
 Informatica 36 (2012) 263–276 263

Autonomous Push-down Automaton Built on DNA
*

Tadeusz Krasiński, Sebastian Sakowski
Faculty of Mathematics and Computer Science, University of Łódź

Banacha 22, 90-238 Łódź, Poland

E-mail: krasinsk@uni.lodz.pl, sakowski@math.uni.lodz.pl

Tomasz Popławski

Department of Molecular Genetics, University of Łódź

Pomorska 141/143, 90-236 Łódź, Poland

E-mail: tplas@biol.uni.lodz.pl

Keywords: push-down automaton, DNA computing

Received: July 19, 2012

In the paper we introduce a biomolecular implementation of the push-down automaton (one of the

theoretical models of computing devices with unbounded memory) using DNA molecules. The idea of

this improved implementation was inspired by Cavaliere et al. (2005).

Povzetek: Predstavljen je avtonomni avtomat na osnovi DNK po vzoru Cavaliereja.

1 Introduction
In the paper written by Cavaliere, Janoska, Yogev, Piran,

Keinan, Seeman [4] the authors propose a theoretical

model (i.e. not tested in laboratory) of implementation of

the push-down automaton built on DNA. The idea was

inspired by two papers: the first one by Rothemund [7]

who proposed a simulation of the Turing machine - the

basic theoretical model of computation - and the second

one by Benenson, Paz-Elizur, Adar, Keinan, Livneh,

Shapiro [1] who proposed a simulation of the finite

automaton – the simplest model of computation. The

above three implementations represent all the basic

theoretical models of computers in the Chomsky

hierarchy. But all these simulations have weak points in

different places.

The Rothemund model is not autonomous. A person

must interfere in the process to obtain the required

sequences of actions through many restriction enzymes.

This is likely a reason why nobody tested it

experimentally.

Next, Benenson et al. [1] model is autonomous,

programmable and was tested in laboratory but it

represents the simplest computational model - a finite

automaton (in fact it was only 2-states 2-symbols finite

automata). The next propositions along the same idea

(Soreni et al. [10], Unold et al. [11], Krasiński and
Sakowski [6]) essentially did not improve the situation.

The last model, Cavaliere et al. [4] is more

powerful (a push-down automaton), autonomous,

programmable (although the action of it was illustrated

only on one simple example) but the problem lies in

obtaining the right sequence of ligations of transition

molecules to the input and to the stack (represented by

the same circular DNA). The authors themselves indicate

this problem “It is first important to know which side is

ligated first, since there is degeneracy in the stack side …

and therefore different transition molecules may be

ligated at that end at any stage” and propose two ways to

reduce (not eliminate) the problem. Moreover, another

problem in their model is that it is not clear

biochemically whether the used enzyme PsrI could not

accidentally cut transition molecules of the first kind

(which add the symbol Z to the stack) before ligating it to

the input and to the stack.

In this paper we suggest an improvement of the last

model of push-down automata to avoid these problems.

However, it is a theoretical model not tested yet in

laboratory. We propose a new shape of transition

molecules and another kind of restriction enzymes,

which cut only when the ligation of a transition molecule

to the circular molecule of the input will be accomplished

on both sides.

2 Push-down Automaton
In this section we recall shortly the definition of the

push-down automaton (PDA). More information can be

found in any textbook (Hopcroft and Ullman [5]; Sipser

[8]).

A push-down automaton is a finite automaton

(nondeterministic) which has a stack, a kind of simple

memory in which it can store information in a last-in-

first-out fashion.

So a PDA has a finite control unit, an input tape and

a stack (Fig. 1).

*
 This project is supported by the National Science Centre of Poland

(NCN). Grant number: DEC-2011/01/B/NZ2/03022.

mailto:sakowski@math.uni.lodz.pl

264 Informatica 36 (2012) 263–276 T. Krasiński et al.

Figure 1: A scheme of the PDA.

In each step the machine, based on its current state (q),

the input symbol which is being currently read (c) and

the top symbol on the stack (A) performs a move

according to a transition rule (from a list of transition

rules associated to a given PDA): pops the top symbol

from the stack, pushes a symbol (or a sequence of

symbols) onto the stack, moves its read head one cell to

the right and enters a new state. We also allow

ε - transitions in which a PDA can pop and push without

reading the next input symbol. The PDA is

nondeterministic, so there may be several transitions that

are possible in a given configuration. We will denote

transition rules in the following way

)','(),,(AqAcq →

where: q' - a new state, A' - a new symbol or a sequence

of symbols (may be an empty sequence) which replaces

A on the top of the stack.

There are two (equivalent) alternative definitions of

acceptance of an input word w: by empty stack and by

final state. Since in the presented implementation we use

the second one we will recall only that one. A PDA

accepts an input word w if it enters a final state (from a

distinguished subset of all states) after scanning the

entire word w, starting from the initial configuration with

w on the input tape and with the special initial symbol

⊥ on the stack.

The class of languages accepted by PDA is the class

of context-free languages which strictly includes the

class of regular languages (accepted by finite state

automata) and is strictly contained in the class of

recursive enumerable languages (accepted by Turing

machines).

We will illustrate the above definition by giving an

example of PDA which adds integers. It will be our

main example in the implementation.

Example 1. A PDA accepting the language

},:{ NmncbaADD
mnmn ∈= +

has four states: q0 - initial state, q1, q2, q3 - final state. The

PDA has the following transitions:

1.),(),,(00 ⊥→⊥ Aqaq

2.),(),,(00 AAqAaq →

3.),(),,(10 AAqAbq →

4.),(),,(11 AAqAbq →

5.),(),,(21 εqAcq →

6.),(),,(22 εqAcq →

7.),(),,(32 εε qq →⊥

A sequence of configurations (state, remaining input

word, stack) of this PDA on the input word

ADDaabccc∈ is as follows.

6

2

6

2

5

1

3

0

2

0

1

0

),,(),,(),,(

),,(),,(),,(

→⊥→⊥→⊥→

⊥→⊥→⊥

AcqAAccqAAAcccq

AAbcccqAabcccqaabcccq

),,(),,(3

7

2 εεε qq →⊥

- acceptation,

and on the input word ADDabc∉ is as follows.
5

1

3

0

1

0),,(),,(),,(→⊥→⊥→⊥ AAcqAbcqabcq

),,(2 ⊥Aq ε - stop the action.

3 The Structure of DNA
DNA (deoxyribonucleic acid) is the storage medium for

genetic information in all living things. It is a single-

stranded (ss) or a double-stranded (ds) chain made of

four nucleotides A, C, T, G. In a dsDNA two ssDNA

(with the inverse orientations) are linked by hydrogen

bonds in such a way that A can only pair together with T

and C with G. To manipulate DNA we take various

enzymes from a variety of organisms for catenating,

splitting, cutting and copying DNA. In our consideration

we will use restriction enzymes (restrictases) which

recognize fixed sites in a DNA and cut it, leaving sticky

ends on both sides of the cutting place. For instance the

restrictase FokI cuts in the following way (Fig. 2).

Figure 2: The action of the enzymes FokI.

4 The implementation of PDA
The implementation of a PDA is similar to that of

Cavaliere et al. [4] with changes which eliminate their

obstacles. The main idea of the implementation is as

follows.

The basic elements of a PDA i.e. the input tape and

the stack are represented in the same circular dsDNA

molecule of which one end represents the stack and the

second one the input word (Fig. 3).

Figure 3: The basic elements of implementation of a

PDA.

stack

rest

input tape

AUTONOMOUS PUSH-DOWN AUTOMATON... Informatica 36 (2012) 263–276 265

The sticky end of the stack represents the top symbol on

the stack and the sticky end of the input tape represents

the first symbol of the input word (to be read) and

simultaneously the state of the PDA.

The transition rules of a PDA are suitable DNA

molecules which hybridize to both ends of the circular

DNA representing this PDA (Fig. 4).

Figure 4: Process of hybridizing a transition rule to both

ends of DNA.

After ligation, appropriate restriction enzymes cut this

circular molecule. Their actions cause changes in the

stack and in the input word according to the move which

is represented by this transition molecule. A new idea is

that the action of restriction enzymes will take place only

when the transition molecule ligate to both ends of the

circular molecule. It happens because the chosen

restriction enzyme (BglI) has two separated recognition

sites (Fig. 5), which appear both only when a transition

molecules ligates to both ends of the circular molecule.

After the cut additional molecules and restriction

enzymes make adequate changes in the stack and in the

input word. Then the next transition rule may act. When

a sequence of such transitions leads to reading out the

input word and the last sticky end would represent the

final state of the PDA, then a long additional DNA

molecule ligates to the molecule. It can be detected in the

solution by gel electrophoresis. The word is accepted.

Figure 5: The action of the enzyme BglI.

5 The Practical Implementation
The idea of the practical implementation will be

illustrated on the PDA given in Example 1 i.e. on a PDA

performing the addition of integers. The graph of it is

represented in Fig. 6.

Figure 6: The graph of a PDA which adds integers.

It has seven moves. Each of them is represented by a

transition molecule, additional molecules and suitable

restriction enzymes (see Appendix 1).

The action of the enzyme BglI is presented in

Fig. 5. The remaining enzymes act as follows (Fig. 7).

Figure 7: The action of the enzymes AcuI, BbvI, SapI.

The sticky end of an input word represents both a symbol

and a state of the PDA according to the rules (Fig. 8).

Figure 8: DNA codes of the symbols and pairs <state, symbol>.

AAAa

Aa

→
⊥⊥→

,

,
ε→Ac,

AAAb →,
q1

AAAb →,

q2

ε→Ac,

εε ⊥→,

q3

q0

a transition rule

266 Informatica 36 (2012) 263–276 T. Krasiński et al.

The symbols { ⊥,A } on the stack and their

representations on the top of the stack are presented in

Fig. 9.

Figure 9: The representations of the stack symbols.

The representation of the considered PDA with the input

word aabccc in the initial state q0 and the symbol ⊥ on

the stack is shown in Fig. 10.

Figure 10: The PDA with the input word aabccc.

The action of the PDA will be illustrated on two moves,

the first of which pushes a symbol on the stack

(Appendix 2) and the second one of which pops the

symbol from the stack (Appendix 3).

The main idea of the first move

),(),,(00 ⊥→⊥ Aqaq which pushes the symbol A on

the stack is to use the restriction enzyme BglI, which cuts

the DNA strand only when the transition molecule

merges the stack and the input tape. It is caused by the

fact that the enzyme BglI has two separated recognition

sites 5’...GCC(5nt)GGC...3’ which appear when the

transition molecule ligates to the stack and to the input

word. An important fact is to use spacers GGC between

symbols of the input word. After the cut the second

restriction enzyme AcuI together with an additional

molecule make a change in the input word.

A second move),(),,(21 εqAcq → which pops the

symbol from the stack acts by using also the restriction

enzyme BglI (Appendix 3). After cutting with the

enzyme BglI we have to remove actual symbols from the

input word and from the stack. The operation of

removing from the input word is the same as in the first

move (using the restriction enzyme AcuI).

Since we could not find a commercial enzyme which cuts

a DNA molecule in a long distance from the recognition

site and leaves a 3-nt sticky end we have to apply two

restriction enzymes (BbvI and SapI)

The remaining moves act similarly. The whole

process on the word aabccc is presented in Appendix 4.

6 Conclusions
We have presented a new method to implement a push-

down automaton based on DNA molecules and

restriction enzymes. It is an improved version of the idea

presented in [4]. Other attempts (not fully matured and

functioning) are in [9], [13], [14]. A new idea is to use

a restriction enzyme which has two separate recognition

sites. It allows to cut DNA molecules representing

elements of a PDA after ligating of transition molecules

to both sides of circular DNA. It avoids problems that

appeared in Cavaliere et al. [4]. This will enable us in the

future to construct more powerful automata than PDA,

which provides the possibility to solve more complicated

problems. Actually we implemented our theoretical

model of finite automata (more powerful than the one

presented in Benenson et al. [1] in a laboratory in the

cooperation with a research group from the Department

of Molecular Genetics of the Łódź University. This

attempt of a laboratory implementation of our research

groups is described by Błasiak, Krasiński, Sakowski,
Popławski [3]. We tested in the laboratory simultaneous

action of two restriction enzymes AcuI and BbvI which is

a crucial step in the experiment presented in this paper.

The next step could be laboratory implementation of the

PDA presented in this article.

The circular molecule dsDNA used in our model

opens a new possibility to insert and apply our automaton

to the bacteria cell. Such a type of DNA molecules are

plasmids - heritable DNA molecules that are

transmissible between bacterial cells and bacterial

genomes. Bacteria controls DNA replication process via

origin replication elements. These genetic elements are

built with blocks of repeated sequences and replication is

initiated when special proteins (e. g. DnaA in E. coli)

binds to series of repeats. Regulations of bacterial

genome and plasmid propagation is possible with use of

our automaton by controlling the number of repeat motifs

presented in origin (by inserting to the stack or removing

from the stack). In a similar way it is possible to control

in bacteria not only DNA replication but also

transcription of some bacterial genes. Transcription starts

when RNA polymerase binds to special genetic elements

called promoter. The bacterial promoter is built with

some genetic elements essential for efficient initiation of

transcription (e.g. -10 and -30 blocks), thus we can

switch on and off gene transcription by inserting or

deleting some sequence blocks within promoter or even

changing the distance between them. This method of

DNA replication or transcription control with the use of

an automaton has one major advantage in comparison of

natural scheme of control – it allows to make some

logical calculations before cell take the final decision.

Acknowledgement

We thank prof. Jacek Hejduk for an improvement of the

text in the paper.

AUTONOMOUS PUSH-DOWN AUTOMATON... Informatica 36 (2012) 263–276 267

References
[1] Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E.,

Livneh, Z., Shapiro, E. (2001). Programmable and

autonomous computing machine made of

biomolecules. Nature 414, 430-434.

[2] Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z.,

Shapiro, E. (2003). DNA molecule provides a

computing machine with both data and fuel. PNAS

100, 2191-2196.

[3] Błasiak, J., Krasiński, T., Popławski, T., Sakowski
S. (2011). More powerful biomolecular automaton.

ArXiv:109.5893v1 [Cs.ET]. Cornel University

Library.

[4] Cavaliere, M., Jonoska, N., Yogev, S., Piran, R.,

Keinan, E., Seeman, N. (2005). Biomolecular

implementation of computing devices with

unbounded memory. Lecture Notes in Computer

Science 3384, 35-49.

[5] Hopcroft, J., Ullman, J. (1979). Introduction to

Automata Theory, Languages and Computation.

Addison-Wesley.

[6] Krasiński, T., Sakowski S. (2008). Extended
Shapiro Finite State Automaton. Foundations of

Computing and Decision Science 33, 241-256.

[7] Rothemund, P. (1995). A DNA and restriction

enzyme implementation of Turing machines. In

DNA Based Computers, American Mathematical

Society, Providence, RI , 75-119.

[8] Sipser., M. (2006). Introduction to the Theory of

Computation. Thomson Course Technology.

[9] Shi, X., Xin, L., Zhang, Z., Xu, J. (2005). Improve

Capability of DNA Automaton: DNA Automaton

with Three Internal States and Tape Head Move in

Two Directions. Lecture Notes in Computer

Science 3645, 71-79.

[10] Soreni, M., Yogev, S., Kossoy, E., Shoham Y.,

Keinan, E. (2005). Parallel biomolecular

computation on surfaces with advanced finite

automata. Journal of the American Chemical

Society 127, 3935-3943.

[11] Unold O., Troć M., Dobosz T., Trusiewicz A.

(2004): Extended molecular computing model.

WSEAS Transactions on Biology and Biomedicine

1, 15-19.

[12] Yin, P., Turberfield, A., Reif, J. (2004). Designs of

Autonomous Unidirectional Walking DNA

Devices. Tenth International Meeting on DNA

Computing (DNA10), Milano, Italy. Lecture Notes

in Computer Science 3384, 7-10.

[13] Zhang, Z., Xu, J., Liu, J., Pan, L. (2006).

Programmable pushdown store base on DNA

computing. Lecture Notes in Computer Science

4115, 286-293.

[14] Zhang, Z., Jie, L., Xiao-Long, S. (2008).

Biomolecular Pushdown Automaton Based on the

DNA Computing. Chinese Journal of Computers

31, 2168-2172.

268 Informatica 36 (2012) 263–276 T. Krasiński et al.

Appendix 1
The transition rules and their molecular representations.

Table 1

Transition

rule

Transition

molecule

Additional

molecule

Restriction

enzymes

),(),,(00 ⊥→⊥ Aqaq

BglI

AcuI

),(),,(00 AAqAaq →

BglI

AcuI

),(),,(10 AAqAbq →

BglI

AcuI

),(),,(11 AAqAbq →

BglI

AcuI

),(),,(21 εqAcq →

BglI

AcuI

BbvI

SapI

),(),,(22 εqAcq →

BglI

AcuI

BbvI

SapI

),(),,(32 εε qq →⊥

BglI

AcuI

BbvI

AUTONOMOUS PUSH-DOWN AUTOMATON... Informatica 36 (2012) 263–276 269

Appendix 2
The push a symbol on the stack),(),,(00 ⊥→⊥ Aqaq .

270 Informatica 36 (2012) 263–276 T. Krasiński et al.

Appendix 3
The pop a symbol from the stack),(),,(21 εqAcq → .

AUTONOMOUS PUSH-DOWN AUTOMATON... Informatica 36 (2012) 263–276 271

Appendix 4
Process of computing of the word w=aabccc by the push-down automaton from Example 1.

272 Informatica 36 (2012) 263–276 T. Krasiński et al.

AUTONOMOUS PUSH-DOWN AUTOMATON... Informatica 36 (2012) 263–276 273

274 Informatica 36 (2012) 263–276 T. Krasiński et al.

AUTONOMOUS PUSH-DOWN AUTOMATON... Informatica 36 (2012) 263–276 275

276 Informatica 36 (2012) 263–276 T. Krasiński et al.

	1 Introduction
	2 Push-down Automaton
	3 The Structure of DNA
	4 The implementation of PDA
	5 The Practical Implementation
	6 Conclusions
	Acknowledgement

	References

