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Abstract. We discuss a simple quantum thermal machine for the generation of
steady-state entanglement between two interacting qubits. The machine is autonomous
in the sense that it uses only incoherent interactions with thermal baths, but no
source of coherence or external control. By weakly coupling the qubits to thermal
baths at different temperatures, inducing a heat current through the system, steady-
state entanglement is generated far from thermal equilibrium. Finally, we discuss two
possible implementations, using superconducting flux qubits or a semiconductor double
quantum dot. Experimental prospects for steady-state entanglement are promising in
both systems.
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1. Introduction

The generation of entangled states in quantum systems represents a central challenge for

quantum information processing and fundamental tests of quantum theory. Tremendous

progress has been achieved in particular with the development of methods to efficiently

counter various (and essentially unavoidable) sources of noise, such as coupling to the

environment. Recently, it was realized that noise and coupling to the environment

are not always detrimental, and can be used advantageously in certain situations

[1, 2, 3, 4, 5, 6, 7]. While these schemes allow only for transient entanglement, it

was shown that steady-state entanglement can be obtained from dissipative processes

[8, 9, 10, 11]. The creation of steady-state entanglement was investigated for

trapped ions [12], atoms in cavities [13, 14], superconducting [15] and spin qubits

[16, 17], and nanomechanical systems [18], with experimental implementations reported

[19, 20, 21, 22]. The main ingredients are engineered decay processes and quantum

bath engineering [23, 24, 25]. These approaches drive the system into a single fixed

point corresponding to an entangled state, but require an external coherent driving

field, which can be considered a source of work.

It is thus natural to ask if steady-state entanglement can be generated via incoherent

interactions with thermal environments alone. Indeed, this can be achieved in a situation

of thermal equilibrium, by placing a system featuring entanglement in the ground state

in thermal contact with a cold bath. More interestingly it was shown that steady-

state entanglement can be generated far from equilibrium, without using any source of

coherence or external control. The first example considered an atom coupled to two

cavities and driven by incoherent light [26]. Subsequent work discussed this problem in

the context of many-body systems [27, 28], interacting spins [29, 30], and atoms placed

in a thermal environment [31, 32]. Steady-state entanglement was also shown to be

beneficial for transport [33] and cooling [34]. More generally, the potential of thermal

entanglement generation is still not well understood. In particular, coupling to a thermal

environment is arguably the most common and natural source of dissipation, hence using

it advantageously may lead to novel experimental possibilities in the context of quantum

information, and might also give insight into possible generation of entanglement in

biological systems [35].

Here we discuss this problem in what is arguably the simplest possible setting: two

resonant qubits, each in weak thermal contact with a heat bath. Placing the two heat

baths at different temperatures results in a net heat current passing through the system,

which can generate steady-state entanglement far from thermal equilibrium. Our setup

makes use of a source of free energy (i.e. two heat baths at different temperatures)

and can thus be considered a thermal machine for generating steady-state entangle-

ment. The machine is autonomous in the sense that it uses only incoherent interactions

with thermal baths, but no source of coherence or external control. We investigate the

amount of entanglement that can be generated with respect to the coupling paramet-

ers and temperatures of the baths. Then we illustrate the practical relevance of our
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Figure 1. Sketch of the quantum thermal machine.

model by discussing two implementations in superconducting flux qubits [36], and in

a semiconductor double quantum dot [37]. Thanks to their coherence properties and

high tunability in the quantum regime, these systems are natural candidates to test the

limits of dissipation processes as a resource for steady-state entanglement.

2. Model

We consider two qubits with identical energy gaps E weakly coupled to each other and

to separate thermal reservoirs (Figure 1). We denote the ground and excited states |0〉,
|1〉, and the free Hamiltonian for the qubits in this basis is

Ĥ0 = E(|1〉〈1| ⊗ 1+ 1⊗ |1〉〈1|), (1)

The interaction Hamiltonian, which is energy conserving, is given by

Ĥint = g(|10〉〈01|+ |01〉〈10|), (2)

where g is the strength of the coupling between the qubits. The coupling to the thermal

baths is modelled using a simple collision model where thermalisation happens through

rare but strong events. At every time step, each qubit k is either reset to a thermal

state τk at the temperature of its bath with a small probability or left unchanged. The

state of the qubits evolves according to the master equation

∂ρ

∂t
= i[ρ, Ĥ0 + Ĥint] +

∑

k∈{c,h}

pk(Φk(ρ)− ρ) (3)

where pk is the thermalisation rate for qubit k and Φc(ρ) = τc ⊗ Trc(ρ) and Φh(ρ) =

Trh(ρ) ⊗ τh. We take the first qubit to have the colder and the second to have the

warmer bath temperature. We refer to them as the ’cold’ and ’hot’ qubit respectively

and use subscripts c and h. The thermal states are given by τk = rk |0〉〈0|+(1−rk) |1〉〈1|
with occupation probabilities determined by the Boltzmann factor according to rk =

1/(1 + e−E/Tk) where Tk is the reservoir temperature for qubit k (throughout the paper

we set kB = 1 and ~ = 1). Note that the master equation applies in the perturbative

regime pc, ph, g ≪ E and pc, ph ≪ 1 [38].

Next we look for the steady-state solution of (3). Since (3) is linear in ρ, it can be

recast as a matrix differential equation ∂v
∂t

= Av + u, where v is a rewrapping of the

density matrix ρ to a vector, and the matrix A and vector u depend on E, g, pk, Tk, and
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Figure 2. (Color online) Characterization of steady-state entanglement (a)

Concurrence vs. hot bath temperature Th, for different cold bath temperatures Tc. (b)

Heat current Qc(ρ∞) from the cold qubit to its bath, and (c) purity corresponding
to the parameter settings in (a). (d) Threshold hot bath temperature required to
generate entanglement in the steady state as a function of the cold bath temperature
Tc.

encode the right-hand side of (3). The steady-state solution is given by v∞ = −A−1
u.

Wrapping back to matrix form, we obtain the steady-state density matrix

ρ∞ = γ
[

pcphτc ⊗ τh +
2g2

(pc + ph)2
(pcτc + phτh)

⊗2 +
gpcph(rc − rh)

pc + ph
Y
]

(4)

with Y = i |01〉〈10| − i |10〉〈01| and γ = 1/(2g2 + pcph), and where ρ⊗2 = ρ ⊗ ρ. Note

that for resonant qubits, the steady state depends on the energy E only through rc, rh.

We also determine the heat currents in the system. The energy flowing from qubit k to

its bath is given by the product of the thermalisation rate and the change in energy of

the qubit at each thermalisation event

Qk(ρ) = pkE 〈1| (ρk − τk) |1〉 , (5)

where ρk is the reduced state for qubit k corresponding to the joint state ρ.

We are now in position to discuss the entanglement of the steady state. As a

measure of entanglement, we use the concurrence [39], which for the steady state (4)

can be written

C(ρ∞) = max
{

0, f(rc, rh)−
√

h(rc, rh)h(1− rc, 1− rh)
}

(6)

with

f(rc, rh) = γ
gpcph
pc + ph

|rc − rh|, (7)

h(rc, rh) = γ

(

pcphrcrh + 2g2
(

pcrc + phrh
pc + ph

)2
)

. (8)

Notice that when the two temperatures coincide, i.e. Tc = Th, we have C(ρ∞) = 0 since

f(rc, rh) = 0 in this case. That is, at equilibrium the steady state of the two qubits is

always separable. However, when moving away from equilibrium by choosing different

temperatures for the two baths, hence establishing a heat current from the hot to the

cold bath, steady-state entanglement can be generated as we will now see.
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Figure 3. Implementations of our model in (a) superconducting flux qubits, and (b)

a double quantum dot.

We first discuss the case Tc = 0. For any Th > 0, a heat current is created and

steady state entanglement appears. The top curve in Figure 2(a) shows the maximal

amount of entanglement that can be achieved as a function of Th by optimising the

coupling parameters (with the constraint that g, pc, ph < 10−2 to ensure the validity of

our master equation). The corresponding heat current Qc(ρ∞) is plotted in Figure 2(b).

It is clearly seen that increasing Th, hence increasing the heat current, creates more

entanglement. The largest amount of entanglement, C(ρ∞) ≈ 0.054, is obtained when

Th → ∞ and g ≈ 1.6 × 10−3, pc ≈ 10−2, ph ≈ 1.1 × 10−3. Next we consider the case

Tc > 0. In this case a minimal temperature difference (and thus a minimal heat current)

is required to get entanglement, as is apparent from Figure 2(a). The threshold hot bath

temperature depends on Tc (see Figure 2(d)), and above Tc/E ≈ 0.21 no entanglement

can be generated. We also computed the purity of the steady state, given by tr(ρ2∞),

which depends on Th but is essentially independent of Tc (see Figure 2(c)).

The simplicity of the above model makes it rather versatile, we believe. Notably,

we considered fully incoherent coupling to the heat baths, and made no assumption

about the structure of these baths. This will be illustrated in the next sections where

we discuss two possible implementations.

3. Implementation 1

The high-tunability of superconducting flux qubits has motivated lots of experiments,

demonstrating for instance the control of the inductive coupling between two flux qubits

[40], the preparation of entangled states [41], and the observation of the ultrastrong
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coupling regime between a flux qubit and its environment [42]. Here, we consider a

circuit made of two flux qubits which interact via a shared inductance M as shown

in Figure 3(a)). When appropriately tuned [43, 44], this system is described by the

Hamiltonian Ĥflux = Ĥ0+Ĥint, c.f. Eqs. (1) and (2), where g is the interaction strength

now set by M (see Appendix A). Moreover, each qubit is subject to dissipation processes

which simply arises from the finite impedance of external coils required to operate the

two superconducting loops as effective two-level systems. These external circuits are

characterized by noise spectra Sk(ω) which depend on the Bose-Einstein distribution

nB(ω, T ) = 1/(eω/T − 1). Tuning the noise of the external circuit enables therefore the

control of the temperature of the environments coupled to each qubit independently.

We describe the interaction between each flux qubit and its dissipative environment via

an Hamiltonian of the form [45]

Ĥq-e =
∑

k∈{c,h}

√

Γk îk

(

|1〉k〈0|+ |0〉k〈1|
)

, (9)

where îk is the fluctuating current in external circuit k. Standard quantum optics

calculations [46, 47] allows us to derive the Lindblad equation governing the dynamics

of the interacting flux qubits in presence of their thermal environments

∂ρ

∂t
= i[ρ, Ĥflux] +

∑

k∈{c,h}

Γ+
k

(

ĴkρĴ
†
k −

1

2

{

Ĵ†
kĴk, ρ

}

)

+
∑

k∈{c,h}

Γ−
k

(

Ĵ†
kρĴk −

1

2

{

ĴkĴ
†
k, ρ
}

)

. (10)

We note that this equation is similar to (3). The jump operators Ĵ†
k and Ĵk

correspond to the raising and lowering operators for each qubit, Ĵc = |1〉〈0| ⊗ 1 and

Ĵh = 1⊗|1〉〈0|. The process corresponding to qubit k absorbing (emitting) an excitation

is characterized by the rate Γ+
k (Γ−

k ), which is proportional to nB (1 + nB). We refer

the reader to the Appendix for more details on the derivation of Eq. (10) and the form

of the rates Γ±
k .

Applying the same techniques as for our simple model, we characterize the steady

state of the system and study the entanglement between the flux qubits. Figure 4(a)

shows the concurrence for different temperatures; again an optimization over the coup-

ling parameters g, Γc, Γh is performed (in the weak coupling regime) and the results

are qualitatively very similar to those of our simple model, see Figure 2(a)). We find a

maximal amount of entanglement of C(ρ∞) ≃ 0.1 and the threshold cold bath temper-

ature below which steady-state entanglement is possible is Tc/E ≃ 0.283. Considering

that transition frequencies of flux qubits are in the GHz range, this threshold cold bath

temperature corresponds to few mK. Note that this temperature range actually cor-

responds to the typical temperatures at which those experiments are performed. This

characteristic, as well as enhanced coherence times of the order of 10µs recently repor-

ted in Refs. [48, 49], makes flux qubits promising candidates to realize the autonomous

thermal machine we propose.
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Figure 4. (Color online) Steady-state entanglement for both proposed implementa-
tions. (a) Concurrence vs. the temperature of the warmer bath Th for the flux-qubit
system, for different cold bath temperatures Tc as indicated. (b) Concurrence vs. Th

for the double-quantum-dot system, for different Tc as indicated and Coulomb energy
U/E = 20. (c) Concurrence vs. Th for the double-quantum-dot system, for the differ-
ent Coulomb energies as indicated, and Tc = 0 (note that the second curve from the
top corresponds to the top curve in (b)).

4. Implementation 2

Next we consider a double quantum dot tunnel-coupled to fermionic reservoirs

characterised by temperatures Tc, Th and chemical potentials µc, µh as shown in

Figure 3(b)). As shown in the Appendix, the Hamiltonian of this system takes the

form Ĥdot + Ĥq−E with Ĥdot = Ĥ0 + Ĥint + U |11〉 〈11|. Compared to the flux qubits

Hamiltonian, Ĥdot is characterized by an additional inter-dot interaction set by the

Coulomb energy U . When the interaction between the dots and the reservoirs is weak,

only single-charge tunnelling events occur and the dynamics of the system is captured

by a master equation of the form (10). However, the rates Γ̃±
k now reflect the fermionic

nature of the system, Γ̃+
k = Γk nF (E, Tk) and Γ̃−

k = Γk (1 − nF (E, Tk)) (see Appendix

B). Here nF (E, T ) = 1/(eE/T + 1) is the Fermi-Dirac distribution.

Figure 4(b) shows the concurrence in the steady state for varying temperatures

and a fixed, non-zero, Coulomb energy. Again we observe a behaviour similar to the

simple model (see Figure 2(a)). Interestingly, for U 6= 0, the temperature Th for

which entanglement is maximised turns out to be finite. Indeed, the inter-dot Coulomb

interaction prevents a second electron from one of the reservoirs from jumping into the

system for a given range of Th. This tends to increase the amount of entanglement

generated.

Another key feature of this model is the dependance of the amount of entanglement

that can be generated and of the threshold temperature on U , see Figure 4(c). For U = 0

we find C(ρ∞) ≃ 0.10 (similarly to the flux qubit case) §, while the largest amount of

entanglement, C(ρ∞) ≃ 0.2587, is found for large U ≈ 25 × 103E. For U = 0, the

§ Due to the fermionic nature of the systems, the value of the concurrence represents only a lower
bound, as taking into account super-selection rules one expects to find more entanglement, see e.g. [50].
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threshold cold bath temperature above which no entanglement can be found is the same

as for the flux qubit system, Tc/E ≈ 0.283, but the threshold can be made arbitrarily

large by increasing U . E.g. for U = 300, the threshold is Tc/E ≈ 21.4. Experimentally,

semiconductor quantum dots are highly controllable thanks to external gate voltages

that can be used to tune the different parameters in the desired range. This tunability,

as well as coherence times on the order of ns [51] with energy splitting ∼ 1 meV, makes

experimental perspectives also promising for this system.

5. Conclusion

We discussed a model for an autonomous quantum thermal machine, able to generate

steady-state entanglement between two interacting qubits. Remarkably, our scheme only

relies on incoherent interactions with thermal baths. We proposed two implementations

with widely investigated mesoscopic systems, one with two superconducting flux qubits

and one with a double quantum dot. We considered relevant experimental values for the

various parameters and obtained promising results for both platforms. Perspectives to

this work concern the possibility to enhance the significant, but non-maximal, amount

of entanglement generated by the model we propose. A first option could be to use

entanglement distillation, a process which can be achieved dissipatively [52]. Another

possibility is to look for schemes using higher dimensional quantum systems. The

present model may also be relevant in the context of quantum biology, where the role

of quantum coherence and entanglement is currently investigated. Going beyond the

scope of generating steady-state entanglement, i.e. entanglement available on demand,

a promising direction concerns the transient regime. Just like in refrigeration schemes

[53, 54], the finite time behaviour may lead to enhanced entanglement that can, together

with precise timing, be extracted at regular intervals.
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Appendix A. Implementation with flux qubits

As in recent experiments, each flux qubit of our model consists of a superconducting

loop with several Josephson junctions, see Figure 3. The increased number of Josephson
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junctions makes the circuit less sensitive to magnetic flux noise [55]. The magnetic

flux threading the loop induces clockwise and anti-clockwise supercurrents, ±I, which

define two classical states. When the magnetic flux is close to half a flux quantum, the

eigenstates of the system are a superposition of the clockwise and anticlockwise super

current states |+ I〉 and | − I〉 and are well separated from higher energy levels. Hence,

each circuit behaves as an effective two-level system characterized by an eigenenergy ω

[56, 55, 49] (We set ~ = kB = 1 as in the main text). If the two qubits are close to each

other, they interact via a shared inductance M . In the two-level basis and using the

rotating wave approximation, the Hamiltonian of the two coupled flux qubits (labelled

c and h as in the main text) reads [41, 40, 57, 43]

Ĥflux = ωc(|1〉〈1| ⊗ 1) + ωh(1⊗ |1〉〈1|) (A.1)

+ λ1(|01〉〈10|+ h.c.) + λ2(|00〉〈11|+ h.c.) ,

with

λ1 = M〈10|Îc ⊗ Îh|01〉 , (A.2)

λ2 = M〈00|Îc ⊗ Îh|11〉 . (A.3)

In the following, we will assume to be working at the symmetric point, i.e. when the

magnetic flux is exactly equal to half a flux quantum. At this point, it has been shown

that the supercurrent operator Îk (with k = c, h) takes the simple form bkσ̂
(k)
x with bk a

real number [43]. Here the Pauli matrix operator σ̂k
x is defined as

σ̂k
x = |0〉k〈1|+ |1〉k〈0| . (A.4)

When the two qubits are on resonance, ωc = ωh ≡ E, simple energy-scale arguments

allows us to reduce the Hamiltonian (A.1) to

Ĥflux = E(|1〉〈1| ⊗ 1+ 1⊗ |1〉〈1|) + λ1(|01〉〈10|+ h.c.) .

(A.5)

Equation (A.5) is the exact analogue to Eqs. (1) and (2) in the main text, where the

interaction strength is given by g ≡ λ1 = M 〈01| σ̂(c)
x σ̂

(h)
x |10〉.

Moreover, each qubit is coupled to a ’bath’, represented by an external coil used

for instance to generate the magnetic field enclosed by the superconducting loop. Each

external circuit has a fluctuating current ik flowing through it, it is characterized by

a finite impedance which is at the origin of dissipation processes. These dissipation

processes are at the origin of the finite coherence time of the flux qubits for instance.

More precisely, the fluctuating current satisfies 〈̂ik(t)〉 = 0 and is characterized by a

spectral density Sk(E, T ) which depends on the admittance Y (E) [45]

Sk(E, T ) = E Re[Y (E)] (nB(E, T ) + 1) . (A.6)

Here nB denotes the Bose-Einstein distribution with a chemical potentials E and

temperature T , nB(E, T ) = 1/(eE/T − 1). The interaction Hamiltonian between the

flux qubits and their own dissipative environment takes the form [45, 58]

Ĥq−e(t) =
√

Γc îc(t)(σ̂
(c)
x ⊗ 1) +

√

Γh îh(t)(1⊗ σ̂(h)
x ) . (A.7)
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By tuning the noise of the external circuit coupled to the flux qubit, one can therefore

control the temperature of the environment.

The derivation of the master equation follows standard quantum optics calculations

[46, 47]. The Hamiltonian of the total open quantum system reads

Ĥtot = Ĥflux + Ĥq−e + ĤE , (A.8)

where ĤE is the Hamiltonian of the environment which we do not need to specify here.

Assuming a weak coupling between the qubits and their respective environment allows

us to perform perturbation theory. The evolution of the total open quantum system is

described by the von Neumann equation in the interaction picture (labelled by (I))

ρ̇(I)(t) = i
[

ρ(I)(t), Ĥ
(I)
q−e(t)

]

, (A.9)

with

ρ(I)(t) = eiĤfluxtρ(t)e−iĤfluxt (A.10)

Ĥ
(I)
q−e(t) = eiĤfluxtĤq−e(t)e

−iĤfluxt . (A.11)

Here ρ(t) is the density operator of the total open quantum system. To derive a

master equation in the Lindblad form, the dynamics of the open quantum system

needs to satisfy several properties. First, one has to assume that the two external

environments (external circuits with the magnetic coils) are large enough such that

they remain unaffected by the presence of the qubits. This corresponds to the so-

called Born approximation. In our model, the fluctuating currents through the external

circuits do not depend on the qubits’ states which ensure this condition. Second, the

bath correlation functions must decay rapidly compared to the dynamics of the qubits

(the Markov assumption). The noise spectrum of each external circuit satisfies this

condition. Neglecting fast oscillatory terms (secular approximation), we finally arrive

at a master equation of the Lindblad type

∂ρ

∂t
= i[ρ, Ĥflux] +

4
∑

i=1

Γ+
i

(

ĴiρĴ
†
i −

1

2

{

Ĵ†
i Ĵi, ρ

}

)

+
4
∑

i=1

Γ−
i

(

Ĵ†
i ρĴi −

1

2

{

ĴiĴ
†
i , ρ
}

)

. (A.12)

The Lindblad operators Ĵi correspond to the four different processes by which the

pair of qubits can receive one excitation from the baths. They are Ĵ1 = |0〉〈0| ⊗ σ̂+,

Ĵ2 = σ̂+ ⊗ |0〉〈0|, Ĵ3 = |1〉〈1| ⊗ σ̂+, Ĵ4 = σ̂+ ⊗ |1〉〈1|. Their conjugates correspond to

the inverse processes by which the qubit system looses one excitation. For instance, Ĵ1
corresponds to the hot qubit going from ground to excited state with the cold qubit

in the ground state, and Ĵ†
1 = |0〉〈0| ⊗ σ̂− corresponds to the hot qubit going from

excited to ground state with the cold qubit in the ground state. The rates for these

processes to occur are determined by the coupling probabilities, by the capacitance of
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the superconducting circuit and by the noise spectrum of each environment which is

itself proportional to the Bose-Einstein distribution nB[45].

Γ+
1 = Γ+

3 = Γh nB(E, Th),

Γ+
2 = Γ+

4 = Γc nB(E, Tc), (A.13)

Γ−
1 = Γ−

3 = Γh (1 + nB(E, Th)),

Γ−
2 = Γ−

4 = Γc (1 + nB(E, Tc)),

with E being set to 1. The coefficients Γc,Γh take into account all parameters of the

total circuit – qubit and external coil. Figure 4(a) in the main text was obtained with

Γc ranging from ∼ 10−6 to ∼ 2 · 10−3, and Γh in the range from ∼ 4 · 10−4 to ∼ 10−2.

The rates satisfy the detailed balance equation Γ+
i /Γ

−
i = e−E/Tk .

Appendix B. Implementation with a double quantum dot

The second system we propose consists of two quantum dots weakly coupled through

a tunnel barrier. This system is well known as a double quantum dot and has been

widely investigated in the context of quantum transport experiments for its coherence

properties [51, 59, 60, 61, 62]. Although the double quantum dot traditionally plays

the role of a single qubit, we consider here a different situation. Each dot can only by

occupied by a single electron (we consider here spin-less electrons) and corresponds to a

single qubit whose states correspond to the empty and occupied states, {|0〉, |1〉} . This

system is highly tuneable with the help of external control gate voltages, which allows

us to operate this system as an efficient autonomous thermal machine. We consider for

instance a large intra-dot Coulomb interaction to ensure single-occupancy of each dot

and we assume a finite inter-dot Coulomb energy. When the two dots are on resonance

(their eigenenergies are set to E), the Hamiltonian of this system is similar to (A.5)

with the energy g setting the tunnel coupling between the two dots and an additional

term characterised by the inter-dot Coulomb energy U

Ĥdot = E (|1〉〈1| ⊗ 1+ 1⊗ |1〉〈1|) + g(|01〉〈10|+ h.c.) + U |11〉 〈11| . (B.1)

Each dot k = c, h is furthermore tunnel-coupled with an amplitude
√
Γk to an

independent fermionic reservoir characterised by a temperature Tk and a chemical

potential µk. The energy E of the two dots serves a reference for both reservoirs,

i.e µc = µh ≡ E. When the interaction between the dots and the reservoirs is weak,

only single-charge tunnelling events occur with a probability proportional to Γc,h. The

qubit-environement Hamiltonian takes the form

Ĥq−e =
√

Γc (d̂c (|1〉c〈0| ⊗ 1) + h.c.) +
√

Γh (d̂h (1⊗ |1〉h〈0|) + h.c.) .(B.2)

Here the operator d̂k (d̂†k) is the fermionic annihilation (creation) operator for the

reservoir k. The dynamics of this system is captured by a master equation identical to

(A.12), with the replacements Ĥflux → Ĥdot and Γ±
i → Γ̃±

i . In contrast to the previous

implementation where bosonic excitations were considered, the transition rates Γ̃±
i are
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now set by the Fermi-Dirac distribution nF to take into account the fermionic nature of

the electrons transiting from one reservoir to the other through the two dots [47]

Γ̃+
1 = Γ̃+

3 = Γh nF (E, Th),

Γ̃+
2 = Γ̃+

4 = Γc nF (E, Tc), (B.3)

Γ̃−
1 = Γ̃−

3 = Γh (1− nF (E, Th)),

Γ̃+
2 = Γ̃−

4 = Γc (1− nF (E, Tc)).

Here nF (E, T ) = 1/(eE/T +1) is the Fermi-Dirac distribution. In this case, Figure 4(b,c)

of the main text corresponds to Γc ranging from ∼ 6·10−5 to ∼ 10−2 and Γh ranging from

∼ 7 ·10−5 to ∼ 10−2. Again, these rates are obtained following standard quantum optics

calculations as presented for the flux-qubit case but can also be derived by applying

the Fermi-golden rule to this system. We have also verified that they obey the detailed

balance equation.
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