
Autonomous Rover Navigation on Unknown Terrains

Demonstrations in the Space Museum “Cité de l’Espace” at Toulouse

Simon Lacroix, Anthony Mallet, David Bonnafous
Grard Bauzil, Sara Fleury, Matthieu Herrb, and Raja Chatila

LAAS/CNRS
7, av. du Colonel Roche

F-31077 Toulouse Cedex 4
France

Abstract
Autonomous long range navigation in partially known
planetary-like terrain is on open challenge for robotics. Nav-
igating several hundreds of meters without any human interven-
tion requires the robot to be able to build various representations
of its environment, to plan and execute trajectories according to
the kind of terrain traversed, to localize itself as it moves, and
to schedule, start, control and interrupt these various activities.
In this paper, we briefly describe some functionalities that are
currently being integrated on board the Marsokhod model robot
Lama at LAAS/CNRS. We then focus on the necessity to inte-
grate various instances of the perception and decision function-
alities, and on the difficulties raised by this integration.

1 Introduction
To foster ambitious exploration missions, future planetary
rovers will have to fulfill tasks described at a high abstrac-
tion level, such as ‘‘reach the top of that hill’’
or ‘‘explore this area’’. This calls for the ability to
navigate for several hundreds of meters, dealing with various
and complex situations, without any operator intervention. Such
an ability is still quite an open challenge: it requires the inte-
gration and control of a wide variety of autonomous processes,
ranging from the lowest level servoings to the highest level de-
cisions, considering time and resource constraints.

We are convinced that no simple autonomy concept can lead
to the development of robots able to tackle such complex tasks:
we believe in the efficiency of deliberative approaches [4], that
are able to plan and control a variety of processes. Following
such a paradigm and according to a general economy of means
principle, we want the robot to autonomously adapt its deci-
sions and behavior to the environment and to the task it has to
achieve [5]. This requires the development of:�

Various methods to implement each of the perception, de-
cision and action functionalities, adapted to given contexts;�

An architecture that allowsfor the integration of these meth-
ods, in which deliberative and reactive processes can coexist;�

Specific decision-making processes, that dynamically se-
lect the appropriate decision, perception and action processes
among the ones the robot is endowed with.

In this paper, we present the current state of development
of the robot Lama, an experimental platform within which our
developments related to autonomous long range navigation are
integrated and tested. We especially focus on the necessity to in-
tegrate various implementations of each of the main functional-
ities required by autonomous navigation (i.e. environment mod-
eling, localization, path and trajectory generation). After a brief
description of Lama and its equipment, the rest of the paper is
split in two parts: the first part briefly presents the main func-
tionalities required by long range navigation we currently con-

sider (terrain modeling, path and trajectory planning, rover lo-
calization), while the second part insists on the problems raised
by the integration of these functionalities.

2 The Robot Lama
Lama is a 6-wheels Marsokhod model chassis [10] that has been
totally equipped at LAAS1. The chassis is composed of three
pairs of independently driven wheels, mounted on axes that can
roll relatively to one another, thus giving the robot high obsta-
cle traversability capacities. Lama is

✁✄✂ ☎✝✆✟✞
wide, its length

varies from
✁✄✂ ✠✟✆✟✞

to
☎✡✂ ☎✟✆✝✞

, depending on the axes configu-
ration (

✁✄✂ ☛✄✆✝✞
in its “nominal” configuration), and weighs ap-

proximately
✁☞✠✄✆✄✌✎✍

. Each motor is driven by a servo-control

board, and its maximal speed is
✆✏✂✑✁✓✒✓✞✔✂ ✕✄✖✘✗

. Lama is equipped
with the following sensors:�

Each wheel is equipped with a high resolution optical en-
coder, allowing fine speed control and odometry;�

Five potentiometers provide the chassis configuration;�
A 2 axes inclinometer provides robot attitude, a magnetic

fluxgate compass and a optical fiber gyrometer provide robot
orientation and rotational speed;�

A first stereo bench on top of a pan and tilt unit, is mounted
on a

✁✄✂ ✙✄✆✝✞
mast rigidly tied to the middle axis. This bench has

a horizontal field of view of approximately
✠✟✆✛✚

, and is mainly
dedicated to goal and landmarks tracking;�

A second stereo bench, also supported by a PTU, is
mounted upon the front axis, at a

✆✏✂ ✙✄✆✝✞
elevation. It has a

horizontal field of view of approximately
☛✟✆✛✚

, and is mainly
dedicated to terrain modeling in front of the robot;�

A differential carrier-phase GPS receiver2 is used to qualify
the localization algorithms.

All the computing equipment is in a VME rack mounted on
the rear axis of the robot. The rack contains four CPU’s (two
PowerPc and two

✠✄✙✟✆✟✜✛✆
) operated by the real-time OS Vx-

Works. The
✠✄✙✟✆✟✜✄✆

are in charge of the data acquisitions (except
the camera images) and of the locomotion and PTU control,
whereas all the environment modeling and planning functional-
ities are run on the PowerPc’s.

The terrain on which we test the navigation algorithms is ap-
proximately

✁☞✆✄✆
meters long by ✢ ✆ wide. It contains a variety

of terrain types, ranging from flat obstacle-free areas to rough
areas, including gentle and steep slopes, rocks, gravel, trees and
bushes.

Part A:
Navigation functionalities

1Lama is currently lent to LAAS by Alcatel Space Industries.
2currently lent to LAAS by CNES.

Figure 1: The robot Lama on the experimentation site

3 Environment Modeling
Perceiving and modeling the environment is of course a key ca-
pacity for the development of autonomous navigation. Envi-
ronment models are actually required for several different func-
tionalities: to plan paths, trajectories and perception tasks (sec-
tion 4), to localize the robot (section 5), and also to servo the
execution of trajectories. There is no “universal” terrain model
that contains all the necessary informations for these various
processes. It is more direct and easier to build different rep-
resentations adapted to their use. The environment model is
then multi-layered and heterogeneous, and perception is multi-
purpose: several modeling processes coexist in the system, each
dedicated to the building of specific representations.

3.1 Qualitative Model
We developed a method that produces a description of the ter-
rain in term of navigability classes, on the basis of stereovision
data [7]. Most of the existing contributions to produce simi-
lar terrain models come to a data segmentation procedure (e.g.
[15, 9]), that produce a binary description of the environment,
in terms of traversable and non-traversable areas. Our method
is a classification procedure that produces a probabilistically la-
beled polygonal map, close to an occupancy grid representa-
tion. It is an identification process, and does not require any
threshold determination (a tedious problem with segmentation
algorithms).

Our method relies on a specific discretisation of the perceived
area, that defines a cell image. The discretisation corresponds
to the central projection on a virtual horizontal ground of a reg-
ular (Cartesian) discretisation in the sensor frame (figure 2). It
“respects” the sensors characteristics: the cell’s resolution de-
creases with the distance according to the decrease of the data
resolution.

Figure 2: Discretisation of a 3D stereo image. Left: regular Cartesian

discretisation in the sensor frame; right: its projection on the ground

(the actual discretisation is much finer)

Features are computed for each cell, and are used to label the
cells thanks to a supervised Bayesian classifier: a probability

for each cell to correspond to a pre-defined traversability class
is estimated. Figure 3 shows a classification results, with two
terrain classes considered (flat and obstacle). There are several
extensions to the method: the discretisation can be dynamically
controlled to allow a finer description, and the classification re-
sults can be combined with a terrain physical nature classifier
using texture or color attributes. One of its great advantages
is that thanks to the probabilistic description, local maps per-
ceived from different viewpoints can be very easily merged into
a global description. The produced terrain model can be either
used to generate elementary motions on rather obstacle-clear
terrains (section 4.1), or to reason at the path level (section 4.3).

©
 L

a
m

a
 P

ilo
t

Figure 3: An example of classification result. From left to right: image

from stereo, partial probabilities of the cells to be an obstacle (repre-

sented as gray levels), and reprojection of the cells in the sensor frame,

after the application of a symmetric decision function

3.2 Digital Elevation Map

Digital elevation maps, i.e. ground elevations computed on a
regular Cartesian grid, are a very common way to model rough
terrains [11, 2]. Although there has been several contributions
to this problem, we think that it has still not been addressed
in very satisfactory way: the main difficulty comes from the
uncertainties on the 3D input data, that can be fairly well esti-
mated, but hardly propagated throughout the computations and
represented in the grid structure.

However, a quite realistic model can be easily built by com-
puting the mean elevation of the data points on the grid cells,
using only the points that are provided with precise coordinates.
With our stereovision algorithm for instance, 3D points whose
depth is below

✁☞✆✝✞
can be used to build a realistic

✆✡✂✑✁✤✣✥✆✏✂✑✁✦✞
cell digital elevation map. Provided the robot is localized with
a precision of the order of the cell size, data acquired from sev-
eral view-points can be merged into a global map (figure 4).
This model is then used to detect landmarks (section 3.3) and to
generate elementary trajectories (section 4.2).

Figure 4: A digital elevation map built by Lama during a 20 meter run

using 50 stereovision pairs. The displayed grid is ✧✩★✪✧✬✫ , the actual
map grid is ✭✄✮✯✧✰★✱✭✄✮✯✧✬✫ .

3.3 Finding Landmarks
An efficient way to localize a rover is to rely on particular ele-
ments present in the environment, referred to as landmarks (sec-
tion 5.3). A landmark should have the following properties: (i)
it must be easy to identify, so that landmark association in dif-
ferent images can be performed; (ii) it must be “geometrically
rich enough” to allow the refinement of all the parameters of
an initial position estimation; (iii) its perceived geometric at-
tributes must be as stable as possible, i.e. independent to view-
point changes. The first requirement can be relaxed when a
sufficiently good initial position estimation is available (which
is the case we consider in section 5): matching landmarks ex-
tracted from different images is then simply done by comparing
their estimated position. The second property can be bypassed
when several landmarks are perceived. Local peaks, such as
the summit of obstacles, satisfy the third property, are often nu-
merous in planetary-like environments and can be quite easily
extracted: we therefore decided to extract such features as land-
marks.

Several authors presented 3D data segmentation procedures
to extract salient objects, and our first attempts were based on
a similar principle [3]. However, such techniques are efficient
only in simple cases, i.e. in scenes were sparse rocks lie on a
very flat terrain, but rather fragile on rough or highly cluttered
terrains for instance. To robustly detect such local peaks, we
are currently investigating a technique that relies on the com-
putation of similarity scores between a digital elevation map
area and a pre-defined 3D peak-like pattern (a paraboloid for
instance), at various scales. First results are encouraging (fig-
ure 5), and the detected landmark could be used to feed a posi-
tion estimation technique (section 5.3).

Figure 5: Landmarks (black + signs) detected on the locally built dig-

ital elevation maps (left), and reprojected in the camera frame (right).

Three meters separate the two image acquisitions, and landmarks are

from 3 to 10 meters away.

4 Trajectory generation
Natural terrains being unstructured, specific trajectory gener-
ation algorithms have to be developed. A generic trajectory
planner able to deal with any situation should take into account
all the constraints, such as rover stability, rover body collisions
with the ground, kinematic and even dynamic constraints. The
difficulty of the problem calls for high time-consuming algo-
rithms, which would actually be quite inefficient in situations
where much simpler techniques are applicable. We therefore

think it is worth to endow the rover with various trajectory
generation algorithms, dedicated the kind of terrain to traverse.
Section 8 describes how they are actively started and controlled.

4.1 On easy terrains
On easy terrains, i.e. rather flat and lightly cluttered, dead-ends
are very unlikely to occur. Therefore, the robot can efficiently

move just on a basis of a goal to reach3, and of a terrain model
that exhibits non-traversable areas, using techniques that evalu-
ate elementary motions [7].

To generate motions in such terrains, we use an algorithm
that evaluates circle arcs on the basis of the global qualitative
probabilistic model. Every cycle, the algorithm is run on an up-
dated terrain model. It consists in evaluating the interest (in
terms of reaching the goal) and the risk (in terms of terrain
traversability) of a set of circle arcs (figure 6). The risk of an arc
is defined in terms of the probability to encounter an obstacle;
arcs whose risk is bigger than a chosen threshold are discarded,
and the arc that maximizes the interest/risk ratio is chosen.

Figure 6: A set of circle arcs to evaluate on the global probabilistic

model (left), and reprojection of the arcs in the current camera view

(right)

4.2 On rough terrains
On uneven terrain, the notion of obstacle clearly depends on the
capacity of the locomotion system to overcome terrain irregu-
larities, and on specific constraints acting on the placement of
the robot over the terrain. These constraints are the stability and
collision constraints, plus, if the chassis is articulated, the con-
figuration constraints (figure 7). To evaluate such constraints,
the probabilistic qualitative model is not anymore sufficient: the
digital elevation map is required.

z

ψ
av

ψ
ar

ϕ

y

x

z

z

C

C

Figure 7: The chassis internal configuration angles checked on the dig-

ital elevation map

We developed a planner [8] that computes motions verifying
such constraints by exploring a three dimensional configuration
space ✲✤✳✵✴✷✶✹✸✘✺✼✻✽✺✬✾✎✿ on the digital elevation map. This plan-
ner builds a graph of discrete configurations that can be reached
from the initial position, by applying sequences of discrete con-
trols.

3not necessarily the distant global goal, it can be a formerly selected
sub-goal - see section 4.3

It is however quite time-consuming: we therefore evaluate
elementary trajectories, in a way very similar to section 4.1. A
set of circle arcs is produced, and for each arc, a discrete set of
configurations are evaluated. Each arc is then given a cost that
integrates the dangerousness of the successive configurations it
contains, the arc to execute being the one that maximizes the
interest/cost ratio.

Figure 8: A trajectory resulting from the application of the rough ter-

rain local planner (approximately 30 cycles)

4.3 Planning Paths
The two techniques described above only evaluate elementary
local trajectories, and are therefore not able to efficiently deal
with highly cluttered areas and dead-ends. For that purpose, we
use a path planner, that reasons on the global qualitative model
to find sub-goals and perception tasks [12].

The global qualitative model, which is built upon a bitmap
structure, is segmented to produce a region map. This map de-
fines a graph, in which a search algorithm provides an optimal
path to reach the global goal. The “optimality” criterion takes
here a crucial importance: it is a linear combination of time and
consumed energy, weighted by the terrain class to cross and
the confidence of the terrain labeling. Introducing the labeling
confidence in the crossing cost of an arc amounts to implicitly
consider the modeling capabilities of the robot: tolerating to
cross obstacle areas labeled with a low confidence means that
the robot is able to easily acquire informations on this area. The
returned path is then analyzed, to produce a sub-goal to reach:
it is the last node of the path that lies in a traversable area.

Figure 9: A result of the navigation planner on the qualitative model:

the result of the analysis of the shortest path found can be interpreted

as the answer to the question “what area should be perceived to reach

the goal ?”

5 Localization
A position estimate is not only necessary to build coherent envi-
ronment models, it is also required to ensure that the given mis-
sion is successfully being achieved, or to servo motions along a

defined trajectory. Robot self-localization is actually one of the
most important issue to tackle in autonomous navigation.

The various techniques required to compute the robot’s po-
sition as it navigates range from inertial or odometry data inte-
gration to absolute localization with respect to an initial model.
One can distinguish various algorithm categories: (i) motion es-
timation techniques, that integrate data at a very high pace as
the robot moves (odometry, inertial navigation, visual motion
estimation - sections 5.1 and 5.2), (ii) position refinement tech-
niques, that rely on the matching of landmarks perceived from
different positions, and (iii) absolute localization with respect to
an initial global model of the environment. All these algorithms
are complementary, and provide position estimates with differ-
ent characteristics: we are convinced that an autonomous rover
should be endowed with at least one instance of each category.

5.1 Odometry on Natural Terrain
Odometry on natural terrains is of course much less precise than
on a perfect flat ground, but it can however bring some useful
informations. We use 3D odometry with Lama by incorporat-
ing the attitude informations provided by the 2 axes inclinome-

ter4 to the translations measured by the encoders of the central
wheels. Due to skid-steering, the angular orientation measured
by the odometers is not reliable: the information provided by
the integration of the gyrometer data is much better, and do not
drift significantly before a few tens of minutes.

To have a quantitative idea of the precision of odometry, we
gathered some statistics, using a carrier-phase DGPS as a refer-
ence. Figure 10 presents an histogram of the measured transla-
tion errors of odometry every

✆✏✂ ✢ ✞ . What is noticeable is the
secondary peak around

✆✏✂✑✁✦✞
, that appeared during the traverse

of a gravel area, where some longitudinal and lateral slippages
occurred.

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.05 0.1 0.15 0.2 0.25

Odometry

Figure 10: Histogram of odometry errors measured every ✭✄✮ ❀✦✫ steps

during a 50 meter run with Lama on various kinds of ground.

These preliminary figures show that odometry can hardly be
modeled an estimator with Gaussian uncertainties: some gross
errors actually occur quite often. We are currently investigating
the possibility to analyze on line a set of proprioceptive data
in order to be able to dynamically qualify the odometry, and
especially to detect such errors. These data are the 6 wheel
encoders, the measured currents, the two attitude parameters
and the five chassis configuration parameters.

5.2 Visual motion estimation
We developed an exteroceptive position estimation technique
that is able to estimate the 6 parameters of the robot displace-
ments in any kind of environments, provided it is textured
enough so that pixel-based stereovision works well: the pres-
ence of no particular landmark is required [13]. The technique
computes the motion parameters between two stereo frames on

4after the application of a slight smoothing filter on its data.

the basis of a set of 3D point to 3D point matches, established
by tracking the corresponding pixels in the image sequence ac-
quired while the robot moves.

The principle of the approach is extremely simple, but we
paid a lot of attention to the selection of the pixel to track: in
order to avoid wrong correspondences, one must make sure that
they can be faithfully tracked, and in order to have a precise
estimation of the motion, one must choose pixels whose cor-
responding 3D points are known with a good accuracy. Pixel
selection is done in three steps: an a priori selection is done
on the basis of the stereo images; an empirical model of the
pixel tracking algorithm is used to discard the dubious pixels
during the tracking phase; and finally an outlier rejection is per-
formed when computing an estimate of displacement between
two stereo frames (a posteriori selection).

Figure 11 presents a set of positions visually estimated, on a☎ ✢ ✞ run. On this run, the algorithm gives translation estimates
of about

✜✎❁
. Similar precision has been obtained over several

experiments, processing several hundreds of images. Work re-
lated to this algorithm is still under way, with the goal of reach-
ing a precision on translation estimates of about

✁✓❁
.

Odometry

D-GPS

Steo

Figure 11: Comparison of the position measured by odometry, the vi-

sual motion estimation estimator, and the DGPS reference

5.3 Landmark Based Localization
We are currently investigating Set Theoretic approaches for
landmark-based localization [14]. No statistical assumptions
are made on the sensor errors: the only hypothesis is that errors
are bounded in norm. Estimates of the robot and landmarks po-
sitions are derived in terms of feasible uncertainty sets, defined
as regions in which the robot and the landmarks are guaranteed
to lie, according to all the available informations.

Some simulation results using realistic bounds, using the
landmarks detection algorithms presented in section 3.3 are
promising. The integration of these algorithms on board Lama
is currently under way.

Part B: Integration

6 A general architecture for auton-
omy

Our research group has been working for several years on the
definition and development of a generic software and decisional
architecture for autonomous machines. We briefly present here
the concepts of this architecture that allows the integration of

both decision-making and reactive capabilities (a detailed pre-
sentation can be found in [1]). This architecture has been suc-
cessfully instantiated in multi-robot cooperation experiments,
indoor mobile robotics experiments, and autonomous satellite
simulations [6]. The architecture, sketched in figure 12, con-
tains three different layers:�

The functional level includes all the basic robot action and
perception capacities. These processing functions and control
loops (image processing, obstacle avoidance, motion control,
etc.) are encapsulated into controllable communicating mod-
ules. A module may read data exported by other modules, and
output its own processing results in exported data structures.
The organization of the modules is not fixed, their interactions
depend on the task being executed and on the environment state.
This is an important property that enables to achieve a flexible,
reconfigurable robot behavior. Modules fit a standard struc-
ture, and are implemented thanks to a development environ-
ment, Genom.

Note that in order to make this level as hardware indepen-
dent as possible, and hence portable from a robot to another,
the functional level is interfaced with the sensors and effectors
through a logical robot level.�

The Executive controls and coordinates the execution of
the functions distributed in the modules according to the task
requirements. It’s function is to fill the gap between the deci-
sion and functional levels decision, i.e. between the slow rate
logical reasoning on symbolic data, and the higher bandwidth
computation on numerical data. It is a purely reactive system,
with no planning capability. It receives from the decision level
the sequences of actions to be executed, and selects, parame-
terizes and synchronizes dynamically the adequate functions of
the functional level.�

The decision level includes the capacities of producing the
task plans and supervising their execution, while being at the
same time reactive to events from the previous level. This level
may be decomposed into two or more layers, based on the same
conceptual design, but using different representation abstrac-
tions or different algorithmic tools, and having different tempo-
ral properties. This choice is mainly application dependent.

N

S

EW

perception

mission

10 s

1 s

0.1 s

Modules

communication

OPERATOR
❂

reports

state

requests reports

control

proprioceptive
 sensors

proximetric
 sensors

effectors
exteroceptive
 sensors

ENVIRONMENT
❃

D
ec

is
io

n
al

L
ev

el
E

xe
cu

ti
o

n
C

o
n

tr
o

l L
ev

el
F

o
n

ct
io

n
al

L
ev

el
L

o
g

ic
al

S
ys

te
m

P
h

ys
ic

al
S

ys
te

m

Executive

servo−control

control

reflex actions

Plan Supervisor

Task Supervisor
❄ Task

❅
Refinment

Mission
Planner

Sensor and Effector Interface
❆

monitoring

modelling

requests

Figure 12: LAAS architecture for robot autonomy.

Up to now, all the algorithms are integrated as modules on
board Lama, while the executive is simply implemented as
scripts written in Tcl.

7 Integration of Concurrent Local-
ization Algorithms

Some particular integration problems are related to the coexis-
tence of several localization algorithms running in parallel on
board the robot. To tackle this in a generic and reconfigurable
way, we developed a particular module named PoM (position
manager), that receives all the position estimates produced by
the localization as inputs, and produces a single consistent posi-
tion estimate as an output. PoM addresses the following issues:�

Sensor geometrical distribution. The sensors being dis-
tributed all over the robot, one must know their relative posi-
tions, which can dynamically change. Indeed, we want all the
modules to be generic, i.e. to handle data without having to
consider the position from which it had been acquired. This is
particularly true for video images, since Lama is equipped with
two orientable stereo benches: we may want to switch benches
whenever required, with the minimal effort. For this purpose,
we developed a framework named “InSitu” (internal situation,
section 7.1) which is part of PoM.�

Localization modules asynchronism. The localization algo-
rithms have individual time properties: some produce a position
estimate at a regular high frequency, while others require some
non-constant computation time. To be able to provide a consis-
tent position estimate at any time, the “time-management” part
of PoM has been developed (section 7.2).�

Fusion of the various position estimates. The fusion of var-
ious position estimates is a key issue in robot localization. This
is done within the “fusion” part of PoM (discussed in section
7.2).

7.1 Internal situation
Some problems arise when the sensors of a robot are geomet-
rically distributed. For instance, the vision-based localization
module has to know the orientation of the cameras for each
image it processes, whereas the digital elevation map module
needs the relative and/or absolute position of the 3-D images it
is using in a predefined coordinate frame.

Distributing the geometrical informations in the modules is
not satisfying: some informations are hard-coded and dupli-
cated within the modules, and it complicates the porting of a
module to another robot or another sensor. For that purpose, we
use InSitu, a centralized geometrical description of a robot. It
reads a configuration file upon startup, and it provides the neces-
sary frame coordinates to any module when the robot navigates.
All the data acquisition modules use this information to tag the
data they produce with the necessary informations.

The configuration file is the textual description of a geomet-
rical graph (figure 13). The nodes of the graph are frames co-
ordinates that needs to be exported. They usually correspond to
sensors locations but can also be a convenient way to split oth-
erwise complex links. This graph is the only robot-specific part
of PoM.

The links between frames are either static (rigid) or dynamic
(mobile). A static link cannot change during execution and is
usually related to some mechanical part of the robot. On the
other hand, dynamic links, that depend on the chassis configu-
ration or on a PTU configuration for instance, are updated con-
tinuously at a predefined frequency. Updates are made possible
with the definition of link specific functions that get links pa-
rameters from the underlying hardware system. These functions
are grouped together in a library associated with the configura-
tion file. Last, the configuration file defines a common frame
(also called main frame). To facilitate and homogenize inter-
module data transfers, the various modules data are expressed
in this frame.

To ease data manipulation and transfer among the modules,
InSitu continuously exports all the frames configurations found
in the configuration file with the structure shown in figure 14.

(top)

(bottom)

replacements

Rigid

Mobile

GPS

Camera

Camera

Camera

Camera

PTU

PTU

Mast

Front

Robot

Robot

(top, left)

(top, right)

(bottom, left)

(bottom, right)

(vertical)

Figure 13: The geometrical graph used on the robot Lama. Rectan-

gular boxes are frames configurations that are exported in the system.

The thick box (Robot in the figure) is the main frame. Solid lines are

links (either rigid or mobile) that are declared in the configuration file.

Each mobile link has an associated function that gets the link parame-

ters from the underlying hardware, computes the current transformation

matrix and sends it back to PoM.

The header of exported data contains three fields: the first
field is the current PoM-date expressed in ticks since boot-time.
The next two fields are positions: the Main to Origin transfor-
mation is the current absolute position of the main frame rela-
tive to an absolute frame. The Origin frame is usually the posi-
tion of the robot at boot-time but it can be specified anywhere.
The Main to Base transformation is a relative position which
cannot be used as such. The sole operation permitted with this
frame is the composition with another Main to Base transforma-
tion (see section 7.2 for a detailed description). Base is a virtual
frame that is maintained and computed by PoM.

replacements

Date

Main to Base
Main to Origin

Camera to Main

Camera to Main
(top, left)

(top, right)

GPS to Main

Figure 14: Structure exported by

InSitu.

replacements Date

Main to Base
Main to Origin

Frame to Main

Figure 15: Structure for

data tagging.

After the header, there is a variable number of transforma-
tions which are the current frames configuration. They are
named according to the scheme “Frame to Main” and are the
transformation matrices that map 3-D points in the “Frame”
frame to 3-D points in the “Main” frame.

Every data acquisition module reads the InSitu frame which
it relates to, and associate to its data a “tag” structure (figure 15).
Thanks to this tagging, data acquisition modules only have to
know the name of the frame they are connected to, which can be
specified dynamically. Once tagging is done, clients using such

data do not have to care from where the data comes, since all the
necessary geometrical and time information is contained in the
data itself. The tag is propagated along with the data between
modules, thus making inter-module data communication very
flexible.

7.2 Position Management
In addition to internal frame configurations, PoM collects the
various position estimators present in the system. It is the place
where positional information is centralized and made available
for any module that require it.

Positions computed by the various position estimators are al-
ways produced with some delay, that depends on the compu-
tation time required to produce a particular position. Thus the
robot has always to deal with outdated positions. One of the role
of PoM is to maintain the time consistency between the various
position estimates.

Internally, there is one time chart for each position estimator
handled by PoM, plus one particular chart for the fused position.
The fused position is the result of the fusion of every position
estimator (see section 7.2). All charts have the same length and
hold every produced positions since the beginning of the chart,
up to the current date. Length is variable but is computed so that
we always have at least two positions of every motion estimator
(figure 16).

PoM periodically polls every position estimator and look if
a position have been updated. When a new position is found, it
is stored in the chart of the corresponding motion estimator, at
date its corresponding date (“updates” arrows in figure 16). If
the chart is not long enough to store a too old date, it is enlarged
as needed. Once every motion estimator has been polled, ev-
ery fused position from the oldest update to the current time is
marked for re-estimation.

GPS
Odometry

Landmarks
Fusion

Updates

Now

time
history length

Figure 16: Time management and internal representation of motion es-

timators in PoM. Position estimators shown here are only examples.

Black dots show previously stored positions. Dashed dots show new

upcoming positions.

Actually, no data fusion algorithm is currently implemented
within PoM: given the individual position estimator character-
istics, we indeed consider that a consistency check (fault detec-
tion) has to be performed formerly to any fusion. Up to now,
an estimate selection is performed on the basis of a confidence
(real value between

✆✡✂ ✆
and

✁✟✂ ✆
,
✁✄✂ ✆

being the best) that is hard-
coded for each position estimator.

Once the current best position is computed, PoM stores it in
the fusion time chart (figure 16). The important thing to note is
that we cannot simply store the new position as such because it
might be very different from the previous position. Since some
module may use the robot position continuously (such as ser-
voing on a computed trajectory for instance), virtual jumps are
not permitted. This is why we defined a reference position es-
timator, and a virtual frame named Base. The fused position
computed by PoM is the Robot to Origin position. This one
is exported as such and used by modules that require absolute
position. The second exported position, Robot to Base is the
position of the reference estimator and can only be used locally,
i.e. to compute a delta position. PoM computes a Base to Origin
transformation for every position estimator found in the system.

This transformation is an indicator of the drift of each position
estimator.

8 Navigation strategies
The integration of the various algorithms presented in the first
part of the paper requires specific decisional abilities, that are
currently instantiated as Tcl scripts. The following simple strat-
egy is currently applied: the three environment models (qual-
itative map, digital map and landmark map) are continuously
updated every time new data are gathered, and the two inte-
grated localization algorithms (odometry and visual motion es-

timate) are also continuously running5. The selection of the
trajectory generation algorithm is the following: given a global
goal to reach, the easy terrain algorithm, which requires negli-
gible CPU time, is applied until no feasible arcs can be found.
In such cases, the rough terrain algorithm is applied. It is run
until either the easy terrain algorithm succeeds again, or until no
feasible arcs are found in the digital map. In the latter case (that
can be assimilated to a dead end), the path planning algorithm
is run, to select a sub-goal to reach. The whole strategy is then
applied to reach the sub-goal, and so on.

9 Conclusion
We insisted on the fact that to efficiently achieve autonomous
long range navigation, various algorithms have to be developed
for each of the basic navigation functions (environment mod-
eling, localization and motion generation). Such a paradigm
eventually leads to the development of a complex integrated
system, thus requiring the development of integration tools, at
both the functional and decisional levels. We are convinced that
such tools are the key to implement efficient autonomy on large
time and space ranges.

There are however several open issues. Among these, we
believe that the most important one is still localization. In par-
ticular, the system must be robust to extremely large uncertain-
ties on the position estimates, that will eventually occur: this
requires the development of landmark recognition abilities to
tackle the data association problem, and also the development
of terrain model structures that can tolerate large distortions.
Note that both problems should benefit from the availability of
an initial terrain map, such as provided by an orbiter, whose
spatial consistency is ensured. Indeed, the development of al-
gorithms that match locally built terrain models with such an
initial map would guarantee bounds on the error of the position
estimates.

References
[1] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. In-

grand. An architecture for autonomy. Special Issue of
the International Journal of Robotics Research on Inte-
grated Architectures for Robot Control and Programming,
17(4):315–337, April 1998. Rapport LAAS N97352,
Septembre 1997, 46p.

[2] P. Ballard and F. Vacherand. The manhattan method :
A fast cartesian elevation map reconstruction from range
data. In IEEE International Conference on Robotics and
Automation, San Diego, Ca. (USA), pages 143–148, 1994.

[3] S. Betge-Brezetz, R. Chatila, and M.Devy. Object-based
modelling and localization in natural environments. In

5landmark-based localization integration is under way, but is should
also be continuously run, while actively controlling the image acquisi-
tion.

IEEE International Conference on Robotics and Automa-
tion, Nagoya (Japan), pages 2920–2927, May 1995.

[4] R. Chatila. Deliberation and reactivity in autonomous
mobile robots. Robotics and Autonomous Systems, 16(2-
4):197–211, 1995.

[5] R. Chatila and S. Lacroix. A case study in machine intelli-
gence: Adaptive autonomous space rovers. In A. Zelinsky,
editor, Field and service Robotics, number XI in Lecture
Notes in Control and Information Science. Springer, July
1998.

[6] J. Gout, S. Fleury, and H. Schindler. A new design ap-
proach of software architecture for an autonomous obser-
vation satellite. In 5th International Symposium on Artifi-
cial Intelligence, Robotics and Automation in Space, No-
ordwijk (The Netherlands), June 1999.

[7] H. Haddad, M. Khatib, S. Lacroix, and R. Chatila. Re-
active navigation in outdoor environments using poten-
tial fields. In International Conference on Robotics and
Automation, Leuven (Belgium), pages 1232–1237, May
1998.

[8] A. Hait, T. Simeon, and M. Taix. Robust motion planning
for rough terrain navigation. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, Kyongju
(Korea), pages 11–16, Oct. 1999.

[9] L. Henriksen and E. Krotkov. Natural terrain hazard detec-
tion with a laser rangefinder. In IEEE International Con-
ference on Robotics and Automation, Albuquerque, New
Mexico (USA), pages 968–973, April 1997.

[10] A. Kemurdjian, V. Gromov, V. Mishkinyuk,
V. Kucherenko, and P. Sologub. Small marsokhod
configuration. In IEEE International Conference on
Robotics and Automation, Nice (France), pages 165–168,
May 1992.

[11] I.S. Kweon and T. Kanade. High-resolution terrain map
from multiple sensor data. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 14(2):278–292, Feb.
1992.

[12] S. Lacroix and R. Chatila. Motion and perception strate-
gies for outdoor mobile robot navigation in unknown en-
vironments. In 4th International Symposium on Experi-
mental Robotics, Stanford, California (USA), July 1995.

[13] A. Mallet, S. Lacroix, and L. Gallo. Postion estimation
in outdoor environments using pixel tracking and stereo-
vision. In IEEE International Conference on Robotics and
Automation, San Francisco, Ca (USA), pages 3519–3524,
April 2000.

[14] M. Di Marco, A. Garulli, S. Lacroix, and A. Vicino. A
set theoretic approach to the simultaneous localization and
map building problem. In 39th IEEE Conference on De-
cision and Control, Sydney (Australia), Dec. 2000.

[15] L. Matthies, A. Kelly, and T. Litwin. Obstacle detection
for unmanned ground vehicles: A progress report. In
International Symposium of Robotics Research, Munich
(Germany), Oct. 1995.

