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Abstract  

To improve the provision of a global satellite navigation service, the German Aerospace Center (DLR) - Institute of Communication 

and Navigation - is proposing a next-generation global navigation satellite architecture named Kepler. Autonomous synchronization 

at picosecond-level is a fundamental component of the Kepler concept, achieved via two-way time transfer (TWTT) schemes enabled 

by optical inter-satellite links (OISLs). This level of synchronization is only achievable if relativistic effects are adequately 

considered. In this paper we present the synchronization scheme for Kepler: all satellites perform pairwise relativistic TWTT, 

providing relative clock offsets in a predefined coordinate time scale. These are then distributed across the whole constellation and 

are used as input for a space-based distributed clock ensemble. Each satellite realizes a local copy of the Kepler system time (KST) 

by steering a local oscillator, so that all satellites will tend to “beat” the same time, thus achieving a tight synchronization. We show 

how measurement noise impacts the final synchronization level, in two different designs of the Kepler architecture. Additionally, the 

impact of constant biases on the system time generation is analyzed. Finally, we assess the impact of the choice of constellation’s 

measurement topologies (open versus closed rings). The synchronization performance is expressed in terms of maximum time offset 

between any two satellites of the constellation.  



1. INTRODUCTION  

 

In recent years, the space sector has seen an increased interest in optical communications for ground-to-satellite and inter-satellite 

links. Such a technology in future global navigation satellite systems (GNSSs) can greatly improve the navigation and time 

dissemination services. The German Aerospace Center (DLR) is active in the design and development of a next-generation GNSS 

architecture, named Kepler, in which satellites are equipped with optical terminals for intra-system time-transfer, optical ranging and 

communication. The system consists of a constellation of optically-linked satellites in Medium Earth Orbit (MEO), possibly with a 

complementary constellation of satellites in Low Earth Orbit (LEO). The latter would support the system with system calibration 

and signal monitoring, and aid the precise orbit determination (POD) of MEO satellites (Günther, 2018; Michalak et al., 2021). 

In the Kepler architecture, Optical Inter-Satellite Links (OISLs) are used to perform time transfer between satellites at the picosecond 

level. This in turn allows inter-satellite ranging with sub-millimeter precision. POD performance will largely benefit from the 

additional ranging observables, with a significant improvement in Signal-in-Space Range Error (SiSRE) (Michalak et. al, 2021). By 

leveraging OISLs, the Kepler architecture combines a tight constellation synchronization with enhanced POD capabilities, thus 

broadcasting higher quality orbital parameters to the final user without the need for a-posteriori corrections. 

Another benefit of OISLs is the autonomy and resiliency of the system: in principle, only a small set of ground stations is sufficient 

to guarantee orbit determination at centimeter-level, while maintaining observability of the Earth Rotation Parameters (Michalak et. 

al, 2021). In the extreme case of complete absence of any ground infrastructure, the system can potentially still be used as a "space 

clock" where a highly stable time scale is generated from the ensemble of all satellite clocks. Such a time scale would be less affected 

by terrestrial phenomena, e.g. the poor knowledge of the geopotential on the surface of Earth (Wolf & Petit, 1995). 

With spacecrafts pair-wise connected with two-way coherent laser links, coherent transceivers allow the generation and reception of 

timestamps with sub-picosecond precision, enabling the exchange of measured time-of-arrival information between the paired 

satellites. Two-Way Time Transfer (TWTT) methods make it possible to retrieve clock offsets with picosecond-level accuracy 

(Poliak et al. 2018; Calvo et al. 2020; Surof et al. 2019,2022). All the relative clock offsets are then distributed through the whole 

constellation and used as input of the synchronization algorithm based on the concept of clock ensembling, where each satellite 

generates a local copy of the ensemble time. As shown in the following, the local timescale realizations are synchronized at 

picosecond-level, enabling the provision of a stable system time common to all satellites. Finally, the link with terrestrial time scales, 

such as Coordinated Universal Time (UTC), can be ensured in two ways: either by estimation of the offset between the “space clock” 

and the reference terrestrial time scale performed with conventional methods, or by one or more optical exchanges between a satellite 

of the Kepler constellation and one ground station.   

Relativistic effects are significant when compared to the time deviation of the clocks considered in the Kepler system, and to the 

synchronization capabilities offered by the OISLs. Satellites’ relative velocities and gravitational fields in the near-Earth region give 

both origin to location-dependent readings of the frequency and time generated by the satellite clocks. These relativistic effects 

include Doppler shifts due to relative velocity differentials, gravitational frequency shifts, and other effects on the propagation of 

light in a curved spacetime. If such effects are not properly accounted for, relativistic biases will jeopardize the synchronization 

system (Ashby, 2003).  In a previous work (Dassié & Giorgi, 2021), we presented and analyzed a relativistic two-way synchronization 

scheme based on the exchange of time stamps via optical signals, which allows estimating the offset between two satellite clocks 

with respect to a defined coordinate time scale. The model therein guarantees a time transfer at picosecond-level.  

In this paper we extend the synchronization scheme to a constellation of 𝑁 satellites equipped with clocks of various types. System 

synchronization can be achieved from a “cold-start” without prior synchronization in two consecutive steps: a first step is required 

to perform a non-relativistic coarse synchronization to align all satellite clocks (in a coordinate time scale) within a few tens of 

microseconds. This step mitigates errors in the subsequent relativistic correction induced by uncertainties in the satellite position and 

velocity. Then, at predetermined intervals, all satellites perform pairwise relativistic time transfer. The result of these exchanges are 

relative offsets in coordinate time that are distributed via OISLs across the whole constellation. The Kepler System Time (KST) is 

then realized by means of a space-based distributed clock ensemble, comprising all satellite clocks. Each satellite runs the same 

ensembling algorithm based on the same set of distributed clock offsets, thus realizing a local copy of the KST. The ensembling 

algorithm consists of a Kalman filter and a feedback loop steering a local oscillator to the KST, which is a weighted average of the 

contributions of all the clocks participating in the ensemble. By having a local oscillator steered to the KST, all satellites will “beat” 

the same time, thus achieving a tight synchronization.  

 

 

2. RELATIVE CLOCK OFFSET DETERMINATION 

 



2.1 SIMULTANEITY 

 

The theory of relativity refutes the notions of absolute and independent space and time, resulting in different time rates in different 

reference systems (RSs). As a consequence, the notion of simultaneity loses its absolute and unique meaning.  

To address the problem of relativistic synchronization it is first necessary to introduce the concepts of proper and coordinate 

quantities. Proper quantities are the direct results of observations without any information that depends on the choice of a spacetime 

reference frame. In this paper, the most fundamental quantity is the proper time: the physical, local output of an ideal clock located 

in a frame of reference that is attached to the observer itself (proper to that observer). Coordinate quantities are instead dependent on 

the choice of a spacetime coordinate system. An example is the coordinate time difference between two events (the difference 

between the time coordinates of these events) or the rate of a clock with respect to the coordinate time of some spacetime RS, which 

are both dependent on the chosen RS (Petit & Wolf, 2005).  

To characterize inter-satellite synchronization we adopt here the concept of simultaneity exposed in Klioner (1992):  consider two 

events fixed in some RS by the values of their 4-dimensional coordinates 𝐸1 = (𝑡1, 𝑥1, 𝑦1 , 𝑧1) and 𝐸2 = (𝑡2, 𝑥2, 𝑦2 , 𝑧2). The time 

scale 𝑡 is the coordinate time, which coincides with the proper time scale that an observer at rest in the RS uses to define the space-

time coordinates. The events 𝐸1 and 𝐸2 are considered to be simultaneous with respect to this RS if their values of time coordinate 

are equal: 𝑡1  =  𝑡2. This definition of simultaneity is called “coordinate simultaneity”. The definition of synchronization arises 

naturally from the concept of simultaneity, as synchronized clocks beat the same time markers simultaneously. When addressing 

synchronization, we must bear in mind that we are dealing with coordinate synchronization, where clocks could be synchronized 

when observed by the coordinate RS, but could beat asynchronously when observed by a different RS. In our specific case, the 

chosen coordinate RS is a realization of a local inertial frame, or Earth Center Inertial (ECI) coordinate system. The coordinate time 

𝑡 of this ECI frame is defined at infinity, outside Earth’s gravity well (Ashby, 2003).  

During the initialization of the Kepler system, all satellite clocks tick at a different rate with respect to the coordinate time 𝑡. 
Furthermore, as the clocks are not yet “coordinate synchronized” from the point of view of an observer in the coordinate ECI frame, 

they present a relative offset. This offset is the quantity that we want to either determine or force to zero, to achieve synchronization 

of the satellites’ clocks. 

Our approach to relativistic synchronization is divided in sequential steps: first, the proper timestamps of clocks are transformed into 

coordinate timestamps via a relativistic transformation; then, a dynamic TWTT is performed in order to determine the relative 

coordinate offset between each pair of clocks; finally, this information is distributed to the whole constellation, a composite clock is 

computed on each satellite, and a correction is derived and applied to the local oscillator to realize a local copy of the system time. 

 

2.2 TIMESTAMPS TRANSFORMATION  

 

The relationship between the proper time 𝜏 of a clock in the vicinity of Earth’s center (orbiting the planet or on its surface) and the 

coordinate time 𝑡 can be derived from the spacetime metric, which describes the relation between spatial and time coordinates. This 

metric is derived from the metric tensor, the solution of the Einstein Field Equation. The Field Equation links the curvature of 

spacetime to the density and flow of matter and energy at a certain point in the universe. When Earth is modelled as a non-rotating 

spherical mass, the solution of such equation leads to the Schwarzschild metric (Schutz, 2009). Consider a clock located at 

spatiotemporal coordinates 𝒓 =  (𝑡, 𝑟, 𝜃, 𝜙), which are the spherical ECI coordinates and 𝑡 is the coordinate time of the ECI frame.  

From the Schwarzschild metric one can derive the rate of such clock with respect to coordinate time 𝑡 (Ashby, 2003):  

 

 
𝑑𝜏

𝑑𝑡
≈ 1 +

𝑉(𝒓)

𝑐2
−
𝑣2

2𝑐2
 

 (1) 

 

where 𝑐 is the speed of light, 𝑉(𝒓) is the gravitational potential at position 𝒓 and 𝑣 is the clock’s velocity expressed in ECI coordinates. 

In principle 𝑉(𝒓) should include the contribution of Earth’s gravitational potential (geopotential) as well as the gravitational 

contribution of the other celestial bodies in the solar system. In the specific case of MEO and LEO satellites, all bodies other than 

Earth account for much less than picosecond per second and can be neglected. Nonetheless, the geopotential has to be expressed as 

a sum of multipole terms up to the third order (Dassié & Giorgi, 2021).  

The proper timestamps are transformed into coordinate timestamps via integration of (1): 
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(2) 

 



The lower bound of the integral 𝜏0 and the constant 𝑡0 = 𝑡(𝜏0) on the right side of (2) can be arbitrarily chosen on each satellite. The 

choice of different initial conditions leads to the transformation of the same proper time scale 𝜏 to different coordinate time scales 

with a shifted origin.  

Consider two satellites A and B: since the association 𝑡𝐴0 = 𝑡𝐴(𝜏𝐴0) and 𝑡𝐵0 = 𝑡𝐵(𝜏𝐵0) is arbitrary for both satellites, the coordinate 

time scales each satellite transforms to are shifted by an amount 𝑡𝐵 − 𝑡𝐴 = 𝛿𝑡𝐴𝐵, which corresponds to the coordinate time offset 

between the two satellite clocks. This offset can be determined by comparing the transformed proper timestamps associated with the 

same event observed by both satellites, e.g. with a time transfer method as presented in the following section.  

Thanks to the approximate knowledge of the satellites’ position and velocity, the integral on the right side of (2) can be computed, 

and any proper time scale can be transformed into one instance of coordinate time. An incorrect knowledge of position and velocity 

of the satellite affects the proper-to-coordinate transformation. As shown in (Dassié & Giorgi, 2021), the error margins are generous: 

for integrals over 1 s, we are still able to transform the satellite clocks timestamps into coordinate time instants with picosecond-level 

accuracy even with position errors of the order of thousands of meters and velocity errors in the order of meters per second. 

 

2.3 TWO-WAY TIME TRANSFER  

 

Let us consider a TWTT scheme as presented in Figure 1. Consider an ideal clock located inside satellite A, at position 𝒓𝐴, beating 

proper time 𝜏𝐴, and a second ideal clock beating proper time 𝜏𝐵, located at 𝒓𝐵. We assume that the two clocks are not coordinate 

synchronized, and therefore the coordinate time scales they transform their proper timestamps to present a relative offset 𝑡𝐵 − 𝑡𝐴 =
𝛿𝑡𝐴𝐵 given in coordinate time, which is the quantity to determine with a TWTT. Satellite A transmits a signal towards satellite B 

with timestamp 𝜏𝐴0, that is measured as received at time 𝜏𝐵1. In the same way a communication in the opposite direction takes place: 

satellite B transmits a signal with timestamp 𝜏𝐵2 that is received at time 𝜏𝐴3 at satellite A. The exchange is represented here as 

sequential, but the mutual transmission could also be nearly synchronous, depending on the degree of prior de-synchronization of 

the satellite clocks. 

 

Assume that the two satellites use proper instants 𝜏𝐴0 and 𝜏𝐵0 as lower bound of the integral in (2). These are arbitrarily associated 

to coordinate time instants 𝑡𝐴0 = 𝑡𝐴(𝜏𝐴0) and 𝑡𝐵0 = 𝑡𝐵(𝜏𝐵0). With (2), satellite A can determine the coordinate time instants 

associated to the measured instants of emission 𝑡𝐴0 = 𝑡𝐴(𝜏𝐴0) and reception 𝑡𝐴3 = 𝑡𝐴(𝜏𝐴3). Analogously, satellite B can transform 

its measures into coordinate time instants of reception 𝑡𝐵1 = 𝑡𝐵(𝜏𝐵1) and emission 𝑡𝐵2 = 𝑡𝐵(𝜏𝐵2). 
The goal of the TWTT is to determine the inter-satellite clock offset 𝛿𝑡𝐴𝐵 by comparing the instants associated to the same event 

given in the different coordinate time scales 𝑡𝐴 and 𝑡𝐵. In the specific case of a TWTT, the common events are the instants of reception 

of the signal at both ends.   

We can retrieve the instants of reception in both time scales by exploiting the properties of light propagation and with approximate 

satellites’ positions at the moments of emission 𝑡0 and reception 𝑡1. From the Schwarzschild metric we can also determine the amount 

of coordinate time that an electromagnetic signal needs to travel between the positions 𝒓𝐴(𝑡0) and 𝒓𝐵(𝑡1) of the two satellites (Ashby, 

2003):  

 

 𝑇𝐴𝐵 =
||𝒓𝐵(𝑡1) − 𝒓𝐴(𝑡0)|| 

𝑐
+
2𝐺𝑀

𝑐3
ln (

𝑟𝐴(𝑡0) + 𝑟𝐵(𝑡1) + ||𝒓𝐵(𝑡1) − 𝒓𝐴(𝑡0)||

𝑟𝐴(𝑡0) + 𝑟𝐵(𝑡1) − ||𝒓𝐵(𝑡1) − 𝒓𝐴(𝑡0)||
)  

(3) 

 

where 𝑟 =  ||𝒓||. The first term on the right-hand side of (3) is the classical Euclidean travel time from satellite A to satellite B. The 

second term represents an additional delay resulting from the time dilation experienced by light when travelling through a 

gravitational field and is a purely relativistic effect. This term is called Shapiro delay (Ashby, 2003). 



 
Figure 1. The trajectories of satellites A and B with the instants of transmission and reception in both ways of the exchange. 

  

Being able to compute the propagation delays  𝑇𝐴𝐵  and 𝑇𝐵𝐴 thanks to the approximate knowledge of the positions of both satellites, 

the two satellites can estimate the moments of reception at the other end expressed in their own realization of coordinate time scale:  

 

 Estimated instants of reception:        𝑡𝐴1 = 𝑡𝐴0 + 𝑇𝐴𝐵 ,         𝑡𝐵3 = 𝑡𝐵2 + 𝑇𝐵𝐴 
(4) 

 

These same instants are also measured by the respective parties and transformed into coordinate time:  

 

 Reception instants transformed from measurement:      𝑡𝐵1 = 𝑡𝐵(𝜏𝐵1),        𝑡𝐴3 = 𝑡𝐴(𝜏𝐴3) 
(5) 

 

Therefore, as long as the exchange of signals is performed over a short time span, the timestamps associated to the same instants 

expressed in the two instances of coordinate time satisfy the following requirements:  

 

 
𝑡𝐵1 = 𝑡𝐴1 + 𝛿𝑡𝐴𝐵 ,        𝑡𝐴3 = 𝑡𝐵3 − 𝛿𝑡𝐴𝐵 

 
(6) 

Substituting (4) into (6), subtracting them from each other, and isolating 𝛿𝑡𝐴𝐵 we obtain:  

 

 
𝛿𝑡𝐴𝐵 = 

1

2
(𝑡𝐵1 − (𝑡𝐴0 + 𝑇𝐴𝐵)) −

1

2
(𝑡𝐴3 − (𝑡𝐵2 + 𝑇𝐵𝐴)) 

 

(7) 

 

The first terms in both brackets of (7) are obtained from measurements at reception at both sides. The second terms in the brackets 

are the estimated instants of reception computed in the timescale of the emitter with the approximate knowledge of the satellites’ 

positions and trajectories using (3). Reordering the term in (7) one can see that the propagation times appear in the form of difference 
1

2
(𝑇𝐵𝐴 − 𝑇𝐴𝐵), so one can use a simplified version of (3) where only the Euclidean term is considered for both 𝑇𝐴𝐵  and 𝑇𝐵𝐴. The 

difference of Shapiro delays in the roundtrip is much lower than a picosecond and can be neglected (Dassié & Giorgi, 2021).   

An error in the determination of the position of a satellite would impact the estimation of the difference in the roundtrip propagation 

time and consequently result in a biased estimate of the inter-satellite clock offset. By keeping the round-trip exchange as symmetric 

as possible, the quantity 
1

2
(𝑇𝐵𝐴 − 𝑇𝐴𝐵) in (7) becomes very small and the impact of biases is also mitigated. Maximal symmetry can 

be achieved by intentionally having an almost simultaneous emission of signals at both ends.  



In the appendix we demonstrate that, with an almost symmetrical exchange, as long as orbital errors are approximately constants or 

their dynamic is relatively slow (millimeter per second), a meter-level orbit accuracy is enough to keep their impact on the last term 

below the picosecond. Both conditions are assumed to be satisfied within the current capabilities of POD in GNSSs.  

 

2.3 SYSTEM INITIALIZATION AND OPERATION 

 

Consider 𝑁 non-synchronized satellites with free-running clocks generating proper time 𝜏𝑖. Let each couple of satellites perform a 

coarse TWTT via the following simplified expression:  

 

 𝛿𝜏𝐴𝐵 = 
1

2
(𝜏𝐵1 − 𝜏𝐴0) −

1

2
(𝜏𝐴3 − 𝜏𝐵2) 

(8) 

 

This is a rough first approximation of the inter-satellite clock offset 𝛿𝑡𝐴𝐵 in coordinate time. As shown in the Appendix, the 

determination of this approximate offset would guarantee a synchronization of all satellites within a few microseconds. According 

to a pre-determined schedule that considers link duration and visibility constraints, the satellites perform a high accuracy TWTT in 

a loop topology (Deprez & Giorgi, 2021; Giorgi et al., 2019). Since all satellites have performed a prior coarse synchronization and 

have an approximate knowledge of their relative positions, they can choose the timestamps within a series of exchanges that lead to 

the minimum amount of asymmetry in the communication. Knowing their approximate position and velocity, the satellites can 

transform their proper timestamps into coordinate timestamps with (2). Using (7), each connected couple of satellites is able to 

retrieve the relative clock offset while keeping the impact of position errors below the picosecond threshold thanks to the symmetric 

exchange. The results of these TWTTs are a set of 𝑁 relative clock offsets 𝛿𝑡𝐴𝐵 given in coordinate time and determined with 

picosecond accuracy. Once the satellites are synchronized to picosecond-level, the signal exchanges allow one-way ranging with 

(sub-)millimeter precision. The inter-satellite ranges are used to enhance POD products, thus reducing the error on the estimated 

position and velocity of the satellites, which in turn improves the proper-to-coordinate time transformation and further reduces the 

inaccuracies in the determination of the last term of (7).  

From each TWTT between satellites A and B we obtain the following quantity:  

 

 
zAB(t) = 𝛿𝑡𝐴𝐵(𝑡) + 𝑣𝐴𝐵(𝑡) + Δ(𝑡) = 𝑥𝐵(𝑡) − 𝑥𝐴(𝑡) + 𝑣𝐴𝐵(𝑡) + Δ(𝑡) 

 
(9) 

where 𝑥𝐴(𝑡), 𝑥𝐵(𝑡) are the actual phases of the two clocks at time instant 𝑡, 𝑣𝐴𝐵 ∼ 𝒩(0, 𝑅) is the measurement noise with variance 

𝑅 due to the tracking loops enabling the generation of timestamps, and Δ(𝑡) is a bias arising from modelling inaccuracies of the 

TWTT. These could be due to inaccurate modelling of hardware delays, inaccuracies in position and velocity of the satellites, and 

other modeling or calibration errors. The observation model (9) is at the basis of the system synchronization algorithm presented in 

the next section.  

 

3. SPACE-BASED DISTRIBUTED CLOCK ENSEMBLE 

 

Thanks to the OISLs, the pairwise time differences between satellites are distributed across the constellation with a very small delay. 

Thus, having these measurements available, each satellite can run the ensembling algorithm and generate a local copy of the system 

time. The KST is defined as the Implicit Ensemble Mean (IEM) 𝑥0̅̅ ̅ of the ensemble formed by all the oscillators onboard the satellites 

(Brown, 1990). The algorithm requires the knowledge of the time state of each clock participating in the ensemble. However, these 

cannot be directly observed, since the available measurements are pairwise time differences between satellite couples, as modeled in 

(9). Thus, the time state must be estimated given the available observations. This is done with a Kalman filter, which is based on a 

clock dynamic model and measurement model.  

 

The states used to describe the clocks depend on the choice of clock model: in this work we employ a two-states clock model with 

constant frequency drift and additional Gauss-Markov processes (Greenhall, 2006; Trainotti, 2019). Each clock i is modelled using 

a state 𝑥𝑖(𝑡) for the phase difference to an ideal clock and 𝑦𝑖(𝑡)  for the fraction frequency difference to an ideal clock. One or more 

Gauss-Markov processes can be added to the model to improve the description of the clock behavior: in this case the state vector is 

extended to accommodate the additional states. Without loss of generality, in the following equations we do not add any states for 

Gauss-Markov processes. The modifications to the model matrices can be seen in (Greenhall, 2006).  The state vector of the entire 

ensemble 𝒙 is formed by stacking the states of the 𝑀 clocks: 

 



 
𝒙(𝑡)⊤ = (𝑥𝐴(𝑡) 𝑦𝐴(𝑡) 𝑥𝐵(𝑡) 𝑦𝐵(𝑡) ⋯ 𝑥𝑀(𝑡) 𝑦𝑀(𝑡) ) 

 
(10) 

The discrete-time dynamic equation describes the behavior of the free running clocks: 

 

 𝒙(𝑡 + ∆𝑡) = 𝜱(∆𝑡)𝒙(𝑡) + 𝑫(∆𝑡) + 𝒘(𝑡) 
(11) 

 

where ∆𝑡 is the constant time discretization, 𝜱 is the state propagation matrix, 𝑫 is the constant frequency drift, and 𝒘 ∼

𝒩(0,𝑸(∆𝑡)) is the clocks process noise, with associated covariance matrix 𝑸. The matrices 𝜱 and 𝑸 are block diagonal, each block 

corresponding to the matrices of the single clock 𝑖, and the drift vector 𝑫 is formed by stacking the vectors of the single clocks, 

where 𝑑𝑖 is the constant frequency drift of clock 𝑖: 
 

 
𝜱𝑖𝑖(∆𝑡) = (

1 ∆𝑡
0 1

)                𝑸𝑖𝑖(∆𝑡) =
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)

         𝑫𝑖(∆𝑡) = (
∆𝑡2

2
∆𝑡

)𝑑𝑖 

 

(12) 

The parameters 𝑞𝑖
𝐼 and 𝑞𝑖

𝐼𝐼 describe the intensity of the process noise acting on the phase and frequency of each clock. They can be 

determined by characterizing the clock’s behavior, for instance by fitting the measured overlapping Allan deviation (OADEV) 

(Trainotti et al., 2019). 

 

The ensemble model is completed by adding a measurement equation, linking the observed differences between satellites to their 

states, as in (9): 

 

 𝒛(𝑡) = 𝑯𝒙(𝑡) + 𝒗(𝑡) (13) 

 

where 𝒛 is the vector of observations, and 𝐇 the measurement matrix. The measurement matrix selects the readings of the clocks 

involved in every single comparison, thus it depends on the topology of the measurement system (i.e. how the satellites are connected 

to each other). In nominal conditions and with a perfect model, the measurement noise distributes as 𝒗 ∼ 𝒩(0, 𝑹), with associated 

covariance matrix 𝑹. In the following we will consider also non-nominal cases with measurement biases.  

 

The available measurements only include differences between clocks readings and thus an observer has no direct access to the states 

of a single clock 𝒙𝑖., A Kalman filter is used to estimate the clocks’ states given the available observations and provide the state 

estimate 𝒙. However, the state unobservability causes the covariance associated to the state estimate to grow unbounded (Greenhall, 

2006). This can be mitigated using a covariance reduction method. The Kalman filter estimates the states of the ensemble in an 

iterative way by first predicting the state in the next step using the clock model, and then corrects the prediction using the available 

measurements: 

 

Prediction 

𝒙−(𝑡) = 𝜱𝒙(𝑡 − 𝛥𝑡) + 𝑫 

𝑷−(𝑡) = 𝜱𝑷(𝑡 − Δ𝑡)𝚽⊤ + 𝑸 

 

Update 

𝑲(𝑡) = 𝑷−(𝑡)𝑯⊤[𝑯𝑷−(𝑡)𝑯⊤ + 𝑹]−1 

𝒙(𝑡) = 𝒙−(𝑡) + 𝑲(𝑡)[𝒛(𝑡) − 𝑯𝒙−(𝑡)] 
�̃�(𝑡) = [𝑰 − 𝑲(𝑡)𝑯]𝑷−(𝑡) 

Covariance reduction 

𝑷(𝑡) = �̃�(𝑡) − 𝑯 [𝑯
⊤
�̃�(𝑡)−1𝑯]

−1

𝑯
⊤

 

 

where 𝒙− is the predicted estimate with associated error covariance 𝑷−, 𝑲 is the Kalman gain, 𝒙 is the updated estimated with 

associated error covariance �̃�, and is the 𝑰 identity matrix. The reduced error covariance 𝑷 is computed by using the matrix 𝑯, 

obtained by vertically stacking 𝑁 2x2 identity matrices, where 𝑁 is the number of clocks in the ensemble. If Gauss-Markov processes 

are used in the clock model, the matrix �̃� must be modified by removing the rows and columns which correspond to the states 

describing the additional processes.  
With the estimates of the clock states 𝒙, it is possible to define the IEM: 

 

 
𝑥0̅̅ ̅ = 𝒂

⊤(𝒙 − 𝒙) 
 

(14) 



where 𝒂 is a vector of weights. The IEM is therefore a weighted average of the state vector estimation error. There exist different 

methods to compute the weights 𝒂, here we use the approach shown in (Davis, 2005). The IEM is the best estimate of the ideal time 

given the available clocks and their measurements, and it is used as definition of KST. However, it is unobservable, since the clock 

states 𝒙 are not accessible. To obtain a physical realization of the IEM, a control loop is applied to a local oscillator following the 

scheme presented in (Schmidt et al, 2018; Trainotti, Schmidt & Furthner, 2019). It consists of a second Kalman filter which estimates 

the deviation of the steered clock 𝒙𝑆(𝑡) from the ideal clock, and a controller. The controller computes the steering action 𝑢(𝑡) =
−𝑮𝒙𝑆(𝑡) to be applied to the steered clock. Different methods can be used to design the steering gain 𝑮, in this work we use the pole 

placement (PP) technique (Schmidt, Trainotti & Furthner, 2018). The gain matrix is computed based on the design parameter λ ∈
[0,1]:  
 

 
𝐺 =  [

(1 − λ)2

Δ𝑡𝑆
1 − λ2] 

 

(15) 

where Δ𝑡𝑆 is the steering rate, namely how often the local controller is steered. For this work we use λ = 0.2 and Δ𝑡𝑆 = 1 𝑠. 
 

In the framework of Kepler, each satellite receives the differential measurements 𝒛, and runs a Kalman filter to obtain the state 

estimate of all the constellation’s clocks. It then steers an onboard oscillator to realize a local copy of the IEM, corresponding to 

KST. Given noisy and biased measurements and different local steered oscillators, each satellite generates a slightly different time 

scale. It is then natural to ask how well the local realization represents KST, and how much the onboard realizations differ from one 

another. Furthermore, we want to understand what happens when residual biases are present in the observed differences among 

satellites, which can arise due to various effect, as mentioned in section 2. 

 

 

3.1 SIMULATION SCENARIOS 

 

We simulate the system time generation in different scenarios, to understand how different design choices influence the achievable 

synchronization level. The cases are summarized in Table 1. 

 

Table 1We analyzed two system architectures, hereafter named “Kepler fast track” (Günther, 2022) and “full Kepler” (Günther, 

2018, Giorgi et al, 2019;). The former is a simplified approach of the full Kepler concept: with the goal of speeding up the 

development and deployment of a Kepler architecture, critical components (e.g. optical iodine frequency references, cavity-stabilized 

lasers) are traded with components with higher technology readiness levels (TRL), such as ultra-stable oscillators (USOs). 

Additionally, in the Kepler fast track architecture the LEO segment is only used as a space-based monitoring and calibration layer, 

without establishing optical links to the MEO segment, and it does not contribute to the system synchronization: only the MEO 

clocks form an ensemble exploiting the capabilities of OISLs (scenarios 1 and 2).  

Conversely, in the full Kepler architecture, each LEO satellite is assumed equipped with an USO and an optical iodine clock, and it 

can optically link to the MEO segment. The two-way LEO-MEO link allows the inclusion of all LEO clocks in the ensemble 

(scenarios 3 and 4). 

For all scenarios we consider the nominal case in which the differential clock measurements are only affected by zero-mean Gaussian 

noise, with standard deviation of either 0.3 ps or 3 ps. The lower noise level corresponds to the achievable link precision demonstrated 

experimentally (Surof et al., 2019; Calvo et al., 2020, Surof et al., 2022), while higher noise level considers possible unmodelled 

effects. In the two full Kepler scenarios, we assume that the measurements between clocks onboard the same LEO satellite are 

affected by noise with standard deviation of 1fs. 

 



Table 1: List of scenarios simulated for the time scale generation 

 Scenario Clock(s) on 24 

MEO satellites 

MEO-MEO 

measurement noise level 

Clock(s) on 6 

LEO satellites 

MEO-LEO 

measurement noise 

level 

1 Kepler fast track USO 0.3 ps (0.1 mm) None No connection 

2 Kepler fast track USO 3.0 ps (1.0 mm) None No connection 

3 Full Kepler USO 0.3 ps (0.1 mm) USO+iodine clock 0.3 ps (0.1 mm) 

4 Full Kepler USO 3.0 ps (1.0 mm) USO+iodine clock 3.0 ps (1.0 mm) 

 

 

3.2 TRANSIENT PHASE AND STEADY-STATE 

 

To verify the convergence of the steered clocks to the IEM, we analyze the initialization phase in the scenario 1. The clock phase is 

initialized to a random value in the interval 0.5 ± 1 ns, since at the initial step the clocks are free-running and yet to be 

synchronized. The definition of the center of the interval is arbitrary, but the range is representative of current system 

synchronization capabilities in GNSSs.  Figure 2 shows the transient segment of the steering process of the third scenario: from the 

initial value, the steered clocks gradually converge to the system IEM. Within the initial 50 s, the clocks follow the IEM within a 

range of about ±10 ps. As seen in Figure 3, at steady-state the steered clocks reach the IEM and follow it within a band of few 

picoseconds. 

 

 
Figure 2: Transient phase of the steered clocks. The steered 

oscillators converge to the IEM. 

 
Figure 3: Steady-state steering of the clock around the IEM. 

 

3.3 STEADY-STATE SYNCHRONIZATION ERROR 

 

In order to compare the performance of the clock steering system in different scenarios, we introduce the concept of steady-state 

synchronization error. We define two errors, namely the difference of each realization to the IEM δ𝐼𝐸𝑀,𝑖(𝑡), and the maximum 

difference between any two realizations δ𝑚𝑎𝑥(𝑡): 
 

 δ𝐼𝐸𝑀,𝑖(𝑡) = 𝑥𝑆,𝑖(𝑡) − 𝑥0(𝑡) 
(16) 

 

 δ𝑚𝑎𝑥(𝑡) = 𝑚𝑎𝑥𝑖𝑗(|𝑥𝑆,𝑖(𝑡) − 𝑥𝑆,𝑗(𝑡)|) = 𝑚𝑎𝑥𝑖 (𝑥𝑆,𝑖(𝑡)) − 𝑚𝑖𝑛𝑖 (𝑥𝑆,𝑖(𝑡)) ∀ 𝑖 ≠ 𝑗 
(17) 



 

where 𝑥𝑆,𝑖(𝑡) is the phase of the steered clock i at time t. 

Figure 4 shows the statistics of δ𝐼𝐸𝑀,𝑖(𝑡) for the steady-state of scenario 3 (after the 50 s initialization period). The differences 

distribute according to a zero-mean Gaussian distribution. The right plot shows the cumulative distribution of the absolute values, 

as well as the mean distribution across the realizations. From the plot we can see that 95% of the time the steered clocks are within 

±0.57 ps from the IEM. The distribution of the maximum difference between steered clocks is shown in Figure 5: 95% of the time 

any two clocks are synchronized within 1.54 ps from each other. 

 
Figure 4: Statistics of the differences between steered clocks and IEM in the steady-state phase of scenario 3 

 
Figure 5: Statistics of the maximum difference between steered clocks in the steady-state of scenario 3 

In the framework of Kepler, the most important measure of synchronization is the difference among clocks, δ𝑚𝑎𝑥(𝑡), whereas the 

desynchronization with respect to the IEM is of secondary importance: from the user perspective, it does not matter if the clocks 

diverge from the ensemble mean, as long as they are close to each other and emit signals simultaneously. The IEM is an unobservable 

reference characterizing the timing system, but it is fully transparent to the user. For this reason, in the following analyses we are 

only going to compare the scenarios in terms of maximum desynchronization among satellites δ𝑚𝑎𝑥(𝑡). 
 

3.4 COMPARISON OF DIFFERENT SCENARIO – NOMINAL CASE  

 

To compare the performance of the different constellation scenarios listed in Table 1, we plot in Figure 6 the CDF of the 

synchronization error among clocks, δ𝑚𝑎𝑥. The green lines are for the Kepler fast track scenarios (1 and 2), and red is used of the 

full Kepler scenarios (3 and 4). The downward triangle marker indicates the scenarios with low measurement noise (1 and 3), while 

the upward triangle marks the high measurement noise (2 and 4).  



 
Figure 6: Synchronization error among clocks in the four scenarios of Table 1, for a nominal case without biases. The percentages in brackets 

give the probability for which a value is below the given level.  

In the case of lower measurement noise, the two scenarios show similar performance, with synchronization errors below 1.5 ps for 

more than 90% of the time. If the measurement noise covariance is increased, the distribution of the synchronization error moves to 

higher values and has longer tails. Full Kepler appears to be less sensitive to an increase of measurement noise, while Kepler fast 

track is more affected, with errors below 3 ps for about 90% of the time. The better performance of full Kepler is due to the 

presence of the local USO-iodine measurements onboard the LEO satellites, which present very low measurement noise. 

 

3.5 INJECTION OF BIAS 

  

To assess the impact of observation biases, we simulate additional six scenarios by including an unmodelled bias in the pairwise 

time transfer between satellites. We modify (13) as: 

 

 
𝒛(𝑡) = 𝑯𝒙(𝑡) + 𝒗(𝑡) + 𝚫(𝑡) 

 
(18) 

 

where 𝚫(𝑡) is the magnitude of the injected bias. In a first set of simulations, we introduce a time-constant bias with three levels of 

magnitude: 

 𝚫(𝑡) = 𝛍𝑏 
(19) 

where 𝛍 is a vector of random values uniformly distributed between 0 and 1 and 𝑏 is the bias magnitude. In this work we consider 

three bias magnitudes, namely 1 ps, 3 ps and 5 ps. In the full Kepler scenarios, the measurements onboard the LEO satellites are not 

affected by these biases. The resulting synchronization errors δ𝑚𝑎𝑥(𝑡) are shown in Figure 7. The green lines represent the case of 

Kepler fast track (scenarios 1 and 2), while the red ones are for full Kepler (scenarios 3 and 4). The left plots are for the case with 

reduced measurement noise, the right ones for the higher level. The fading color indicates the increasing level of bias. The injected 

measurement biases show a direct influence to the synchronization error. The effect in Kepler fast track is almost one to one, meaning 

that a bias of 3 ps increases the maximum synchronization error of about 3 ps. The increase is reduced in the case of full Kepler, due 

to the presence of the bias-free measurements between iodine frequency references and USOs on the LEO satellites. 



 
Figure 7: Synchronization error among clocks in the presence of a constant measurement bias. The green lines represent the case of Kepler fast 

track (scenarios 1 and 2), while the red ones are for full Kepler (scenarios 3 and 4). Lighter shades of color are used for increasing measurement 

bias. 

 

3.6 CLOSED AND OPEN RING TOPOLOGY 

 

The scenarios in Table 1 all consider a closed ring topology, meaning that the measurement ring of the MEO satellites is closed, 

providing measurements 2-1, 3-2, 4-3, … , 24-23, 1-24. We performed an additional analysis by removing the last measurement, and 

thus leaving the ring open, to check whether the constellation is more or less affected by measurement biases. The synchronization 

error is shown in Figure 8 for the scenarios 1 and 3, in closed or open ring configuration, with or without a 5 ps constant measurement 

bias. The dotted-dashed lines refer to the open ring cases. Without measurement biases, the open ring scenarios show a slightly worse 

performance of synchronization, but still below 2 ps. However, the open ring configuration is sensitive to measurement biases, as 

inferred from the right plots. The biases are seriously impacting the synchronization system, with error reaching values of about 17 

ps for full Kepler and 57 ps for Kepler fast track. When the ring is closed, the additional measurement adds a constraint to the system, 

namely that the sum of the clock differences along the ring must be zero (without biases and noise): 

 
δ𝑡𝑁1 +∑ δ𝑡𝑖,𝑖+1

𝑁−1

𝑖=1

= 0 

 

(20) 

Thanks to the constraint, the system can partially filter the measurement biases out and provide a better estimation of the clocks’ 

states. When the additional link is missing, the system is no longer fully constrained, and biases have a larger impact on the 

synchronization concept. In the case of full Kepler, the additional LEO-MEO measurements improve the geometry of the timing 

system, and the impact of biases is largely mitigated even in the case of an open ring configuration. 

 



 
Figure 8: Synchronization error with (right) and without (left) a 5 ps measurement bias, in an open ring and closed ring constellation topology. 

 

4. CONCLUSION 

 

In this paper we use TWTTs between pairs of satellites to synchronize a constellation of 𝑁 satellites equipped with clocks of various 

type, without prior synchronization. System synchronization can be achieved from a “cold-start” in two consecutive steps: a first step 

is required to perform an initial non-relativistic coarse synchronization to align all satellite clocks (in a coordinate time scale) within 

a few microseconds. Then, at predetermined intervals, all satellites perform pairwise relativistic time transfer. The coarse 

synchronization step mitigates the error induced by satellite position and velocity uncertainties in the estimation of the round-trip 

propagation delay. With a nearly-symmetric two-way exchange of signals, the Euclidean expression for the propagation of light is 

sufficient to achieve picosecond synchronization, provided meter-level orbit determination of both satellites is available, and the 

orbit error dynamics is negligible of the TWTT exchange (<1 s). The result of these exchanges are relative offsets in coordinate time 

that are distributed via OISLs across the whole constellation and are used as input for the proposed system time generation algorithm. 

The ensembling algorithm is based on a Kalman filter, which estimates the clocks’ states given an underlying system model and the 

observed clock offsets. Finally, the steering control signal produced on each satellite with a second Kalman filter is applied to the 

local reference oscillator, thus realizing the system-wide synchronization. In the initialization phase, the steered clocks quickly 

converge from their initial status to the IEM, and the steering system forces them to follow the IEM in the long term. 

In this paper we analyzed how the measurement noise and biases are expected to impact the constellation synchronization 

performance. 

We analyzed the steady-state synchronization error, i.e. the maximum recorded difference between the clocks on any two satellites 

of the constellation. Both the “Kepler fast track” and “full Kepler” architectures achieve similar synchronization levels (1.5 ps about 

95% of the times) under nominal conditions. An increase in the measurement noise covariance to 3 ps brings the synchronization 

error to circa 3 ps.  

To simulate unmodelled systematic effects, we introduced constant measurement biases in the system, and analyzed the resulting 

synchronization. The synchronization level is directly influenced by the biases, with the full Kepler scenario showing better 

performance than Kepler fast track. This is due to the presence of the optical iodine references on the LEO satellites and the onboard 

measurements. 

Finally, an open ring measurement topology was compared to a closed ring. The closure of the measurement ring introduces a 

constraint in the timing system, which can better filter measurement biases. Furthermore, the additional LEO-MEO links allows full 

Kepler to better deal with unmodelled biases even in the open ring configuration. 

In future work we plan to formally derive the transfer function of the (controlled) system, so that it is possible to analyze how the 

steering loop reacts to (or compensate for) unmodelled noises and biases. Further, a sensitivity analysis on the steering parameters 

can be carried out. 



A space-based system time scale is completely autonomously determined by the orbiting satellites; there is in principle no need for 

a ground infrastructure to support the synchronization process. The role of the ground segment is only necessary when establishing 

a connection to terrestrial time scales, as for example UTC. The space-to-ground link can be established either with an a-posteriori 

estimate of the offset between the “space clock” and the reference Earth time scale based on broadcast signals, or with one or more 

optical links between a satellite of the Kepler constellation and one of the ground stations.   
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APPENDIX 

 

IMPACT OF POSITION ERRORS ON THE ROUNDTRIP PROPAGATION DELAY DIFFERENCE ESTIMATION 

 

Consider an erroneous knowledge of the position of the satellites where 𝒓𝐴,𝐵(𝑡) is the actual position and  𝒓𝐴,𝐵(𝑡) + 𝛿𝒓𝐴,𝐵(𝑡) is the 

assumed position. Consider the error to be time dependent and growing in a linear way in the neighborhood of any arbitrary instant 

𝑡0: 

  

 
𝛿𝒓𝐴(𝑡) ≈  𝛿𝒓𝐴(𝑡0) + 𝛿�̇�𝐴(𝑡0)(𝑡 − 𝑡0) 

 
(21) 

Such type of position error would impact the determination of the last term of (7):  

 

 

1

2
(𝑇𝐴𝐵 − 𝑇𝐵𝐴)𝑒𝑟𝑟 ≈

||𝒓𝐵(𝑡1) + 𝛿𝒓𝐵(𝑡1) − 𝒓𝐴(𝑡0) − 𝛿𝒓𝐴(𝑡0)|| 

2𝑐
−
||𝒓𝐴(𝑡3) + 𝛿𝒓𝐴(𝑡3) − 𝒓𝐵(𝑡2) − 𝛿𝒓𝐵(𝑡2)|| 

2𝑐
  

 

(22) 

Expanding (22) and representing the time-dependent errors as in (21) we obtain:  

 

 

1

2
(𝑇𝐴𝐵 − 𝑇𝐵𝐴)𝑒𝑟𝑟 −

1

2
(𝑇𝐴𝐵 − 𝑇𝐵𝐴)

≈
(𝑵𝐴𝐵 + 𝑵𝐵𝐴

 )𝑇(𝛿𝒓𝐵(𝑡0) − 𝛿𝒓𝐴(𝑡0)) 

2𝑐
+
𝑵𝐴𝐵
𝑇 𝛿�̇�𝐵(𝑡0)𝑇𝐴𝐵  

2𝑐

−
𝑵𝐵𝐴
𝑇 [𝛿�̇�𝐴(𝑡0)(𝑇𝐴𝐵 + (𝑡2 − 𝑡1) + 𝑇𝐵𝐴) − 𝛿�̇�𝐵(𝑡0)(𝑇𝐴𝐵 + (𝑡2 − 𝑡1))] 

2𝑐
 

 

(23) 

Where 𝑵𝐴𝐵  and 𝑵𝐵𝐴 are the line-of-sight vectors in the two directions.  

Assume the worst-case scenario where 𝛿𝒓0 =  𝛿𝒓𝐵(𝑡0) =  − 𝛿𝒓𝐴(𝑡0) and  𝛿�̇�0 = 𝛿�̇�𝐵(𝑡0) =  − 𝛿�̇�𝐴(𝑡0):  
 



 

1

2
(𝑇𝐴𝐵 − 𝑇𝐵𝐴)𝑒𝑟𝑟 −

1

2
(𝑇𝐴𝐵 − 𝑇𝐵𝐴)

≈
(𝑵𝐴𝐵 +𝑵𝐵𝐴

 )𝑇𝛿𝒓𝟎 

𝑐
+
𝑵𝐴𝐵
𝑇 𝛿�̇�0𝑇𝐴𝐵  

2𝑐
+
𝑵𝐵𝐴
𝑇 𝛿�̇�0(2𝑇𝐴𝐵 + 2(𝑡2 − 𝑡1) + 𝑇𝐵𝐴) 

2𝑐
 

 

(24) 

The first term of (24) is an offset due to a constant error present at the instant of the first transmission. It was shown in (Dassié & 

Giorgi, 2021) that meter-level position errors still allow this term to remain in the sub-picosecond level. The remaining terms in (24) 

are offsets arising from the growth of the error during the exchange.  

Thanks to the prior coarse synchronization we can choose the instants of emission 𝑡0 and 𝑡2 such that the communication is almost 

symmetric. Then we would have 𝑵𝐴𝐵 ≈ −𝑵𝐵𝐴
  and 𝑇𝐴𝐵 ≈ 𝑇𝐵𝐴

 :  

 

 
1

2
(𝑇𝐴𝐵 − 𝑇𝐵𝐴)𝑒𝑟𝑟 −

1

2
(𝑇𝐴𝐵 − 𝑇𝐵𝐴) ≈ −

𝑵𝐴𝐵
𝑇 𝛿�̇�0(𝑇𝐴𝐵 + (𝑡2 − 𝑡1)) 

𝑐
 

(25) 

 

  

The propagation times are of the order of 0.1 s and the re-transmission interval (𝑡2 − 𝑡1) is usually negative and in the interval 

[0, −𝑇𝐴𝐵] to make the exchange symmetric. Assuming it to be zero we can see that the position error should not grow more than a 

few millimeters per second in order to maintain a picosecond accuracy in the determination of the roundtrip propagation delay. 

Current POD models can determine and predict orbits with better accuracy than that.  

 

 

COARSE SYNCHRONIZATION ACCURACY 

 

Consider two Kepler MEO satellites A and B orbiting in the same direction on a perfectly circular orbit. Assume that the clocks on 

the satellites are not rate-corrected, so that 𝜏𝐴,𝐵 − 𝑡𝐴,𝐵 = 𝛿𝑡𝑟𝑒𝑙,𝐴𝐵, where this quantity represents an offset between the proper time 

readings and the respective readings transformed into a coordinate time 𝑡. 
The error in the estimation of 𝛿𝑡𝐴𝐵 using the coarse synchronization shown in (8) is: 

 

 𝛿𝜏𝐴𝐵 − 𝛿𝑡𝐴𝐵 =
1

2
(𝑇𝐴𝐵 − 𝑇𝐵𝐴) + 𝛿𝑡𝑟𝑒𝑙,𝐴𝐵 

(26) 

 

Assume satellite B is in front of satellite A in the direction of motion. In a classical Walker 24/3/1 constellation with perfectly circular 

orbits and semi-major axis 𝑎 = 29601 km, the satellites on each plane are separated by an angle 𝜃 = 45°. The time of travel can be 

obtained via:  

 

 𝑇𝐴𝐵 =
2𝑎

𝑐
sin (

𝜃

2
+
𝜔

2
𝑇𝐴𝐵) , 𝑇𝐵𝐴 =

2𝑎

𝑐
sin (

𝜃

2
−
𝜔

2
𝑇𝐵𝐴) , 𝜔 = √

𝐺𝑀

𝑎3
 

(27) 

 

In the specific case the quantity 
1

2
(𝑇𝐴𝐵 − 𝑇𝐵𝐴) ≈ 8.5 × 10

−7 s. This error is dominant over neglecting of  𝛿𝑡𝑟𝑒𝑙,𝐴𝐵  (which sits at or 

below the nanosecond-level), therefore we can assume that the magnitude of the largest error in the estimation of the actual offset is 

of the order of 1 μs. We can then safely assume that with such a coarse synchronization we are able to synchronize all satellites 

within a few microseconds. 

 

 

 


