Give way line.

Fig. 9. The participant distribution as per (a) gender, (b) age group, (c) UK
driving experience, (d) advanced driving training, (e) vehicle testing experience,
(f) video gaming experience.

This shows that they did not utilize the full length of

the available approach path; this difference in behaviour

can potentially create confusion about the vehicle motion

intention.

3) High speed within the curves: Some human drivers carried

the higher approach speed into the roundabouts, especially

when trying to merge ahead of an oncoming actor vehicle.

This can be established from the closeness of the average

navigation time at the three roundabouts. Fig. 13 shows

that the average navigation time of some drivers at all the

roundabouts was very close, even though the travelling

distances are larger in the bigger roundabouts. The higher

speeds within the roundabout suggest that the drivers ac-

cepted the “local” discomfort in order to reduce the time

spent at the roundabout.

4) Manoeuvres Choice: The human driver’s temporal be-

haviour profile’s variations along the path distance in

Fig. 10, Fig. 11 and Fig. 12 indicate that they make the

decision to either Follow-On or Stop, at a considerable

distance before reaching the Give way line. This implies

that human drivers use some prediction of the other ac-

tor’s motion to make the manoeuvre choice and therefore

do not always come to a stop at the Give way line.

B. Descriptive Statistical Analysis

The temporal behaviour profiles of the human drivers were

analysed using descriptive statistical measures. Three types of

behaviour performance indicators were extracted from the data

as described below.
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Fig. 10. Temporal behaviour profiles for R15. (a) Regulatory speed of 25 mph.
(b) Regulatory speed of 30 mph. (c) Regulatory speed of 40 mph.

Fig. 11. Temporal behaviour profiles for R20. (a) Regulatory speed of 25 mph.
(b) Regulatory speed of 30 mph. (c) Regulatory speed of 40 mph.

1) Situation Awareness and Risk Assessment Performance:

To establish the human driver’s situational awareness capabil-

ity and their risk assessment performance, two indicative pa-

rameters were extracted from data: “Number of Collisions”

and “Number of Near Misses”. In this work, we considered

Fig. 12. Temporal behaviour profiles for R25. (a) Regulatory speed of 25 mph.
(b) Regulatory speed of 30 mph. (c) Regulatory speed of 40 mph.

Fig. 13. Average time for roundabout navigation.

collision as an event when the subject vehicle had a direct con-

tact with the actor vehicle (i.e., either a front-on collision or on

the side of the vehicle). Fig. 14(a) shows the number of colli-

sions by the human drivers. A Near-Miss as described in this

work is an event where the subject vehicle was driven by the

human driver aggressively merged in front of the actor vehicle,

leading to the actor vehicle either hitting the subject vehicle in

a rear-end collision or coming within less than one car length of

colliding with the subject vehicle. This is a type of event where

the actor vehicle would have to slow down significantly from its

normal course to accommodate the subject vehicle. The number

of near-misses for the human-driven participants is shown in

Fig. 14(b).

2) Behaviour Decision Efficiency Indicators: Two type of

descriptive decision quality indicators were extracted from the

driving data, which enabled the evaluation and comparison of
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Fig. 14. Number of (a) collisions (b) near miss for individual human drivers.

the human driving efficiency in different dynamic roundabout

scenarios. The first of these indicators is the set of human

driver’s navigation time parameters at the roundabout, as shown

in Fig. 15.

The variation in the difference between the maximum and

minimum navigation time among human drivers suggests that

some drivers are more consistent with their performance than

others. Higher navigation times also suggests a lack of tacti-

cal decision-making ability and directly affects the efficiency

of the driving. The scenarios with the actor vehicle approaching

the roundabout from the right of the subject vehicle represented

the scenarios with conflict (due to the possibility of collision

with the actor vehicle) and the ones without actor vehicle repre-

sented no-conflict scenarios. As the drivers were not informed

beforehand about the presence or absence of the actor vehi-

cle and had to make their behaviour decisions based on what

they saw in the scenario, a smaller difference in average time

between conflict and non-conflict scenario suggests advanced

driving behaviours.

The second type of efficiency indicator is the number of “as-

sertive passes” by the human drivers. Assertive passes refer to

the successful merges before the actor vehicle, which are shown

in Fig. 16. Non-assertive passes/defensive passes are motion

behaviour where the vehicle navigated the roundabout after the

actor vehicle has passed.

Fig. 16 shows that at the larger roundabout (R25), drivers

show more tendency to be assertive, as the larger roundabout

allows higher speeds due to its reduced curvature.

3) Manoeuvre Planning Quality Indicators: The third type

of statistics obtained from the human driving data was the

Manoeuvre Quality Indicators. The maximum longitudinal

acceleration and maximum lateral acceleration were chosen as

indicators of vehicle longitudinal and lateral drive comfort re-

spectively, with higher acceleration /deceleration mean greater

discomfort. Fig. 17(a) shows the vehicle maximum longitudinal

Fig. 15. Calculated navigation time for the human driver participants. (a) R15
roundabout. (b) R20 roundabout. (c) R25 roundabout.

Fig. 16. Number of assertive passes for human drivers out of six scenarios.

acceleration for the human driver’s motion behaviours at

the three roundabouts. (Note: for plotting, the decelerations

were also classed as accelerations). A maximum longitudinal

acceleration of 0.4 g (g = 9.8 m/s2) is generally accepted as

a driving comfort threshold. However, as seen in Fig. 17(a), in

the presence of the actor in a merging scenario, some drivers

vehicle acceleration was considerably higher at the cost of

driving comfort, in order to reduce waiting time. Fig. 17(b)

shows the individual human driver’s vehicle maximum lateral

accelerations at the three roundabouts. The maximum lateral

acceleration ranged between 0.3 g-0.8 g, indicating that some

drivers were accepting higher lateral discomfort for short

time periods. These levels of lateral acceleration seen in the
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Fig. 17. Human driving participant’s maximum. (a) Longitudinal acceleration.
(b) Lateral acceleration.

roundabouts for short periods would be considered unacceptable

for longer periods and on straight roads.

V. THE BEHAVIOUR PLANNER IMPLEMENTATION

The parameters for the candidate generation algorithm were

obtained by analysing the human driving data. The distance

parameters for comfort-stop and emergency-stop were obtained

using the relation,

δ = 1.2 ∗ v +
v2

2 ∗ a

Here “v” is the current vehicle speed, the parameter “a” is the

acceleration of the vehicle respectively. All the profiles from the

human drivers were evaluated based on the three objectives for

each scenario. Firstly, based on safety all the temporal profiles

that had near-misses and collisions were removed, then based on

the comfort thresholds all the behaviours that exceeded the com-

fort threshold were removed, and finally, from the remaining set,

the behaviours that had the shortest travel times were selected

as representative of expert driving behaviours. The parameters

values for the ATBP deceleration and accelaeration distances as

well as the shape parameter were established from the analysis

of the expert behaviours. The planning horizon had to be greater

then δcmf t to ensure that the vehicle behaviour-planning horizon

always contained a behaviour that could bring the vehicle to a

comfortable stop. Therefore, a planning time horizon of 4 s was

chosen for the candidate generation. The steady state parameter

of δSS = 0.25 m was used for smoothing the behaviour profiles

at the start. All the temporal speed profiles from the human

drivers were evaluated based on the three objectives for each

scenario. Having established the parameters of the behaviour

Algorithm: Adaptive Tactical Behaviour Planner.

When approaching a roundabout

1. In the Situational Awareness function, establish the

critical actor’s whose predicted future motion is in

potential conflict with that of the subject vehicle

and establishes their Interpreted Priority.

2. In the Behaviour Prediction function establish the actor

vehicle intention.

3. Using the state estimate of the critical actors in the

scene estimate the ‘TTGwl’.

4. Estimate the candidate time gap as

For all candidates ‘i’ and for all actors ‘j’

TimeGapY l = TTGwlcand,i − TTGwact,j

Where i = 1, 2, 3 . . . ., n (n - number of candidates).

5. Find admissible candidates for the multi-objective

tactical selection as

a) If the actor vehicle predicted intention is “Advancing”,

establish if any of the candidate profiles for the subject

vehicle give it priority over the actor vehicle. This is

established by computing the Interpreted Priority for

each candidate behaviours generated for the subject

vehicle. Use all profiles that give the subject vehicle a

safe time gap as admissible candidates for selection.

b) If the actor vehicle predicted intention is “Advancing”

and the Interpreted Priority of the subject vehicle is

below the conflicting vehicle, find if there exist any

feasible candidates with “post-time” gap greater than

the safe gap.

c) If the actor vehicle predicted intention is “Stop”, use

all “Advancing temporal behaviour candidates as

admissible for selection.”
� The safe time gap chosen for this work is “1.5 sec”.
� “Pre-Time “and “Post-time” gaps are safe gaps for

merging into the roundabout before and after the

actor vehicle respectively.

6. Select the behaviour candidate among the admissible

candidates with the minimum penalty index according

to the defined objective function.

7. If none of the “Follow-On” candidates has time-gap

greater than the safe gap, choose the “Stop candidate

profile to come to a comfortable stop.

In case of an emergency, select the emergency stop temporal

profile to enable the vehicle comes to a stop as soon as

possible.

candidate generation, the pseudo-code for the ATBP algorithm

is given below.

VI. RESULTS AND DISCUSSION

1) Driving Efficiency: Fig. 18 shows that the autonomous ve-

hicle outperformed most of the human driver participants

on the criterion of “average navigation time”. The driver

with ID-7 managed to get a smaller average time than

the autonomous vehicle in all roundabouts. The driver



436 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 3, NO. 4, DECEMBER 2018

Fig. 18. ATBP vehicle “navigation time” comparison with human drivers at
the roundabout (a) R15, (b) R20, and (c) R25.

with ID-4 also showed smaller average time than the au-

tonomous vehicle in R15 and R25.

2) Driving Comfort-longitudinal: Fig. 19 shows that the au-

tonomous vehicle had better control of the longitudinal

acceleration and therefore better drive comfort. As the

scenario consists of actors merging at roundabouts with

the possibility of motion conflict, local longitudinal ac-

celeration below 0.4 g was considered acceptable. Driver

with ID-7 and ID-4, who performed well in reducing nav-

igation time had acceleration levels (>1 g) which are

considered unacceptable for passenger cars.

3) Driving Comfort-Lateral: Fig. 20 shows that most driver’s

maximum lateral acceleration for R15 was around 0.5 g

while that for R20 and R25 were slightly on the higher

side (by 0.2 g-0.4 g). These levels of lateral acceleration

although local for a scenario like roundabouts, are still

considered as above the acceptable thresholds for comfort-

able driving. The autonomous vehicle was able to maintain

its acceleration within acceptable thresholds of 0.4 g at all

the three roundabouts.

4) Decision-making: Fig. 21 shows that the autonomous

vehicle completed the most successful assertive ma-

noeuvres than all human drivers. It also did not have

any collisions or near misses. This highlights the su-

perior tactical decision-making ability of the ATBP

algorithm.

Fig. 19. ATBP vehicle “driving comfort index” comparison with human
drivers – Longitudinal acceleration (a) R15, (b) R20, and (c) R25.

Fig. 20. ATBP vehicle “driving comfort index” comparison with human
drivers – Lateral acceleration (a) R15, (b) R20, and (c) R25.
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Fig. 21. ATBP vehicle “safety” performance indicators comparison with hu-
man drivers.

VII. CONCLUSION

This paper presented the phase-II development of a novel

Adaptive Tactical Behaviour Planner for autonomous ground

vehicle application, which can be summarised as follows

1) The designed ATBP algorithm combines the capabili-

ties of naturalistic temporal behaviour generation with a

tactical decision-making to generate human-like motion

behaviour plans. This gives the autonomous vehicle the

capability to navigate dynamic, interaction-based sce-

narios. The design, implementation and working of the

ATBP algorithm were described in this paper with the

application case of a non-signalised roundabout.

2) PreScan, an environment-modelling tool, was used to

design the driving simulator experiment, generating a re-

alistic driving scenario. Significant improvements were

made in the motion feedback available to the human

driver missing in phase-I development [28], by adding

audio feedback cues (vehicle and road sound emula-

tion) and visual feedback cues (life-sized vehicles pro-

jections).

3) Geometrically different sized roundabouts were used in

this study to understand the variation in the behaviour

planning and decision making of human drivers. These

differently sized roundabouts, coupled with the varia-

tion in the actor behaviours enabled the creation of 27

dynamically different merging situation to analyse hu-

man driver motion behaviours.

4) A much-changed Adaptive Tactical Behaviour Planner

implementation was described in this work using the

learning from the phase-I implementation. In addition to

the improving “Situational Awareness” and “Behaviour

Prediction” functions, the temporal candidate profiles

generation algorithm was also modified to make the al-

gorithm applicable to other scenario types.

5) The behaviour selection decision-making function was

improved from phase-I to include the “Interpreted Prior-

ity” and “Predicted Intention” estimates in the behaviour

selection decision.

6) Comparing the overall performance against the three ob-

jectives of motion efficiency, motion comfort and motion

safety, the autonomous vehicle with the ATBP algorithm

outperformed all of the human driving participants from

the experiment.

7) The absence of the haptic feedback plays an important

part in human drivers accepting higher acceleration in

simulation studies as compared to real-world driving.

We plan to mitigate this limitation in future studies by

either providing a haptic feedback or artificially limiting

the vehicles accelerations.

8) Generally, pure naturalistic behaviours are difficult to be

observed in simulation environments; however, it was

chosen as the platform for acquiring human driving be-

haviour data for two main reasons. Firstly, it presented

a cost-effective, risk-free solution, as there was no cost

associated with a potential collision or a near miss. Sec-

ondly, in a simulation environment, the interaction sce-

narios were repeatable, allowing the possibility to ob-

serve and compare the driving behaviours of multiple

drivers in exactly the same scenarios.

9) In the current study, the behaviour of the actor vehicle

was automated, which made it easy for the prediction al-

gorithm of the ATBP to provide crisp results on whether

the vehicle was advancing/stopping. Therefore, in the

current study, the capability of the behaviour prediction

algorithm was not fully tested with scenarios where the

actor vehicle changes its intention more than once during

the approach. The behaviour prediction algorithm will be

tested in the future to consider such cases.

10) A conflict of motion paths between merging actors in

the absence of inter-vehicle communication is a criti-

cal challenge for autonomous vehicle planning systems.

This work is, therefore, a step forward towards achieving

autonomous navigation in interaction-based scenarios in

the absence of direct inter-vehicle communication. It was

shown that the ATBP algorithm performance was found

to be better at all the objectives against human driver

participants. The autonomous vehicle with the ATBP al-

gorithm was found to be safer (i.e., “0” collisions, “0”

near-misses) compared to 68% of the human driver par-

ticipants who had one or more near misses or collision. It

was more efficient, i.e., It had the most assertive passes

than all human driver participants and the least average

time spent at the roundabout compared to all but one par-

ticipant. It was also found to have better driving comfort

(combination of lateral and longitudinal) than all human

driver participants. The next stage of the ATBP algorithm

development is to test it in real-world environments.
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