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Abstract: In this paper a modified Particle Swarm Optimization (PSO) algorithm called Autonomous Groups Particles Swarm 
Optimization (AGPSO) is proposed to further alleviate the two problems of trapping in local minima and slow convergence rate in 
solving high dimensional problems. The main idea of AGPSO algorithm is inspired by individuals’ diversity in bird flocking or 
insect swarming. In natural colonies, individuals are not basically quite similar in terms of intelligence and ability, but they all do 
their duties as members of a colony. Each individual’s ability can be useful in a particular situation. In this paper a mathematical 
model of diverse particles groups called autonomous groups is proposed. In other words different functions with diverse slopes, 
curvatures, and interception points are employed to tune the social and cognitive parameters of the PSO algorithm to give particles 
different behaviors as in natural colonies. The results show that PSO with autonomous groups of particles outperforms the 
conventional and some recent modifications of PSO in terms of escaping local minima and convergence speed. The results also 
indicate that dividing particles in groups and allowing them to have different individual and social thinking can improve the 
performance of PSO significantly.  
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1  Introduction  
Particle Swarm Optimization (PSO) is one of the most widely used evolutionary algorithms inspired by the social behavior of 

animals [1, 2]. The simplicity and inexpensive computational cost make this algorithm very popular. Due to these advantages, 
PSO has been applied to many domains such as medical detection [3], grid scheduling [4], robot path planning [5], video 
abstraction [6], optical buffer design [7, 8], and Neural Networks [9, 10]. In spite of these advantages, trapping in local minima 
and slow convergence rate are two unavoidable problems [11, 12]. These two problems deteriorate with increased problem 
dimensionality. 

There are many methods in the literature to combat these problems. Some of them focus on the hybridization of PSO with 
other algorithms such as PSO-Genetic Algorithm (GA) [13], PSO-Gravitational Search Algorithm (GSA) [10, 14], and PSO-Ant 
Colony Optimization (ACO) [15]. Some studies manipulate the interaction neighborhood topology of PSO to do this [16-18]. 
Regardless of their promising results, increased computational cost is the main problem of these methods. 

Using dynamic parameter tuning is a method that increases the performance of PSO without suffering from high computational 
cost [19-24]. The main parameters of PSO are the weighting factor (w), cognitive coefficient (c1) and social coefficient (c2). The 
similarity of these approaches is that the parameters are tuned with the same strategy for all particles. Therefore, all the particles 
follow the same pattern in their social and individual behaviors. In other words, the particles are obliged to search without any self-
determination and intelligence. In this paper, we propose a new approach of utilizing autonomous groups to give particles a sort of 
independence with the purpose of increasing performance. 

The rest of the paper is organized as follows: Section 2 describes the related works. Section 3 discusses the basic principles of 
the PSO algorithm. The proposed method is explained in Section 4.  The experimental results are demonstrated in section 5. 
Finally, Section 6 concludes the work and suggests some directions for future research. 

 
 

2 Related works 
In order to improve the PSO algorithm’s performance, recently some modified algorithms have been proposed. In 2009, Cai 

[19] proposed a new modified PSO based on the black stork foraging process. He defined two types of particles inspired from the 
foraging behavior of adult and infant black storks. These two types of particles have different cognitive coefficients (c1) that are a 
function of best fitness value in the current iteration, worst value in the entire swarm, and current fitness values. The results show 
that the modified PSO has better performance than the conventional PSO when dealing with high-dimensional, multi-modal 
optimization problems. 
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Cai et al. also proposed a new setting for the social factor (c2) to improve the convergence speed [20, 21]. The social coefficient 
is a function of the best fitness value in the current iteration, the worst fitness value in the entire swarm, and the current fitness 
value. This method can be considered as a PSO algorithm with N different particles in terms of following social consensus. This 
algorithm suffers from trapping in local minima more than the conventional PSO. For this reason the authors equipped the 
algorithm with a mutation strategy.  

There are some studies which have used time-varying coefficients for both cognitive and social coefficients. In 2009, Ziyu and 
Dingxue [22] introduced an exponentially time-varying acceleration function for adjusting both cognitive and social coefficients in 
order to control the global search ability and convergence to the global best solution. In 2009, Bao and Mao suggested an 
asymmetric time-varying acceleration coefficient adjustment strategy [23]. They tried to utilize this strategy to balance local search 
and global search. They used some linear time-varying acceleration functions to adjust social and cognitive coefficients. In 2008, Ciu 
et al. [24] employed three non-linear time-varying cognitive adjustment strategies as well as a time-varying social coefficient 
adjustment strategy. The social factor was a function of the cognitive factor. The authors tried to find effective non-linear time-
varying strategies for c1 and c2 in order to solve complex function optimization. The results showed that the PSO with the proposed 
time-varying adjustment strategy was superior to the conventional PSO. 

Due to the complex nature of optimization problems, constant and linear time-varying values for cognitive and social factor 
may not work well in many cases. Using a non-linear time-varying coefficient for PSO could yield better performance in some 
cases. However, one non-linear time-varying strategy for all particles may not lead to a general optimizer with good performance. In 
this paper, we propose autonomous groups of particles for PSO which have different social and individual behaviors to improve 
local minima avoidance and convergence speed. 

 

3 Overview of the PSO algorithm 
PSO is an evolutionary computation technique that was proposed by Kennedy and Eberhart [1, 2]. It was inspired from the 

social behavior of bird flocking which uses a number of individuals (particles) flying around the search space to find the best 
solution. The particles trace the best location (best solution) in their paths over the course of iterations. In other words, particles 
are influenced by their own best locations found as well as the best solution obtained by the swarm These concepts have been 
mathematically modeled [1] using a position vector (x) and velocity vector (v) of length D, where D indicates the dimension 
(number of variables) of the problem. In the course of iterations, a particle adjusts its position and velocity as follows:  

 
𝑣𝑣𝑖𝑖𝑡𝑡+1 = 𝑤𝑤𝑣𝑣𝑖𝑖𝑡𝑡 + 𝑐𝑐1 ×  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑡𝑡) +  𝑐𝑐2 ×  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 × (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑥𝑥𝑖𝑖𝑡𝑡) (1) 

 
𝑥𝑥𝑖𝑖𝑡𝑡+1 = 𝑥𝑥𝑖𝑖𝑡𝑡 + 𝑣𝑣𝑖𝑖𝑡𝑡+1                                                (2) 

 
where w is the inertial weight which is responsible for controlling the PSO algorithm’s stability and usually is in [0.4, 0.9], c1 is 

the cognitive coefficient that controls the influence of the individual memory of good solutions found, conventionally selected in 
(0, 2], c2 is the social factor also conventionally chosen from the range (0, 2] which controls the extent to which a particle’s motion 
is influenced by the best solution found by the whole swarm, rand is a random number between 0 and 1 which tries to give PSO 
more randomized search ability, and pbest and gbest are two variables to store the best solutions obtained so far by each particle and 
the whole swarm respectively. As can be observed, there are three main coefficients, w, c1, and c2. Dynamic tuning of these 
parameters is a way to give particles different behaviors as the algorithm proceeds. In this work c1 and c2 are targeted to increase 
the performance of PSO. 

 

4 Proposed method 

4.1 Motivation of proposed method 
Finding the global minimum is a common, challenging task among all minimization methods [25]. In population-based 

optimization methods, generally the desirable way to converge towards the global minimum can be divided into two basic phases. 
In the early stages of the optimization, the individuals should be encouraged to scatter throughout the entire search space. In other 
words, they should try to explore the whole search space instead of clustering around local minima. In the latter stages, the 
individuals have to exploit information gathered to converge on the global minimum. In PSO, with fine-adjusting of the parameters 
c1 and c2, we can balance these two phases in order to find global minimum with fast convergence speed. 

Considering these points, we propose the autonomous groups concept as a modification of the conventional PSO. In this 
method, each group of particles autonomously tries to search the problem space with its own strategy, based on tuning c1 and  c2. 
The groups’ strategies can contain constant, linear time-varying, exponential, or logarithmic time-varying values for c1 and  c2 as 
shown in Fig. 1. 
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4.2 Autonomous groups and AGPSO algorithm 
The concept of autonomous groups is inspired by the individuals’ diversity in animals flocking or insects swarming. In any 

gathering, individuals are not quite similar in terms of intelligence and ability, but they all do their duties as a member of the group. 
Each individual’s ability can be useful in a particular situation. In a termite colony, for instance, there are four types of termites such 
as soldier, worker, babysitter, and queen. They all have diverse abilities, but these differences are necessary for survival of their 
colony. Soldiers have greater bulk with giant jaws in order to fight with enemies. Workers are smaller than soldiers, so they can 
move around very fast to find and provide food for the colony. They also have the ability of excavating to build the nest. The queen 
and babysitters reproduce and raise children. These four types of termite can be considered as four autonomous groups which have 
a common goal of promoting the colony’s survival.  

In conventional PSO, all particles behave the same in terms of local and global search, so particles can be considered as a group 
with one strategy. However, using diverse autonomous groups with a common goal in any population-based optimization algorithm 
theoretically could result in more randomized and directed search simultaneously. In this paper, we mathematically model the 
autonomous groups, utilizing different strategies for updating c1 and c2. In other words, the groups behave differently in terms of the 
extent to which they follow individual and social leads. 

Updating strategies of autonomous groups could be implemented with any continuous function whose range is in the interval 
[0,L]. Fig.1 represents some of the functions that can be used for updating cognitive and social factors. These functions consist of 
ascending or descending linear and polynomial, as well as exponential and logarithmic functions. In Fig. 1, the blue and red curves 
can be used for updating c1 and c2 respectively. As may be observed c1 is decreased over the iteration, whereas cs is increased. It is 
clear that particles tend to have higher local search ability when c1 is greater than c2.. In contrast, particles search the search space 
more globally when c2 is greater than c1. Finding a good balance between c1 and c2 and considering them as dynamic coefficients is 
investigated in this study. 

 
(a)       (b) 

 
 (c) 

  
Figure 1.   (a) Some samples of all posible functions for updating c1 and  c2 , (b) specific functions for updating c1, and (c) specific functions for updating c2 where L 

is the upper bound of the c1 and c2 

We define four groups based on termite colonies which have their own patterns to search the problem search space locally 
and globally. We also develop three different versions of PSO with different autonomous groups named AGPSO1, AGPSO2, and 
AGPSO3. The dynamic coefficients of these algorithms are presented in Table 1 and Fig. 2 to Fig. 4. In this table, T indicates the 
maximum number of iterations and t is the current iteration. We try to use a diverse range of functions to investigate their effects 
on the performance of PSO. These functions have been chosen with different slopes, curvatures, and interception points in order 
to investigate the efficiency of these characteristics in improving the performance of PSO. For instance, the particles of APSO1 in 
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group 1 tend to follow social behavior earlier than other groups, followed by group 2. In contrast, the particles in group 4 prefer 
to search individually in the majority of the iterations since the intersection points of c1 and c2 are close to the last iterations.  

Table 1 Updating stategies 

Algorithm Updating formula 
C1 C2 

AGPSO1 
 

Group1 
Group2 
Group3 
Group4 

(-2.05/T)t+2.55  
(-2.05/T)t+2.55  
(-2t3 /T3)+2.5 
(-2t3 /T3)+2.5 

(1/T)t+1.25 
(2t3 /T)+0.5 
(1/T)t+1.25 
(2t3 /T3)+0.5 

AGPSO2 

Group1 
Group2 
Group3 
Group4 

2.5-(2log(t)/log(T)) 
(-2t3 /T3)+2.5 
0.5+2exp[-(4t/T)2] 
2.5+2(t/T)2 – 2(2t/T) 

(2log(t)/log(T))+0.5 
 (2t3 /T3)+0.5 
2.2-2exp[-(4t/T)2] 
0.5-2(t/T)2 + 2(2t/T) 

AGPSO3 

Group1 
Group2 
Group3 
Group4 

1.95-2t1/3/T1/3 
(-2t3 /T3)+2.5 
1.95-2t1/3/T1/3 
(-2t3 /T3)+2.5 

2t1/3/T1/3+0.05 
(2t3 /T3)+0.5 
(2t3 /T3)+0.5 
2t1/3/T1/3+0.05 
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Group 3        Group 4 

 
 

Figure 2.  Matematical models of autonomous groups for APSO1 
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Figure 3.  Matematical models of autonomous groups for APSO2 

 

 

 

 

0 Max iteration
0

1

2

c2
c1

0 Max iteration
0
1
2
3

c1
c2

0 Max iteration
0
1
2
3

c2

c1

0 Max iteration
0
1
2
3

c1
c2

0 Max iteration
0
1
2
3

c1
c2

0 Max iteration
0
1
2
3

c1
c2

0 Max iteration
0
1
2
3

c2
c1

0 Max iteration
0
1
2
3

c1

c2

http://dx.doi.org/10.1007/s13369-014-1156-x


S. Mirjalili, A. Lewis, A. S. Sadiq, Autonomous Particles Groups for Particle Swarm Optimization, Arabian Journal for Science and 
Engineering,  vol. 39, no. 6, pp 4683-4697, DOI: http://dx.doi.org/10.1007/s13369-014-1156-x 

Group 1        Group 2 

 
Group 3        Group 4 

 
 

Figure 4.  Matematical models of autonomous groups for APSO3 

 
It may be observed that AGPSO1 uses two linear functions for group 1, linear and cubic functions for groups 2 and 3, and two 

cubic functions for group 3. AGPSO2 employs two logarithmic, two cubic, two exponential, and two quadratic functions for 
groups 1 to 4 respectively. It is worth mentioning that these functions have different patterns, changing during the course of the 
iterations. For instance, the particles in group 1 of AGPSO 2 tend to change the global and local search ability much earlier than 
group 2. AGPSO3 utilizes two principal third root, two cubic functions for groups 1 and 2 as well as one principal third root and 
cubic functions for groups 3 and 4 

In PSO with autonomous groups (AGPSO), at first all particles are randomly placed in the problem search space. After that the 
particles are randomly divided into some predefined autonomous groups. At each iteration gBest, pBest, and the fitness of the 
particles are defined. For each particle the coefficients c1 and c2 are updated using its group’s strategy. After calculating c1 and c2, the 
velocities and positions of particles will be updated using equations (1) and (2). Fig. 5 shows the pseudo-code of AGPSO. 

 

 
Figure 5.  Pseudo-code for the proposed modification of PSO algorithm (APSO) 

 
To see how autonomous groups are effective in AGPSO some points may be noted: 
• Autonomous groups have different strategies to update c1, so particles could explore the search space locally with different 

capability than the convectional PSO. 
• Autonomous groups have different strategies to update c2, so particles could follow social behavior more autonomously 

than the conventional PSO. 
• Dynamic and diverse patterns of c1 and c2 cause balancing between local and global search during the course of iterations. 
• Autonomous groups contain nonlinear patterns such as exponential and logarithmic functions for c1 and c2, so they could be 

more effective than the conventional PSO in solving complex optimization problems. 
• PSO with autonomous groups has diverse strategies for updating c1 and c2, so it perhaps could more adaptable than the 

conventional PSO in solving a wider range of optimization problems. 
These points theoretically could give AGPSO the potential of having high performance. In the following section the 

effectiveness of AGPSO is investigated and proved. 
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Create and initialize a D-dimensional PSO 
Divide particles randomly into autonomous groups 
Repeat 

Calculate particles’ fitness, Gbest, and Pbest 
For each particle: 

  Extract the particle’s group 
  Use its group strategy to update c1 and c2 
  Use c1 and c2 to update velocities (1) 
  Use new velocities to define new positions (2) 

End for 
Until stopping condition is satisfied 
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5 Experimental results and discussions 

5.1 Selected benchmark functions 
As shown in Tables 2 to 4, twenty-three standard benchmark functions are employed in order to testify the performance of 

AGPSO [26-30]. The objective is to find the global minimum. These benchmark functions can be divided into three groups: 
unimodal, multimodal, and fixed-dimension multimodal. In these tables Dim indicates the dimension of the function, Range gives 
the boundaries of the search space, and fmin is the minimum value of the function. Note that unimodal and multimodal functions 
with 300 dimensions have been chosen to examine the performance of the proposed method in dealing with problems of high 
dimensionality. Additionally, ten fixed-dimension benchmark functions have also been selected to provide a comprehensive study. 
A detailed description of the benchmark functions is available in the Appendix. 

Table 2 Unimodal benchmark functions 
Function Dim  Range fmin 

𝐹𝐹1(𝑥𝑥) = ∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1   300 [-100,100] 0 

𝐹𝐹2(𝑥𝑥) = ∑ |𝑥𝑥𝑖𝑖| + ∏ |𝑥𝑥𝑖𝑖|𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1   300 [-10,10] 0 

𝐹𝐹3(𝑥𝑥) = ∑ �∑ 𝑥𝑥𝑗𝑗𝑖𝑖
𝑗𝑗−1 �2𝑛𝑛

𝑖𝑖=1   300 [-100,100] 0 
𝐹𝐹4(𝑥𝑥) = max

𝑖𝑖
{|𝑥𝑥𝑖𝑖|, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛}   300 [-100,100] 0 

𝐹𝐹5(𝑥𝑥) = ∑ [100(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖2)2 + (𝑥𝑥𝑖𝑖 − 1)2]𝑛𝑛−1
𝑖𝑖=1   300 [-30,30] 0 

𝐹𝐹6(𝑥𝑥) = ∑ ([𝑥𝑥𝑖𝑖 + 0.5])2𝑛𝑛
𝑖𝑖=1   300 [-100,100] 0 

𝐹𝐹7(𝑥𝑥) = ∑ 𝑖𝑖𝑥𝑥𝑖𝑖4𝑛𝑛
𝑖𝑖=1 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[0,1)  300 [-1.28,1.28] 0 

 

Table 3 Multimodal benchmark functions 

Function Dim  Range fmin 

𝐹𝐹8(𝑥𝑥) = ∑ −𝑥𝑥𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠��|𝑥𝑥𝑖𝑖|�𝑛𝑛
𝑖𝑖=1   300 [-500,500] -418.9829×300 

𝐹𝐹9(𝑥𝑥) = ∑ [𝑥𝑥𝑖𝑖2 − 10𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑥𝑥𝑖𝑖) + 10]𝑛𝑛
𝑖𝑖=1   300 [-5.12,5.12] 0 

𝐹𝐹10(𝑥𝑥) = −20𝑒𝑒𝑒𝑒𝑒𝑒 �−0.2�1
𝑛𝑛
∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1 � − 𝑒𝑒𝑒𝑒𝑒𝑒 �1

𝑛𝑛
∑ 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1 � + 20 + 𝑒𝑒  300 [-32,32] 0 

𝐹𝐹11(𝑥𝑥) = 1
4000

∑ 𝑥𝑥𝑖𝑖2 − ∏ 𝑐𝑐𝑐𝑐𝑐𝑐 �𝑥𝑥𝑖𝑖
√𝑖𝑖
� + 1𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1   300 [-600,600] 0 

𝐹𝐹12(𝑥𝑥) = 𝜋𝜋
𝑛𝑛

{10𝑠𝑠𝑠𝑠𝑠𝑠(𝜋𝜋𝑦𝑦1) + ∑ (𝑦𝑦𝑖𝑖 − 1)2[1 + 10𝑠𝑠𝑠𝑠𝑠𝑠2(𝜋𝜋𝑦𝑦𝑖𝑖+1)] + (𝑦𝑦𝑛𝑛 − 1)2𝑛𝑛−1
𝑖𝑖=1 } +

∑ 𝑢𝑢(𝑥𝑥𝑖𝑖 , 10,100,4)𝑛𝑛
𝑖𝑖=1   

𝑦𝑦𝑖𝑖 = 1 + 𝑥𝑥𝑖𝑖+1
4

  

𝑢𝑢(𝑥𝑥𝑖𝑖 ,𝑎𝑎,𝑘𝑘,𝑚𝑚) = �
𝑘𝑘(𝑥𝑥𝑖𝑖 − 𝑎𝑎)𝑚𝑚                   𝑥𝑥𝑖𝑖 > 𝑎𝑎
0                      − 𝑎𝑎 < 𝑥𝑥𝑖𝑖 < 𝑎𝑎
𝑘𝑘(−𝑥𝑥𝑖𝑖 − 𝑎𝑎)𝑚𝑚              𝑥𝑥𝑖𝑖 < −𝑎𝑎

  

300 [-50,50] 0 

𝐹𝐹13(𝑥𝑥) = 0.1{𝑠𝑠𝑠𝑠𝑠𝑠2(3𝜋𝜋𝑥𝑥1) + ∑ (𝑥𝑥𝑖𝑖 − 1)2[1 + 𝑠𝑠𝑠𝑠𝑠𝑠2(3𝜋𝜋𝑥𝑥𝑖𝑖 + 1)] + (𝑥𝑥𝑛𝑛 − 1)2[1 +𝑛𝑛
𝑖𝑖=1

𝑠𝑠𝑠𝑠𝑠𝑠2(2𝜋𝜋𝑥𝑥𝑛𝑛)]} + ∑ 𝑢𝑢(𝑥𝑥𝑖𝑖 , 5,100,4)𝑛𝑛
𝑖𝑖=1   

300 [-50,50] 0 

 

Table 4 Fixed-dimension multimodal benchmark functions 

Function Dim Range fmin 

𝐹𝐹14(𝑥𝑥) = � 1
500

+ ∑ 1

𝑗𝑗+∑ �𝑥𝑥𝑖𝑖−𝑎𝑎𝑖𝑖𝑖𝑖�
62

𝑖𝑖=1

25
𝑗𝑗=1 �

−1
  2 [-65,65]  1 

𝐹𝐹15(𝑥𝑥) = ∑ �𝑎𝑎𝑖𝑖 −
𝑥𝑥1(𝑏𝑏𝑖𝑖

2+𝑏𝑏𝑖𝑖𝑥𝑥2)
𝑏𝑏𝑖𝑖
2+𝑏𝑏𝑖𝑖𝑥𝑥3+𝑥𝑥4

�
2

11
𝑖𝑖=1   4 [-5,5] 0.00030 

𝐹𝐹16(𝑥𝑥) = 4𝑥𝑥12 − 2.1𝑥𝑥14 +
1
3
𝑥𝑥16 + 𝑥𝑥1𝑥𝑥2 − 4𝑥𝑥22 + 4𝑥𝑥24 2 [-5,5] -1.0316 

𝐹𝐹17(𝑥𝑥) = �𝑥𝑥2 −
5.1
4𝜋𝜋2

𝑥𝑥12 + 5
𝜋𝜋
𝑥𝑥1 − 6�

2
+ 10 �1 − 1

8𝜋𝜋
� 𝑐𝑐𝑐𝑐𝑐𝑐𝑥𝑥1 + 10  2 [-5,5] 0.398 

𝐹𝐹18(𝑥𝑥) = [1 + (𝑥𝑥1 + 𝑥𝑥2 + 1)2(19 − 14𝑥𝑥1 + 3𝑥𝑥12 − 14𝑥𝑥2 + 6𝑥𝑥1𝑥𝑥2 + 3𝑥𝑥22)] × [30 +
(2𝑥𝑥1 − 3𝑥𝑥2)2 × (18 − 32𝑥𝑥1 + 12𝑥𝑥12 + 48𝑥𝑥2 − 36𝑥𝑥1𝑥𝑥2 + 27𝑥𝑥22)]  2 [-2,2] 3 

𝐹𝐹19(𝑥𝑥) = −∑ 𝑐𝑐𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 �−∑ 𝑎𝑎𝑖𝑖𝑖𝑖�𝑥𝑥𝑗𝑗 − 𝑝𝑝𝑖𝑖𝑖𝑖�
23

𝑗𝑗=1 �4
𝑖𝑖=1   3 [1,3] -3.86 

𝐹𝐹20(𝑥𝑥) = −∑ 𝑐𝑐𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 �−∑ 𝑎𝑎𝑖𝑖𝑖𝑖�𝑥𝑥𝑗𝑗 − 𝑝𝑝𝑖𝑖𝑖𝑖�
26

𝑗𝑗=1 �4
𝑖𝑖=1   6 [0,1] -3.32 

𝐹𝐹21(𝑥𝑥) = −∑ [(𝑋𝑋 − 𝑎𝑎𝑖𝑖)(𝑋𝑋 − 𝑎𝑎𝑖𝑖)𝑇𝑇 + 𝑐𝑐𝑖𝑖]−15
𝑖𝑖=1   4 [0,10] -10.1532 

𝐹𝐹22(𝑥𝑥) = −∑ [(𝑋𝑋 − 𝑎𝑎𝑖𝑖)(𝑋𝑋 − 𝑎𝑎𝑖𝑖)𝑇𝑇 + 𝑐𝑐𝑖𝑖]−17
𝑖𝑖=1   4 [0,10] -10.4028 

𝐹𝐹23(𝑥𝑥) = −∑ [(𝑋𝑋 − 𝑎𝑎𝑖𝑖)(𝑋𝑋 − 𝑎𝑎𝑖𝑖)𝑇𝑇 + 𝑐𝑐𝑖𝑖]−110
𝑖𝑖=1   4 [0,10] -10.5363 

In order to validate the results of AGPSO, it is compared with the conventional and some recent modifications of PSO with 
time-varying accelerators such as TACPSO [22], MPSO [23], and IPSO [24]. 
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5.2 Parameter setting 
The coefficients of SPSO, TACPSO, MPSO, and IPSO are listed in Table 5. The inertial weight w for all the algorithms 

AGPSO1 to AGPSO3 are decreased linearly from 0.9 to 0.4. There are 100 particles, and the maximum iteration is 2000. 

Table 5 Updating stategies 

Algorithm Updating formula 
C1 C2 

SPSO [2] 2 2 
TACPSO [16] 0.5+2exp[-(4t/T)2] 2.2-2exp[-(4t/T)2] 
MPSO [17] (-2.05/T)t+2.55  (1/T)t+1.25 
IPSO [18]  2.5+2(t/T)2 – 2(2t/T) 0.5-2(t/T)2 + 2(2t/T) 

 

5.3 Performance analysis 
In order to compare the performance of all algorithm, the results are collected over 30 independent runs. The average, median, 

and standard deviation of the best solution in the last iteration are reported in Tables 6 to 8. The best results are indicated in bold 
type. 

 
Table 6 shows the results for unimodal functions. As may be seen from this table, AGPSO3 has the best results in five out of 

seven unimodal benchmark functions. Generally, the results of AGPSO1 to AGPSO3 are much better than the other algorithms. 
These results show that autonomous groups could improve the performance of PSO algorithm for these benchmark functions. Fig. 
6 illustrates the convergence curves of the algorithms. As can be seen from these curves, AGPSO3 has the best convergence rates 
for most of the benchmark functions, followed by AGPSO1 and AGPSO2. It is worth noting that unimodal benchmark 
functions have only one global minimum and there are no local minima in the search space. So these kinds of functions are quite 
suitable for benchmarking the convergence ability of algorithms. Consequently, the results of the AGPSO algorithms indicate that 
autonomous groups could improve the convergence ability of the PSO algorithm significantly. The reason for the superior results 
is that the particles have diversity in the population and are able to exploit knowledge of the location of near optimal solutions 
effectively. 

Table 6 Comparison results among all algorithms on unimodal benchmark functions 
Test Function  AGPSO1 AGPSO2 AGPSO3 SPSO MPSO TACPSO IPSO 

 
F1 

Average best so far 
Median best so far 
Std dev best so far 

1.35E+04 
1.3393E+04 
3.3699E+03 

1.63E+04 
1.5894E+04 
3.7457E+03 

4.15E+03 
4.2138E+03 
1.1488E+03 

8.69E+05 
8.7488E+05 
1.9307E+04 

8.93E+04 
8.6431E+04 
1.3441E+04 

3.53E+04 
3.4401E+04 
6.4825E+03 

3.93E+04 
3.7548E+04 
6.3760E+03 

 
F2 

Average best so far 
Median best so far 
Std dev best so far 

5.38E+04 
3.9440E+04 
4.6654E+04 

3.47E+02 
3.4272E+02 
6.4717E+01 

1.10E+02 
1.1068E+02 
1.2805E+01 

7.21E+09 
2.7663E+08 
3.3309E+10 

1.58E+06 
3.5944E+05 
6.1156E+06 

1.21E+05 
5.3477E+04 
1.4437E+05 

8.59E+03 
3.5306E+03 
1.3154E+04 

 
F3 

 

Average best so far 
Median best so far 
Std dev best so far 

3.23E+05 
2.9637E+05 
6.1328E+04 

2.74E+05 
2.6753E+05 
6.4660E+04 

2.56E+05 
2.4995E+05 
4.6873E+04 

5.03E+06 
5.0515E+06 
1.7152E+06 

4.60E+05 
4.5800E+05 
7.4540E+04 

2.40E+05 
2.3158E+05 
5.7444E+04 

3.21E+05 
3.1431E+05 
8.0702E+04 

 
F4 

Average best so far 
Median best so far 
Std dev best so far 

5.93E+01 
5.9099E+01 
3.4682E+00 

6.28E+01 
6.2104E+01 
3.3038E+00 

6.26E+01 
6.2783E+01 
2.4881E+00 

9.78E+01 
9.7744E+01 
4.5566E-01 

9.22E+01 
9.6449E+01 
8.8241E+00 

5.88E+01 
5.8866E+01 
2.4359E+00 

5.93E+01 
5.9099E+01 
3.4682E+00 

 
F5 

Average best so far 
Median best so far 
Std dev best so far 

2.74E+06 
2.5478E+06 
9.5801E+05 

2.80E+06 
2.4039E+06 
1.4135E+06 

4.63E+05 
4.6453E+05 
1.4947E+05 

3.82E+09 
3.8447E+09 
1.6960E+08 

1.19E+08 
1.2626E+08 
3.0795E+07 

2.54E+07 
2.4604E+07 
7.6467E+06 

2.74E+06 
2.5478E+06 
9.5801E+05 

 
F6 

Average best so far 
Median best so far 
Std dev best so far 

1.36E+04 
1.3293E+04 
2.2733E+03 

1.64E+04 
1.6556E+04 
3.4075E+03 

4.26E+03 
4.0308E+03 
1.2613E+03 

8.72E+05 
8.7876E+05 
2.3473E+04 

9.34E+04 
9.2104E+04 
1.8672E+04 

3.54E+04 
3.5586E+04 
5.2585E+03 

3.82E+04 
3.7781E+04 
6.5413E+03 

 
F7 

 

Average best so far 
Median best so far 
Std dev best so far 

2.3529E+01 
2.2634E+01 
6.5380E+00 

3.7165E+01 
3.4481E+01 
1.4691E+01 

1.1886E+01 
1.0926E+01 
3.4267E+00 

1.8920E+04 
1.9000E+04 
9.5780E+02 

4.9963E+02 
4.8630E+02 
1.3928E+02 

1.4398E+02 
1.3566E+02 
5.2471E+01 

2.1712E+02 
2.0407E+02 
6.9669E+01 
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Figure 6.  Convergence curves of the algorithms on unimodal benchmark functions 

The results for the multimodal benchmark functions are provided in Table 7. In contrast to the unimodal functions, these 
benchmark functions have many local minima that increase exponentially with problem dimensionality. Therefore, they are 
suitable for benchmarking the capability of algorithms in avoiding local minima. As the results show, AGPSO3 performs better 
than the other algorithms in most of the multimodal benchmark functions. The only benchmark function on which AGPSO3 is 
not able to outperform TACPSO is F10, but the results of these two algorithms are very close. Generally, the AGPSO algorithms 
have the best results. The results of Table 7 show that the autonomous groups increased the performance of the PSO algorithm 
in terms of avoiding local minima. As may be observed in Fig. 7, similar to the results of unimodal benchmark functions the 
convergence rate of the AGPSO algorithms is better than the other algorithms. The AGPSO3 algorithm has the best convergence 
rates of the AGPSO algorithms. The reason for the improved ability in avoiding local minima is that the autonomous groups give 
AGPSO more randomized search in comparisons with the conventional and recent modifications of the PSO algorithm, so the 
particles are not easily trapped in local minima.  
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Table 7 Comparison results among all algorithms on multimodal benchmark functions 
Test Function  AGPSO1 AGPSO2 AGPSO3 SPSO MPSO TACPSO IPSO 

 
F8 

Average best so far 
Median best so far 
Std dev best so far 

-6.662E+04 
-6.719E+04 
5.0885E+03 

-5.90E+04 
-5.819E+04 
4.7799E+03 

-6.83E+04 
-6.896E+04 
4.2049E+03 

-3.83E+04 
-3.785E+04 
3.7701E+03 

-4.81E+04 
-4.707E+04 
4.3025E+03 

-6.63E+04 
-6.674E+04 
2.3123E+03 

-6.39E+04 
-6.377E+04 
2.9516E+03 

 
F9 

Average best so far 
Median best so far 
Std dev best so far 

1.4010E+03 
1.3944E+03 
7.8790E+01 

1.4983E+03 
1.4794E+03 
1.2466E+02 

1.3493E+03 
1.3457E+03 
1.0394E+02 

3.1436E+03 
3.1595E+03 
1.6415E+02 

2.3469E+03 
2.3642E+03 
9.5798E+01 

1.3428E+03 
1.3181E+03 
9.4062E+01 

1.6243E+03 
1.3944E+03 
7.8790E+01 

 
F10 

 

Average best so far 
Median best so far 
Std dev best so far 

1.6990E+01 
1.6962E+01 
4.2914E-01 

1.7313E+01 
1.7429E+01 
5.1447E-01 

1.7089E+01 
1.7103E+01 
2.4298E-01 

1.9966E+01 
1.9966E+01 
1.9365E-04 

1.9356E+01 
1.9367E+01 
9.8243E-02 

1.5317E+01 
1.5267E+01 
8.9630E-01 

1.8093E+01 
1.8166E+01 
2.9006E-01 

 
F11 

Average best so far 
Median best so far 
Std dev best so far 

1.9974E+02 
2.0386E+02 
6.7637E+01 

1.7726E+02 
1.6590E+02 
5.3999E+01 

5.5658E+01 
4.2906E+01 
3.6911E+01 

2.8277E+03 
2.7726E+03 
2.9022E+02 

1.2274E+03 
1.2170E+03 
1.7422E+02 

2.5232E+02 
2.5856E+02 
5.6008E+01 

2.7665E+02 
2.0386E+02 
6.7637E+01 

 
F12 

Average best so far 
Median best so far 
Std dev best so far 

2.3642E+03 
3.7962E+02 
4.6017E+03 

2.3793E+04 
1.6973E+04 
2.3723E+04 

5.6427E+01 
4.1806E+01 
3.8456E+01 

1.8896E+09 
1.8026E+09 
5.1837E+08 

5.7484E+08 
5.4422E+08 
2.8703E+08 

2.2419E+06 
1.9938E+06 
1.5327E+06 

6.4022E+06 
5.2430E+06 
3.9894E+06 

 
F13 

Average best so far 
Median best so far 
Std dev best so far 

3.7934E+05 
2.2776E+05 
3.9792E+05 

1.2170E+06 
7.8352E+05 
1.3654E+06 

3.4986E+04 
2.5203E+04 
3.5129E+04 

3.6421E+09 
3.6631E+09 
6.7487E+08 

1.1519E+09 
1.0375E+09 
5.0529E+08 

2.2574E+07 
2.1180E+07 
1.1331E+07 

5.3217E+07 
3.8380E+07 
7.9149E+07 

 

 

 

 
Figure 7.  Convergence curves of the algorithms on multimodal benchmark functions 

 
In contrast to the multimodal functions, the fixed-dimension multimodal benchmark functions have few local minima. As 

shown in Table 8, the results of all algorithms are equal on five of the functions. However, the AGPSO algorithms outperform 
the other algorithms on F15, F20, F21, and F22. AGPSO3 has the best results in three of these functions. Fig. 8 illustrates the 
convergence behavior of the algorithms dealing with fixed-dimension functions. All the algorithms have close convergence 
curves, slightly better for the AGPSO algorithms. The similarity of results and convergence curves are due to the low-dimensional 
characteristic of these benchmark functions; the effect of autonomous groups is more observable for the high-dimensional 
problems. 
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Table 8 Comparison results among all algorithms on fixed-dimension benchmark functions 
Test Function  AGPSO1 AGPSO2 AGPSO3 SPSO MPSO TACPSO IPSO 

 
F14 

Average best so far 
Median best so far 
Std dev best so far 

9.98E-01 
9.98E-01 
3.3876E-16 

9.98E-01 
9.98E-01 
3.3876E-16 

9.98E-01 
9.98E-01 
3.3876E-16 

9.98E-01 
9.98E-01 
3.3876E-16 

9.98E-01 
9.98E-01 
3.3876E-16 

9.98E-01 
9.98E-01 
3.3876E-16 

9.98E-01 
9.98E-01 
3.3876E-16 

 
F15 

Average best so far 
Median best so far 
Std dev best so far 

3.3824E-04 
3.0749E-04 
1.6714E-04 

3.9905E-04 
3.0749E-04 
2.7940E-04 

3.6853E-04 
3.0749E-04 
2.3232E-04 

1.0108E-03 
7.8266E-04 
4.6281E-04 

4.4773E-04 
3.0749E-04 
2.7642E-04 

4.1489E-04 
3.0749E-04 
2.8739E-04 

4.1489E-04 
3.0749E-04 
2.8739E-04 

 
F16 

 

Average best so far 
Median best so far 
Std dev best so far 

-1.0316 
-1.0316 
0 

-1.0316 
-1.0316 
0 

-1.0316 
-1.0316 
0 

-1.0316 
-1.0316 
0 

-1.0316 
-1.0316 
0 

-1.0316 
-1.0316 
0 

-1.0316 
-1.0316 
0 

 
F17 

Average best so far 
Median best so far 
Std dev best so far 

0.3979 
0.3979 
0 

0.3979 
0.3979 
0 

0.3979 
0.3979 
0 

0.3979 
0.3979 
0 

0.3979 
0.3979 
0 

0.3979 
0.3979 
0 

0.3979 
0.3979 
0 

 
F18 

Average best so far 
Median best so far 
Std dev best so far 

3 
3 
0 

3 
3 
0 

3 
3 
0 

3 
3 
0 

3 
3 
0 

3 
3 
0 

3 
3 
0 

 
F19 

Average best so far 
Median best so far 
Std dev best so far 

-3.8628 
-3.8628 
0 

-3.8628 
-3.8628 
0 

-3.8628 
-3.8628 
0 

-3.8628 
-3.8628 
0 

-3.8628 
-3.8628 
0 

-3.8628 
-3.8628 
0 

-3.8628 
-3.8628 
0 

 
F20 

 

Average best so far 
Median best so far 
Std dev best so far 

-3.2625 
-3.2625 
6.0463E-02 

-3.2586 
-3.2031 
6.0328E-02 

-3.2824 
-3.3220 
5.7005E-02 

-3.2361 
-3.2031 
7.5065E-02 

-3.2704 
-3.3220 
6.0063E-02 

-3.2665 
-3.3220 
6.0328E-02 

-3.2665 
-3.3220 
6.0328E-02 

 
F21 

 

Average best so far 
Median best so far 
Std dev best so far 

-8.4675 
-10.1532 
2.4247 

-9.3111 
-10.1532 
1.9151 

-9.1412 
-10.1532 
2.0586 

-8.1262 
-10.1532 
2.5251 

-7.8784 
-10.1532 
2.6820 

-8.6360 
-10.1532 
2.3573 

-8.7238 
-10.1532 
2.4471 

 
F22 

 

Average best so far 
Median best so far 
Std dev best so far 

-9.5225 
-10.4029 
2.0023 

-10.0513 
-10.4029 
1.3381 

-10.0513 
-10.4029 
1.3381 

-9.6984 
-10.4029 
1.8271 

-9.5212 
-10.4029 
2.0054 

-9.8755 
-10.4029 
1.6093 

-9.8742 
-10.4029 
1.6135 

 
F23 

 

Average best so far 
Median best so far 
Std dev best so far 

-10.3577 
-10.5364 
0.9787 

-9.4643 
-10.5364 
2.1810 

-10.0003 
-10.5364 
1.6357 

-9.4627 
-10.5364 
2.1842 

-10.3561 
-10.5364 
0.9873 

-10.0003 
-10.5364 
1.6357 

-10.5364 
-10.5364 
0 
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Figure 8.  Convergence curves of the algorithms on fixed-dimension multimodal benchmark functions 

 
To summarize, the results show that the proposed method is useful for the PSO algorithm in terms not only of avoiding local 

minima but also improved convergence rate. Statistically speaking, the AGPSO3 algorithm has the best results for seventeen out of 
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twenty-three benchmark functions, more than half. The AGPSO1 and AGPSO2 algorithms also show the best results on 5 and 6 
benchmark functions respectively. This shows that there is a significant superiority for the AGPSO3 algorithm compared to others. 
As can be seen in the tables, generally the results of the AGPSO algorithms are much better than those of the SPSO algorithms. 
The SPSO algorithm provides good results on 5 out of 23 test functions, mostly on low-dimensional functions. However, the 
AGPSO algorithms show much better results on high-dimensional unimodal and multimodal test functions.  The results of 
unimodal functions revealed SPSO failed to provide fast convergence behavior in the high-dimensional problems, whereas the 
proposed approach allows AGPSO to provide high convergence rates because of different cognitive behaviors for particles. In 
addition, the results of high-dimensional multimodal functions indicated the poor ability of SPSO in avoiding local optima. The 
results of the AGPSO algorithms show that the proposed autonomous groups allow particles to have different patterns for 
following the social behavior of the whole swarm, resulting in higher local optima avoidance capability.  

Among the three proposed groups, the third groups show much better results. As can be inferred from Fig. 2 to Fig. 4, group 1 
of AGPSO3 has the most local search ability because the intersection point of c1 and c2 are close to the start of iterations. However, 
group 2 better allows particles to search globally because c1 intersects c2 after almost three quarters of the allowed iterations. Group 
3 and group 4 also provide smooth transition between local and global search ability. This combination prevents particles from 
easily becoming trapped in local optima. This is the main reason for the superior results of the proposed autonomous groups 
(especially the third group). It should be noted that this remarkable improvement has been made just with dividing particles to 
autonomous groups and utilizing the new mathematical functions. There is no extra computational cost for the proposed method. 
The results support the contention that the proposed approach has merit for solving high dimensional problems. 

 

6 Conclusion 
In this paper, a new modification of PSO called AGPSO is proposed utilizing the concept of autonomous groups inspired by 

the diversity of individuals in natural colonies. Three versions of AGPSO with different autonomous groups were introduced. In 
order to evaluate their performance, twenty-three benchmark functions were employed, and the results compared with the 
conventional, and some recent modifications of PSO. The results show that AGPSO has merit compared to other algorithms in 
terms of improving avoidance of trapping in local minima and convergence speed, particularly for problems of higher 
dimensionality. The results also showed that dividing particles in groups and allowing them to have different individual and social 
behaviour can improve the performance of PSO significantly without any extra computational burden. 

For future studies, it would be interesting to apply AGPSO in optimization problems to evaluate the efficiencies of AGPSO in 
solving real world problems. Increasing the number of autonomous groups is also worthy of investigation. Moreover, employing 
different types of function with greater variety of slopes, curvatures, and interception points is recommended for future study. 
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 Appendix 

Table 9 to Table 16 contain the details of the benchmark functions.  

 
 
 

Table 9  𝑎𝑎𝑖𝑖,𝑗𝑗 in 𝐹𝐹14 

 

𝑎𝑎𝑖𝑖,𝑗𝑗 = �
−32,−16,0,16,32,−32, … . ,0,16,32

−32,−32,−32,−32,−16, … . ,32,32,32
� 

 

 

Table 10 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖 in 𝐹𝐹15 

i 1 2 3 4 5 6 7 8 9 10 11 
ai 0.1957 0.1947 0.1735 0.1600 0.0844 0.0627 0.0456 0.0342 0.0342 0.0235 0.0246 
bi−1 0.25 0.5 1 2 4 6 8 10 12 14 16 
 
Table 11 aij and ci in F19 
 

i  𝑎𝑎𝑖𝑖1  𝑎𝑎𝑖𝑖2 𝑎𝑎𝑖𝑖3 𝑐𝑐𝑖𝑖 
1 3 10 30 1 
2 0.1 10 35 1.2 
3 3 10 30 3 
4 0.1 10 30 3.2 

 
 

Table 12 𝑝𝑝𝑖𝑖𝑖𝑖 in 𝐹𝐹19 

i pi1 pi2 pi3 
1 0.3689 0.1170 0.2673 
2 0.4699 0.4387 0.7470 
3 0.1091 0.8732 0.5547 
4 0.03815 0.5743 0.8828 
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Table 13 𝑎𝑎𝑖𝑖𝑖𝑖 and 𝑐𝑐𝑖𝑖 in 𝐹𝐹20 

i 𝑎𝑎𝑖𝑖1  𝑎𝑎𝑖𝑖2 𝑎𝑎𝑖𝑖3 𝑎𝑎𝑖𝑖4 𝑎𝑎𝑖𝑖5 𝑎𝑎𝑖𝑖6 𝑐𝑐𝑖𝑖 
1 10 3 17 3.5 1.7 8 1 
2 0.05 10 17 0.1 8 14 1.2 
3 3 3.5 1.7 10 17 8 3 
4 17 8 0.05 10 0.1 14 3.2 

 

Table 14 𝑝𝑝𝑖𝑖𝑖𝑖 in 𝐹𝐹20 

i pi1 pi2 pi3 pi4 pi5 pi6 
1 0.131 0.169 0.556 0.012 0.828 0.588 
2 0.232 0.413 0.830 0.373 0.100 0.999 
3 0.234 0.141 0.352 0.288 0.304 0.665 
4 0.404 0.882 0.873 0.574 0.109 0.038 

 

Table 15 𝑎𝑎𝑖𝑖𝑖𝑖 and 𝑐𝑐𝑖𝑖 in 𝐹𝐹21, 𝐹𝐹22, and 𝐹𝐹23 

i 𝑎𝑎𝑖𝑖1  𝑎𝑎𝑖𝑖2 𝑎𝑎𝑖𝑖3 𝑎𝑎𝑖𝑖4 𝑐𝑐𝑖𝑖 
1 4 4 4 4 0.1 
2 1 1 1 1 0.2 
3 8 8 8 8 0.2 
4 6 6 6 6 0.4 
5 3 7 3 7 0.4 
6 2 9 2 9 0.6 
7 5 6 3 3 0.3 
8 8 1 8 1 0.7 
9 6 2 6 2 0.5 
10 7 3.6 7 3.6 0.5 

 

Table 16 Best solution for fixed-dimension multimodal functions 

F X output F min 

𝐹𝐹14 (-32,32) 1 
𝐹𝐹15 (0.1928,0.1908,0.1231,0.1358) 0.00030 
𝐹𝐹16 (0.089,-0.712), (-0.089, 0.712) -1.0316 
𝐹𝐹17 (-3.14, 12.27), (3.14, 2.275), (9.42, 2.42) 0.398 
𝐹𝐹18 (0,_1) 3 
𝐹𝐹19 (0.114, 0.556,0.852) -3.86 
𝐹𝐹20 (0.201, 0.15,0.477, 0.275, 0.311,0.657) -3.32 
𝐹𝐹21 5 local minima in 𝑎𝑎𝑖𝑖𝑖𝑖 , i = 1,2,3,4,5 -10.1532 
𝐹𝐹22 7 local minima in 𝑎𝑎𝑖𝑖𝑖𝑖 , i = 1,2,3,4,5,6,7 -10.4028 
𝐹𝐹23 10 local minima in 𝑎𝑎𝑖𝑖𝑖𝑖 , i = 1,2,3,4,5,6,7,8,9,10 -10.5363 
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