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Autonomous Quadrotor Flight despite Rotor Failure

with Onboard Vision Sensors: Frames vs. Events
Sihao Sun1, Giovanni Cioffi1, Coen de Visser2, Davide Scaramuzza1

Abstract—Fault-tolerant control is crucial for safety-critical
systems, such as quadrotors. State-of-art flight controllers can
stabilize and control a quadrotor even when subjected to the
complete loss of a rotor. However, these methods rely on external
sensors, such as GPS or motion capture systems, for state
estimation. To the best of our knowledge, this has not yet
been achieved with only onboard sensors. In this paper, we
propose the first algorithm that combines fault-tolerant control
and onboard vision-based state estimation to achieve position
control of a quadrotor subjected to complete failure of one
rotor. Experimental validations show that our approach is able
to accurately control the position of a quadrotor during a motor
failure scenario, without the aid of any external sensors. The
primary challenge to vision-based state estimation stems from the
inevitable high-speed yaw rotation (over 20 rad/s) of the damaged
quadrotor, causing motion blur to cameras, which is detrimental
to visual inertial odometry (VIO). We compare two types of visual
inputs to the vision-based state estimation algorithm: standard
frames and events. Experimental results show the advantage of
using an event camera especially in low light environments due
to its inherent high dynamic range and high temporal resolution.
We believe that our approach will render autonomous quadrotors
safer in both GPS denied or degraded environments. We release
both our controller and VIO algorithm open source.

Index Terms—Aerial Systems: Perception and Autonomy,
Robot Safety, Sensor-based Control, Event Camera.

Source code and video

The source code of both our controller and VIO algorithm is

available at: https://github.com/uzh-rpg/fault_tolerant_control

A video of the experiments is available at: https://youtu.be/

Ww8u0KH7Ugs

I. Introduction

M
ULTI-ROTOR drones have been widely used in many

applications, such as inspection, delivery, surveillance,

agriculture, and entertainment. Among different types of

multi-rotor drones, quadrotors are the most popular by virtue

of their simple structure and relatively high aerodynamic

efficiency. However, due to less rotor redundancy, quadrotors

are also more vulnerable to motor failures.
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Fig. 1: Controlling a quadrotor with complete failure of a

rotor causes fast yaw rotation, over 20 rad/s (top figure).

Bottom figures show a standard frame and events captured

by an onboard event camera. Bottom Left: standard frame

with motion blur. Bottom Center: Events only (blue: positive

events, red: negative events). Bottom Right: Event frame

generated from events. Blue circles are detected features, green

dots indicate tracked features.

Because safety is always a major concern, which restricts

the expansion of the drone industry, it is crucial to develop

methods to prevent quadrotors from crashing after motor

failures. Fault-tolerant flight control of quadrotors is a feasible

solution since only software adaptation is required, which is an

obvious advantage over adding rotor redundancy or parachutes.

Previous works have achieved autonomous flight of a

quadrotor subjected to complete failure of a single rotor [1],

[2], and even in high-speed flight conditions where aerody-

namic disturbances are apparent [3], [4]. However, these meth-

ods rely on external sensors, such as GPS or motion capture

systems, for position tracking, which completely eliminate or

alleviate the effects of state estimation errors. To improve

quadrotor safety in GPS denied or degraded environments, we

need to resort to fully onboard solutions, such as vision-based

state estimation.

Complete failure of a rotor results in a fast spinning motion

(> 20 rad/s) of the quadrotor [5]. This high-speed motion

brings a significant challenge to onboard state-estimation
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methods. First, in vision-based estimators, it causes motion

blur (bottom left plot in Fig. 1). Such motion blur deterio-

rates feature detection and tracking and subsequently degrades

visual-inertial odometry (VIO) performance, especially in low-

light environments. Secondly, a large centrifugal acceleration

read by the inertial measurement unit (IMU) often causes large

errors in commonly-used attitude estimators. These problems

need to be resolved to achieve autonomous quadrotor flight

despite rotor failure, using only onboard sensors.

A. Contributions

To address the aforementioned problems, we make the

following contributions:

1) We achieve and demonstrate the first closed-loop flight

of a quadrotor subjected to complete failure of a ro-

tor, using only onboard sensors and computation. We

demonstrate that a damaged quadrotor can both hover

as well as follow a sequence of setpoints.

2) We propose a novel state-estimation algorithm combin-

ing measurements from an IMU, a range sensor, and a

vision sensor that can be either a standard camera or

an event camera [6]. We show that an event camera be-

comes advantageous in low-light environments because

the sensor does not suffer from motion blur and has a

very high dynamic range.

3) We improve the complementary filter, commonly used

for attitude estimation, to account for the measurement

error (up to 16) induced by the fast spinning motion on

the accelerometer. We show that this yields significant

improvements in pitch and roll estimates in this high-

speed spinning flight condition.

B. Related Work

1) Quadrotor Fault-Tolerant control: The first flight con-

troller resilience to complete failure of a single rotor was

proposed by [5] using a feedback linearization approach. The

authors demonstrated that sacrificing the stability in the yaw

direction becomes inevitable in order to keep the full control of

pitch, roll, and thrust. As a consequence, the drone fast spins

due to the imbalanced drag torques from remaining rotors. Fol-

lowing this idea, different approaches were proposed for this

problem, such as PID [7], backstepping [8], robust feedback

linearization [9], and incremental nonlinear dynamic inversion

(INDI) [10]. However, these works were only validated in

simulation environments.

The first real-world flight test of a quadrotor with a complete

failure of a rotor was achieved by [11], where a linear quadratic

regulator (LQR) was applied. The authors also proposed the

relaxed-hovering solution as a quasi-equilibrium, where the

quadrotor spins about a fixed point in the 3-D space, with

constant body rates, pitch, and roll angles [1]. The authors

of [2] considered the initial spinning phase with varying yaw

rate, using a linear parameter varying controller. As the above

controllers did not consider aerodynamic effects, the INDI

approach was applied in [3] and [4] to render the controller

resilient to significant aerodynamic disturbances in high-speed

wind-tunnel flight tests.

2) Visual Inertial Odometry: VIO [12], [13] fuses visual

and inertial measurements to estimate the 6-DoF pose of

the sensor rig. Recent progress has made VIO algorithms

computationally efficient to be deployed on resource con-

strained platforms such as quadrotors [14]. In this work,

we are interested in sliding-window optimization-based, also

known as fixed-lag smoothing, VIO estimators. Such methods

estimate a sliding-window of the most recent system states

in a nonlinear least-squares optimization problem. They are

normally more accurate than filter-based methods [15], [16].

Two successful sliding-window optimization-based estimators

are [17], [18]. These estimators minimize a cost function

containing visual, inertial, and marginalization residuals. A

limited number of the most recent system states is kept in the

sliding window. Old states are marginalized together with part

of the measurements. In this work, we use a sliding-window

optimization-based approach by virtue of its favorable trade-

off between computational efficiency and estimate accuracy.

Recent works [19], [20] showed that event cameras allow to

deploy VIO-based state estimators in scenarios where standard

cameras are not reliable, such as high dynamic range scenes

and high speed motions, which cause large motion blur.

In [19], an event-based algorithm was presented, which is able

to estimate the pose of the camera and build a semi-dense

3D map when the camera undergoes fast motion and operates

in challenging illumination conditions. In [20], both standard

and event cameras were combined into a sliding-window-

based VIO pipeline. The authors showed that leveraging the

complementary properties of the standard and event cameras

leads to large accuracy improvements with respect to the

standard frame-only or event-only algorithms.

C. Notation

Throughout the paper, we use bold lowercase letter to

represent vector variables and bold capital letters for matrices;

otherwise, they are scalars. Superscript � indicates that the

vector is in the body frame, and � stands for the camera frame.

By default, a vector without superscript is represented in the

inertial frame. A 3-D vector with subscript ’×’ means its skew-

symmetric matrix for cross product, such that a×b = a× b for

any a ∈ R3. diag(0, 1) represents diagonal matrix with 0 and

1 as diagonal elements.

D. Organization

This paper is organized as follows: We first introduce the

fault-tolerant flight controller in Section II. Then Section III

details the state estimator, including the VIO algorithm and

the improved complementary filter. The evaluation and closed-

loop flight results are given in Section IV. Afterwards the

conclusions are drawn in Section V.

II. Flight Controller Design

A. Quadrotor Model

1) Quadrotor Dynamic Model: The translational and rota-

tion dynamic equations of a quadrotor are:
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< ¥/ = <g + XIB f �, (1)

O�E ¤8� +8� × O�E8
�
= m� +m�

6 , (2)

where / = [G, H, I]) indicates the center of gravity (c.g.)

location of the drone in the inertial frame. XIB ∈ SO(3)

is the rotational matrix representing the quadrotor attitude.

The angular velocity of the body frame w.r.t the inertial

frame is expressed as 8� = [lG , lH , lI]
) . The vehicle

mass and inertia are denoted by < and O�E respectively, and

g = [0, 0, 6]) denotes the gravity vector, where 6 is the

local gravitational constant. m�
6 is the propeller gyroscopic

moments. f � = [0, 0, )]) is the external force vector pro-

jecting on the body frame.

The collective thrust ) and control torques m�
=

[gG , gH , gI]
) are generated by rotors from the control al-

location model:
[
), gG , gH , gI

])
= Mu, (3)

where u ∈ R4 is the control input vector containing thrusts

generated by each rotor. M ∈R4×4 is the control effective matrix

projecting individual thrust of each rotor to the collective thrust

and torques.

2) Reduced Control Allocation Model: After the occurrence

of the complete failure of the 8-th rotor, where 8 ∈ {1, 2, 3, 4},

a quadrotor cannot maintain a stationary condition [5]. It is a

common strategy to stop controlling quadrotor heading angle

leading to high-speed yaw rotation. In this case, we remove

the last row and the 8-th column of M, and obtain a reduced

control effective matrix M̃ ∈ R3×3. The control input u is also

reduced to ũ ∈ R3 where the 8-th element is removed. Then,

we obtain the reduced control allocation model
[
), gG , gH

])
= M̃ũ. (4)

3) Reduced Attitude Kinematic Model: Since the heading is

not being controlled, instead of a full attitude kinematic model,

we use a reduced attitude kinematic model [3] to design the

flight controller:

¤n� = n�×8
� + X)IB ¤n, (5)

where n is an arbitrary unit vector and n� = [=G , =H , =I]
) .

B. Fault Tolerant Controller

Given ades the reference acceleration from a PD position

controller [11], we can obtain the desired thrust orientation

as n = (ades − g)/| | (ades − g) | |. The reduced attitude con-

troller aims at aligning n with a body frame fixed vector

n�
fix

= [=̄G , =̄H , =̄I]
) , where =̄G , =̄H , =̄I are constants [21].

A straightforward option is to select n�
fix

= [0, 0, 1]) , namely

the thrust direction, to align with n. However, we keep a slight

angle (around 15 deg) between n�
fix

and n. This reduces the

spinning rate and causes wobbling motion of the drone. We

refer the reader to [11] for more details.

To align nfix with n, we use a nonlinear dynamic inversion

(NDI) approach [22]. We define the control variable as

y =

[
=G − =̄G
=H − =̄H

]
=

[
H1

H2

]
. (6)

Then we need to design the control input ũ leading to a stable

second-order closed-loop dynamic of y:

¥y(ũ) = −diag(: ? , : ?)y−diag(:3 , :3) ¤y, (7)

where : ? and :3 are proportional and derivative gains. An

integral term may be added to (7) as well to address slight

model mismatch. To simplify the derivation of ũ, we assume

that lI and =I are constant after rotor failure. Similarly to [11],

we assume a slowly changing n and ¤n = 0. The quadrotor in-

ertia matrix O�E is approximated by diag(�G , �H , �I). Propeller

gyroscopic moment m�
6 is also negligible compared with rotor

thrust generated torques, thus we omit it in the controller

design. We validate these assumptions in the real flights. Then,

we substitute (2)(5)(6) into (7), yielding expressions of roll and

pitch torque commands:

[
gG,cmd, gH,cmd

])
=



[
: ?H2 + :3 (=GlI −=IlG) + (=HlI −=IlG)lI

]
�G/=I

+�IlHlI − �GlHlI
−
[
: ?H1 + :3 (=IlH −=HlI) + (=GlI −=IlH)lI

]
�H/=I

+�GlGlI − �IlGlI



.

(8)

The thrust command )cmd can be obtained from the desired

vertical acceleration aI,des and (1), yielding

)cmd = <(aI,des +6)/cosqcos\, (9)

where \ and q are pitch and roll angles of the quadrotor.

Finally, substituting (8) and (9) into (4), we can get the con-

trol input ũ, namely thrust commands of the three remaining

rotors

ũ = M̃
−1 [

)cmd, gG,cmd, gH,cmd

])
. (10)

Note that this controller is modified from that in [4] to

avoid using motor speed measurements unobtainable for some

platforms. As a consequence, this controller is less robust

against model mismatch caused by, e.g., high-speed induced

aerodynamic effects. If the rotor speeds are measurable, we

refer readers to use the controller proposed in [4] to improve

the resilience against aerodynamic disturbances.

The proposed method also assumes that the motor failure is

already known by the controller, which can be easily detected

by methods such as monitoring the motor current [23], or using

a Kalman filter [24].

III. Onboard State Estimation

To achieve autonomous flight with rotor failure, the state

estimator provides orientation and position information using

only onboard sensors, including an IMU, a downward looking

range sensor, and a downward looking camera. The camera can

be either a standard camera or an event camera. The block

diagram of our system is given in Fig. 2. A range-sensor-

aided monocular VIO algorithm provides pose estimates of

the camera at 50 Hz. These estimates are fused with the IMU

from a low-level flight control board located at the center of

gravity, using a Kalman filter and a complementary filter, to

provide position, velocity, and orientation estimates at 200 Hz
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Fig. 2: General diagram of the onboard state estimator and the

fault-tolerant controller.
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Fig. 3: Diagram of the visual-inertial odometry (either event

based or frame based).

for the fault-tolerant flight controller. A rotation compensated

complementary filter is proposed for orientation estimation

instead of directly using the orientation from the VIO. This

can improve the robustness of the algorithm in case of loss of

feature tracks.

A. Visual Inertial Odometry

The proposed VIO provides position and yaw estimations.

It can use either standard frames or events as visual inputs. A

block diagram of the algorithm is given in Fig. 3.

1) Front-end: If events are selected as visual input, we

first of all generate synthetic event frames [25]. Each event

frame �: (x) is aggregated from events from a spatio-temporal

window ,: :

�: (x) =
∑

4 9 ∈,:

? 9X(x− x′ 9 ), (11)

where function X(·) is the Kronecker delta, ? 9 is the polarity

of a certain event represented by 4 9 , x
′
9 is the corrected event

position considering the motion of the camera:

x′ 9 = c
(
)C: ,C 9

(
/ (x8)c

−1 (x8)
))
. (12)

where c(·) is the camera projection model, )C: ,C 9 is the

transformation of camera pose between C: and C 9 , / (x8) is

the scene depth approximated by the range sensor. As the

rotation of the damaged quadrotor in this time window is

more dominant than the linear motion, we use a pure rotation

transformation to approximate )C: ,C:−1
, which is generated by

integrating angular rate measurements from the gyroscope.

Then )C: ,C 9 is approximated by a linear interpolation )C: ,C 9 =

)C: ,C:−1
(C 9 − C:−1)/(C: − C:−1).

Then we use a FAST feature detector [26] and Lucas-

Kanade tracker [27] to detect and track features. If a feature

has been tracked over 3 consecutive frames, it is determined

as persistent and is triangulated. The corresponding landmark

is added to the map. These settings are the same as applied

in [20] and [25].

If standard frames are selected as visual input, we simply

replace the synthetic event frames in the above procedure.

2) Range-Based Landmark Triangulation: Since the dam-

aged quadrotor motion is mostly rotation, triangulating land-

marks based on the disparity is inaccurate. For this reason,

we use a downward range sensor to detect the range of the

camera to the ground, where most features are detected. We

also assume that all landmarks lie within the ground plane.

For the 9-th landmark whose position in the inertial coordinate

frame is defined as p 9 we have

_



D

E

1


= QXCI

(
p 9 − p2

)
,

?2,I − ? 9 ,I = ℎ̂ = A cos\ cosq,

(13)

where D, E are observations of the landmark in the last

(event) frame, p2 is the position of the camera in the inertial

coordinate frame, Q is the camera calibration matrix, XCI is

the rotation matrix from camera frame to the inertial frame,

ℎ̂ is the height estimate, A is the range measurement from the

range sensor.

As XCI and p2 are obtained from the backend optimization,

q and \ are estimated from the complementary filter, we can

subsequently solve p 9 from (13). The position estimates of

triangulated landmarks are then used as initial guess for the

nonlinear optimization problem in the backend.

3) Back-end: We use a keyframe-based fixed-lag smoother

inspired by [17] to estimate the pose of the camera. The

optimization cost function is formulated as

� (^) =

 ∑

:=1

∑

9∈� (:)

| |e
9 ,:
E | |2

]
9,:
E

+

 −1∑

:=1

| |e:8 | |
2

]
:
8

+

 ∑

:=1

∑

9∈� (:)

F
9 ,:

ℎ
(?2,I − ℎ̂− ? 9 ,I)

2,

(14)

where : is the frame index,  denotes number of frame in

the sliding window, 9 is the landmark index, � (:) is the

set containing all the visible landmarks from the frame : .

The first and second term in (14) represent reprojection error

and inertial error respectively. The optimization variables are

the states of the  frames in the sliding window, which are

represented by ^ and include position, velocity, orientation,

and IMU biases.

Differently from the optimization-based back-end in [17],

we add the third term in the cost function (14), where F
9 ,:

ℎ

is the weight. It forces the vertical differences between the
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position of the camera and the observed landmark to be equal

to the height estimate ℎ̂ from the range sensor. By this means

we add additional scale information from the range sensor

while the IMU based scale information becomes less reliable

in this fast rotational motion dominated task.

The optimization is run when a new (event) frame is

generated. To improve computation efficiency, we do not per-

form marginalization and discard the states and measurements

outside the sliding window. We use the Google Ceres Solver

[28] to solve this nonlinear least square problem.

B. Rotation Corrected Complementary Filter

The complementary filter is widely used to provide attitude

estimates of a quadrotor. It has a major advantage that the

pitch and roll are estimated only from IMU measurements,

thus it is robust to failure of other sensors. The accelerometer

measurement is expressed as:

aIMU = a� − g� +8� × (8� × d�ba) + ¤8� × d�ba +wacc + bacc ,

(15)

where a� is the acceleration of the center of gravity, wacc and

bacc are the measurement noise and bias respectively. d�ba is the

displacement from the center of gravity to the accelerometer.

A standard complementary filter assumes that the ac-

celerometer measures the negative gravitational vector ex-

pressed the body frame in a long-term period. In other words,

it neglects other terms in (15) except g�. This works well

when a quadrotor spends significant periods of time in hover

or slow forward flight [29]. However, when the quadrotor

fast spins at a near constant body rate 8� and enter the

relaxed-hovering condition [1], a� becomes a constant non-

zero centripetal acceleration, and the displacement induced

term 8�× (8�× d�ba) also becomes non-negligible. These two

terms need to be considered in the filter, yielding the rotation

corrected complementary filter.

We estimate acceleration a� by assuming the quadrotor

stays in the relaxed-hovering condition in a long-term period.

According to Fig. 4, we can obtain the estimated a� as

â� =

[
−
lG

| |8 | |
6, −

lH

| |8| |
6, 6 tanU sinU

])
, (16)

where U = arccos(cos\ cosq). Note that (16) is valid only at

relaxed-hovering condition where quadrotor fast spins. There-

fore, we still assume a zero â� vector when |lI | < l̄, where l̄

is a positive threshold. We use l̄ = 10 rad/s in our experiments.

Knowing a�, we can subsequently estimate the displacement

dba from (15) by a least-square estimator, using real flight data.

Fig. 5 presents the diagram of the proposed complementary

filter, where the rotation compensation block is marked in

yellow. Since there is no magnetometer used in our platform,

we adopt the yaw angle from the VIO to fuse the gyroscope

measurement and to obtain the yaw estimate. Finally, we

can estimate the full attitude from this rotation corrected

complementary filter.

IV. Experiments

A. Hardware Descriptions

As Fig. 6 shows, the tested quadrotor is built with a carbon

fiber frame and 3D printed parts. It is powered by four 2306-

Fig. 4: In the relaxed-hovering condition, the acceleration

projection on the body frame (a�) is constant.
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Accelerometer

 

-
+

+
-

+
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correction
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+

Fig. 5: Diagram of the rotation corrected complementary filter.

Fig. 6: Photo of a quadrotor flying with three rotors, where an

event camera is used for state estimation.

2400KV motors with 5-inch propellers. The state estimation

and the control algorithm are run on a Nvidia Jetson TX2,

which contains a quad-core 2.0 Hz CPU and a dual-core

2.5 Hz CPU running Ubuntu 18.04 and ROS [30]. The motor

thrust commands from the control algorithm are sent to motors

through a Radix FC flight control board, which runs a self-

built firmware that also sends the IMU measurements to the

TX2 at 200 Hz. We used TeraRanger One, a LED time-of-

flight range sensor, to measure the distance to the ground. Both

standard and event cameras are facing downward. They both

use a 110◦ field-of-view lens. For the event camera, we use

an Inivation DAVIS-346 with a resolution of 346×240 pixels.

For the standard camera, we use a mvBlueFox-220w [31] with

a resolution of 376× 240 pixels, chosen intentionally to be

close to that of the event camera to enable a fair comparison.

It is worth noting that the maximum gain (12 dB) of the

mvBlueFox-200w camera is used to minimize the required
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Fig. 7: Top two plots: Pitch and roll angle estimates of

the proposed rotation corrected complementary filter and a

standard complementary filter, compared with the ground

truth measured by the motion capture system. Bottom plot:

comparison between the gravity projection on the body frame

and the accelerometer measurement.

exposure time, which is found essential in reducing the motion

blur in the standard frames.

B. Validation of the Rotation Corrected Complementary Filter

We use the flight data to evaluate the performance of

the proposed complementary filter, against the one without

rotation motion considered. Fig. 7 shows that the roll error of

the standard complementary filter became large as the quadro-

tor started spinning at around 5 s. By contrast, the rotation

corrected complementary filter could well estimate the pitch

and roll angles despite the over 20 rad/s spinning rate. Bottom

plot of Fig. 7 explains the large error of the roll estimates. As

standard complementary filter assumes that the accelerometer

measures the negative gravitational vector, g� should align

with aIMU,G . However, this assumption becomes invalid when

considerable centripetal acceleration appears, which leads to

significant bias of the accelerometer measurement.

C. Closed-loop Flight Validation

We conducted setpoint tracking tasks in the closed-loop

flight experiment to validate the entire algorithm, including

the vision-based state estimator and the fault-tolerant flight

controller. During the test, the quadrotor took off with four

rotors. The VIO was initialized while the drone was in

hovering. Then, we switched off one rotor and the fault-tolerant

flight controller started controlling the quadrotor. As shown in

Fig. 8a, nine setpoints formed into a square were given to the
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(a) Closed-loop flight trajectory using standard frames.
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(b) Closed-loop flight trajectory using events.

Fig. 8: Top view of the closed-loop flight trajectories. Ground-

truth from the motion capture system (blue), estimated tra-

jectory (green), and the reference trajectory (red) including 9

setpoints.

flight controller in steps of 5 seconds. The damaged quadrotor

then flew a square trajectory by tracking these setpoints.

Two different tests were performed where standard frames

and events were respectively used as visual input to the state

estimator. Fig. 8a shows the closed-loop flight result using

standard frames, where the estimated trajectory from the VIO

in the inertial frame, the ground truth trajectory measured by

the motion capture system, and the reference trajectory are

presented. The difference between the real trajectory and the

reference is caused by the position estimation error and the

controller tracking error. Although the tracking performance

is not perfect, it is sufficient for controlling a damaged

quadrotor to a safe area for landing. Similarly, Fig. 8b shows
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TABLE I: Position tracking accuracy (RMSE) with state

estimators using standard frames or events in different light

conditions. For standard frames, gains of the camera are

set as 12 dB. Env lux: environment illuminance. Cam lux:

illuminance at the camera lens. The left column shows photos

of the test environment.

Environment Illuminance Standard Frames Events

Env
lux

Cam
lux

Exposure
(ms)

RMSE
(m)

Num
of

events

RMSE
(m)

500 71.5 2 0.50 15000 0.48

100 18.0 8 0.93 15000 0.42

50 7.3 12 ∞ 6000 0.58

10 2.3 12 ∞ 6000 0.89

1 0.2 12 ∞ 6000 ∞

another test where events are used as visual input to the state

estimator. Both tests were conducted in a well-illuminated

environment (500 lux), which is a bright indoor office lighting

condition [32].

D. Comparison between Frames and Events

In this section, we test the algorithm in different envi-

ronment’s lighting conditions, and compare between using

frames and events as visual input. In these tests, we let the

damaged quadrotor track a single setpoint (i.e., hovering).

Then, we measure the root mean square error (RMSE) of

the closed-loop position tracking to evaluate the performance

of the entire algorithm. The exposure times of the standard

camera are changed according to the environment brightness

to capture frames with sufficient intensity for detecting and

tracking features. For the event camera, we observe that the

number of events generated in a fixed time window is smaller

in a darker environment. Hence, we accordingly reduce the

number of events needed to construct an event frame in low-

light conditions.

Table I reports the position tracking RMSE when using

standard frames or events in different lighting conditions. As

can be observed, when the environment illuminance is around

500 lux, both frames and events can accomplish the task with

similar tracking error. However, with standard frames as visual

input, the tracking error doubles as the illuminance drops to

100 lux, and the damaged quadrotor crashes immediately when

the illuminance gets lower than 100 lux. By contrast, with

events as visual input, the damaged quadrotor can even fly

when the illuminance is decreased to 10 lux. These compar-

isons clearly show the advantage of using an event camera for

state estimation in low-light conditions.

Fig. 9 presents the standard frames and the event frames in

a bright (500 lux) and a dark (50 lux) indoor environment,

respectively. When the environment illuminance is 50 lux, a

relatively long exposure time (12 ms) of the standard camera

Fig. 9: Standard and event frames, including features (light

blue circle are detected features, green dots are persistent

features), in a bright (500 lux) and a dark (50 lux) environ-

ment. (a) Standard frame in the bright environment with 2 ms

exposure time. (b) Event frame in the bright environment. (c)

Standard frame in the dark environment with 12 ms exposure

time. (d) Event frame in the dark environment.

Fig. 10: Outdoor flight to validate the proposed fault-tolerant

flight solution. Left: snapshot of the qudarotor flying with only

three propeller. Right: top view of the forward-backward flight

trajectory given by the state estimator.

is required. Hence, the standard frames experience significant

motion blur (Fig. 9c) owning to the quadrotor fast rotational

motion caused by the motor failure. Although more than 20

features are detected from this blurry image, few of them

are successfully tracked (i.e., persistent features) and added

to the map, causing failure of the standard frame-based VIO.

By contrast, the event frames are sharp enough for feature

detection and tracking in both bright and dark conditions.

E. Outdoor Flight Test

Finally, we validate the proposed algorithm in an outdoor

environment with natural light and textures. Fig. 10 shows

the snapshot of the flying quadrotor, and the top view of
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the flight trajectory from the state estimator. The quadrotor

was commanded to conduct forward flight for 4 meters, and

then return to the origin. The entire flight can be found

in the supplementary video. In this flight, the environment

illuminance was 2000 lux. According to Table I, both standard

frames and events are reliable in such bright conditions. Hence,

a standard camera was used in this flight.

V. Conclusions

In this work, to the best of our knowledge we achieved

the first autonomous flight of a quadrotor despite loss of a

single rotor, using only onboard sensors. A new state esti-

mation pipeline was proposed, including a rotation corrected

complementary filter and a VIO algorithm aided by a range

sensor. Despite the fast spinning motion of the damaged

quadrotor, we demonstrated that the proposed method can

provide reliable state estimates to perform hovering flights and

setpoint-tracking tasks with only onboard sensors.

Comparisons were made between different visual inputs to

the proposed algorithm: standard frames and events. In a well-

illuminated environment, we demonstrated that the algorithms

using both forms of visual input can provide sufficiently

accurate state estimates. However, in a relatively low-light

environment with illuminance lower than 100 lux, the standard

frames were affected by significant motion blur due to the fast

rotation and the long exposure time required. By contrast, the

event-based algorithm could stand closed-loop tests in a much

darker environment (10 lux).

Finally, we conducted outdoor flight tests to validate the

proposed method in realistic conditions, with natural light and

texture.

We believe that the this work can significantly improve

quadrotor flight safety in both GPS denied or degraded en-

vironments.
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