
Source of Acquisition 

NASA Marshall Space Flight Center 

Autonomous Payload Operations 

Onboard the International Space Station 

Howard K. Stetson 
Teledyne Brown Engineering 

Huntsville, AL 3 58 12 
256-961-0399 

h O w a d . k . s ~ ~ ~ f c . n a s a . ~ v  

Craig A. Cruzen 
NASA Marshall Space Flight Center 

Huntsville, AL 35 8 12 
256-544-8658 

craia.-@a.ae 

Abstract-Operating the International Space Station (ISS) 
involves many complex crew tended, ground operated and 
combined systems. Over the life of the ISS program, it has 
become evident that by having automated and autonomous 
systems on board, more can be accomplished and at the 
same time reduce the workload of the crew and ground 
operators. Engineers at the National Aeronautics and Space 
Administration's (NASA) Marshall Space Flight Center in 
Huntsville Alabama, working in collaboration with The 
Charles Stark Draper Laboratory have developed an 
autonomous software system that uses the Timeliner User 
Interface Language and expert logic to continuously monitor 
ISS payload systems, issue commands and signal ground 
operators as required. This paper describes the development 
history of the system, its concept of operation and 
components. The paper also discusses the testing process as 
well as the facilities used to develop the system. The paper 
concludes with a description of future enhancement plans for 
use on the ISS as well as potential applications to Lunar and 
Mars exploration systems. ' 

1. INTRODUCTION ..................................................... 1 

2. CONSTRUCTS OF THE TIMELINER UIL ................ 2 
3. OPERATIONS CONCEPT AND PROOF OF 

CONCEPT ................................................................... 4 
4. AN ONBOARD AUTONOMOUS SYSTEM - HIGHER 

ACTIVE LOGIC ........................................................ 6 
5. JRJTURE APPLICATIONS OF AUTONOMOUS SYSTEMS 
ONBOARD CREWED SPACECRAFT ............................ 7 

6. CONCLUSION ................................................... 10 
REFERENCES .......................................................... 11 
BIOGRAPHY ............................................................ 11 
ACKNOWLEDGEMENTS ......................................... 12 

David K. Deitsch 
Teledyne Brown Engineering 

Huntsville, AL 35806 
256-961-0467 

d a v i d . k . d e i t s c m E c m a p  

Angie T. Haddock 
NASA Marshall Space Flight Center 

Huntsville, AL 35807 
256-544-6285 

an rrEe.Wdo~- 

In April of 2007, the International Space Station (ISS) 
laboratory module Destiny will have been supporting 
science research in Earth orbit for over six years. Many of 
the spacecraft development and scientific research 
accomplishments of the ISS program have been documented 
in the media, professional journals and academic 
publications. However there are a number of supporting 
technologies, rarely mentioned that are employed on a daily 
basis in order to ensure the scientific and engineering data 
generated by the systems onboard are handled properly. 
One of these vitally important systems is a software tool 
commonly referred to as "Timeliner." 

Flight controllers at the NASA-Marshall Space Flight Center 
WSFC) ISS Payload Operations and Integration Center 
(POIC) operate the scientific experiments, payload support, 
data and video systems onboard the ISS. These systems are 
complex and require a great deal of expertise and 
engineering know-how to operate effectively. See Figure 1. 

1 
IEEEAC paper # 1066, Final Version, November 28,2006 

Figare 1 - The Payload Operations and Integration Center 



During the early years of IS§ operalions, cori&ollers were 
routinely sending dozens of commands daily just to 
configure data systems, activate and deactivate experiments 
and many other routine, complex, yet necessary activities in 
order to successfblly utilize the ISS as a world-class science 
facility. 

Fortunately, NASA had anticipated that this would be the 
case and had planned to use the Timeliner User Interface 
Language (UIL) on ISS. The Timeliner UIL was developed 
by the Charles Stark Draper Laboratory [l] in 1981 for use 
in simulating tasks performed by astronauts aboard the 
Space Shuttle. In 1992, Timeliner was selected by NASA as 
the user interface language for the ISS, and it was 
incorporated into the ISS Command and Control 
Multiplexer-DeMultiplexer (MDM) and the Payload MDM 
(PLMDM), see Figure 2 [2]. 

Figure 2 - C&C and PL MDMs Installed in the ISS 

Beginning in 1999, software engineers at the POIC, working 
with Draper, began developing autonomous blocks of 
software, called Timliner Bundles in new and innovative 
ways to reduce ground controller workload, add reliability 
and to a certain extent, put a virtual-controller onboard. 
From those humble beginnings to the present, engineers, 
scientists and flight controllers have developed an 
autonomous and continuously executing system on board the 
ISS called Higher Active Logic (HAL). HAL incorporates 
the Timeliner UIL language constructs and is integrated in 
such a way so as to mimic human decision processes in 
order to minimize flight controller interaction in routine 
tasks, while at the same time incorporating a conservative 
and safe approach to autonomous operations on a manned 
spacecraft. This paper details the Timeliner design 
fundamentals, operations concepts for HAL, prototype 
systems as well as the requirements, testing and review and 
approval process for such a system. 

Language Constructs That Model Human Decisions 

The Timeliner UIL provides higher level programing 
conslructs that model many human decisions that are made 
day to day. These constructs relate directly to the decision 
processes made by ground operators each day concerning 
such things as traffic control, manufacturing processes, and 
any other work environments that are procedural. These 
constructs provide an easier coding paradigm that allows 
non-computer programmers the ability to follow and 
understand the execution as it takes place. The English 
language type constructs allow the actual compiler listings to 
be used for following the execution of autonomous 
operations. Ground operators can also scan the compiler 
listings to predict autonomous operations behavior prior to 
events taking place. Listed below are some examples of the 
language constructs and how they can be used to automate 
daily tasks. 

EVERYStatement - A  Timed Control Loop 

The EVERY statement models the repetitive actions 
performed on a timely basis. You may turn your outside 
lights on every night at 8:00 PM, or you may water the yard 
every day at 5:30 PM. There are a great number of actions 
that are performed on a periodic time basis and this is when 
the EVERY statement is used. In the HAL system, the 
EVERY statement is utilized for monitoring payload power 
controllers for any change in state and for monitoring 
whether ISS experiments are providing health and status 
(H&S) data. Purely event driven cases such as these do not 
negate the use of time itself to autonomously perform an 
action. You may wish to perform an action every 5 minutes 
or on a daily basis or on-an hourly basis. ~ m b i d d i n ~  logic 
code within the EVERY control loop allows fh-ther decision 
making to be employed once the time has been reached for 
this cyclic action. In the case of power controller 
monitoring, additional checks are made to determine that 
H&S data packets are being sent from the just powered 
payload subsystem and commands are sent to initialize the 
data processing of the newly arrived H&S data. The HAL 
system performs the parameter monitoring and commanding 
nominally performed by ground operations personnel, 
without being constrained by the communications state with 
the ground. This allowed the POIC Timeliner developers to 
move a virtual-ground controller to on-board the ISS and 
allows the crew to power up or down payload subsystems 
with less ground interaction. 

WHENEVER Expression TWIN - A GIobal 

Check Forever 

The WHENEVER statement models the situational decision 
a human makes whenever an event occurs that will have the 
same action each and every time. By itself, it is simplistic 
such as when a fire is detected, the fire alarm is sounded, 



windows and doors are automatically closed and the fire 

department is called. Modified by the BEFORE clause, 

NEVER can be more complex by adding an additional 

condition. Modified by the W I T m  clause, WmNEVER 

can be time restricted. As used on board the ISS, the 

intended use of this construct is to start the daily downlink 

of acceleration data stored within a payload whenever the 

time reached 2:OOPM every day. Embedding logic code 
within the WHENEVER control loop allows further 

decision making to be employed once the expression has 
been evaluated (i.e. is there communications with the ground 

and if not, is the data recorder in record mode?). The 

employment of the WHEN statement embedded within the 
WHENEVER control loop can pause the actions to be taken 

until the conditions are correct for the actions. 

WHEN Expression BEFORE Expression /WITHIN Time 

Frame - A  Timed Local Check 

The WHEN statement models the human decisions while in 
the process of taking actions. It will simply wait for the 

condition to become true before proceeding. Modified by 

the BEFORE clause, WHEN can become more complex, 

providing an additional check before an action is taken. 

Human modeling for a WHEN can be a condition 

encountered or when a specific Time is encountered. WHEN 

can be made temporary when modified with a WITHIN 

Clause. Figure 3 illustrates an example of down linking 

acceleration data daily at 2:00 PM, when ISS has AOS with 

the ground, or the comm. outage recorder is recording. 

WHEN TIME = 1400 THEN 

Figure 3 - WHEN Statement Example 

Use is flexible enough to provide for the way a specific 
human "thinks" allowing different logic to behave in the 

same manner. The use of time in the expression such as 
WHEN T W  = or any of the sub-components of time such 

as day, hour, minute, second or even the day of the year 
allows extreme flexibility for loop control on an event 

reaction. 

OTmRWBSE - The Higher Level Alternative 

The OTmRWISE statement models the decision branch 

taken if the W E N  evaluates to false or times out. Since the 

N is a timed loop, otherwise can set up the conditions 

for re-entering the W E N  construct repetitively, see figure 

4. 

WHEN (HCORMODE = RECORD) AND 

(DAILYDOWNLINK = FALSE) 

LWsE COMMAND DArLY-DowNLrm 

SET DAILYDOWNLINK = TRUE , * 
SET DAILYDOWNLINK = FALSE 

I-( END WHEN ) 

Figure 4 - Re-Entering the WHEN Construct 

WAIT Time Period - The Alternative End Item 

There are cases where actions do not have end item 

verification, and it takes a period of time for the action to be 

completed, and this time period is consistent and can be 

measured. Such a case may be when starting an engine and 

waiting for the oil pressure or temperature to be at a pre- 

determined range. If sensor data for oil temperaturelpressure 

is not available for sampling, you can WAIT a period of 

time before engaging the engine other than at idle. Knowing 
that a warm engine without the choke engaged provides 

optimum efficiency of the engine and that the engine arrives 

at this optimum within 2 minutes, allows a WAIT to be 

implemented. The scenario for a turbo charger cool down 

period after use before shutting the engine down is another 

example that can be applied today. The HAL+ system 3 uses 

WAIT statements between English language text 

presentations to allow operators the time to read the text 

before the next message is presented. It also uses WAIT 

statements between commands for down linking status data 

from the Minus Eighty Laboratory Freezer for ISS (MELFI) 

as it takes up to 3 seconds for MELFI to process each dump 

command. WAIT can be employed whenever a time period 

is needed before continuing and no end item is available for 

the previous action or activity. 

Command, Telemetry and Crew Interfaces 

ISS payload Timeliner systems are compiled on the ground 

and then the executable files are uplinked to the PLMDM. 
The complier interface provides fully instantiated (hard- 



coded) commands built into the Timeliner executable. On 
the ground, the ISS payload Timeliner compiler interface 
pulls each comand  from the comand  database, and 
updates all modifiable command fields with the coded 
constants provided after type and range checking is 
performed. Nominally ISS commands are built kom generic 
shells that are updated with parmeters during execution. 
The POIC decided to forego this type of implementation and 
to provide fully instantiated commands that cannot be 
updated in real-time in order to eliminate safety concerns 
and to provide an autonomous system that transmits 
identical commands each and every time. This paradigm 
simplified the approval of Timeliner bundle content and test 
requirements. And although executable file sizes are larger 
than they need to be, there have been no impacts to PLMDM 
operations due to the larger sizes. 

The payload Timeliner system has a shared memory area 
within the PLMDM for inter-bundle data exchange. While 
this adds to the autonomy of the system, the dependency 
upon memory mapping is very extensive. During execution, 
a telemetry identifier reference will cause the value within 
the memory address to be evaluated. Precision is of 
importance here as floating point values on a 32 bit word 
may not equate exactly to the number of decimal places 
being tested against. In this case, a range evaluation works 
better. The best solution is to utilize 64 bit floating point 
values to increase sampling precision. 

In the case where a sequence writes to the shared memory, 
data exchange between bundles becomes a simple SET 
statement in one sequencelbundle, and a looping sampling 
code segment in another sequencehundle sampling for a 
particular value being written to memory. The receiving 
sequencelbundle then clears the memory location to indicate 
it has received the value and is being processed. 

The Timeliner system also has built in crew interfaces as 
part of the language specification. MESSAGE statements 
present text to operators, allowing status to be presented in 
ASCII text to ground and on-board consoles. The 
WARNING statement has the same functionality, but 
includes an optional function that will pause execution of the 
sequence and issue the warning. Execution must then be re- 
started with a command from the operator. The payload 
Timeliner system does not utilize the MESSAGE and 
WARNING statements since ASCII writes to memory are 
used instead. The ASCII messages become telemetry at that 
point and are sent to the ground. 

The CONFIRM statement presents messages to operators 
and waits for a confirmation (Yes/No) response. CONFIRM 
can be used to verify the completion of a manual operation 
when no telemetry response is available. The PAUSE 
keyword can also be used with CONFIRM with the same 
functionality of stopping the executing sequence. The 

QUERY statement presents text and expects numeric input 

from the operator. Again, the PAUSE keyword can be used 
to hold execution of the issuing sequence. Fully autonomous 
insefiion of data into executing sequences is provided by the 
payload system via shared memory without pausing and 
allows either the operator or executing sequence the 
capability to insert data. Finally, the RESPOND command 
is used by ground operators to provide input for the crew. In 
this way, ground operators can reduce crew interaction. 

3. INITIAL OPEMTIONS CONCEPT AND PROOF OF 

Initial Coding and First Bundles 

When the first elements of the ISS were arriving on orbit, 
developers started making their initial plans for utilizing 
Timeliner for payload operations. While Timeliner had 
been developed with spacecraft applications in mind, up to 
this point, it had not been fully tested on the space qualified 
processors that would fly on the ISS. This not only left the 
detailed design work, but also the trailblazing task of 
software and hardware integration for the payload Timeliner 
developers [3]. 

The first step was to get the command interface working. 
The ISS architecture is designed on a tier structure of 
MDMs. The MDM(s) are linked together by an IEEE 1553 
bus architecture. While this architecture is robust for 
command and control, it does present problems when 
dissimilar processors are linked together through the 
interface, such as the way Motorola and Intel processors are 
used on ISS. The word order of memory representation is 
different for these processors, which creates several 
mapping problems for passing of data from one processor to 
another. This is further complicated with byte swapping of 
data at each Bus Interface Adapter (BIA). Data, therefore, 
must be byte swapped with respect to the destination 
processor, This creates several problems in a tier structure of 
three or more levels. As data is propagated through 
processors, byte swaps occur depending on the number (odd 
or even) of dissimilar MDM processor cards that it passes 
through. This challenging hurdle was overcome by closely 
working with the various Interface Definition Documents 
that describe the ISS command and control structure, as well 
as through analysis and testing. 

As mentioned above, one of the primary safety constraints 
placed upon payload Timeliner bundles was that they were 
only to use commands that are fully instantiated and 
embedded in the executable. This means that the bundles 
can only send predefined and fully tested commands, rather 
than allowing Timeliner to create updateable commands 
based upon variable components. This created a non-trivial 
job of verifying every command in the bundle. However it 



also made it very straightforward to verify that no hazardous 
commands would be sent inadvertently fiom the PLMDM. 

Timeliner commands are sent via a similar command path as 
commands sent fiom the ground. However, since the 
Timeliner commands originate ftom onboard, they do not go 
through the same set of processors. Therefore, commands 
originating fiom the ISS PLMDM have to be pre-byte 
swapped for execution. The final product is a byte swapped 
executable with Il ly instantiated commands imbedded 
within the bundle. This difEcult development was made 
possible through the extensive use of Timeliner Data Access 
Run Time Libraries. 

The first Timeliner bundles on the ISS were simple. One 
supported a payload called the Microgravity Acceleration 
Measurement System (MAMS). This experiment is a 
sensitive set of accelerometers housed within E-XP-IIESS 
Rack 1 in the US Laboratory; see Figure 5 141. This payload 
has the requirement; when active, to downlink its memory 
buffer to the ground every 24 hours. Initially this was a 
scheduled set of commands sent by a controller on the 
ground. The developers at MSFC quickly realized this was 
a perfect application for Timeliner. The h a 1  
implementation included a single kick-off command sent 
from the ground at a best time with regards to other 
operations onboard and communications coverage. This 
single command then started the 
MAMS-DAILYYDOWNLINK bundle on the PLMDM. 
This bundle sent a list of commands that executed a data 
dump, a "wait" for a period of time, a second dump to 
ensure all data was captured, and then a find command that 
erased the MAMS data buffer so a new set of data could be 
collected. While not completely autonomous, it definitely 
paved the way for more onboard automation in support of 
ISS science operations. 

Figure 5 - EXPRESS Rack 1 and MAMS Payload 

Another bundle supported an entire payload rack during its 
power-up and power-down sequence. The Microgravity 
Science Glovebox (MSG) rack, also in the US Laboratory, 
see Figure 6, required eigbt separate commands to start 
monitoring of its H&S data after power was applied. Early 
in the ISS program, each of these commands had to be 
manually sent from the ground. Again the Timeliner 
developers at MSFC recognized that controller workload 
could be decreased while incre&ing operational reliability 
by creating an autonomous function on the PLMDM that 
could send the required commands when the MSG rack was 
powered on as well as the corresponding commands when 
the rack is powered down. Ultimately the designers created 
the MSG-STARTUP and MSG-SHUTDOWN bundles. 
These sent the correct series of commands ftom the 
PLh3DM based upon the power status of the rack to either 
start or halt rack data. All of these bundles, although basic 
with respect to the systems that are utilized today, laid a 
foundation for the new functionality to come. These were 
the first of their kind to be executed on crewed spacecraft. 

Figure 6 - Microgravity Science Glovebox Rack 

The next step was to receive and use this information on 
board to create more robust bundles, but first more 
integration problems had to be overcome. To read telemetry 
or memory, addresses must be shared or known to the 
Timeliner compiler. A file is generated at compile time, the 
address map file, which defines the start address, start bit 
and length to the executor on the MDM. To verify these 
addresses was a huge task. There was not just one group 
that had these addresses, and in the end a new process had to 
be developed to get these addresses. The byte swap issue 
and Intel - Motorola memory representation was a problem, 
and is still an issue even today. But these can be overcome 



with testing and underslanding of where the data is corning 
from, and how many MDM bus interface adapters the data is 
going throutgb. 

Once the telemehy issues were understood, more complex 
bundles could be created. But the developers also realized 
that having many stand-alorie complex Tkneliner bundles 
operating on a single MDM would soon become difficult to 
manage from the ground. Thus, a system was needed 
onboard to manage these bundles, the Higher Active Logic 
or HAL concept was beginning to take shape [5]. 

Requirements Development and Testing 

The concept for HAL was driven by constraints of bundle 
management, processor utilization limits, and of course, 
crew and system safety. Thus the system became "event 
driven." The architecture of the ISS command and control 
system is based on locations or devices or Remote 
Terminals (RTs). Each RT location has a Remote Power 
Controller (RPC) that determines if the unit is powered. 
Allowing a master Timeliner bundle (HAL-MAIN) to 
monitor the status of these RPCs (powered or unpowered), 
tuned out to be a very reliable and safe method to manage 
which specific payload bundle should be active. If a 
particular payload RPC is "open" or unpowered, the 
associated bundle is removed from memory. Conversely if 
the RPC is "closed" or powered, the bundle is installed. 
With this control mechanism in place, autonomous 
monitoring or commanding is only possible when a RT, or 
payload, is powered. This addressed one of the primary 
safety concerns of the ISS program managers [5]. 

HAL was assigned 1288 words of specific memory locations 
on the PLMDM to use for shared values. The tools 
necessary were now in place to make a workable system on 
board the ISS. At this point in time, Timeliner had the 
functionality to read telemetry, send commands and then 
create and update HAL defined memory. The HAL memory 
was mapped exactly l i e  all telemetry, that is all memory 
was divided into Payload Unique Identifiers (PUIs) and 
assigned addresses, start bit, length and data type. This was 
not only readable memory but writable too. Several different 
types of data were defined ranging from one bit parameters, 
integers, floating point, and double floating points to ASCII. 
This enabled the HAL master bundle to inter-communicate 

with RT level bundles or share memory. 

By using shared memory, HAL was being designed to 
actually monitor bundle sequences, and execute and report 
back if the system is operating properly or improperly. Also 
this can be used to request other services from HAL by 

desi~at ing a service request word. Much could be said 
about the design and will be covered later. The 
impomt  thing to note is that sp memory for HAL is 
being used and maintained by the 

All of the data in memory HAL is using is being sent to the 
ground. Therefore, a more dynamic system of monitoring 
can be accomplished. Each RT that is configured into the 
HAL system is assigned a suite of memory. Some can be 
used for HAL monitoring and request handling and some 
can be used for RT specific functionality. There is memory 
assigned to each RT that is ASCII and is 60 words long. 
This is a first in space operations, actual text can be updated 
and sent to the ground. This enables ground operators to 
view messages directly instead of using extensive look up 
tables that are numerous and difficult to maintain. 

With a system in place within the frame work of ISS 
procedures and guidelines, automation can take place. The 
first bundle to have true automation was the 
"AP-HAL-PLMDM." 

This bundle was to have functionality to recover the 
PLMDM and monitor all RT(s) for power, H&S, and send 
the appropriate commands. It was envisioned that the ground 
operator would only have to install HAL-MAIN and all 
would be recovered and configured appropriately. It would 
also continuously monitor all power and H&S from all 
RT(s) and any subordinate payloads until the HAL system is 
stopped. 

The next step was to prove this would work. HAL 1 was 
designed and tested to generate messages, in lieu of 
commanding, to prove autonomous commanding could be 
achieved. After months of monitoring with no errors HAL2 
was developed to send commands. To date HAL3 is running 
as designed. The ground operator simply installs HAL when 
the PLMDM is operational and continues on to other flight 
controller tasks. The HAL system was critical in a recent 
consolidation of ground controllers; it basically automated a 
complete ground position [5 ] .  Table 1 below summarizes 
the progression of the HAL system since its initial loading 
onboard the ISS in April of 2005. 

Timeliner Approval Processes for ISS Operations 

The process of getting a new Timeliner Bundle on-board 
ISS typically takes six to nine months from initial concept to 
first execution. This is the amount of time required for a 
detailed review of requirements, development process, 
testing and review cycle. Initially, the developer presents a 
concept of operation for the new bundle to the Automated 
Procedures Control Panel (APCP) at MSFC. The APCP 
reviews all payload Timeliner concepts for operational 
feasibility, design and test plans. Upon approval from the 
APCP, the developer starts the development cycle. 



Table 1. N 

Version and 
Date of lSt ~xeeution 
HAL 1 (4/2005) 

HAL 2 (9/2005) 

HAL 3 (6/2006) 

2T, Version FmctionaliQ 

Functionality 

* Autonomous Bundle 
installation 

* Autonomous Bundle halt 
and removal 

0 Autonomous H&S 
processing for MSG rack 

H&S message for all other 
payloads (proof of concept) 

0 Ku band AOS/LOS 
messaging (proof of 
concept) 

0 Single command function 
for MAMS science data 
downlink 

e All HAL 1 functionality 

0 Single command 
configuration of PLMDM 

0 Autonomous H&S 
processing for all payload 
racks & subrack payloads 

e Shared memory for higher 
level status downlink 

0 Shared memory for inter- 
sequence communication 

0 Ku band AOS/LOS written 
to shared memory 

Single command function 
for enabling & inhibiting Ku 
High Rate Transfer Profiles 

0 Inter sequence 
communication for HAL 
configuration control 

0 Ground request for HAL 
configuration control 

All HAL 2 functionality 

Autonomous Monitoring for 
PEHG & APS radiation hit 
detection 

ISS Lab Freezer 
configuration commanding 

Development initially consists of making sure all telemetry 
and commands necessary for creating the bundle and 
sequences are available for the Timeliner compiler. Once 
this has been completed, the first compilation(s) can take 
place. The Timeliner UIL is unique in identifying 
compilation errors. These errors are defined as a "cuss" or 
"CUSS~S". After all the "cusses" have been removed and a 
clean compilation is made, all of the supporting files are 
automatically created by the Timeliner compiler. These files 
are the address map file "bundle-name.tla" and the 
executable "bundle-name.tlx." Of course, these must be 

properly byte swapped, if necessary. These must be placed 

on the P L m M  mass storage device for execution. The 
Timeliner Executor resides on the PLMDM and reads these 
files into memory for execution when directed to, by ground 
commanding or onboard commanding. The facilities that 
have a Functional Equivalent Unit PLMDM are limited 
resources. Some examples are Payload System Integration 
and Verification function, Payload Rack Check Unit and 
Space Station Training Facility. These facilities and others 
are limited resources; therefore, they must be scheduled in 
advance for testing. The scheduling and availability of these 
resources are a large factor in the time needed for 
development. 

After development, a comprehensive review and approval 
process is in place prior to executing the new software 
onboard to ensure the design is safe, does not use more 
computational resources than allocated, and follows proper 
operational practices. This process involves multiple 
organizations including the Payload Operations Center at 
MSFC, specialists at JSC, as well as experienced Timeliner 
developers at Teledyne Brown Engineering and engineering 
elements of the PLMDM vendor to ensure all parties 
involved are aware of and concur with the new system. 

Intelligence Levels 

The Timeliner UIL easily provides a built in software 
organization that lends itself to intelligence layering. The 
Executor/Sequence/Bundle packaging of Timeliner can be 
applied to the multiple layers of status data when the 
computer architecture is a tiered structure, such as used on 
the ISS. Sensors and effectors provide status data that can 
be collected and used as input into specific intelligent 
sohare .  Each specific programmed function can then 
provide its monitoring and commanding status. Timeliner 
sequences provide the low level intelligence with a 
collection of sequences providing the low level monitoring 
and command response functionality. The Timeliner 
sequence status as well as sequence execution status 
provided in shared memory (i.e. HAL system 2), allows 
intelligent execution data to be available for "higher" level 
sequences that are executing in a higher intelligent bundle of 
sequences. This higher level bundle may be executing 
within the same processor, or it may be executing elsewhere 
on the network. The intelligence leveling of bundle 
functional capability and processors is dependent upon the 
type of system being autonomously operated. Adding shared 
data areas for each Timeliner Executor creates the ability for 
sequences to pass data and request actions of other 
sequences proven with the IS§ payload operations HAL 
system. The addition of an "activity" intelligence layer of 



Theliner bundles, coupled with a real-the re-plming 
system specific for the activity, fmalizes the overall design 
of the autonomous operations. 

Timeliner sequences at all levels can be controlled by 
planning parameters broadcasted to memory locations for 
which functional and activity sequences are programmed. 
Functional and activity sequences can broadcast their status 
data simply by writing into shared memory shared by local 
sequences and broadcast to other processors/executors. 

The HAL, system 3 utilized shared memory to provide 
English text status during its execution. The text is displayed 
and played back during operations, and could be converted 
to voice. The HAL system 2 also used shared memory for 
ground operator and inter-sequence requests. The HAL 

system 2 utilized a strict asynchronous request handler, one 
request at a time, but each bundle can have one, allowing 
simultaneous requests within the system. The Timeliner 
system provides built-in "man-in-the-loop" query, input and 
confirm capabilities allowing full human interaction during 
activity execution. This allows "man-in-the-loop" at any 
execution level and at each execution point in the automated 
system. Layering Timelier Executors provides higher level 
knowledge (status data), and programming to auto-recover 
at each functional point, reducing the human requirement. 

HAL System Shared Memory and Bundle Organization 

The HAL, system was provided with 1288 words of memory 
accessible by all bundles within the Timeliner execution 
environment. Utilizing this shared memory, sequences can 
monitor "request" words for requests that can be made by 
other sequences or the man-in-the-loop. Data is also 
provided with the request to further define the particular 
request for the executing sequence. Status data is then 
returned based upon the operation of the request. It is this 
mechanism that can be employed for activity execution 
status, re-planning and for providing updates resulting from 
the re-plan. The device status data is available to all 
bundles, see figure 7. 

Man-In-The-Loop 

T Executor Status 

Device 1 Device 2 

Executive, System & Activity Bundles - Shared Memory (Status Data) 

Figure 7 - Single Tier Integrated Timeliner Structure 

This allows The lhe r  bundles a "Level 1 Intelligence" 
capability in that each bundle has available to it, the 
knowledge of each device's status but is '"unaware" of any 
other Executor's status or functional execution status. 
Higher level activity execution can still be achieved by 
organizing the bundles with tiered functionality, providing 
the higher level execution status necessary for an "activity" 
to be executed and re-planned. 

Increasing the levels of intelligence 

Expanding the single tier design to a layered architecture, 
with broadcasting of all lower level data tiers up to higher- 
level tiers and broadcasting higher-level data down through 
the tiers, creates a tiered architecture of knowledge and 
data, which increases the intelligence capabilities at each tier 
see figure 8. This allows higher level operations functions 
to be programmed where upper "Executive" bundles have 
knowledge of all activities and operations being performed 
at the lower levels. 

&lmel&l *l*lrn*l 

To lower tier systems 

Executive System & Activity Bundles - Shared Memory (Status Data) 

Figure 8 - Multi-Tiered Utilization of Autonomous System 

Figure 9 shows a simple conceptual autonomous robotic 
exploration vehicle. In this example, lower level tiers 
provide the data for motor speeds, track speeds, bearing 
temperatures, and other data from the system that provides 
vehicle movement. The lower tier's command and control is 
via the guidance, navigation and control (GNC) system [6]. 

The GNC executive provides a higher level of operations via 
the Timeliner Executor. The executor at tier 1 provides 
single command functionality, track system monitoring, 
autonomous location tracking and navigation. The Remote 

Manipulator System (RMS) is located at tier 2. Tier 1 data 
is broadcast to tier 2 allowing the RMS system, knowledge 
and potential command and control of its location while the 
RMS is performing an activity. The tier 2 executor controls 
operation of the manipulator system, again providing single 
command functionality and autonomous monitoring of the 
RMS system. The tier 3 (Main Vehicle) executor controls 
the bundle installation and removal for systems powered or 



un-powered and also executes the activity timelines. Tier 3 for both monitoring, and parameter control of sub-system 
contains all the status data fiom the lower level tiers commanding. In effect, it is a mini-planner. This mini- 
allowing 'cknowledge'~ of all lower level systems and devices planner exchanges data between the other sub-system mini- 
during execution [6]. planners as needed [7]. 

The Activity planner initiates and monitors activities while 
in execution in the same manner as the sub-system planners. 
The automated activities command and control the lower 
sub-system functions and report execution status back to the 
Activity planner. Data exchange between the Activity 
planner and sub-system planners allow current status 
verification of resources, for activity execution. All planning - SharedMemory 
engines contain default initialization data which can be 

(stamsData) updated as more efficient planning data is realized or as 
anomalies in hardware dictate a change in plan [3]. 

Figure 9 -Autonomous Robotic Vehicle Concept 

Real-time Re-Planning the Mission Manager 

Power I Planner 

+ 
Commands 

L--l Shared Memory (Status Data) 

During sequence execution through the various executor Figure 10 - Mini Planning Engines 

levels, operating parameters are being monitored and 
utilized for performing local functions or during execution Memory interfacing between the planners is ftrrther ckfined 

of activity sequences. The return and execution status itom for the clifferent support modes the system is executing 

all sequences via shared memory and the built in executor1 within as f~llows: 

bundlelsequence status is broadcast to all tiers and also to 
the "planning engineyy driving the automation (figure 11). 
This allows expert knowledge about the automated target 
system to be programmed to command and control its 

Planning Engines 

operation. The planning engine is programmed to monitor 
the automation and the target system and execute and 
monitor "activities" (sequences). Thus, the planning engine 

I 

becomes the operator of the target. The planning engine is 
designed specifically for the system being operated and is 
programmed for the broadcast status data needed to re-plan 
and broadcast out operational updates for sequence 
execution at the function and activity level. Intelligent 
leveling with executors, coupled with expert programming at 
the various levels, reduces the amount of re-planning when 
auto-recovery can be achieved more rapidly than with r e  
planning. The planning engine would know via broadcast 
status that an auto-recovery was in progress, finished, 
successll or not successful and may have nothing to re-plan 
or at a minimum, re-plan only when it had to. The planning 
engine is broken down by subsystem and activity of the 
target to be automated. Sub-systems, for example, can be 
defined small or large, but usually consist of basic power, 
thermal, communication guidance, navigation, and life 
support. Each sub-system defined has specific programming 

TIMELINER 
EXECUTOR Status 

Sub-Svstem Bundle 
i Status 

HAL MEMORY (TEST Mode) 

Inter Bundle Data Exchange 

Figure 11 - Planning Engine Memory Utilization 



Planning engines have access to the real-time status data of 
the devices being utilized, the subsystems being operated 
and the activities operating the subsystems. The fiont end of 
the Planning Systems must provide the "knowledge" 
required for command and control of the devices, 
subsystem and activities. The HAL 1000 system design 
utilizes a knowledge based architecture that can be updated 
as operational constraints and devicelsystem limits are 
realized in real-time as depicted in figure 12 below: 

Plamhg Data Exchange 

YJU.-.. W V  

LM, I 
Packs 

Activit 
Safety 

Planner 

Activity 
Planners 

Figure 12 - Knowledge Pack Interfaces 

The knowledge packs provide the p l ' d g  engines with all 
the device, system, sub-system, safety and activity limits and 
constraints. 

Science operations onboard the International Space Station 
to this point, have been tremendously successful. The 
implementation of autonomous systems, such as Timeliner 
and HAL, has been a particularly noteworthy 
accomplishment. Like any endeavor, there have been 
setbacks, and progress has not come as quickly as first 

10 

expected. However, reflecting on the three years of 
Timeliner supported payload operations; it is easy to 
recognize that great strides have been made with respect to 
reducing the workload of ground controllers and increasing 
operational reliability. Specifically, in the area of 
autonomous systems onboard crewed spacecraft, Timeliner 
and HAL have dramatically changed the way these types of 
systems are utilized by providing systems that can model 
human decisions [5]. 

Prior to the ISS program, automation within critical systems 
was minimized in an effort to increase reliability. As 
discussed in this paper, the first payload Timeliner bundles, 
albeit simple, proved that operational reliability could be 
increased. And thus, they paved the way for more complex 
bundles, such as the HAL concept. The 6-9 month approval 
process for the HAL concept allows time for development, 
testing to ensure the design is safe, testing the computer , 

resources on-board, and ensures that operational procedures 
are followed. Now that autonomous systems have been 
proven onboard crewed spacecraft, the natural progression 
would be to increase all levels of automated intelligence and 
to eventually allow for fully automated real-time re- 

planning. 

With the Space Shuttle fleet returning to flight and the 
continued construction of the ISS, the hope is that the steady 
stream of science payloads will continue. Many of these 
science payloads will take advantage of autonomous 
operations provided by the Timeliner UIL. In turn, this 
automation will help earthbound scientists conduct their 
experiments in the microgravity environment of low Earth 
orbit. 



[l] Charles Stark Draper Laboratory Tieliner Webpage: 
http://timeliner.draper.com 

[2] Brown, RA.; Bramtein, E.; Brunet, R; Grace, R;  Vu, 
T.; Busa, J.; Dwyer, Flr; Timeliner: Automating 
Procedures on the ISS; Space Ops. Conference, Houston, 
Tx, October 2002 

[3] Brown, RA; Automating Space Operations Using 
Timeliner and Adept; Enhancing Space Operations 
Workshop, Houston, TX, May 2005 

[4] Craig Cruzen, Richard Gibbs, Steven Dyer* John Cech; 
''Expanding Remote Science Operations Capabilities 
Onbard the International Space Station", IEEE 
Aerospace Conference, March 2003. 

[5] Howard Stetson; Concept of Higher Active Logic for 
I n ~ t i o n a l  Space Station Payload operations; Teledyne 
Brown Engineering White Paper; May 2002 

[6] Ricsvd, My Sauer, B; Autonomous Mission Planning for 
Spin-Stabilized Science Satellites; Proceedings 1 lth 
Annual AIAAAJtah State Univefsity Conference on Small 
Satellites, Logan, UT, September 1997 

[7] Howard Stetson; Developing Autonomous Operations of 
the Future with Timeliner; Teledyne Brown Engineering 
White Paper; June 2005 

BIOGRAPHY 

Howard K Stetson is the Timeliner Development Lead for 
ISS Pqvload OperatiPns and has 
over 30 years of experience in 
sofhvare development and 
engineering encompassing numeric 
intensive computing, code 
vectorizing, parallel processing, 
computer graphics, simulation and 
modeling, computational fluid 
dynamics, real-time command and 

control operations, operations automation and sofiware 
integration and test. Mr. Stetson has produced two white 
papers for the Marshall Space Flight Center. The Higher 
Active Logic System (HAL) for the ISS payload operations 
computer system and the Automated Multi-Purpose Space 
Operating @stem (AWSOS) designed speciJially for long 
duration space missions. Mr. Stetson is currently in design 
of the AMPSOS concept to support autonomous operations 
for space and commercial applications (HAL 1000). 

David K Deifsch is a Timeliner Developer for ISS Payload 

Operations and has over 25 years 
experience in automation and data 
processing. BBefore being a Timeliner 
developer, he served as a Command 

. -  Payload qfficer for the ISS. This g experience was instrumental in 

,,-,- designing Timeliner applications for 
automation and consolidation of 
ground flight positions for the 
Payload Operations and Integration 

Cadre. M. Deitsch is currently designing the "Next Gen" 
concept of sofiware tools for ground operations. He holdr a 
Bachelor of Science in Mathematics @om University of 
Alabama in Birmingham and a Master Of Science in 
Computer Science fiom Alabama Agrimltural and 
Mechanical University. 

Craig A. Cruzen is a Payload Operations Director (POD) 
at NASA's Marshall Space Flight 
Center in Huntsville, AL, where he 
leads the ground control team in 
peorming science operations onboard 
the International Space Station. 
Before being selected as a POD in 
2003, he served as an B S  Payload 
Rack qfficer (PRO) and Timeline 
Change W c e r  (TCO). Duties in these 

jlight control positions included monitoring and 
commanding payload racks and payload support systems 
onboard the ISS as well as maintaining daily activity 
timelines. He holdr a Bachelors degree in Aerospace 
Engineeringpom the University of Michigan in Ann Arbor. 

Angie T. Haddock is the Operations Lead for the ISS 
I PLMDM In this role, she is 

responsible for leading the 
development of PLADM operations, 

I plann& preparing the-PROS to 
support PLMDM operations, 
assessing PLMDM operations, and 
coordinating troubleshooting 
activities. A&, Haddock has also 
provided civil service oversight and 

technical coordination for the development and update of 
PLMDM sofiare and the impact of PLMDM technical 
changes to operations. Prior to joining NASA in 2000, she 
worked for Teledyne Brown Engineering where she trained 
to serve as a Command and Payload MDM W c e r  (CPO) 
for the ISS Payload operations Integration Center. She 
holdr a Bachelor of Science degree in Computer Science 
fiom Athens State University. 



The authors would like to acknowledge the following groups 
who have contributed to the success of performing remote 
science onboard the International Space Station: 

The POIC operations team at MSFC who operate science 
payloads around the clock on ISS, and at the same time 
plan for future experiments. 

0 The ground testing teams at MSFC and KSC who work to 
ensure that hardware and software launched into space is 
the best it can be. 

The astronauts and cosmonauts who live and work aboard 
the ISS and risk their lives in the pursuit of space 
exploration. 

0 The scientists and engineers who design the experiments 
and use the results to improve our way of life on Earth. 



Source of Acquls~tlorl 

NASA Marshall Space Fl~ght Center 

Autonomous Payload Operations 

Onboard the 

Internationa Space Station 

Howard K. Stetson 
Timeliner Sokware Development Lead for ISS Payloads 

Teledyne Brown Engineering 

Paper Authors 

Howard K. Stetson David K. Deitsch 

Teledyne Brown Engineering Teledyne Brown Engineering 
Huntsville, AL 35812 Huntsville, AL 35812 

256-961-0399 256-961-0467 

howard.k.stetson@msfc.nasa.gov david.k.deitsch@msfc.nasa.gov 

Craig A. Cruzen Angie T. Haddock 

Marshall Space Flight Center Marshall Space Flight Center 

Huntsville, AL 35812 Huntsville, AL 35807 

256-544-8658 256-544-6285 
angie.haddock@,nasa.gov Page I craig.cruzen@,nasa.~ov 



Outline 

Introduction 

International Space Station (ISS) Payloads, Payload 
Operations and Timeliner Overview 

Development and operations of the Higher Active Logic 
(HAL) Timeliner System 

Potential Timeliner Applications in the Exploration 
Program 

Conclusions 

Page 2 



International Space Station: 

A World-Class Microgravity Laboratory 

Life 

Sciences 

Life 

Support & 

Habitation 

Research 

Earth 

Science 

The ISS is a multidisciplinary laboratory, technology test bed, 

and observatory that provides an unprecedented capability for 

scientific, technological, and international experimentation in low earth orbit. Page 3 





Timeliner User Interface Language 

What is Timeliner? 
A programming language and execution system that has built in 

Command and Telemetry interfaces. 

Why Tilizeliner? 
Selected for use on ISS. 

Prior NASA experience on the Shuttle program. 

Complete development and execution system. 

What did it give us? 
Decisional based on-board automated command capability. 

Rapid development of autonomous operations. 

Allowed execution status to be programmatically analyzed for 

higher-level programmatic decision making. 

Page 5 



Timeliner System 

Two components: 

Compiler (Ground Based) 

Executor (Onboard Based) 

Compilation involves standard language verification/validation. 

Produces an executable, listing, and memory address map files. 

Compilation resolves command and telemetry references. 

Commands are built into the executable. 

Telemetry is defined as memory addresses, lengths, start bits, 

and data types. 

The Timeliner Executor executes the software, outputs commands, 

and reads memory addresses for telemetry values within the code. 

"Programs" are packaged as "Bundles", 10 programs per bundle 

(execut 
Page 6 



ISS Computer Tier Structure (Sample) 

--- 

Remote Terminals can 

be devices such as APS, 

1553 Connections 

MDM Health and Status Broadcast Data 

ISS Status Collected and Broadcast to PLMDM 

PEHG, and Payload 

Rack locations 

Page 7 





Active Logic System design was promoted. The initial development 

called for access to power commands restricted from Timeliner access. 

Safety issues arise when executing autonomous command and 

control software within a crewed vehicle. 

How do you prevent inadvertent commanding to a remote terminal 

location while the RT is being repaired or replaced by a crew 

member? And manual procedures are not deemed sufficient enough 

for prevention. 

The Higher Active Logic (HAL) System accommodated this by design: 

All software installations and removals are pevformed autonomously 

as systems are powered and unpowered (event driven) and each remote terminal 

would be assigned an RT bundle of software. 

Page 9 













Shared Memory Definition and Usage 

A segment of the allocation used for configuration control. 

Each remote terminal was assigned its segment of the allocation. 

Each segment was defined to provide the following: 

- Incoming Request 

- Request Status Return 

- Last Action Status 

- Last Action Data 

- Last Action Message (60 characters each) 

Each Remote Terminal's software could now take requests from the ground, 

astronauts or hom other RT software. Autonomous actions could now be 

reported at a higher level and also provide English text status or directions, 

as well as coded status to operators. 
Page 15 





HAL System Success 

First to execute autonomous commanding on a manned vehicle. 

Proved the system architecture can meet safety requirements. 

Proved autonomous commanding can be accepted as the norm. 

Proved repeatability in autonomous operations. 

Proved ground operator requirements can be reduced. 

Proved autonomous functionality can be configured and controlled. 

Proved a Higher Operations Layer can be applied 

over an existing command and control system. 

Proved complex operations can be implemented in a single command. 

Proved automated software can be updated in a rapid fashion. 

Proved a higher-level operational status can be obtained: 

- Leads to autonomous plan execution 
i 

- Leads to autonomous replanning 

Page 17 





d
)
 

6
 

tcc 
0

 

t
n
 

4
 

.
I
+
 

d
 

C
,
 

-8 8
 

6
 

t
n
 

-8 
-
4

 

?
- 

2
 

Q
 

Y
 

C
,
 

d
 

f
;
 

d
 

0
 

-
4

 
C
,
 

3
 

0
 

d
)
 

S
 

5
 

-
4

 

?
- 

.
4

 
C
,
 





3
 

T
b
.
 

.
r
(
 
d
 



Knowledge Pack Interface 

Planning Data Exchange 

I 

Safety Data 

Exchange 

Page 22 



"
 

m
 

a
,
 

i-
' 
0
 
s
 



o
r

(
 

X
 

0
 

S
 

C
-
,
 

tcc 
0

 



Acronyms 

APCP 

APS 

ASCB 

C+C 

DRAM 

ECR 
ESA 

EXPRESS 

HAL 

H+S 

ISS 

JEM 

LOS 

MELFI 

OCR 
PEHG 

PLMDM 

PODFCB 

PSCP 

RT 

TDRS 

T O W  

Acquisition of Signal 

Analyzing Interferometer For Ambient Air 

Auto-Procedures Control Panel 

Automated Payload Switch 

Avionics Software Control Board 

Command and Control 

Dynamic Random Access Memory 

Engineering Change Request 
European Space Agency 

Expedite Processing of Experiments for Space Station 

Higher Active Logic 

Health and Status 

International Space Station 

Japanese Experiment Module 

Loss of Signal 

Minus-Eighty-Degree Laboratory Freezer 

Operations Change Request 

Payload Ethernet Hub Gateway 

Payload Multiplexer / Demultiplexer 

Payload Operations Data File Control Board 

Payload Software Control Panel 

Remote Terminal 

Tracking & Data Relay Satellite 

Timeliner Operations Review Panel 

Page 25 


