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Abstract—We propose a learning architecture, that is able to
do reinforcement learning based on raw visual input data. In
contrast to previous approaches, not only the control policy
is learned. In order to be successful, the system must also
autonomously learn, how to extract relevant information out of
a high-dimensional stream of input information, for which the
semantics are not provided to the learning system. We give a
first proof-of-concept of this novel learning architecture on a
challenging benchmark, namely visual control of a racing slot
car. The resulting policy, learned only by success or failure, is
hardly beaten by an experienced human player.

I. INTRODUCTION

Making learning systems increasingly autonomous in the

sense that they can not only autonomously learn to improve

from their own experiences [1], [2], but furthermore achieve

this by requiring less and less prior knowledge for their setup,

is one of the promising future research directions in machine

learning. In this paper, we target at a learning system, that

gets a potentially broad stream of sensor information from its

environment - here in form of visual data - and reacts with a

sequence of control decisions to finally reach a desired goal. In

the following, we present a first prototypical implementation

of such a learning system, that learns to control a real world

environment - a slot car racer in this case - by learning to react

appropriately to visual input information provided by a digital

camera. The crucial point here is, that no knowledge is pro-

vided to the learning system about the semantics of the visual

input information (e.g. no classical computer vision methods

are applied to extract position of the car etc.), but instead, only

a stream of raw pixel information is provided. Also, no prior

information about the dynamics of the controlled system is

provided. Thus, the task of the learning system is two-fold:

first to autonomously learn to extract out of the stream of raw

pixel data the state information that is needed to control the

car, and secondly, to learn a control policy depending on that

representation that achieves the learning goal of driving the

car as fast as possible without crashing.

We describe a learning control architecture, that learns by

experience of success or failure based on raw visual input data.

As a proof-of-concept it is applied to a challenging real-world

task, namely camera based control of a slot car [3]. Extracting

state information out of raw images is done by a deep encoder

neural network, whereas the reinforcement learning task is

solved within a fitted Q-learning framework (see e.g. [4], [5],

[6]).
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Fig. 1. The visual slot car racer task. The controller has to autonomously
learn to steer the racing car by raw visual input of camera images.

II. RELATED WORK

Deep neural networks have been quite successful in

unsupervised learning of sparse representations of high-

dimensional image data. This includes training with restricted

boltzmann machines [7] as well as pre-training deep networks

by stacking flat multi-layer perceptrons layer-by-layer on each

other [8], [9]. Applications of these deep learning techniques

so far include learning interpretable visualizations of high-

dimensional data [7], letter recognition [10], face recognition,

[11] and object recognition [12] as well as natural language

processing [13]. In several of these tasks deep architectures

have been found to yield results superior to flat networks or

directly trained random initialized deep networks [14], [15],

PCA and to more traditional non-linear techniques for learning

manifolds [7], [16]. Actually, at present, the most successful

techniques in the well-known MNIST letter recognition task

are based on deep architectures [17], [18]. All the mentioned

papers have in common that they concentrate on learning either

representations (e.g. for visualization purposes) or classifica-

tions (using supervised learning). One thing that so far hasn’t

been investigated thoroughly is whether deep learning can also

be a basis for learning visual control policies in reinforcement

learning—that is solving sequential decision problems with a

high-dimensional state space without any supervision, just by

means of trial and error. Although the described approaches

mainly used small image patches or rather structured environ-

ments, there is the reasonable belief that this technique will



scale towards bigger real-world problems [17], [19], [20], [21]

and may form a sound basis for automatically learning useful

state representations in reinforcement learning.

So far, there have been mainly two different proposals

for how to learn policies from high-dimensional image data.

Gordon [22] and Ernst [23] applied their “fitted” methods

directly to approximating value functions in high-dimensional

image space. Having been applied only to small, simulated

toy problems and having never been tested for generalizing

among similar images, there remain strong doubts this “di-

rect” approach scales to anything beyond simple toy prob-

lems. Jodogne and Piater proposed to apply an extra tree

algorithm[24] to feature descriptors extracted from images and

to then approximate a value function in the constructed feature

space [25], [26]. Featuring a two-stages approach build on

well-studied image feature descriptors (SIFT), there is reason-

able expectation this approach will be able to exhibit some

generalization among similar images. This approach has been

tested on more realistic simulations than the first approach

[27], [25] but still misses a successful demonstration on a real-

world problem. By relying on handcrafted feature descriptors

and extraction algorithms, this approach only solves half of the

feature-learning problem, only learning the selection of useful

features, not their autonomous extraction. This ambitious goal

is pursued in the following work.

III. THE DEEP-FITTED-Q FRAMEWORK

The task of the autonomous learning controller is to take raw

visual data as input and compute an appropriate control action.

Here, this is handled in a reinforcement learning setting,

where one seeks an optimal control policy, that maximizes

the cumulated reward over an infinite number of time steps,

i.e. π∗(s) = maxπ
∑∞

t=0 γ
trt. Here rt denotes the immediate

reward, given in each decision step and γ is a discount

parameter, that decays the influence of future rewards over

current ones. For a concrete selection of these parameters see

below.

One of the crucial points when plugging visual data directly

into a learning control system, is that a high-dimensional

stream of pixel-data must be reduced to its essential infor-

mation. A classical approach would typically analyse each

image pixelwise and extract relevant information by means

of machine vision methods. In this work, the challenge is

to design a learning system, that is able to extract relevant

information out of the input data completely autonomously.

The deep-fitted-Q (DFQ) framework [28], [29] assumes the

following situation: input to the control system is a continuous

series of images taken by a digital camera, observing the

system to be controlled. Image information thus is given as a

vector of pixel-data recorded at discrete time steps, denoted

by st. Since st contains the whole image information, it is

typically high-dimensional (typically d >> 1000 dimensions).

The next step is to learn a mapping of the raw input

information st to a condensed information vector zt = φ(st).
In contrast to st, zt is of low dimension (e.g. 2 or 3). This

mapping φ : Rd 7→ R2 is learned autonomously via a deep-

autoencoder approach [7], [8], [28], [30].

The actual control signal at is then computed on the

basis of the condensed information, i.e. at = π∗(zt). The

optimal control policy π∗ is given by optimizing the cumulated

expected sum of rewards, i.e. Jπ∗

= maxπ

∑∞

t=0 γ
trt. To

find π∗, fitted Q iteration (FQI) is used as the basic learning

scheme [4], [31]. The controller, that maps the condensed

information vector zt to a concrete action, is called FQI-

controller accordingly. See section V-D for a description of

the FQI approach used here.

In dynamical systems, sensor information usually does not

contain complete access to state information. A common

approach is then to also provide previous sensor and action

information as input to the FQI controller. This method is

also used in the presented system and described in detail in

section V-C.

From the viewpoint of the overall controller, learning in-

formation is provided in terms of tuples of camera image,

action, reward and next camera image (st, at, rt, st+1). The

immediate reward signals reflect the user’s notion about what

the learning system should achieve. The definition of the r′ts

for the visual slot car task is given in section VI.

To summarize, three main steps can be distinguished:

• learn to encode the raw visual information by a deep

encoder neural network

• compute state information by using the encoded input in-

formation and - if necessary - information from previous

time steps

• learn to compute the action based on current (condensed)

state information by a Fitted-Q scheme.

Learning can be done in an interwoven mode, where both

the deep neural encoder and the inner FQI-controller are

learned incrementally while interacting with the real system.

Note, however, that it is also possible to train both parts,

neural encoder and inner FQI-controller completely seperately

[29]. This has the advantage, that one can check correct

functioning of both parts individually. Since training of each

individual module takes quite long, this approach is applied

here.

IV. THE VISUAL NEURO-RACER

A. The task

The goal is to learn a control policy for a slot-car, that moves

the car as fast as possible along a given track without crashing.

The learning system shall learn this behaviour in a typical

reinforcement learning setting by the only training information

of success or failure. As a novelty, input information to the

learning system is given by unprocessed, i.e. raw camera

sensor information. The learning control system therefore has

to learn to filter out the relevant information out of the image

data and upon this information learn a control policy. Only

if both steps are successful, it can achieve to optimize the

cumulated reward and fulfill its learning goal (see figure 1).

Besides its large input dimension, which is far beyond

that of typical reinforcement learning tasks, the visual slot



1) Initialization Set episode counter k ← 0. Set sample counter
p ← 0. Create an initial (random) exploration strategy π0 :
Z 7→ A and an initial encoder φ : S7→W0Z with (random)
weight vector W 0. Start with an empty set FS = ⊘ of
transitions (st, at, rt+1, st+1)

2) Episodic Exploration In each time step t calculate the feature
vector zt from the observed image st by using the present
encoder zt = φ(st;W

k). Select an action at ← πk(zt)
and store the completed transition in image space S: FS ←
FS ∪ (sp, ap, rp+1, sp+1) incrementing p with each observed
transition.

3) Encoder Training Train an auto-encoder (see [7]) on the p
observations in FS using RProp during layer-wise pretraining
and finetuning. Derive the encoder φ( · ;W k+1) (first half of
the auto-encoder). Set k ← k + 1.

4) Encoding Apply the encoder φ(s;W k) to all transitions
(st, at, rt+1, st+1) ∈ FS , transfering them into the feature
space Z , constructing a set FZ = {(zt, at, rt+1, zt+1)| t =
1, . . . , p} with zt = φ(st;W

k).
5) Inner Loop: FQI Call FQI with FZ . Starting with an initial

approximation Q̂0(z, a) = 0 ∀(z, a) ∈ Z×A FQI (details in
[4]) iterates over a dynamic programming (DP) step creating
a training set Pi+1 = {(zt, at; q̄

i+1

t )|t = 1, ..., p} with

q̄i+1

t = rt+1 + γmaxa′∈A Q̂i(zt+1, a
′) [4] and a supervised

learning step training a function approximator on Pi+1, obtain-

ing the approximated Q-function Q̂i+1. After convergence, the
algorithm returns the unique fix-point Q̄k.

6) Outer loop If satisfied return approximation Q̄k, greedy policy
π and encoder φ( · ;W k). Otherwise derive an ǫ-greedy policy

πk from Q̄k and continue with step 2.

Fig. 2. General algorithmic scheme of Deep Fitted Q with the two basic
building blocks encoder training and fitting the Q values (FQI).

car problem offers another interesting challenge to learning

controllers: the optimal (e.g. fastest) control policy is always

close to failure.

B. System setup

Control decisions are made in discrete time steps. In the

following, we set this value to be four decisions per second

(the exact value is △t = 0.267s, resulting from the image

frequency of the camera). This choice is a compromise be-

tween a small time step that allows fine granularity control

and a large time step that allows all relevant information to be

captured without information being delayed between different

time steps. At each time step, the controller is provided with

the current image of the digital camera, st, and is expected

to respond with a control action at, which corresponds to a

voltage, applied to the car on the track.

V. A VISUAL-INPUT BASED CONTROLLER FOR THE VISUAL

SLOT-CAR RACER

A. Overview

The control system proceeds in three basic steps, which are

described in more detail in the following subsections:

• process input data by an autonomously learned deep

neural encoder network

• build state information based on encoded image informa-

tion and temporal information
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Fig. 3. Overview of the system.

• learn a control policy by a cluster-based Fitted Q learning

method called cluster-RL

B. The neural deep encoder

φ : n×m
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Fig. 4. Encoder part of the deep neural autoencoder.

1) Structure: The neural encoder net is a multilayer per-

ceptron with a special “sparse” wiring structure in the first

layers, that is inspired by principles found in the structure of

the vertebrate retina and has been widely adapted in the neural

networks community [32], [33].

The size of the input layer is 52x80 = 4160 neurons, one for

each pixel provided by the digital camera. The input layer is

followed by two hidden layers with 7x7 convolutional kernels

each. The first convolutional layer has the same size as the

input layer, whereas the second reduces each dimension by a

factor of two, resulting in 1 fourth of the original size.

The convolutional layers are followed by seven fully con-

nected layers, each reducing the number of its predecessor by

a factor of 2. In its basic version the coding layer consists of

2 neurons.

Then the symmetric structure expands the coding layer

towards the output layer, which shall reproduce the input and

accordingly consists of 4160 neurons.

Althogether, the network consists of about 18000 neurons

and more than one million connections. The actual number of

free parameters is less, since connections in the convolutional

layers are shared weight connections.



0 60 200 500 700 10000350

Fig. 5. Error plot of the neural decoder during fine training, i.e. after completion of pretraining. The brightness of each pixel is proportional to the error
made at the corresponding output neuron. Upper left corner shows the situation after pretraining is finished: An error is made along bascially all positions
of the car along the track, i.e. the network is not able to reproduce the position of the car reliably. Outside the track, no error is observed any more; the
reproduction of these pixel values is already correctly learned in the pretraining phase. The lower row shows the activation of the two hidden neurons in the
coding layer (neuron 1: x-axis, neuro 2: y-axis). With reduction of the reproduction error, the mapping of the image to the x-y plane nicely ’unfolds’, finally
yielding a condensed coding, that allows a good distinction between different input situations.

2) Training: Training of deep networks per se is a chal-

lenge: the size of the network implies high computational

effort; the deep layered architecture causes problems with

vanishing gradient information. We use a special two-stage

training procedure, layer-wise pretraining [8], [29] followed by

a fine-tuning phase of the complete network. As the learning

rule for both phases, we use Rprop [34], which has the

advantage to be very fast and robust against parameter choice

at the same time. This is particularly important since one

cannot afford to do a vast search for parameters, since training

times of those large networks are pretty long.

The training set of the deep encoder network consists

of 7000 images, generated while moving the slot-car by a

constant speed. For the layer-wise pretraining, in each stage

200 epochs of Rprop training were performed. The result of

reconstruction after the pre-training phase can be seen in the

image in the upper left corner of figure 5. The network has

learned to reconstruct the still parts of the image (near-zero

error outside the track) and encodes some useful information

in the code layer (partially unfolded feature space displayed

in the lower row of the figure), but has problems with the

pixel positions, where the image information varies due to the

movement of the car. To reduce this error is the goal of the

fine-tuning phase. The error-diagrams in figure 5 show the

reduction of the error in the fine-tuning phase. After 10,000

epochs, the error has been significantly reduced and nearly

perfect reconstruction of all images is achieved (nearly no

bright spots in the error diagram in the upper right corner

of figure 5). The remaining white fragment in the lower left

corner of the last error image is caused by a sun beam lighting

the floor in only part of the images. The lower row of figure 5

shows the activation of the two hidden neurons in the coding

layer (neuron 1: x-axis, neuron 2: y-axis). With reduction of

the reproduction error, the mapping of the image to the x-

y plane plane nicely ’unfolds’, finally yielding a condensed

coding, that allows a good distinction between different input

situations.

Let us emphasis the fundamental importance of having the

feature space already partially unfolded after pretraining. A

partially unfolded feature space indicates at least some infor-

mation getting past this bottle-neck layer, although errors in

corresponding reconstructions are still large. Only because the

autoencoder is able to distinguish at least a few images in its

code layer it is possible to calculate meaningful derivatives in

the finetuning phase that allow to further “pull” the activations

in the right directions to further unfold the feature space.

To reduce training times as much as possible and to

allow the application of the trained encoder in a real-time

setting, efficient coding of the neural network implementation

is required, that additionally exploits parallelism as much

as possible. We therefore re-implemented our C/C++ neural

network library from scratch and made it publicly available

at GitHub1 as the open-source package n++2. N++2 exploits

SIMD2 architectures by using cBLAS3 functions for propagat-

ing activations and partial derivatives. Furthermore, it makes

use of the associative property of the calculated error term

as sum of errors of all individual patterns by splitting the k

training patterns p into n batches and calculating n parts of

the sum on as many parallel threads using identical copies of

the neural network’s structure:

k∑

p=1

Ep =

k/n
∑

p1=0k/n+1

Ep1

︸ ︷︷ ︸

on 1st copy

+

2k/n
∑

p2=1k/n+1

Ep2

︸ ︷︷ ︸

on 2nd copy

+ · · ·+

k∑

pn=(n−1)k/n+1

Epn

︸ ︷︷ ︸

on n-th copy

.

1https://github.com/salange/NPP2
2Single Instruction Mutliple Data
3C version of Basic Linear Algebra Subroutines



The same splitting is used for calculating partial derivatives.

Altogether, training the deep encoder network takes about 12

hours on an 8-core CPU with 16 parallel threads.

C. Building state information

The output-layer of the deep encoder network delivers an

encoding of the high-dimensional, static input image to a

condensed low-dimensional representation of the current scene

as captured by the camera. For most dynamical systems,

however, complete state representation also requires temporal

elements. A common way to go is, to add information about

past values of sensor and action information to the state

description. Two ways to realize this are discussed in the

following.

1) The tapped-delay-line approach: In the simplest case,

state information is approximated by providing present and

previous input information to the control system. Here, this

can be done by using encoded information from previous and

current images. This is called the ’DFQ-base’-approach in the

following. State information for the slot car task consists of

the encoding of the current and the previous image, zt and

zt−1 respectively, and the previous action at−1.

2) The Kohonen-Map trick: As the spatial resolution is non-

uniform in the feature space spanned by the deep encoder, a

difference in the feature space is not necessarily a consistent

measure for the dynamics of the system. Hence, another trans-

formation, a Kohonen map (K : Rk 7→ R), is introduced to

linearize that space and to capture the a priori known topology,

in this case a ring. A sequence of several thousand images of

the system is recorded while the slot-car is moving at a fixed

speed. The data is mapped into the feature space and the result-

ing feature vectors zt = φ(st) are fed into the SOM by using

the first round around the track as the starting prototypes for

the ring. These points are augmented by introducing additional

points in the center between two consecutive points. After

this initialization, regular SOM training is performed using

the transformed data of all images as input. The neighborhood

function is defined as D(i, j) = min(|i−j|, n−1−|i−j|) and

while learning the influence on neighboring points is cropped

at a distance of 5. The resulting SOM in the experiments was

trained for 50 iterations (η = 0.5) and had 269 prototypes.

In the application phase, feature points are projected onto

the embedded topology by applying an orthogonal projection

(see figure 7) using the algorithm shown in figure 8. The

algorithm determines the prototype closest to the feature point

and projects it onto the line segment to a neighboring proto-

type. After the projection, the result is normalized. The one-

dimensional space spanned by this projection is continuous

and temporally uniform as the slot-car was travelling at a

fixed speed during image acquisition, roughly producing a

uniform distribution of the training images along the track.

Therefore this space is better suited to derive dynamics of

the system state than the non-uniform feature space. The

state representation, called ’DFQ-SOM’-approach, uses the

mapped encoding of the current and a difference with the

previous image4 as well as the previous action, resulting in

(s′t = K(zt), ṡ
′
t = ‖K(zt)−K(zt−1)‖, at−1).

Fig. 6. Speed estimate based on feature point difference (left) as well as
SOM index space difference (right) given two fixed action policies (resulting
in two different constant real-world speeds). The feature point distance is not
able to separate the two velocities reliable as the distributions of estimates of
both constant-action policies overlap. The estimates based on differences in
the SOM index space are more reliable as distributions do not overlap.

In fig. 6 we can see the benefit for using the SOM-positions

for calculating the state differences for estimating velocities.

The graph displays the velocity estimates for two different

actions at a problematic position in the state space (a jump).

Whereas the feature space difference does not allow for a

good separation of the slower and faster actions (displayed: N

measurements of the velocity-difference of a passing-by car),

the difference on the embedded SOM is much more expressive

and allows for a good separation. That is possible because the

prototypes do the same jump (one prototype before the jump,

one after) as the data, but the ‘normalized’ inter-prototype

distances do not have such a high variance and are a much

more reliable encoding of the position.

φ(d)

wj0

p
∗

wj0+1

wj0−1

C1

C2

C3

Fig. 7. Orthogonal projection of feature point φ(d) onto the SOM structure:
Depending on which side of the closest prototype wj0 the projection will
intersect, the algorithm separates three cases: C2 which intersects the line
segment to the previous prototype, C3 intersects the line segment to the
following prototype and the special case C1 where the feature point is mapped
onto the prototype itself.

D. The FQI Controller - approximating the Q-function with

ClusterRL

An important decision is what approximator to use for

approximating the value function inside the FQI - algorithm

4The difference ‖K(zt)−K(zt−1)‖ approximates the derivative ṡ′ of the
mapped states s′ and could be interpreted as a ‘feature-space velocity’.



Input: new feature point φ(d)

Output: projection on SOM index space: p∗

j0 ← min j kφ(di)−wjk (8wj 2W ) /* determine winner */

v ← φ(d)−wj0
,vL ← wj0−1 −wj0

,vR ← wj0+1 −wj0

βL ← hv,vLi
|v||vL|

, βR ← hv,vRi
|v||vR|

/* determine cosines */

if (βL ≤ 0^βR ≤ 0) then

p∗ ← wj0
/* case C1 */

end

else if β1 < β2 then

p∗ ← wj0
− hv,vLi

|v| /* case C2 */

end

else

p∗ ← wj0
+ hv,vRi

|v| /* case C3 */

end

Fig. 8. Orthogonal projection algorithm used to map feature points of
arbitrary dimensionality onto the SOM structure defined by the list of
prototypes wj ∈ W (see fig. 7 for details on the cases)

(step 5 of DFQ as shown in figure 2). Stable convergence is

guaranteed for approximators known as averagers [35], [29].

This includes a specific type of non-parametric kernel-based

approximators [35] as well as a whole class of ‘standard’ but

non-expanding (parametric) function approximators [22], [4],

[29]. We have decided to use a parametric grid approxima-

tor (’ClusterRL’ approach, see [29]) in this experiment for

two reasons: first, the parametric representation allows us to

throw the training data away after training, and second, we

expected the sharp cell borders of this approximator to be

better suited than a ‘smoothing’ kernel-based approach for the

approximation of the sharp discontinuities (’crash-boundary’)

in the problem’s state space.

The motivation for the ClusterRL approach is the following:

the continuous state space is partitioned into a number of

distinct cells that are than each assigned a single q-value

for each action, locally approximating the Q-function. Thus,

all states in the same cell share the same Q-values. This is

similar to the extra-trees approach used in [4]. However, the

grid approximator used in our ClusterRL approach, needs only

a single parameter (number of cluster centers), is completely

data-driven and allows for irregular shapes of its cells. This

is achieved by doing a cluster analysis of the observed states

(here: using k-means, but other methods like SOM [36], [37]

and neural gas [38] are also possible) and then constructing

a Voronoi-diagram from the cluster centers found (in 2D

this looks like an irregular grid). Each cell in the Voronoi-

diagram—defining the ‘area of influence’ or ‘receptive field’

of the cluster center (prototype neuron)—becomes one cell of

the state space’s partition.

The details of ClusterRL are shown in the pseudo code

below. The algorithm is started with the number k of cluster

centers to use, an initial q-value q̄0 (typically but not nec-

essarily q̄0 = 0), and the observed state transitions F . Using

only the starting states in the state transitions, k cluster centers

are initialized by placing them on the positions of k randomly

selected states. Afterwards, this initial distribution C0 of cluster

centers is improved applying the the k-means algorithm.

Input : k, q̄0,F
Result : Appoximation Q̄ of the optimal q-function Q∗

i← 0;

X ← extract observed states(F);

C0 ← initialize prototypes(X ,k);

Ci ← k-means(Ci−1, X);

Q̂0 ← construct grid approximator(Ci, q̄
0);

Q̄← Fitted Q-Iteration(Q̂0,F);

The resulting distribution of cluster centers is then used

to approximate the value function. Basically, this is done by

storing one q-value for each of the actions at each of the cluster

centers (prototypes for their region of influence). Initially,

these are set to q̄0. When accessing one particular state in

the state space, we look up the cell it is in (this is done by

simply finding the closest cluster center) and then using the

values stored for this particular cell at the cell’s cluster center

(or prototype).

During training, the FQI-algorithm alternates between cal-

culating training patterns P = {st, at; q̄t| t = 1, . . . , p} in

a DP step and training a function approximator on these

patterns. In the case of using the grid approximator, ‘training’

the function approximator simply means setting the q-values

at the cluster centers to the average of the training pattern

that fall into the center’s cell. Technically, for updating the

q-value qa of action a at a prototype ci, we use the subset

Pa = {(st, at; q̄t) ∈ P| at = a} of training pattern (st, at; q̄t)
that used action a and calculate from it the new Q-value qa
as the weighted average

qa =
∑

(st,at;q̄t)∈Pa

q̄tδi(st)
/ ∑

(st,at;q̄t)∈Pa

δi(st) , (1)

with δi(st) being the indicator function

δi(s) =

{

1, iff st is within cell of ci

0, otherwise
(2)

The value qa remains unchanged, if there’s no training pattern

in the cluster center’s area of influence.

This supervised training procedure can be done with a single

sweep through the pattern and, therefore, is by orders of

magnitude faster than training a neural network for several

epochs. The most expensive operation is assigning the training

pattern to the correct cells in the partition (finding the closest

prototype). But, since during the FQI procedure the structure

of the grid remains unchanged, the assignement of training

pattern to cells in our implementation is calculated only once,

and then ‘cached’ with a linked-list data structure.

VI. RESULTS

To test our approach, the learning controller was applied

to the track shown in figure 1. The controller has 4 actions

(0,90,120,200) available, corresponding to the voltage that is



TABLE I
RESULTS.

CONTROLLER AVG. TIME PER ROUND CRASH-FREE

RANDOM - NO

CONSTANT SAFE 6.408S YES

DFQ-BASE 2.937S YES

DFQ-SOM 1.869S YES

fed to the car. When a voltage of 0 is applied, the car is actively

decelerated. The higher the voltage, the faster the car goes, but

the relationship is nonlinear. The reward given corresponds to

the magnitude of the action applied, i.e. the reward is rt = 90
if action at = 90 is applied. When the car crashes, i.e. falls

off the track, a negative reward (punishment) of -1,000,000 is

given. By this specification, the controller is forced to learn

a control law, that maximizes the cumulated speed of the

car, under the constraint of always avoiding crashes. For all

experiments a discount rate of γ = 0.1 was used.

The time step was set to △t = 267ms. Each training

episode has a length of 80 steps (corresponds to about 21s).

To test the performance, the test episode length was set to 400

steps.

First, two non-learning controllers were being applied to

give an idea of the difficulty of the task. Policy ’random’

chooses the actions completely at random. Not surprisingly,

applying this policy, the car often stops, goes slowly, or

accelerates too much and crashes. Policy ’safe’ applies the

highest possible constant action, that does not crash the car.

An average round using the constant policy takes 6.408s. This

can be seen as a baseline performance. Going faster than this

policy will actually require information of the state of the car

and the experience, where one can go faster and where one

has to be more careful.

Learning was done by first collecting a number of ’baseline’

tuples, which was done by driving 3 rounds with the constant

safe action. This was followed by an exploration phase using

an ǫ-greedy policy with ǫ = 0.1 for another 50 episodes.

Then the exploration rate was set to 0 (pure exploitation). This

was done until an overall of 130 episodes was finished. After

each episode, the cluster-based Fitted-Q was performed until

the values did not change any more. Altogether, the overall

interaction time with the real system was a bit less than 30

minutes.

The first learning controller approach, DFQ-base, shows al-

ready very good performance. Input to the inner FQI controller

is a 4 dimensional state representation (z1, z2, ||∆z||, at−1),
where z1,t and z2,t are the activation values of the neurons

of the encoder layer of the deep encoder net, and ||∆z|| is

the distance to the activations of the previous time step in

euclidean norm. Here, 400 clusters were used to represent the

Q-function in the cluster-RL approach.

The average round takes 2.937s which is more than twice

as fast as the baseline. This performance corresponds approx-

imately to what a good human player will achieve.

Using the above described ’Kohonen-Map trick’, the perfor-

mance can be boosted even more. The DFQ-SOM appraoch

uses 3-dimensional state information (z̃t, |∆z̃t|, at−1), where

z̃t is the real-valued position of the encoded image information

in the SOM and |∆z̃t| represents the absolute difference

of current encoded image information and previous encoded

image information within the SOM.

For the DFQ-SOM approach, finally a number of 800 cluster

neurons gave the best overall result. The average time achieved

for a round is 1.869 s, which is 3 times as fast as the ’constant’-

controller and improves upon the already well working DFQ-

base approach by another 50%. To achieve this performance,

the controller not only has to correctly extract knowledge about

position of the car by the deep neural encoder, but also has

to learn, when its possible to accelerate and when it must

decelerate in order to avoid crashes with very high reliability.

The latter is learned by the cluster-RL based FQI-controller.

The times achieved by the ’DFQ-SOM’ approach are hard to

beat by a human. A visualisation of the final control policy is

given in figure 9.

Fig. 9. Visualisation of the learned policy (car is driving counter-clockwise):
the controller has nicely learned to accelerate on pieces, where it is save (e.g.
straight track or boundaries the car could lean its tail on at the top corner)
and to decelerate at dangerous positions (e.g. at the track crossing or in the
curve without boundaries).

VII. CONCLUSIONS

We described a first prototypcial realisation of an au-

tonomous learning system, that is able to learn control based

on raw visual image data. By ’raw’ we mean, that no semantics

of the image are a priori provided to the learning system.

Instead, the system must learn to extract a relevant represen-

tation of the situation in the image, in order to fulfill its overall

control task. While learning the representation is done with a

neural deep encoder approach, learning the control policy is



based on cluster-RL, a Fitted-Q batch reinforcement learning

scheme.

We have further demonstrated, that with the use of ad-

ditional prior knowledge (in this case that the system is

moving on a two-dimensional manifold) we can use additional

self-organized mappings (the Kohonen-Map trick) to further

improve internal representation, which results in improved

control performance. In this study, this knowledge came from

outside, but future learning systems might be able to extract

such meta-knowledge autonomously from experience and use

it accordingly.

The resulting system was able to autonomously learn to

control a real slot car in a fashion, that is hard to beat by a

human player.

Being able to autonomously handle raw, high-dimensional

input data and acting reasonable on the autonomously ex-

tracted information offers exciting opportunities for the control

of complex technical systems, where an increasing amount of

sensory input information is available.
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