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Abstract

Most of the future robots will be mobile, and the main challenge is to develop algorithms for their autonomous nav-
igation as well as for human-robot interactions. The Laboratory for Autonomous Systems and Mobile Robotics 
(LAMOR) at the Faculty of Electrical Engineering and Computing of the University of Zagreb is involved in the 
research of such mobile robotic systems, and currently participates in a number of related international and nation-
al research projects. This paper addresses the issue of autonomous navigation of mobile robots in complex dynamic 
environments, providing state of the art of the domain and major LAMOR’s contribution to it. At the end, we present 
an application example of the autonomous navigation technologies in flexible warehouses, which we have been de-
veloping within a Horizon 2020 project SafeLog.
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1. Introduction

There is no doubt that robotics, as a disruptive technol-

ogy, will change the life as we know it over the next 50 

years, enriching and augmenting all the aspects of life. 

The main robotics challenges in the next few decades 

will be to develop autonomous robotic systems that can 

perform complex tasks in human environments and safe-

ly cooperate with humans in arbitrary settings. Robots 

with these capabilities will transform our everyday lives 

as well as industrial processes, like the Internet, cell 

phones and computers had in the past two decades. Most 

of the future robots will be mobile, and therefore the 

main challenge is to develop algorithms for their auton-

omous navigation.

The paper is organized as follows. Section 2 and 3 de-

scribe respective activities of the Laboratory for Auton-

omous Systems and Mobile Robotics and the state of the 

art in the area autonomous navigation, while Section 3 

describes the SafeLog project that deals with human nav-

igation and safe interaction with robots in large flexible 

warehouses.

2. Laboratory for Autonomous Systems 
 and Mobile Robotics (LAMOR)

LAMOR (lamor.fer.hr) is a research laboratory at the 

Faculty of Electrical Engineering and Computing of the 

University of Zagreb (UNIZG-FER) that holds expertise 

in autonomous mobile robotics systems. LAMOR’s re-

search activities are focused on the following aspects:

• Autonomous navigation of mobile robots in complex 

dynamic environments with three major research 

axes: (i) motion planning and control, (ii) simultaneo-

us localization and mapping and (iii) detection and 

tracking of moving objects.

• Safe human-robot interactions to enable cohabitation 

of autonomous mobile robots and humans in the same 

environment with two major research axes: human 

intention recognition and human aware motion 

planning.

LAMOR’s methodology relies on a strong coupling 

 between theoretical research, algorithm development, 

experimental evaluations and a healthy dose of se-

rendipity. The Laboratory is equipped with the 

state-of- the-art ground and aerial robotic platforms, ad-

vanced perception sensors, and a motion capture covered 

arena.

LAMOR has large experience in conducting internation-

al and national research projects. For example, LAMOR 

is currently involved in the following projects:

• SafeLog – Safe human-robot interaction in logistic 

applications for highly flexible warehouses (H2020 

RIA project)

• L4MS – Logistics for Manufacturing SMEs (H2020 

IA project)

• DIH2 – A Network of Robotics DIHs for Agile Pro-

duction (H2020 DT-ICT-02-2018 – Robotics – Digital 

Innovation Hubs project)

• RoboCom++ – Rethinking Robotics for the Robot 

Companion of the future (FLAG-ERA project)

• SafeTRAM – System for Increased driving safety in 

public urban rail traffic (ERDF project)

• DUV-NRKBE – Development of a remotely contro-

lled vehicle for operation in extreme CBRNe conditi-

ons (ERDF project)
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• MAS – Development of a multi-functional anti-terro-

rism system (ERDF project), and

• DATACROSS – Advanced methods and technolo-

gies for data science and cooperative systems (ERDF 

– Top-level researches in Centres of Excellence 

 project).

3. State of the art in autonomous navigation 
 of mobile robots

3.1. Motion Planning and Control

Current state-of-the-art motion planning methods focus 

on the trajectory optimization aspects and they play two 

important roles in robot motion planning. Firstly, they 

can be used to smooth and shorten trajectories computed 

by other planning methods such as sampling-based plan-

ners. Secondly, they can be used to compute locally op-

timal, collision-free trajectories from scratch starting 

from naive trajectory initializations that might be in col-

lision with obstacles.

The CHOMP algorithm introduced in [1] was one of the 

first successful attempts at using such methods in robot-

ics. This method significantly outperformed naive RRT 

as well as grid search methods. STOMP introduced in 

[2] and ITOMP [3] further improved upon the CHOMP 

paradigm, exploring gradient-free optimization methods 

and dynamic obstacle avoidance, respectively. In [4] au-

thors used sequential quadratic programming over a dis-

crete trajectory representation, showing that it can be 

used to enforce both equality and inequality constraints. 

The underlying sparsity of the problem graph can be 

exploited by using exactly sparse Gaussian process (GP) 

regression [5]–[6]. GPs inherently provide a notion of 

trajectory optimality through a prior. Using this rep-

resentation, a gradient-based optimization algorithm 

called GPMP (Gaussian Process Motion Planner) was 

proposed that can efficiently overcome the large compu-

tational costs of fine discretization while still maintain-

ing smoothness of the result [7]–[9].

LAMOR’s major contributions: In [10] we presented 

a framework for estimating intention of workers in a 

robotized warehouse. An active SLAM algorithm based 

on D* planning was introduced in [11], while a conver-

gent navigation receding horizon control for differential 

drive robots was proposed in [12]. We also proposed for 

robot path planning a real-time approximation of 

clothoids with bounded error in [13].

3.2. Simultaneous Localization and Mapping

The simultaneous localization and mapping (SLAM) is 

a prerequisite for mobile robot’s autonomy with applica-

tions in many areas, including modern logistics, auton-

omous driving, transportation, search and rescue mis-

sions, human assistance etc. The SLAM problem was 

introduced in the late 80’s in the work of Smith et al. 

[14], but it came to focus at the beginning of 20th cen-

tury. For a long period of time, the SLAM solutions were 

based on the filtering methods [14]-[17], but in the past 

years the focus has shifted to optimization methods that 

structures SLAM as an undirected graph in which nodes 

represent either the robot’s pose or map’s landmarks, and 

edges represent robot’s observations. The approach uses 

maximum a posteriori method to find the relations of 

poses and landmarks that maximize the probability of 

consistent robot and landmark poses. Most prominent 

examples of this paradigm are square-root SAM [18], 

GraphSLAM [19], and incremental SAM (iSAM) [20]. 

In the last few years the implementation of graph based 

SLAMs has been made easier since there are open source 

libraries like g2o [21] and Ceres [22]. One of the most 

popular SLAM approaches in robotics are those using 

cameras, either in monocular or stereo setups. The most 

accurate and used approaches include semi-direct visual 

odometry method (SVO) [23], large-scale direct monoc-

ular SLAM (LSD-SLAM) [24], ORB-SLAM [25], and 

SOFT-SLAM [26].

LAMOR’ major contributions: In [26] we introduced 

stereo visual odometry, dubbed SOFT, which ranked as 

the most accurate visual odometry on multiple popular 

datasets. In [27] we proposed LG-ESDSF, the exactly 

sparse delayed state filter on Lie groups which can solve 

SLAM accurately and efficiently. Combined with the 

SOFT odometry, it yielded SOFT-SLAM, a SLAM algo-

rithm ranking first among visual SLAM approaches on 

several datasets. Finally, a theoretical foundation for LG-

ESDSF lies in the extended information filter in Lie 

groups which we introduced in [28].

3.3. Detection and Tracking of Moving Objects

Tracking of a multiple moving object is another funda-

mental component of autonomous robotic systems. The 

objective of multi-target tracking (MTT) is to jointly 

estimate the number of objects as well as their dynamic 

states. In addition to the time varying number of targets, 

there are many other difficulties in MTT such as clutter 

detections (false alarms) and unknown association be-

tween detections and targets. In recent years there have 

been major breakthroughs in the MTT field resulting 

in diverse tracking algorithms, although most of them 

can be divided into these three paradigms: probabilistic 

data association (PDA) [29]-[30], multiple hypothesis 

 tracking (MHT) [31]-[33] and random finite sets (RFS) 

[34]-[37].

LAMOR’s major contributions: We introduced two 

interesting versions of the PHD filter: one on the unit 

circle with the von Mises distribution [38] and the other 

on Lie groups [39]. Furthermore, joint integrated 

PDA filter on Lie groups for MTT with the radar and 

stereo camera was introduced in [40], while a JIPDA 

using the von Mises-Fisher distribution was proposed in 

[41].
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Fig. 1. SafeLog partner Swisslog’s automated CarryPick system

4. SafeLog project

4.1. About SafeLog

SafeLog – Safe Human-Robot Interaction for Highly 

Flexible Warehouses (safelog-project.eu) is a four-year 

H2020 research project (1/2016 – 12/2019, grant No 

688117). It is coordinated by Prof. Björn Hein from the 

Karlsruhe Institute of Technology (KIT). It has six part-

ners in total and, besides KIT, also includes the industri-

al partner Swisslog, whose automated warehouse system 

is used as a case-study in the project (Fig. 1).

In the sequel we continue with the LAMOR research 

activities carried out within the project, and end with 

concluding remarks.

4.2. LAMOR Research Results

Moving objects detection using a wearable stereo 

camera

The aim is to detect moving objects from a stereo cam-

era mounted on a human, as part of a Safety Vest. The 

stereo camera was modeled as two pinhole cameras 

which project the three-dimensional space on two-di-

mensional image plane. With a stereo camera it is pos-

sible to reconstruct the three-dimensional space back 

from its two two-dimensional projections. Apart from 

the Euclidean representation, which is the usual way of 

describing three-dimensional space, there are other rep-

resentations. One such representation is the disparity 

space where x and y coordinates remain unchanged, but 

the third coordinate is the inverse of the depth z, and this 

inverse is called disparity. The disparity image is a way 

of showing the scene’s depth by using pixel intensities.

We implemented the Semi-global matching method that 

efficiently computes consistent disparity images. Our 

problem was oriented to the reconstruction of depth from 

a video sequence. Previously computed disparities are 

used to improve the disparity computation, where the 

ego-motion estimation is used to transform the disparity 

from the previous step into the next step. Under the as-

sumption of a static world, the transformed disparity is 

equivalent to the newly computed disparity. In reality, 

this is not true because of the noise (dynamic objects, 

discretization noise, errors in disparity computation etc.) 

and the transformed disparity will not always match the 

new one. Nevertheless, the disparity prediction from the 

previous step is still used. For each pixel we determin-

istically compute the displacement based on ego-motion 

and stochastically track the value of its disparity while 

updating its uncertainty through time with Kalman fil-

tering. The disparity of each pixel is estimated by com-

bining the newly matched (measured) disparity map and 

predicted disparity map. This way we managed to reduce 

the complexity of the algorithm.

The described framework is focused on stable, precise 

and fast spatio-temporal reconstruction, thus constrain-

ing the use case of the proposed method to static scenes. 

Although this can be seen as a limitation, in fact, this 

approach forms the base for dense stereo detection of 

dynamic objects by detecting discrepancies between 

static and dynamic flow. The assumption of the static 

world is not valid for the moving objects and they will 

cause discrepancies between the predicted and measured 

disparity images. By grouping such areas in the image, 

we manage to find the parts of the image with moving 

objects. In order to avoid the need to introduce any oth-

er sensors, we obtain ego-motion using the visual odom-

etry algorithm.

The implemented algorithm is evaluated on real-world 

data from the KITTI dataset (Fig. 2) and the results are 

compared with an open source implementation of 

semi-global matching method in OpenCV library. The 

results show that our implementation is faster and more 

accurate than the implementation from OpenCV.

Fig. 2. Process of moving object detection. Part (a) shows the first 
and second scene in the sequence. Part (b) shows the predicted 
disparity map and the matched one. Lastly, part (c) shows the 
difference between the disparity maps and the final result of de-

tection.
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Multiple Moving Objects Tracking

This task is mainly concerned with the stochastic esti-

mation of the state of multiple moving objects. We lev-

erage moving object detections from the previous sec-

tion and use them as inputs into the tracking algorithm. 

We present the Gaussian mixture PHD (GM-PHD) filter 

tested on various simulated and real-world scenarios. In 

Fig. 3 we show tracking of a rather complex scenario 

with 13 moving objects, from which we can see that even 

with a high clutter rate, the algorithm is capable of esti-

mating the position of multiple moving objects on the 

scene.

For real-world experiments we used a dataset recorded 

with a hand-held PerceptIn Ironsides stereo camera at 

the premises of UNIZG-FER. Inputs into the tracking 

algorithm were detections produced from the previous 

section. In Fig. 4 we can see some examples for the 

Ironsides dataset.

Human Worker Localization with the Safety Vest

The aim is to develop a localization concept that will 

provide a stable and consistent location of the worker in 

the warehouse. The first part of this research dealt with 

estimating ego-motion of the worker from a stereo cam-

era.

The stereo camera odometry can be seen as a sequence 

of several constituent blocks. Firstly, after a new ste-

reo-pair acquisition, high-quality features are detected. 

Feature management starts with extraction and matching 

of corner-like features in both left and right images of 

the stereo pair. For this purpose, we utilize blob and 

corner masks on the gradient image and apply the 

non-maximum suppression, thus obtaining a set of avail-

able features. The features are then used in the matching 

process, where the correspondences are determined by 

calculating the sum of absolute differences (SAD) over 

a pattern of pixels around the detected maxima. The in-

ertial measurement unit (IMU) is used to predict the rel-

ative displacement of the worker in order to define a 

search radius for feature matching. Features are then 

weighted based on the distance to the predicted coordi-

nates. The output of this step is a sparse feature set that 

can be further used within a RANSAC optimization 

 procedure in order to yield final displacement informa-

tion.

Fig. 3. GM-PHD tracking 13 moving objects in a high clutter rate.

Fig. 4. Tracking example for the Ironsides dataset.

Fig. 5. An example of a 3D map built with the stereo visual odo-
metry. Besides the map, the estimated trajectory (green line) is 

shown together with key frames (red pyramids).
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In order to test the odometry in a relevant scenario we 

made an experiment at the Library of UNIZG-FER that 

consists of bookshelf rows quite similar to the robotized 

warehouses of Swisslog. The main feature is that the 

lighting of the Library was also artificial, thus making 

the experiment even more relevant. In Fig. 5 we can see 

an example of a 3D map that was built in the library 

experiment, while in Fig. 6 we can see an example of 

the scene in the Library.

Human Worker Intention Estimation

The Fleet Management System of the automated ware-

house needs to be able to estimate the worker’s inten-

tions correctly and control the robots accordingly, so that 

the warehouse operation efficiency is ensured.

Only the actions with the greatest influence on intention 

perception should be considered. For example, in the 

warehouse domain, the worker’s orientation and motion 

have a large effect on the goal intention recognition and 

in this section, we track them using augmented reality 

glasses localization algorithm worn by the human work-

er. The human intention recognition algorithm is devel-

oped based on worker’s movement validation which is 

used as observation for hidden Markov model (HMM) 

framework. Worker’s movement is validated with re-

spect to potential goal locations (i.e. warehouse racks 

and picking stations) using graph search algorithm on 

Generalized Voronoi Diagram’s (GVD) nodes generated 

on the preexisting warehouse layout. If the mobile robot 

is located on a GVD edge, we cut that edge from the 

graph. The goal locations can be added or removed dur-

ing the experiment.

The proposed HMM framework has one hidden state for 

every potential goal, one state indicating that the work-

er’s intentions are not certain, and a state that declares 

the worker irrational meaning worker is not following 

path towards any. The irrational worker state includes 

the cases of the worker not following any proposed goal 

location or the worker’s desire to go to an unknown goal. 

Every time the worker moves or turns significantly, we 

estimate the worker intention using Viterbi algorithm. 

The Viterbi algorithm outputs the most probable HMM’s 

hidden states sequence and their probabilities which we 

consider intention estimates.

We carried out multiple experiments both in a real-world 

industrial setup in a test warehouse using augmented re-

ality glasses and in a virtual reality generated warehous-

es in order to demonstrate the scalability of the algorithm 

(Fig. 7). Results corroborate that the proposed frame-

work estimates warehouse worker’s desires precisely 

and within reasonable expectations.

3.3. Ongoing research activities

As the SafeLog project is nearing its completion, we are 

working on the final integration and testing in a realistic 

real-world working automated warehouse. The final goal 

is to have a fully functional Safety Vest that will guar-

antee worker safety and localize the worker accurately 

in real-time relying just on the onboard sensors and on-

board computing power. The data provided by the Safe-

ty Vest can then be utilized by other algorithms of high-

er safety levels, providing human intentions to the fleet 

management system, thus ensuring high efficiency of the 

warehouse and increasing worker comfort. We are opti-

mistic that SafeLog results will also find its place in 

other industries and be exploited beyond the activities of 

the project itself.

Fig. 6. An example of an image of the stereo camera during the 
experiment in the library. The numbers represent tracked feature 
statistics that are used to decide whether to keep or discard the 

feature.

Fig. 7. Conducted experiment showcasing qualitatively the pre-
cision of the Hololens’ localization. We have created s ware-
house model in RViz – Robot Operating System’s 3D visuali-

zation tool.
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