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In the paper we introduce a biomolecular implementation of the push-down automaton (one of the 

theoretical models of computing devices with unbounded memory) using DNA molecules. The idea of 

this improved implementation was inspired by Cavaliere et al. (2005). 

Povzetek: Predstavljen je avtonomni avtomat na osnovi DNK po vzoru Cavaliereja. 

1 Introduction 
In the paper written by Cavaliere, Janoska, Yogev, Piran, 

Keinan, Seeman [4] the authors propose a theoretical 

model (i.e. not tested in laboratory) of implementation of 

the push-down automaton built on DNA. The idea was 

inspired by two papers: the first one by Rothemund [7] 

who proposed a simulation of the Turing machine - the 

basic theoretical model of computation - and the second 

one by Benenson, Paz-Elizur, Adar, Keinan, Livneh, 

Shapiro [1] who proposed a simulation of the finite 

automaton – the simplest model of computation. The 

above three implementations represent all the basic 

theoretical models of computers in the Chomsky 

hierarchy. But all these simulations have weak points in 

different places.  

The Rothemund model is not autonomous. A person 

must interfere in the process to obtain the required 

sequences of actions through many restriction enzymes. 

This is likely a reason why nobody tested it 

experimentally.  

Next, Benenson et al. [1] model is autonomous, 

programmable and was tested in laboratory but it 

represents the simplest computational model - a finite 

automaton (in fact it was only 2-states 2-symbols finite 

automata). The next propositions along the same idea 

(Soreni et al. [10], Unold et al. [11], Krasiński and 
Sakowski [6]) essentially did not improve the situation. 

The last model, Cavaliere et al. [4] is more 

powerful (a push-down automaton), autonomous, 

programmable  (although the action of it was illustrated 

only on one simple example) but the problem lies in 

obtaining the right sequence of ligations of transition 

molecules to the input and to the stack (represented by 

the same circular DNA). The authors themselves indicate 

this problem “It is first important to know which side is 

ligated first, since there is degeneracy in the stack side … 

and therefore different transition molecules may be 

ligated at that end at any stage” and propose two ways to 

reduce (not eliminate) the problem. Moreover, another 

problem in their model is that it is not clear 

biochemically whether the used enzyme PsrI could not 

accidentally cut transition molecules of the first kind 

(which add the symbol Z to the stack) before ligating it to 

the input and to the stack. 

In this paper we suggest an improvement of the last 

model of push-down automata to avoid these problems. 

However, it is a theoretical model not tested yet in 

laboratory. We propose a new shape of transition 

molecules and another kind of restriction enzymes, 

which cut only when the ligation of a transition molecule 

to the circular molecule of the input will be accomplished 

on both sides.  

2 Push-down Automaton  
In this section we recall shortly the definition of the 

push-down automaton (PDA). More information can be 

found in any textbook (Hopcroft and Ullman [5]; Sipser 

[8]). 

A push-down automaton is a finite automaton 

(nondeterministic) which has a stack, a kind of simple 

memory in which it can store information in a last-in-

first-out fashion.  

 

So a PDA has a finite control unit, an input tape and 

a stack (Fig. 1).  
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Figure 1: A scheme of the PDA. 

In each step the machine, based on its current state (q), 

the input symbol which is being currently read (c) and 

the top symbol on the stack (A) performs a move 

according to a transition rule (from a list of transition 

rules associated to a given PDA): pops the top symbol 

from the stack, pushes a symbol (or a sequence of 

symbols) onto the stack, moves its read head one cell to 

the right and enters a new state. We also allow                    

ε - transitions in which a PDA can pop and push without 

reading the next input symbol. The PDA is 

nondeterministic, so there may be several transitions that 

are possible in a given configuration. We will denote 

transition rules in the following way 

)','(),,( AqAcq →  

where: q' - a new state, A' - a new symbol or a sequence 

of symbols (may be an empty sequence) which replaces 

A on the top of the stack. 

There are two (equivalent) alternative definitions of 

acceptance of an input word w: by empty stack and by 

final state. Since in the presented implementation we use 

the second one we will recall only that one. A PDA 

accepts an input word w if it enters a final state (from a 

distinguished subset of all states) after scanning the 

entire word w, starting from the initial configuration with 

w on the input tape and with the special initial symbol 

⊥ on the stack.  

The class of languages accepted by PDA is the class 

of context-free languages which strictly includes the 

class of regular languages (accepted by finite state 

automata) and is strictly contained in the class of 

recursive enumerable languages (accepted by Turing 

machines).  

We will illustrate the above definition by giving an 

example of  PDA which adds integers. It will be our 

main example in the implementation. 

Example 1. A PDA accepting the language 

},:{ NmncbaADD
mnmn ∈= +  

has four states: q0 - initial state, q1, q2, q3 - final state. The 

PDA has the following transitions: 

1. ),(),,( 00 ⊥→⊥ Aqaq  

2. ),(),,( 00 AAqAaq →  

3. ),(),,( 10 AAqAbq →  

4. ),(),,( 11 AAqAbq →  

5. ),(),,( 21 εqAcq →  

6. ),(),,( 22 εqAcq →  

7. ),(),,( 32 εε qq →⊥  

A sequence of configurations (state, remaining input 

word, stack) of this PDA on the input word 

ADDaabccc∈  is as follows. 
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-  acceptation,

 
 

and on the input word ADDabc∉  is as follows. 
5

1

3

0

1

0 ),,(),,(),,( →⊥→⊥→⊥ AAcqAbcqabcq
  

),,( 2 ⊥Aq ε - stop the action.
 

3 The Structure of DNA 
DNA (deoxyribonucleic acid) is the storage medium for 

genetic information in all living things. It is a single-

stranded (ss) or a double-stranded (ds) chain made of 

four nucleotides A, C, T, G. In a dsDNA two ssDNA 

(with the inverse orientations) are linked by hydrogen 

bonds in such a way that A can only pair together with T 

and C with G. To manipulate DNA we take various 

enzymes from a variety of organisms for catenating, 

splitting, cutting and copying DNA. In our consideration 

we will use restriction enzymes (restrictases) which 

recognize fixed sites in a DNA and cut it, leaving sticky 

ends on both sides of the cutting place. For instance the 

restrictase FokI cuts in the following way (Fig. 2). 

 

 

Figure 2: The action of the enzymes FokI. 

4 The implementation of PDA 
The implementation of a PDA is similar to that of 

Cavaliere et al. [4] with changes which eliminate their 

obstacles. The main idea of the implementation is as 

follows.  

The basic elements of a PDA i.e. the input tape and 

the stack are represented in the same circular dsDNA 

molecule of which one end represents the stack and the 

second one the input word (Fig. 3). 

 

Figure 3: The basic elements of implementation of a 

PDA. 

stack 

rest 

input tape 
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The sticky end of the stack represents the top symbol on 

the stack and the sticky end of the input tape represents 

the first symbol of the input word (to be read) and 

simultaneously the state of the PDA. 

The transition rules of a PDA are suitable DNA 

molecules which hybridize to both ends of the circular 

DNA representing this PDA (Fig. 4). 

Figure 4: Process of hybridizing a transition rule to both 

ends of DNA. 

After ligation, appropriate restriction enzymes cut this 

circular molecule. Their actions cause changes in the 

stack and in the input word according to the move which 

is represented by this transition  molecule. A new idea is 

that the action of restriction enzymes will take place only 

when the transition molecule ligate to both ends of the 

circular molecule. It happens because the chosen 

restriction enzyme (BglI) has two separated recognition 

sites (Fig. 5), which appear both only when a transition 

molecules ligates to both ends of the circular molecule. 

After the cut additional molecules and restriction 

enzymes make adequate changes in the stack and in the 

input word. Then the next transition rule may act. When 

a sequence of such transitions leads to reading out the 

input word and the last sticky end would represent the 

final state of the PDA, then a long additional DNA 

molecule ligates to the molecule. It can be detected in the 

solution by gel electrophoresis. The word is accepted. 

 

 

Figure 5: The action of the enzyme BglI. 

5 The Practical Implementation 
The idea of the practical implementation will be 

illustrated on the PDA given in Example 1 i.e. on a PDA 

performing the addition of integers. The graph of it is 

represented in  Fig. 6. 

 

 

 

 

 

 

 

 

 

 

Figure 6: The graph of a PDA which adds integers. 

It has seven moves. Each of them is represented by a 

transition molecule, additional molecules and suitable 

restriction enzymes (see Appendix 1). 

The action of the enzyme BglI is presented in 

Fig. 5. The remaining enzymes act as follows (Fig. 7). 

 

 

Figure 7: The action of the enzymes AcuI, BbvI, SapI. 

The sticky end of an input word represents both a symbol 

and a state of the PDA according to the rules (Fig. 8). 

 

 

 

 

 

 

Figure 8: DNA codes of the symbols and pairs <state, symbol>. 
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The symbols { ⊥,A } on the stack and their 

representations on the top of the stack are presented in 

Fig. 9. 

 

Figure 9: The representations of the stack symbols. 

 

The representation of the considered PDA with the input 

word aabccc in the initial state q0 and the symbol ⊥ on 

the stack is shown in Fig. 10. 

 

Figure 10: The PDA with the input word aabccc. 

 

The action of the PDA will be illustrated on two moves, 

the first of which pushes a symbol on the stack 

(Appendix 2) and the second one of which pops the 

symbol from the stack (Appendix 3). 

The main idea of the first move 

),(),,( 00 ⊥→⊥ Aqaq  which pushes the symbol A on 

the stack is to use the restriction enzyme BglI, which cuts 

the DNA strand only when the transition molecule 

merges the stack and the input tape. It is caused by the 

fact that the enzyme BglI has two separated recognition 

sites 5’...GCC(5nt)GGC...3’ which appear when the 

transition molecule ligates to the stack and to the input 

word. An important fact is to use spacers GGC between 

symbols of the input word. After the cut the second 

restriction enzyme AcuI together with an additional 

molecule make a change in the input word. 

A second move ),(),,( 21 εqAcq →  which pops the 

symbol from the stack acts by using also the restriction 

enzyme BglI (Appendix 3). After cutting with the 

enzyme BglI we have to remove actual symbols from the 

input word and from the stack. The operation of 

removing from the input word is the same as in the first 

move (using the restriction enzyme AcuI).  

 

Since we could not find a commercial enzyme which cuts 

a DNA molecule in a long distance from the recognition 

site and leaves a 3-nt sticky end we have to apply two 

restriction enzymes (BbvI and SapI) 

The remaining moves act similarly. The whole 

process on the word aabccc is presented in Appendix 4. 

6 Conclusions 
We have presented a new method to implement a push-

down automaton based on DNA molecules and 

restriction enzymes. It is an improved version of the idea 

presented in [4]. Other attempts (not fully matured and 

functioning) are in [9], [13], [14]. A new idea is to use 

a restriction enzyme which has two separate recognition 

sites. It allows to cut DNA molecules representing 

elements of a PDA after ligating of transition molecules 

to both sides of circular DNA. It avoids problems that  

appeared in Cavaliere et al. [4]. This will enable us in the 

future to construct more powerful automata than PDA, 

which provides the possibility to solve more complicated 

problems. Actually we implemented our theoretical 

model of finite automata (more powerful than the one 

presented in Benenson et al. [1] in a laboratory in the 

cooperation with a research group from the Department 

of Molecular Genetics of the Łódź University. This 

attempt of a laboratory implementation of our research 

groups is described by Błasiak, Krasiński, Sakowski, 
Popławski [3]. We tested in the laboratory simultaneous 

action of two restriction enzymes AcuI and BbvI which is 

a crucial step in the experiment presented in this paper. 

The next step could be laboratory implementation of  the 

PDA presented in this article. 

The circular molecule dsDNA used in our model 

opens a new possibility to insert and apply our automaton 

to the bacteria cell. Such a type of DNA molecules are 

plasmids - heritable DNA molecules that are 

transmissible between bacterial cells and bacterial 

genomes. Bacteria controls DNA replication process via 

origin replication elements. These genetic elements are 

built with blocks of repeated sequences and replication is  

initiated when special proteins (e. g. DnaA in E. coli) 

binds to series of repeats. Regulations of bacterial 

genome and plasmid propagation is possible with use of 

our automaton by controlling the number of repeat motifs 

presented in origin (by inserting to the stack or removing 

from the stack). In a similar way it is possible to control 

in bacteria not only DNA replication but also 

transcription of some bacterial genes. Transcription starts 

when RNA polymerase binds to special genetic elements 

called promoter. The bacterial promoter is built with 

some genetic elements essential for efficient initiation of 

transcription (e.g. -10 and -30 blocks), thus we can 

switch on and off gene transcription by inserting or 

deleting some sequence blocks within promoter or even 

changing the distance between them. This method of 

DNA replication or transcription control with the use of 

an automaton has one major advantage in  comparison of 

natural scheme of control – it allows to make some 

logical calculations before cell take the final decision.  
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Appendix 1 
The transition rules and their molecular representations. 

 

Table 1 

Transition  

rule 

Transition 

molecule 

Additional 

molecule 

Restriction 

enzymes 

),(),,( 00 ⊥→⊥ Aqaq  
 

 

BglI 

AcuI 

),(),,( 00 AAqAaq →
  

 

BglI 

AcuI 

),(),,( 10 AAqAbq →
  

 

BglI 

AcuI 

),(),,( 11 AAqAbq →
   

BglI 

AcuI 

),(),,( 21 εqAcq →
  

 

BglI 

AcuI 

BbvI 

SapI 

),(),,( 22 εqAcq →   

 

BglI 

AcuI 

BbvI 

SapI 

),(),,( 32 εε qq →⊥   

 
BglI 

AcuI 

BbvI 
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Appendix 2 
The push a symbol on the stack ),(),,( 00 ⊥→⊥ Aqaq . 
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Appendix 3 
The pop a symbol from the stack ),(),,( 21 εqAcq → . 
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Appendix 4 
Process of computing of the word w=aabccc by the push-down automaton from Example 1. 
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