
 Open access  Journal Article  DOI:10.1007/S10514-017-9690-5

Autonomous navigation of micro aerial vehicles using high-rate and low-cost
sensors — Source link 

Angel Santamaria-Navarro, Giuseppe Loianno, Joan Sola, Vijay Kumar ...+1 more authors

Institutions: Spanish National Research Council, University of Pennsylvania

Published on: 01 Jun 2018 - Autonomous Robots (Springer US)

Topics: Odometry, Smart camera, Inertial measurement unit, Optical flow and Kalman filter

Related papers:

 Toward a Fully Autonomous UAV: Research Platform for Indoor and Outdoor Urban Search and Rescue

 Real-time onboard visual-inertial state estimation and self-calibration of MAVs in unknown environments

 Visual-Inertial Odometry on Resource-Constrained Systems

 Decentralized Visual-Inertial-UWB Fusion for Relative State Estimation of Aerial Swarm

 
Vision-Aided Inertial Navigation : low computational complexity algorithms with applications to Micro Aerial
Vehicles

Share this paper:    

View more about this paper here: https://typeset.io/papers/autonomous-navigation-of-micro-aerial-vehicles-using-high-
2w78m1wmj7

https://typeset.io/
https://www.doi.org/10.1007/S10514-017-9690-5
https://typeset.io/papers/autonomous-navigation-of-micro-aerial-vehicles-using-high-2w78m1wmj7
https://typeset.io/authors/angel-santamaria-navarro-5fqzj8u9xz
https://typeset.io/authors/giuseppe-loianno-36t7horxj0
https://typeset.io/authors/joan-sola-3fewk22ogs
https://typeset.io/authors/vijay-kumar-1ukmur62cr
https://typeset.io/institutions/spanish-national-research-council-27f2hp8j
https://typeset.io/institutions/university-of-pennsylvania-32r68p8r
https://typeset.io/journals/autonomous-robots-hqf6dxrz
https://typeset.io/topics/odometry-3laoxdgb
https://typeset.io/topics/smart-camera-2znzf6f7
https://typeset.io/topics/inertial-measurement-unit-1wydma7s
https://typeset.io/topics/optical-flow-23ih42h7
https://typeset.io/topics/kalman-filter-273vc7a7
https://typeset.io/papers/toward-a-fully-autonomous-uav-research-platform-for-indoor-1561t1mp5j
https://typeset.io/papers/real-time-onboard-visual-inertial-state-estimation-and-self-4742wyfhmy
https://typeset.io/papers/visual-inertial-odometry-on-resource-constrained-systems-1v9pu7xa0n
https://typeset.io/papers/decentralized-visual-inertial-uwb-fusion-for-relative-state-46npxlieo0
https://typeset.io/papers/vision-aided-inertial-navigation-low-computational-176ch0txfm
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/autonomous-navigation-of-micro-aerial-vehicles-using-high-2w78m1wmj7
https://twitter.com/intent/tweet?text=Autonomous%20navigation%20of%20micro%20aerial%20vehicles%20using%20high-rate%20and%20low-cost%20sensors&url=https://typeset.io/papers/autonomous-navigation-of-micro-aerial-vehicles-using-high-2w78m1wmj7
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/autonomous-navigation-of-micro-aerial-vehicles-using-high-2w78m1wmj7
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/autonomous-navigation-of-micro-aerial-vehicles-using-high-2w78m1wmj7
https://typeset.io/papers/autonomous-navigation-of-micro-aerial-vehicles-using-high-2w78m1wmj7


Noname manuscript No.
(will be inserted by the editor)

Autonomous navigation of micro aerial vehicles using high-rate
and low-cost sensors

Angel Santamaria-Navarro · Giuseppe Loianno · Joan Solà ·
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Abstract The combination of visual and inertial sen-
sors for state estimation has recently found wide echo in
the robotics community, especially in the aerial robotics
field, due to the lightweight and complementary char-
acteristics of the sensors data. However, most state es-
timation systems based on visual-inertial sensing suf-
fer from severe processor requirements, which in many
cases make them impractical. In this paper, we pro-
pose a simple, low-cost and high rate method for state
estimation enabling autonomous flight of Micro Aerial
Vehicles (MAVs), which presents a low computational
burden. The proposed state estimator fuses observa-
tions from an inertial measurement unit, an optical flow
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smart camera and a time-of-flight range sensor. The
smart camera provides optical flow measurements up
to a rate of 200 Hz, avoiding the computational bot-
tleneck to the main processor produced by all image
processing requirements. To the best of our knowledge,
this is the first example of extending the use of these
smart cameras from hovering-like motions to odometry
estimation, producing estimates that are usable during
flight times of several minutes. In order to validate and
defend the simplest algorithmic solution, we investigate
the performances of two Kalman filters, in the extended
and error-state flavors, alongside with a large number
of algorithm modifications defended in earlier literature
on visual-inertial odometry, showing that their impact
on filter performance is minimal. To close the control
loop, a non-linear controller operating in the special
Euclidean group SE(3) is able to drive, based on the
estimated vehicle’s state, a quadrotor platform in 3D
space guaranteeing the asymptotic stability of 3D posi-
tion and heading. All the estimation and control tasks
are solved on board and in real time on a limited com-
putational unit.

The proposed approach is validated through sim-
ulations and experimental results, which include com-
parisons with ground-truth data provided by a motion
capture system. For the benefit of the community, we
make the source code public.

Keywords Micro Aerial Vehicles · Vision for
Robotics · Localization

1 Introduction

Small size unmanned aerial vehicles, namely Micro
Aerial Vehicles (MAVs), have gained significant atten-
tion in the last decade both in academia and industry,
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mostly due to their potential use in a wide range of
applications such as exploration (Tomic et al., 2012),
inspection (Ozaslan et al., 2013), mapping, interaction
with the environment (Forte et al., 2012; Thomas et al.,
2014), search and rescue (Michael et al., 2012), and to
their significant mechanical simplicity (Michael et al.,
2010) and ease of control. Moreover, their ability to op-
erate in confined spaces, hover in space and even perch,
together with a decrease in cost make them very attrac-
tive with tremendous potential. To enable autonomous
missions with MAVs, a robust, accurate and high up-
date rate state estimation pipeline is crucial.

Low-cost, low complexity solutions for MAV state
estimation are not very common. A first family of local-
ization systems relies on external infrastructure (GPS,
RF beacons, visual tags, IR cameras), e.g. (Liu et al.,
2007), which may not always be practical. When using
low-cost setups, these systems drastically lack precision,
dynamics, or both. A second family of methods em-
bark all hardware and software for self-localization, thus
not relying on any external setup. These methods in-
clude any kind of Simultaneous Localization And Map-
ping (SLAM) or odometry systems drawn from other
robotics fields to be applied to MAVs. Good results have
been obtained using stereo camera configurations (Shen
et al., 2013; Tomic et al., 2012), and RGB-D sensor sys-
tems (Shen et al., 2012; Loianno et al., 2015b; Michael
et al., 2012). However, these algorithms generally re-
quire powerful computers to produce and deal with
fairly dense point clouds. State estimation for small-
sized and lightweight platforms (less than 40 cm and
less than 1 kg) is a challenging task, due to the limited
payload and computing capacity that these vehicles can
carry.

Not surprisingly, combinations of Inertial Measure-
ment Units (IMU) and monocular visual sensors are
becoming very popular, thanks to their low weight,
power consumption and cost, and their ease of installa-
tion. This constitutes a minimalist yet powerful sensor
suite for autonomous localization as it allows recover-
ing both the high motion dynamics and the localiza-
tion with respect to the environment, including scale
and, most important for MAV navigation, the direc-
tion of gravity (Jones and Soatto, 2011; Meier et al.,
2012; Martinelli, 2013). The processes of estimating the
vehicle state using such sensors are known as Visual-
Inertial Odometry (VIO, with no absolute localization)
(Roumeliotis et al., 2002; Hesch et al., 2014; Li and
Mourikis, 2013), and Visual-Inertial SLAM (enabling
absolute localization by revisiting previously mapped
areas) (Kelly and Sukhatme, 2011; Blösch et al., 2010;
Roussillon et al., 2011; Fraundorfer et al., 2012). The

focus of our work is not at building maps, and we con-
centrate on VIO.

In most of the above-mentioned VIO approaches,
the state vector being estimated is very large. Their
typical high precision outcome is attained by jointly es-
timating a subset of past camera poses and a number
of landmarks in the environment, which are tracked in
the image over relatively long periods of time. This cre-
ates a graph of constraints between vehicle states and
landmarks, which is incrementally solved by nonlinear
optimization. These solutions are computationally in-
tensive, and require carefully optimized code to com-
pensate for the limited computing resources typical of
MAVs.

To reduce the computational burden and increase
the update rate, several authors opt to exploit the
image information only locally and in 2D. Forster
et al. (2014) define a method called semi-direct visual
odometry (SVO) which establishes feature correspon-
dences directly from intensity values in the image (small
patches) rather than feature extraction and matching.
This icreases speed due to the lack of feature extraction
at every frame and accuracy through subpixel feature
correspondence, allowing its implementation onboard
an aerial platform (Faessler et al., 2016). However, in
Forster et al. (2014) feature extraction is still required
when a keyframe is selected to initialize new 3D points.
Weiss et al. (2012) propose an EKF-based speed esti-
mation module, which converts the pair camera-IMU
into a metric speed sensor at 40 Hz update rate, using
optical flow information of at least 2 image features. A
parallel tracking and mapping (PTAM) pipeline is tai-
lored to the system, which therefore requires onboard
image processing. In Omari and Ducard (2013), flow
information is fused with inertial measurements. How-
ever, only simulation results are provided. A similar
approach (Blösch et al., 2014) presents a novel visual
error term and uses a visual-inertial sensor consisting on
a synchronized global-shutter camera and IMU (Nikolic
et al., 2014) to obtain flow information, though running
at 20Hz.

In this paper, we present a fast and low-cost state
estimation method for small-sized MAVs. We use exclu-
sively low-cost sensors and low-complexity algorithms.
As hardware, we take advantage of a low-cost IMU
(ASCTEC Hummingbird built-in IMU), a smart cam-
era (Honegger et al., 2013) which directly outputs 2D
flow, and an infrared time-of-flight range sensor (Ruffo
et al., 2014), all shown in Fig. 1. This sensor setup has
the advantage of being simple, lightweight, low power
and low cost, and is already included, with minor vari-
ations, in several commercial multi-copters as their ba-
sic instrumentation, being typically used as a means
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Fig. 1 Bottom view of the ASCTEC Hummingbird quadrotor
used in the experiments. The vehicle is equipped with a built-in
IMU, a smart camera and a time-of-flight range sensor.

for automatic hovering. As software, we have developed
two Kalman filters, in the extended (EKF) and error-
state (ESKF) forms (Ravindra et al., 2012), together
with a wide range of variations in the inner details,
for the sake of performance evaluation and comparison.
The overall estimation system acts as an odometer that
provides absolute altitude, velocity, orientation, angular
rate, and acceleration, with respect to a precise gravity
reference, at a rate of 100 Hz. The x and y positions
and the yaw angle are not observable, and their out-
put is the result of an incremental estimation subject
to drift —these modes can be observed with a lower
update rate by a higher level task, such as a visual
servoing (Santamaria-Navarro et al., 2014, 2017; Rossi
et al., 2017).

When compared to other visual-inertial approaches,
the optical-flow nature of the smart camera, with a very
narrow field of view (FoV) of only 64×64 pixels or 1.6◦

(compared to the 90◦ typical of VIO), represents an
important limitation, in the sense that visual features
are only exploited locally both in space and time, i.e.,
there is no notion of multiple features being tracked
over long periods of time. The number and length of
the feature tracks are key to the high precision attained
by the more sophisticated VIO methods, and in conse-
quence, we cannot expect equivalent performances. By
contrast, the number and length of these feature tracks
are the ones responsible for the algorithmic complexity
and CPU consumption. In our case, the high filter up-
date rate, made possible by the smart camera and range
sensor, and by our light algorithm, contributes to de-
crease the sensitivity to linearization errors, reducing
the accumulation of drift and thus enabling much sim-
pler methods for an acceptable performance.

In this scenario, one key objective of this paper is to
show that, given a sensor setup with such capabilities,
we are able to derive motion estimates that are useful
in the mid term (a few minutes, i.e., the typical flight
times of a full battery recharge) to drive autonomously

Filter type Quat. error Quat. integration Trans. Mat. Trunc.

ESKF GE, LE Q0F, Q0B, Q1 F1,F2,F3

EKF – Q0F, Q0B, Q1 F1,F2,F3

Table 1 Kalman filters and algorithm variations

the vehicle, without the need to implement complex
algorithms. In order to defend the simplest estimation
solution, we benchmark a large number of algorithm im-
provements and variations described in the literature,
and show that their impact on system performance is
minimal. This should not be surprising given the high
frequency of the measurements, but we believe that our
benchmarking provides valuable results for establishing
good estimation practices.

The algorithm variations that we investigate are
shown in Table 1, and are properly defined later in
the text. They are summarized hereafter, together with
the key works that defended them. First, we imple-
ment error-state (ESKF) and extended (EKF) Kalman
filters (Madyastha et al., 2011). Second, we express
the orientation errors of ESKF both in local (LE) and
global (GE) frames (Li and Mourikis, 2012).1 Third,
we compare different schemes for rotational motion in-
tegration of the quaternion (Trawny and Roumelio-
tis, 2005), including forward zeroth-order (Q0F), back-
ward zeroth-order (Q0B), and first-order (Q1). Fourth,
we compare different integration forms and approxima-
tions of the system’s transition matrix (F1,F2,F3) (Li
and Mourikis, 2013).

In order to achieve fully autonomous capabilities, we
use the estimated state to feed a closed-loop flight con-
troller at 100Hz. Many control approaches have been
proposed to drive MAVs in 3D space. In most previ-
ous works, a backstepping approach is used for control
because the attitude dynamics can be assumed to be
faster than the dynamics governing the position. Thus,
linearized controllers are used for both loops (Michael
et al., 2010; Weiss et al., 2011; Hérissé et al., 2012). In
this work, we use a nonlinear controller that operates
on the special Euclidean group SE(3), based on the
work (Lee et al., 2013; Mellinger and Kumar, 2011).
This allows us to accurately control large excursions
from the hover position during operations like take-off
and navigation, enabling agile flight maneuvers with
robustness.

In this paper we provide the following contribu-
tions with respect to our previous conference pa-
per (Santamaria-Navarro et al., 2015), in which we orig-
inally addressed the VIO problem. First, we define the
observation function directly in the flow space instead

1 Note that in EKF the orientation error is additive and this
distinction is irrelevant.
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of using pre-processed planar velocities. Second, we sub-
stitute the sonar-based ranger with an IR time-of-flight
ranger. This required the development of a new observa-
tion model. And third, we add SE(3)-based closed-loop
control using the state estimates to track 3D trajecto-
ries planned to be dynamically feasible.

The entire estimation and control solutions are able
to run using half of the computational power of a lim-
ited computational unit, the Odroid-XU32. To the best
of our knowledge, these are the first examples of the us-
age of such a low-cost visual-range-inertial sensor setup
for 6 Degree of Freedom (DoF) motion estimation and
control.

This paper is organized as follows. The next section
develops our state estimation approach by describing
the sensory setup, system kinematics and main filter-
ing details. In Section 3 we describe the non-linear con-
trol law and the dynamically feasible trajectory plan-
ner. Section 4 presents the simulations and experimen-
tal results that validate the proposed methods. Finally,
Section 5 concludes the work and provides an overview
of the multiple future scenarios. Some accessory or com-
plementary mathematical derivations supporting the
analysis are provided in the Appendices.

2 Flow-Inertial-Range Odometry

We consider a quadrotor, equipped with IMU, flow
smart camera and infrared (IR) range sensors, moving
with respect to a global coordinate frame assumed iner-
tial. All sensors are rigidly attached together below the
aerial platform, with the smart camera and range sensor
pointing downwards. Their models and characteristics
are specified in the following sections. The platform or
body frame is defined as the IMU frame, and the other
sensor frames are calibrated offline with respect to it.
All the image processing to obtain the flow is done by
the smart camera.

We aim at tracking the vehicle’s state by integrating
IMU measurements, and to correct these estimates with
flow and range readings, observing in turn the IMU bi-
ases for their proper compensation. We then use the
estimated state to perform closed-loop control of the
aerial platform. An overview of the architecture is de-
picted in Fig. 2.

2 http://www.hardkernel.com/main/products/prdt info.
php?g code=G140448267127

Fig. 2 Overview of the architecture pipeline for estimation and
control

2.1 Filter modalities and state vectors

In order to describe the state estimation formulation
for ESKF and EKF in subsequent sections, we present
here the following definitions.

In ESKF formulations, we speak of true-, nominal-
and error-state values, where the error-state values rep-
resent the discrepancy between the nominal- and the
true-state values. We note the true states with a ‘t’
subindex, xt; nominals with the plain symbol, x; and
errors with a ‘δ’ prefix, δx. These are defined respec-
tively as,

xt =
[
pt vt qt abt ωbt

]⊤ ∈ R
16 (1a)

x =
[
p v q ab ωb

]⊤ ∈ R
16 (1b)

δx =
[
δp δv δθ δab δωb

]⊤ ∈ R
15 , (1c)

where p, v, q are position, velocity and quaternion ori-
entation (refer to App. A for quaternion conventions),
all expressed in global world (inertial) frame, and ab
and ωb are accelerometer and gyrometer biases respec-
tively. The error-state is modeled as a Gaussian distri-
bution δx ∼ N{δ̂x,P}. These states are related by the
composition

xt = x⊕ δx , (2)

where ⊕ wraps the error δx onto the manifold of x. It
corresponds to the trivial addition for all state variables
(e.g. pt = p + δp) except for the orientation. We use
a minimal orientation error δθ ∈ so3 ⊂ R

3 living in
the space tangent to the SO(3) manifold (i.e., in its
Lie algebra so(3)). We contemplate orientation error
definitions in the global frame (GE) or in the local frame
(LE); their composition is computed respectively with
a product on the left or right hand sides of the nominal
quaternion,

global error (GE): qt = δq ⊗ q (3a)

local error (LE): qt = q ⊗ δq , (3b)

where δq = q{δθ} , exp(δθ/2) is the orientation error
in SO(3) expressed as a unit quaternion —see App. A
for details.
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In EKF formulations, we directly estimate the true-
state, which is modeled as a Gaussian distribution xt ∼
N{x̂t,P}.

2.2 Observation models

The observation models described hereafter are used
in the filter propagation (IMU) and correction (smart
camera and range sensor) steps.

2.2.1 Inertial measurement unit (IMU)

The IMU is composed of a 3-axis accelerometer and
a 3-axis gyrometer providing, in body frame, acceler-
ation and angular velocity measurements respectively.
The accelerometer measures acceleration at and gravity
g (considered known and constant) together. The gy-
rometer measures angular rates ωt, which are already
in body frame. These measurements are affected by ad-
ditive biases, abt and ωbt, and noises an and ωn. The
IMU model reads,

aS = R⊤

t (at − g) + abt + an ∈ R
3 (4a)

ωS = ωt + ωbt + ωn ∈ R
3 , (4b)

where Rt , R{qt} is the rotation matrix equivalent to
the quaternion qt. The noises are modeled by Gaussian
distributions an ∼ N{0,An} and ωn ∼ N{0,Ωn}.

2.2.2 Optical flow smart camera

The smart camera (PX4-Flow) integrates a monocular
camera, an ultrasound range sensor aligned with the
optical axis, and a triaxial gyrometer. It provides raw
optical flow (from now on referred to as just flow) at
the principal point, a range to a reflective surface, and
3-axial angular rates. In addition, it delivers horizontal
velocities in metric scale, computed from all the input
data. In this work, we improve the solution presented
in our previous work (Santamaria-Navarro et al., 2015)
with the following modifications. We discard the inter-
nally computed linear velocities and take advantage of
the raw flow to define a better observation function
directly in the flow space. In contrast to these linear
velocities, the raw flow is not dependent on the filter
state thus the process and measurement noises are de-
coupled. We also discard the PX4’s angular rates and
range. For the angular rates, we use the quadrotor’s
IMU gyrometers because they are of higher quality and
already aligned with the vehicle frame. As for the range,
we replace the sonar by an IR time-of-flight ranger.

1.6º1.6º

Fig. 3 Field of view (FoV) and echo directions using sonar
(left) and IR (right) rangers, compared to the camera FoV of
1.6◦ (dashed). Due to the coarse directivity of the sonar, the
strongest echoes are likely to come from a direction perpendic-
ular to the terrain surface, which may fall out of the FoV of
the camera, creating false visual-range associations on tilt ma-
neuvers. This is avoided with the excellent directivity of the IR
ranger.

Due to the coarse directivity of the sonar, the
strongest echoes are likely to come from a direction per-
pendicular to the terrain surface, which has two main
implications during tilt maneuvers. First, it can pro-
duce numerous outliers (see Figure 4 of (Santamaria-
Navarro et al., 2015)). Second, the signal bouncing may
fall out of the FoV of the camera, creating false visual-
range associations. These are avoided with the excel-
lent directivity of the IR ranger, which has less out-
liers and ensures that the range echo corresponds to
the region observed by the camera (1.6◦ FoV), result-
ing in a more predictable behavior that better fits the
observation model. In order for the smart camera to

Fig. 4 World (w), IMU (i) and camera (c) frames and their
relative transformations (curved arrows). The IMU and camera
are attached together forming a rigid body, with a twist {vi,ωi}
at the IMU, which induces a twist {vc,ωc} at the camera. A
point p on the ground is defined along the camera’s optical axis
(its Z axis).

perform correctly, scene lighting must be adequate and
the ground is required to have good visual texture.
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The observation model of the flow and the required
background are described in the following. Let w, i
and c denote respectively the world, IMU and camera
frames. Let cp =

[
cx cy cz

]⊤
be a static 3D point in

the ground (wz = 0), expressed in the camera reference
frame c as shown in Fig. 4. This point is projected to
the image according to the pin-hole model,

π = Pf

cp
cz
, (5)

with Pf the projection matrix defined in (10) and cz

the distance, measured along the optical axis, from the
optical center to the ground . Taking its time derivative
we obtain the optical flow,

φ , π̇ = Pf

˙cp cz − cp ˙cz
cz2

. (6)

The smart camera computes the mean flow in a
64× 64 pixels patch centered at the principal point,
giving a FoV of 1.6◦ around the optical axis. At the
optical axis, we have cp = [0, 0, cz] and (6) reduces to

φ = Pf

˙cp
cz
. (7)

Considering the smart camera in motion with a
twist cvc, cωc in its own frame, the velocity of the point
in the camera frame is

˙cp = −cvc − cωc × cp . (8)

Injecting this in (7) leads after easy rearrangements to

φ = −Pf

cvc
cz

+ P×
cωc , (9)

where the matrices Pf and P× can be expressed in
terms of the camera’s focal distances (fx, fy), measured
in horizontal and vertical pixels respectively, with

Pf =
[
fx 0 0
0 fy 0

]
, P× =

[
0 fx 0
−fy 0 0

]
. (10)

To obtain the observation model depending on our
system variables, we can expand cvc, cωc and cz with
cvc = iR⊤

c (R⊤

t vt + ωt × ipc) (11a)
cωc = iR⊤

c ωt (11b)

cz =
wzc

cosα
=

wpc(3)
wRc(3, 3)

, (11c)

where the true angular velocity ωt is obtained using
(4b), the pair 〈ipc, iRc〉 is the calibrated camera pose
expressed in IMU frame, α is the angle between the Z
axes of the world and camera frames (Fig. 4), and
wpc = pt + Rt

ipc (12a)
wRc = Rt

iRc . (12b)

The final observation model considers noisy flow
measurements with a noise nφ ∼ N{0,Nφ},
hφ(xt,nφ) = φ(xt) + nφ ∈ R

2 . (13)

2.2.3 Range sensor

The infrared time-of-flight sensor provides the distance
to the surface that bounces its signal (Fig. 3-right).
When mounted under a quadrotor, facing down and
assuming there is no object below the platform, the
sensor model is similar to the range presented in (11c),
but using the ranger frame instead of the camera frame,

hr(xt, nr) =
wpr(3)

wRr(3, 3)
+ nr ∈ R , (14)

with

wpr = pt + Rt
ipr (15a)

wRr = Rt
iRr , (15b)

with nr ∼ N{0, Nr} and where the pair 〈ipr, iRr〉 is
the calibrated pose of the range sensor with respect
to the IMU frame. Notice the model difference with
respect to a sonar (Santamaria-Navarro et al., 2015)
which directly retrieves the platform height.

2.3 System kinematics

As it is common practice in the literature of IMU
navigation, e.g. (Roussillon et al., 2011), we can
define the continuous system kinematic equations
ẋt = f(xt,u,w) as

ṗt = vt (16a)

v̇t = Rt (aS − abt − an) + g , (16b)

q̇t =
1
2

qt ⊗ (ωS − ωbt − ωn) (16c)

ȧbt = aw (16d)

ω̇bt = ωw . (16e)

where we use the shortcut q ⊗ ω ≡ q ⊗ [0,ω]⊤ for
convenience of notation. This system involves the true-
state xt from (1a), is governed by IMU noisy read-

ings u =
[
aS ωS

]⊤
(4), and is perturbed by Gaus-

sian noise w =
[
aw ωw

]⊤
, with aw ∼ N{0,Aw} and

ωw ∼ N{0,Ωw}.
In ESKF only, we distinguish between nominal- and

error-state kinematics. The nominal kinematics corre-
spond to the modeled system without noises or pertur-
bations

ṗ = v (17a)

v̇ = R (aS − ab) + g , (17b)

q̇ =
1
2

q ⊗ (ωS − ωb) (17c)

ȧb = 0 (17d)

ω̇b = 0 . (17e)
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To obtain the error kinematics we write each true-state
equation in (16) as its composition of nominal- and
error-states in (2) and (3), solve for the error-state, and
simplify all second-order infinitesimals. The result for
the linear velocity and orientation elements (δv and δθ)
depend on the orientation error representation (GE or
LE). With a globally-defined error GE we have

δṗ = δv (18a)

δv̇ = −[R(aS − ab)]× δθ − R δab − Ran (18b)

δθ̇ = −Rδωb −Rωn (18c)

δȧb = aw (18d)

δω̇b = ωw , (18e)

whereas with a local definition LE we need to replace
(18b) and (18c) above with

δv̇ = −R [aS − ab]× δθ − R δab −Ran (18f)

δθ̇ = −[ωS − ωb]× δθ − δωb − ωn , (18g)

where [·]× is the skew-symmetric matrix

[a]× =




0 −az ay
az 0 −ax
−ay az 0


 . (19)

2.3.1 System kinematics in discrete time

One of the aims of this paper is to analyze the impact of
using different integration approximations of the previ-
ous equations. Integrating continuous differential equa-
tions of the type ẋ = f(x,u) from time (k−1)∆t to k∆t
can be done in a number of ways. A common technique
is to integrate the linearized system, ẋ = A x + B u,
with A = ∂f/∂x, B = ∂f/∂u, into the discrete-time
xk ≈ F xk−1 + B u∆t, with F = eA∆t, and to truncate
the exponential Taylor series eA∆t =

∑
An∆tn/n! at

different orders, obtaining the different approximations
FN of the filter transition matrix,

FN ,

N<∞∑

n=0

1
n!

An∆tn

= I + A∆t+
1
2

A2∆t2 + ...+
1
N !

AN∆tN ,

(20)

with I the identity matrix. We provide extensive details
in App. B.

For the quaternion, it is possible and convenient,
through the exponential maps, to obtain closed-form
expressions of the infinite Taylor series (Trawny and
Roumeliotis, 2005; Solà, 2015). For this reason, we con-
template here the zero-th forward, zero-th backward and

first order integrators of (16c), that we name Q0F, Q0B
and Q1 respectively,

Q0F: qk ≈ qk−1 ⊗ q{ωk−1∆t} (21a)

Q0B: qk ≈ qk−1 ⊗ q{ωk∆t} (21b)

Q1: qk ≈ qk−1 ⊗
(

q{ω̄∆t}+∆t2

24

[
0

ωk−1×ωk

])
, (21c)

with ωk , ωS,k − ωbt,k, ωbt,k ≈ ωbt,k−1 and
ω̄ , (ωk−1 + ωk)/2, and q{·} as defined in (49).
Notice that Q0F and Q0B are proper SO(3) integra-
tors: they integrate the angular rates in so(3) using
forward or backward Euler, producing an angular step
∆θ = ω∆t ∈ so(3), and construct the quaternion step
∆q = q{∆θ} = exp(∆θ/2) using the exponential
map (49), which is then composed in the SO(3)
group locally (i.e., at the right side of the product).
Q1 accounts for second-order terms appearing only
when the rotation axis changes direction within the
integration interval (i.e., ωk−1×ωk 6= 0).

Integrations for the ESKF and the EKF are detailed
in the following paragraphs. For the sake of clarity, in
this section we integrate the kinematic equations using
only F1 (also known as backward Euler integration) for
all variables except the quaternion. For the quaternion,
we use Q0B. This choice is pertinent: as will be revealed
in the benchmarking, improving the approximations of
the transition matrix and the quaternion beyond the
forms presented in this section has only minimal effect
on the overall performance.

ESKF: For the ESKF we need to integrate the
nominal- and the error-state equations. The integration
of the nominal-state equations (17) results in

p ← p + v∆t (22a)

v ← v + (R (aS − ab) + g)∆t (22b)

q ← q ⊗ q{(ωS − ωb)∆t} (22c)

ab ← ab (22d)

ωb ← ωb , (22e)

where “←” stands for “gets updated with”, i.e.,
x← f(x, •) is equivalent to xk = f(xk−1, •k). Similarly,
the integration of the error-state equations (18) pro-
duces, for a globally-defined error GE,

δp ← δp + δv∆t (23a)

δv ← δv− ([R (aS−ab)]×δθ + Rδab)∆t+ vi (23b)

δθ ← δθ −Rδωb∆t+ θi (23c)

δab ← δab + ai (23d)

δωb ← δωb + ωi , (23e)
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whereas for a local definition LE,

δv← δv− (R[(aS − ab)]×δθ + Rδab)∆t+ vi (23f)

δθ ← δθ − ([ωS − ωb]× δθ + δωb)∆t+ θi . (23g)

Here, vi, θi, ai and ωi are random impulses applied
to the velocity, orientation and bias estimates, mod-
eled with Gaussian processes. Their mean is zero, and
their covariances matrices are obtained by integrating
the variances of the IMU measurement noises, an, ωn,
and the IMU bias random walks, aω, ωω, over the time
step ∆t,

Vi = An∆t
2 = σ2

an
∆t2 I [m2/s2] (24a)

Θi = Ωn∆t
2 = σ2

ωn
∆t2 I [rad2] (24b)

Ai = Aw∆t = σ2
aw
∆t I [m2/s4] (24c)

Ωi = Ωw∆t = σ2
ωw
∆t I [rad2/s2] , (24d)

where σan
[m/s2], σωn

[rad/s], σaw
[m/s2

√
s] and

σωw
[rad/s

√
s] are to be determined from the informa-

tion in the IMU datasheet, from real measurements, or
–preferably as a last resort– via filter tuning.

EKF: In this case, we simply integrate the true-state
kinematic equations (16). Notice that the result is
equivalent to the nominal integration in ESKF, but in-
corporating the noises vi, θi, and biases random walks
ai, ωi,

pt ← pt + vt∆t (25a)

vt ← vt + (Rt (aS − abt) + g)∆t+ vi (25b)

qt ← qt ⊗ q{(ωS − ωbt)∆t+ θi} (25c)

abt ← abt + ai (25d)

ωbt ← ωbt + ωi . (25e)

2.4 ESKF filter

We are interested in estimating the true-state xt, which
we do as follows. High-frequency IMU data is integrated
into the nominal-state x, which does not take into ac-
count noise terms or other possible model imperfections
and, as a consequence, it accumulates errors. These er-
rors are collected in the error-state, defined as the mul-
tivariate Gaussian δx ∼ N{δ̂x,P}, this time incorpo-
rating all the noise and perturbations. In parallel with
integration of the nominal-state, the ESKF predicts a
prior estimate of this error-state, and uses the other
sensor readings (flow and range) in a correction phase
to provide a posterior. After each correction, the error-
state’s mean (δ̂x) is injected into the nominal-state, and
then reset to zero. Because of this reset, at each time
the nominal state x is the best estimate of the true state
xt, and the estimated uncertainty is described by the
error covariances matrix P.

2.4.1 Prediction

Apart from the true-, nominal- and error-state vectors,
it is convenient here to consider our kinematic models in
a generic form xt ← f(xt,u, i) that we will identify with
the appropriate equation numbers. The input vector u

(IMU readings) and the perturbation impulses vector i

are defined as follows

u =
[

aS
ωS

]
, i =




vi
ωi
ai
ωi


 . (26)

At the arrival of a new IMU measurement, we prop-
agate the nominal-state x according to a version of (22)
using the selected FN ,

x← f(x,u,0) , (27)

and the error-state Gaussian with the filter using (23),

δ̂x ← FN δ̂x (28a)

P ← FN P F⊤

N + Fi Qi F⊤

i , (28b)

where the equation (28a) for δ̂x can be neglected be-
cause the error mean δ̂x starts and remains at zero,
FN is the transition matrix, the Jacobian of (23) with
respect to the error-state δx —see App. B for details.
Fi is the Jacobian of (23) with respect to the pertur-
bations vector i, obtained by simple inspection, and Qi

is the covariances matrix of the perturbation impulses,
given by

Qi =




Vi 0 0 0

0 Θi 0 0

0 0 Ai 0

0 0 0 Ωi


 . (29)

2.4.2 Innovation and correction

We consider the arrival of sensor data other than IMU,
with a model y = hj(xt,nj), with j = φ for the flow
sensor observation model (9,13), and j = r for the range
sensor model (14). Because δ̂x = 0, we have x̂t = x, and
the innovation z and its covariance Z read

z = y − hj(x,0) (30a)

Z = Hj P H⊤

j + Nj , (30b)

with Hj = ∂hj/∂δx being the observation Jacobian of
flow (9) or range (14), defined with respect to the error-
state δx. In order to be robust to possible measurement
outliers, we perform a χ2-test based on the Mahalanobis
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distance of the innovation (Bar-Shalom et al., 2004).
Inliers are validated by checking the condition

z⊤Z−1z ≤ χ2
th , (31)

with χ2
th equal to the 0.95 probability quantile of the χ2

distribution. If we pass the test, we proceed by comput-
ing the Kalman gain K and observing the filter error,

K = PH⊤Z−1 (32a)

δ̂x← Kz (32b)

P← P − K Z K⊤ . (32c)

We finally update the nominal-state with the ob-
served error mean using the appropriate compositions
x← x⊕δ̂x introduced in (2). This operation is a simple
addition for most variables except for the orientation,
which depends on the error representation. Hence, for
a global definition (GE) we have

q← q{δ̂θ} ⊗ q , (33a)

whereas for a locally defined error (LE),

q← q ⊗ q{δ̂θ} . (33b)

Notice that these operations constitute proper updates
in the SO(3) manifold represented by unit quaternions.

2.5 EKF filter

In this case, the function f() and its Jacobians FN
and Fi are drawn from (25). The forms of f() and FN
depend on the truncation grade we choose —see Ap-
pendix B for details. The prediction step is standard
EKF,

x̂t ← f(x̂t,u,0) (34a)

P ← FN P F⊤

N + Fi Qi F⊤

i . (34b)

The innovation is obtained as in ESKF (30), with
flow and range observation Jacobians Hi = ∂hi/∂xt,
i ∈ {φ, r}, this time deriving (9) and (14) with respect
to the true-state xt instead of the error-state. We per-
form the same outlier rejection explained for the ESKF.
Correction follows the standard EKF formulation,

K = PH⊤

i Z−1 (35a)

x̂t ← x̂t + Kz (35b)

P← P − K Z K⊤ . (35c)

Notice that, unlike the ESKF updates (33), the sum in
(35b) implies that the orientation escapes the SO(3)
manifold, and thus that quaternion re-normalization is
required.

2.6 Observability analysis

The observability analysis of the system needs the
evaluation of the rank and continuous symmetries of
the observability matrix defined from the Lie deriva-
tives (Martinelli, 2012). Following this work, we de-
tect three continuous symmetries, corresponding to the
non-observable modes of XY translation, and rotation
around the direction of gravity (i.e., the yaw angle),

ω1
s = [1, 0, 0, 0, · · · , 0]

ω2
s = [0, 1, 0, 0, · · · , 0]

ω3
s = [−py, px, 0,−vy, vx, 0,−

qz
2
,−qy

2
,
qx
2
,
qw
2
, 0, · · · ] ,

where {px, py, vx, vy, qx, qy, qz, qw} are position, velocity
and quaternion components. All other modes, includ-
ing all biases, are observable as long as the maneuvers
performed span the observable directions. As shown
in (Santamaria-Navarro et al., 2015), the limitations on
maneuverability imposed by the MAV dynamics have a
negative impact on the observability of certain modes,
in particular on the accelerometer bias in the XY axes,
and the gyrometer bias in the Z axis. These biases are
observable only when the MAV escapes the hovering
attitude, and their convergence increases the further
we deviate from hovering. Therefore, it is beneficial to
drive the MAV in aggressive maneuvers. This requires
a flight controller with good stability conditions away
from the hovering situation, such as the one we present
hereafter.

3 Platform Control

Our platform of choice is a quadrotor due to its me-
chanical simplicity (Michael et al., 2010) and ease of
control. The ability of a quadrotor to operate in con-
fined spaces, hover in space and perch or land on a flat
surfaces makes it a very attractive aerial platform. This
section describes the dynamic model and the control
scheme.

3.1 Dynamic model

Quadrotors are typically equipped with four aligned
coplanar propellers. Motion control is achieved by al-
tering the rotation speed of these propellers, thereby
changing its torque load and thrust lift characteristics
(see Fig. 5).

Let us consider a global coordinate frame w, as-
sumed inertial and defined by unitary column vectors
[wx,w y,w z], and a body reference frame b, defined also
by [bx,b y,b z] and centered in the center of mass of the
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Fig. 5 Quadrotor scheme with reference frames, thrust vectors
and propeller rotation directions.

vehicle. The dynamic model of the vehicle can be ex-
pressed as

ṗ = v (36a)

ma = −f R wz +mg (36b)

Ṙ = R[ω]× (36c)

Iω̇ + ω × Iω = τ , (36d)

where m ∈ R is the mass, I ∈ R
3×3 is the inertia matrix

with respect to the body frame, and wz ,
[
0 0 1

]⊤
. The

control inputs of the plant are the total thrust f ∈ R,
and the total moment τ =

[
τ1 τ2 τ3

]⊤ ∈ R
3 along all

axes of the body-fixed frame. The dynamics of rotors
and propellers are neglected and it is assumed that the
force fi of each propeller is directly controlled. The to-
tal thrust, f =

∑4
j=1 fj , acts in the direction of the z

axis of the body-fixed frame, which is orthogonal to the
plane defined by the centers of the four propellers. The
relationship between the single motor forces fi, the to-
tal thrust f , and the total moment τ , can be written
as



f

τ1

τ2

τ3


 =




1 1 1 1
0 −d 0 d

d 0 −d 0
−c c −c c







f1

f2

f3

f4


 , (37)

where c is a constant value and d is the distance from
the center of mass (b) to a rotor axis, considering all
rotors equidistant. For non-zero values of d, (37) can
be inverted, therefore our assumption that f and τ are
the inputs of the plant is valid.

3.2 Position and attitude controllers

We want to control the quadrotor with desired posi-
tions, heading, linear velocities and accelerations (i.e.,
pd, ψd, vd and ad) with a controller design based on the
nonlinear tracking controller developed on the special
Euclidean group SE(3) (Lee et al., 2013). For this, the

quadrotor control inputs f , τ from (37) (see Fig. 2) are
chosen as

f =− (−kppe − kvve −mg +mad) ·R wz (38a)

τ =− kθθe − kωωe + ω × Iω

− I
(
[ω]×R⊤RCωC −R⊤RCω̇C

)
,

(38b)

with kp, kv, kθ, kω positive definite gains to be tuned.
pe, ve, θe and ωe are the position, velocity, orientation
and angular rate errors, defined by

pe = p− pd (39a)

ve = v− vd (39b)

θe =
1
2

[
R⊤

CR −R⊤RC

]×
(39c)

ωe = ω −R⊤RCωC . (39d)

RC and ωC are the internally controlled orientation
and angular velocity, as produced by the position con-
troller, refer to (Lee et al., 2013) for more details on
their definitions. The symbol [·]× represents the map
so(3)→ R

3, which is the inverse operation of [·]×.
Using this controller, if the initial attitude error is

less than 90◦, the zero equilibrium of the tracking errors
is exponentially stable, i.e.,

[
pe ve θe ωe

]
→ 0. Fur-

thermore, if the initial attitude error is between 90◦ and
180◦, then the zero equilibrium of the tracking errors
is almost globally exponentially attractive. The reader
can refer to (Lee et al., 2013) for convergence and sta-
bility analysis and to (Mellinger and Kumar, 2011) for
experimental results.

3.3 Trajectory planning

With the planning module (see Fig 2) we generate tra-
jectories in Cartesian space. These trajectories consist
of the desired values fed to the controller above, pd, ψd,
vd and ad. Our planner design is based on (Mellinger
and Kumar, 2011) which guarantees dynamically fea-
sible trajectories by proving that our dynamic system
(36) is differential flat (Fliess et al., 1995). This means
that our dynamic system can be formulated as an alge-
braic function of the flat outputs, which are

η =
[
p⊤ ψ

]
, (40)

or their derivatives. These algebraic relations involve
the fourth derivative of the position p, called snap, and
the second derivative of the heading ψ (Mellinger and
Kumar, 2011). Therefore, to generate smooth and fea-
sible 3D trajectories, it is convenient and sufficient to
minimize this snap using the following cost functional:

min
∫ tf

t0

(
µp

∥∥∥∥
∂4p(t)
∂t4

∥∥∥∥
2

+ µψ

∥∥∥∥
∂2ψ(t)
∂t2

∥∥∥∥
2
)
dt (41)
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where µp and µψ are tuning parameters, subject to the
desired boundary conditions on the flat outputs and
their concerned derivatives. This minimization problem
can be formulated as a quadratic program (Mellinger
and Kumar, 2011), also including intermediate way-
points.

4 Validation

We validate our method comparing the produced es-
timates with respect to precise ground truth measure-
ments. Notice that we do not compare our performances
against the more sophisticated VIO algorithms for the
reasons exposed in the introduction, namely, the lack
of key-frames and lengthy feature tracks in our esti-
mation pipeline. To properly analyze estimation drift,
in all experiments, state estimates are initialized with
ground-truth values.

4.1 Simulation results

In order to study the performances and limitations of
the proposed state estimation setup, we first present ex-
periments with synthetic data under realistic flight con-
ditions. We benchmark all filter types using the same
scenario and with the quadrotor simulation equipped
with an IMU, a smart camera and a range sensor, and
taking advantage of a MATLAB toolbox (checkout our
online software 3 for more details on quadrotor dynamic
values and sensor parameters). For the benefit of the
community, we also make the MATLAB odometry es-
timation code public4. The optimized high-rate C++
implementation is available upon request.

4.1.1 Position RMSE and orientation error evaluation

To analyze the resulting filter estimations we perform
N trajectory simulations. We evaluate the Root Mean
Square Error (RMSE) between each component i of
the estimated vehicle positions (x,y,z) with respect to
ground truth, for all time steps k

ǫi =

√√√√ 1
N s

N∑

j=1

s∑

k=1

(pi,k − p̂ji,k)2 , (42)

where s is the number of time samples of each exper-
iment, pi,k is the i-th component of the true vehicle
position at time k, and p̂ji,k is its estimate mean, com-
puted by the filter, corresponding to the j-th among N
simulated trajectories.

3 https://gitlab.iri.upc.edu/asantamaria/QuadSim
4 https://gitlab.iri.upc.edu/asantamaria/QuadOdom

To analyze the orientation error we use as
in (Loianno et al., 2015a), which in turn is based
on (Bullo and Lewis, 2004), the orientation error metric
defined as

Ψ =
1
2
tr(I−R⊤R̂) ∈ R , (43)

where R and R̂ are respectively the ground truth and
estimated vehicle orientations.

Table 2 shows both position RMSE and the above-
mentioned orientation error metric (no units) achieved
at the end of N = 20 simulated flights of almost 10 min
and 500 m each, performing representative movements
(e.g. up/down, forward/backward, left/right). For the
sake of simplicity only some of the filter variants are
reported, and to ease the comparison some filter char-
acteristics are colored. The results in Table 2 show that
there is no significant performance difference between
filter designs. Moreover, note that all filter types have
practically the same computation load as their main dif-
ferences are not in terms of computation (CPU ticks)
but in complexity on their developments and defini-
tions. Being more specific, the computation difference
between an ESKF and EKF are the quaternion re-
normalization required in EKF and the extra compo-
sition of error- and nominal- states for the ESKF (2),
resulting in minimal operations with similar computa-
tion. The extra elements of the Taylor series expan-
sions when using different grades of truncations for the
transition matrices (F1, F2, F3) increase the computa-
tion time with negligible extra CPU ticks. The different
quaternion integration methods (Q0F, Q0B, Q1) entail
the same operations except for the Q1 integration that
has an extra sum, that again its computation load can
be considered negligible.

4.1.2 Average NEES evaluation

A recursive estimator is consistent when the estima-
tion errors are zero-mean and have covariance matrix
equal to that reported by the estimator. To evalu-
ate the consistency of the filters we use, as in (Solà
et al., 2011) which in turn is based in (Bar-Shalom
et al., 2004), the Average Normalized Estimation Er-
ror Squared (ANEES) for N Monte Carlo runs, defined
as

ηk =
1
N

N∑

j=1

(
Bk − B̂

j
k

)⊤

P
j
k

−1
(

Bk − B̂
j
k

)
, (44)

where Bk is the 6 DOF true body pose at time k (i.e.,
ground truth) and N{B̂j

k,P
j
k} is its Gaussian estimate,

obtained by filtering, corresponding to the j-th among
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Filter Variant

E
r
r
o

r

C
o

m
p

o
n

e
n

t

ǫ i

EKF

F1

Q0F
LE

EKF
F1

Q0B
LE

EKF
F1

Q1
LE

EKF
F2

Q1
LE

EKF
F3

Q1
LE

ESKF
F1

Q0F
GE

ESKF
F1

Q0B
GE

ESKF
F1

Q1
GE

ESKF
F2

Q1
GE

ESKF
F3

Q1
GE

ESKF

F1

Q0F
LE

x (m) 10.54 10.48 10.30 10.26 10.26 10.58 10.37 10.13 10.12 10.12 10.38

y (m) 11.13 11.07 10.85 10.81 10.81 11.00 10.82 10.55 10.58 10.58 10.91

z (mm) 7 6 7 6 6 7 7 7 7 7 7

Ψ (·10−3) 2 2 2 2 2 2 2 2 2 2 2

Table 2 Estimation error statistics after 10 min flights of 500 m in straight line. Root Mean Squared Error (RMSE) over 20
experiments for Cartesian position elements (x, y, z) and rotation error index (Ψ) at the end of the trajectory. Color in the filter
variant names are added for comparison purposes (those variants with the same color only differ from the colored characteristic).

the N Monte Carlo runs. Each run is done with a dif-
ferent seed for the random generator affecting the pro-
cess noises and the measurement noises. We now can
compute the double-sided 95% probability concentra-
tion region, which, for 6 DOF and N = 25 runs, has
the upper and lower bounds given by

η =
χ2

(25×6)(1− 0.975)

25
= 7.432 (45a)

η =
χ2

(25×6)(1− 0.025)

25
= 4.719 . (45b)

If ηk < η for a significant amount of time (more than
2.5% of the time), the filter is considered conservative.
Similarly, if ηk > η (also by more than 2.5% of the
time), the filter is considered optimistic and therefore
inconsistent. Fig. 6 shows an example of the ANEES
for the 6 DOF body frame pose

[
x y z φ θ ψ

]⊤
over 25

runs of the same experiment (N = 25). We estimated
the pose using the two extreme filter variants in terms
of simplicity, an EKF with F1 and Q0B options; and an
ESKF with GE, F3 and Q1 options. The gray horizontal
band between abscissas mark the 95% consistency re-
gion with η = 4.719 and η = 7.432. Both filter variants
are shown to be neither conservative nor inconsistent
(see online software simulator for all involved parame-
ters during simulation and estimation).

4.2 Experimental results

The quadrotor used in the real experiments is the
ASCTEC Hummingbird research platform shown in
Fig. 1. This platform has an off-the-shelf built-in IMU
running at 100 Hz, and we equipped it with a PX4-Flow
smart camera (Honegger et al., 2013), with a rate of 200
Hz, and a TeraRangeOne range sensor (Ruffo et al.,
2014) with a frequency of up to 800 Hz. The smart

camera and the range sensor have a cost of around
100e each. Note that the specialized PX4-Flow mod-
ule can be replaced by a comercial camera with similar
hardware characteristics (i.e., 16mm M12 lens with a
pixel binning and subsampling resulting in a 64×64 pix-
els of resolution) together with the method described
in Honegger et al. (2013) programmed in the main
CPU, as this specialized module uses simple proces-
sor operations: sum of absolute differences (SAD) block
matching to compute the optical flow. Note, however,
that an increment in the estimation drift is possible
should the flow rate decrease when replacing the smart
camera with another device with slower frame rate.

The algorithms for odometry estimation and control
are running onboard, in an Odroid-XU3 platform (using
one of its four CPU cores) with Ubuntu 14.04LTS and
ROS Indigo. All experiments have been performed at
PERCH lab (Penn Engineering Research Collaborative
Hub) indoor testbed, at the University of Pennsylvania,
equipped with a Qualisys5 motion capture system run-
ning at 100Hz and used for ground-truth comparison.
Some of the lab experiments presented herafter are also
shown in the accompanying video.

The first set of experiments consists on executing
autonomously several trajectories (i.e., the control part
uses only the state estimation as input) and includes
take-off and landing maneuvers. Fig. 7(a) and 7(b)
show the on-board state estimates compared to Qual-
isys system measurements for both positioning and ori-
entation in a sample experiment. As detailed in pre-
vious sections, the height of the platform (i.e., z axis
in Fig. 7(a)) is observable thanks to the range mea-
surement, thus its error is low. Similarly, roll and pitch
estimation errors are low due to the observability of the
gravity direction provided by the fused IMU data. Fi-

5 www.qualisys.com
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Fig. 7 Comparison between the estimation of a sample trajec-
tory (using an ESKF with GE, F3 and Q1) and ground-truth
(Qualisys motion capture system). Ground-truth and estima-
tion variables are labeled as ·t and ·̂, respectively. The cor-
responding RMSE is [0.130,0.051,0.094] and the error STD is
[0.087,0.050,0.032].

nally, the XY errors grow with time, partly because of
the integration of noisy XY velocities, but mostly due
to the effect that an unobserved yaw angle ψ has on
translation errors.

Fig. 8 shows experiments for two different trajecto-
ries, 8(a) and 8(b). We launched 25 autonomous runs
for each trajectory with a desired height of 1 m and
maximum cruise velocity around 1 m/s (notice the su-
perposition of the estimated and ground-truth trajecto-
ries in blue and gray respectively). The error statistics
for all runs in terms of RMSE are shown in Fig. 8(c). Us-
ing similar trajectories we also pushed the smart camera
to its limits, by increasing the maximum cruise velocity,
and we reached 2.5 m/s flying at 1.5 m height without

significant increase in the resulting estimation and con-
trol performance.

In order to show the viability of the proposed meth-
ods to drive autonomously the vehicle during realistic
flight durations, we performed long experiments con-
sisting on continuous trajectory loops during almost
10 min (i.e., a full battery discharge). Fig. 9 shows
a comparison between the estimated (p̂) and ground-
truth (pt, obtained with a Qualisys motion capture sys-
tem) trajectories for one of these experiments with a po-
sition RMSE of (0.47 0.67 0.035) (m), and standard de-
viation (0.29 0.48 0.003 ) (m). The maximum position
error at the end of the flight is (0.73 1.65 0.028) (m).
Note that the estimated state (blue in Fig. 9) is used
to control the vehicle, thus the estimation errors are re-
flected in the plot of the ground-truth trajectory (gray
in Fig. 9). Although the presented approaches are suffi-
cient to drive autonomously the platform during some
minutes without big trajectory errors, as stated before,
the x and y positions and yaw angle are not observable
(i.e., the method is an odometer) and their output is
the result of an incremental estimation subject to drift.

5 Conclusions

In this work, we presented a state estimator design for
MAVs that combines low cost and high rate visual-
inertial-range sensors. We investigated a wide range of
algorithm variations with different computing and im-
plementation complexities. We have shown the feasibil-
ity of using such low-cost sensor setup with light algo-
rithms to achieve not only hovering maneuvers but also
fully autonomous navigation. All the technical details
have been provided, facilitating the use of the proposed
methods by other groups in the community.

The result of our experimentation shows that the
effects of all the variations in the estimator design are
minimal. In particular, the refinements on the transi-
tion matrices F1 · · ·F3 have no conclusive effect, mean-
ing that the classical Euler approximation F1 is suffi-
ciently good. A similar conclusion can be drawn for the
quaternion integrators Q0B, Q0F and Q1, and even for
the error compositions LE and GE. We conclude that
the final choices can be driven more by a criterion of
convenience rather than performance. This is due to
the high frequency of the measurements and filter up-
dates, which renders all integration schemes close to the
continuous-time case, and therefore equivalent in prac-
tice. Regarding the filter type, EKF vs. ESKF, we also
found equivalent performances. We can base our choice
on different criteria. For example, EKF is more widely
known, and it is also simpler, both conceptually and in
terms of implementation complexity. However, ESKF
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Fig. 9 Position estimation results for a long experiment (al-
most 10 min of continuous flight and a full battery discharge).
Note that in full autonomous mode the vehicle is controlled us-
ing the estimation, thus the drift of the platform can be seen in
the ground-truth trajectory (Qualisys motion capture system).

is very close to it, and constitutes a more proper and
elegant solution, from a theoretical viewpoint, because
of its operation in the rotations manifold SO(3). This
implies, for example, that in ESKF there is no need to
perform quaternion re-normalization. Our final recom-
mendations are the classical EKF with F1, Q0B and
quaternion re-normalization; or the more proper ESKF
with F1, Q0B, and either GE or LE. As both meth-
ods require similar number of mathematical operations,
both have essentially the same computational cost.

Using these filters, in terms of overall precision, our
state estimates are usable during flight times of several
minutes, enabling the MAV to perform a number of
tasks that require navigation without the aid on any
external positioning system.

The estimated state is richer than just odometry,
and includes higher derivatives such as velocities and
accelerations, all precisely referenced to the gravity di-

rection. These are exploited by a non-linear controller
to drive the vehicle in 3D space, showing that the em-
ployed sensors are more than sufficient to provide au-
tonomy to an aerial platform. This is the first time that
such inexpensive sensors enable precise localization and
autonomous navigation of aerial vehicles.

Appendix A Quaternion Conventions and

Properties

We use, as in (Solà, 2015), the Hamilton convention for
quaternions. If we denote a quaternion GqL represent-
ing the orientation of a local frame L with respect to
a global frame G, then a generic composition of two
quaternions is defined as

GqC = GqL ⊗ LqC = GQ+
L
LqC = LQ−

C
GqL , (46)

where, for a quaternion q = [w, x, y, z]⊤, we can define
Q+ and Q− respectively as the left- and right- quater-
nion product matrices,

Q+ =




w −x −y −z
x w −z y

y z w −x
z −y x w


 , Q− =




w −x −y −z
x w z −y
y −z w x

z y −x w


 . (47)

In the quaternion product, we notice how the right-
hand quaternion is defined locally in the frame L, which
is specified by the left-hand quaternion. Vector trans-
formation from a local frame L to the global G is per-
formed by the double product

Gv = GqL ⊗ Lv⊗ (GqL)∗ = GqL ⊗ Lv⊗ LqG , (48)

where we use the shortcut q ⊗ v ≡ q ⊗ [0,v]⊤ for con-
venience of notation.

Throughout the paper, we note q{x} the quaternion
and R{x} the rotation matrix equivalents to a generic
orientation x. A rotation θ = θu, of θ radians around
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the unit axis u, can be expressed in quaternion and
matrix forms using the exponential maps

q{θ} = eθ/2 =
[

cos(θ/2)
u sin(θ/2)

]
−−−→
θ→0

[
1

θ/2

]
, (49)

R{θ} = e[θ]× = I+sin θ[u]×+(1−cos θ)[u]2×
−−−→
θ→0

I+[θ]×
(50)

We also write R = R{q}, according to

R{q} =

[
w2+x2−y2−z2 2(xy − wz) 2(xz + wy)

2(xy + wz) w2−x2+y2−z2 2(yz − wx)
2(xz − wy) 2(yz + wx) w2−x2−y2+z2

]

(51)

Finally, the time-derivative of the quaternion is

q̇ =
1
2
Ω(ω)q =

1
2

q ⊗ ω , (52)

with ω the angular velocity in body frame, and Ω the
skew-symmetric matrix defined as

Ω(ω) , Q−(ω) =
[

0 −ω⊤

ω −[ω]×

]
. (53)

Appendix B Filter Transition Matrices

We detail the construction of the filter transition ma-
trix for the three involved integrals: ESKF nominal-
(22), ESKF error- (23), and EKF true- (25) kinemat-
ics. For each case, we need to define the matrix A as
the Jacobian of the respective continuous-time system,
and build the transition matrix FN as the truncated
Taylor series (20), i.e.,

FN =
N∑

n=0

1
n!

An∆tn = I + A∆t+
1
2 !

A2∆t2 + · · ·

In the following paragraphs, we detail the matrices A

for each case, and some examples of their first powers
up to n = 3. The reader should find no difficulties in
building the powers of A that have not been detailed,
and the transition matrices FN using the Taylor series
above.

The Jacobian A = ∂f(x, δx, ·)/∂δx of the ESKF’s
continuous time error-state system f() (18) using GE
is,

A =




0 I 0 0 0
0 0 V −R 0
0 0 0 0 −R

0 0 0 0 0
0 0 0 0 0



, (54)

with V = −[R(aS − ab)]×. Its powers are,

A2 =




0 0 V −R 0
0 0 0 0 −VR

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


 , A3 =




0 0 0 0 −VR

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


 ,

and An = 0 for n > 3. For LE we have

A =




0 I 0 0 0
0 0 V −R 0
0 0 Θ 0 −I

0 0 0 0 0
0 0 0 0 0


 , A2 =




0 0 V −R 0
0 0 VΘ 0 −V

0 0 Θ
2 0 −Θ

0 0 0 0 0
0 0 0 0 0


 , · · ·

with V = −R[aS − ab]×, and Θ = −[ωS − ωb]×.
The Jacobians A = ∂f(x, ·)/∂x of the continuous-

time EKF true- (16) and ESKF nominal- (17) systems
are equal to each other, having

A =




0 I 0 0 0
0 0 V −R 0
0 0 W 0 Q

0 0 0 0 0
0 0 0 0 0


 , A2 =




0 0 V −R 0
0 0 VW 0 VQ

0 0 W2 0 WQ

0 0 0 0 0
0 0 0 0 0


 , · · ·

where V, W and Q are defined by

V =
∂R{q} (aS − ab)

∂q
(55a)

W =
∂ 1

2 q ⊗ (ωS − ωb)
∂q

(55b)

Q =
∂ 1

2 q ⊗ (ωS − ωb)
∂ωb

, (55c)

and are developed hereafter. For the first Jacobian V

it is convenient to recall the derivative of a rotation of
a vector a by a quaternion q = [w, x, y, z]⊤ = [w,v]⊤

with respect to the quaternion,

V(q,a) ,
∂R{q}a

∂q
=
∂(q ⊗ a ⊗ q∗)

∂q
(56)

= 2
[
wa+v×a

∣∣ va⊤−av⊤+a⊤vI3−w[a]×
]
,

having therefore

V = V(q, aS − ab) . (57)

For the Jacobian W we have from (52)

W =
1
2
Ω(ωS − ωb) , (58)

with Ω(ω) the skew-symmetric matrix defined in (53).
Finally, for the Jacobian Q we use (46), (47) and (49)
to obtain

Q = −1
2




−x −y −z
w −z y

z w −x
−y x w


 . (59)
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Politècnica de Catalunya, in 1995,
the M.Sc. degree in control sys-
tems from the École Doctorale
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