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Abstract 
Small spacecraft now have precise attitude control systems availa-

ble commercially, allowing them to slew in 3 degrees of freedom, 

and capture images within short notice. When combined with ap-

propriate software, this agility can significantly increase response 

rate, revisit time and coverage. In prior work, we have demon-

strated an algorithmic framework that combines orbital mechanics, 

attitude control and scheduling optimization to plan the time-vary-

ing, full-body orientation of agile, small spacecraft in a constella-

tion. The proposed schedule optimization would run at the ground 

station autonomously, and the resultant schedules uplinked to the 

spacecraft for execution. The algorithm is generalizable over small 

steerable spacecraft, control capability, sensor specs, imaging re-

quirements, and regions of interest. In this article, we modify the 

algorithm to run onboard small spacecraft, such that the constella-

tion can make time-sensitive decisions to slew and capture images 

autonomously, without ground control. We have developed a com-

munication module based on Delay/Disruption Tolerant Network-

ing (DTN) for onboard data management and routing among the 

satellites, which will work in conjunction with the other modules 

to optimize the schedule of agile communication and steering. We 

then apply this preliminary framework on representative constella-

tions to simulate targeted measurements of episodic precipitation 

events and subsequent urban floods. The command and control ef-

ficiency of our agile algorithm is compared to non-agile (11.3x im-

provement) and non-DTN (21% improvement) constellations. 

Introduction   
Response and revisit requirements for Earth Observation 

(EO) vary significantly by application, ranging from less 

than an hour to monitor disasters, to daily for meteorology, 

to weekly for land cover monitoring (Sandau, Roeser, and 

Valenzuela 2010). Geostationary satellites provide frequent 

revisits, but at the cost of coarse spatial resolution, extra 

launch costs and no polar access. Lower Earth Orbit satel-

lites overcome these shortcomings, but need numbers and 

coordination to make up for response characteristics. Add-

ing agility to satellites and autonomy to the constellation im-

proves the revisit/response for the same number of satellites 
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in given orbits. However, human operators are expected to 

scale linearly with constellation nodes (Eickhoff 2011) and 

operations staffing may be very costly. 

 

Earth-Observing Constellation Autonomy 
Scheduling algorithms for agile EO have been successfully 

developed for single large satellite missions, examples being 

ASPEN for EO-1, scheduling for the ASTER Radiometer on 

Terra, high resolution imagery from the IKONOS commer-

cial satellite (Martin 2002), scheduling observations for the 

geostationary GEO-CAPE satellite (Frank, Do, and Tran 

2016), scheduling image strips over Taiwan by ROCSAT-II 

(Lin et al. 2005), and step-and-stare approaches using matrix 

imagers (Shao et al. 2018). The Proba spacecraft demon-

strated dynamic pointing for multi-angle imaging of specific 

ground spots that it is commanded to observe (Barnsley et 

al. 2004). Scheduling 3-DOF observations for large satellite 

constellations has been formulated for the PLEIADES pro-

ject (Lemaı̂tre et al. 2002; Damiani, Verfaillie, and Char-

meau 2005) and COSMO-SkyMed constellation of syn-

thetic aperture radars (Bianchessi and Righini 2008). Sched-

uling simulations have demonstrated single Cubesat down-

link to a network of ground stations within available storage, 

energy and time constraints. (Chien et al. 2019) has devel-

oped automated tasking for current sensors as a Sensor Web 

to monitor Thai floods.    

 

Recent advances in small and agile satellite technology have 

spurred literature on scheduling fleet operations. Coordi-

nated planners in simulation (Abramson et al. 2013; Robin-

son et al. 2017) can handle a continuous stream of image 

requests from users, by finding opportunities of collection 

and scheduling air or space assets. Cubesat constellation 

studies (Cahoy and Kennedy 2017) have successfully sched-

uled downlink for a fleet, aided by inter-sat communication. 

Evolutionary algorithms for single spacecraft (Xhafa et al. 

2012), multiple payloads (Jian and Cheng 2008) and 

 



satellite fleets (Globus et al. 2002) are very accurate but at 

large computational cost due to their sensitivity to initial 

condition dependence (genetic algorithms), exponential 

time to converge (simulated annealing) or large training sets 

(neural nets). Agile constellation scheduling with slew-time 

variations have shown reasonable convergence in the recent 

past using hierarchical division of assignment (He et al. 

2019). However, algorithms have not been developed for 

onboard execution on real-time, fast-response EO applica-

tions and do not consider inter-sat comm scheduling in con-

junction with imaging operations. 

 

We have recently demonstrated (Nag, Li, and Merrick 2018) 

a ground-based, autonomous scheduling algorithm that op-

timizes spacecraft attitude control systems (ACS) to maxim-

ize collected images and/or imaging time, given a known 

constellation. The algorithm is now broadened in applica-

tion scope by leveraging inter-satellite links and onboard 

processing of images for intelligent decision-making. Im-

proving coordination among multiple spacecraft allows for 

faster response to changing environments, at the cost of in-

creased scheduling complexity.  

 
Figure 1—A constellation of satellites observing three points of in-

terest (POI) by agile steering of their body frames, based on infor-

mation shared when they have line of sight (LOS). 

 

Networked Constellations and Reactive Science 
DARPA’s delay/disruption tolerant network or DTN para-

digm (Cerf et al. 2007) is an emerging protocol standard for 

routing in the dynamic and intermittent operation environ-

ment. DTN makes it possible to minimize replication and 

improve the delivery probability within available resources, 

but has never been applied to EO inter-sat data exchange. 

We show that DTN enabled, agile constellations can re-

spond to transient, episodic and/or extreme events using an 

autonomous scheduling algorithm that is executable 

onboard. The target scenarios are simulated by a simplified 

Observing System Simulation Experiment (OSSE) to eval-

uate the benefit of our proposed algorithm.  

In the traditional sense, an OSSE is a data analysis experi-

ment used to evaluate the impact of new observing systems, 

e.g. satellite instruments, on operational forecasts when ac-

tual observational data are not fully available (Arnold and 

Dey, 1986). An OSSE comprises of a free-running model 

used as the ground truth (‘nature run’), used to compute the 

‘synthetic observations’ for any observing systems, with 

added random errors representative of measurement uncer-

tainty. Synthetic observations represent a small, noisy sub-

set of the ground truth. They are used to forecast the full 

ground truth, then compared with the nature run. The dis-

parity between the nature run of a chosen scenario, and the 

instrument-derived forecasts is then used to inform better in-

strument or mission design (Feldman et al. 2011). OSSEs 

can be used to train heuristics for mission planning, because 

different operational options can be assessed for different 

relevancy scenarios by changing the observing system char-

acteristics and nature run appropriately (Nag, Gatebe, and 

Weck 2015; Nag et al. 2016). 

 

Methodology 
We propose a novel algorithmic framework that combines 

physical models of orbital mechanics (OM), attitude control 

systems (ACS), and inter-satellite links (ISL) and optimizes 

the schedule for any satellite in a constellation to observe a 

known set of ground regions with rapidly changing parame-

ters and observation requirements.  The proposed algorithm 

can run on the satellites, so that each can make observation 

decisions based on information available from all other sat-

ellites, with as low a latency as ISL allows. Satellites gener-

ate data bundles after executing scheduled observations to 

be broadcast by ISLs. Bundles contain information about the 

ground points observed and meta-data parameters pre-deter-

mined by the OSSE. Considering networking delays in a 

temporally varying disjoint graph (e.g. results in Figure 5) 

and diminishing returns for observing fast-changing envi-

ronments, satellites  are not expected to iterate on acknowl-

edgments to establish explicit consensus. Instead, the more 

a satellite knows about a region before its observation op-

portunity, better its scheduler performance. The algorithm 

may also run on the ground, i.e. the satellites can downlink 

their observed data, the ground will run the proposed algo-

rithms, and uplink the resultant schedule to the satellite. 

Since the ground stations are expected to be inter-connected 

on Earth and in sync with each other at all times, the optimi-

zation is centralized and the resultant schedule avoids po-

tentially redundant observations due to lack of consensus 

among the satellites. This approach also reduces the onboard 

processing requirements on the satellites. However, since 

information relay occurs at only sat-ground contacts (func-

tion of orbits, ground network), the scheduler would use sig-

nificantly information compared to the distributed, onboard 

bundles. The transiency of the environment being  observed 

and its robustness to latency in exchanging inferences deter-

mines effectiveness of the onboard, decentralized vs.
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Figure 2 – Major information flows between the modules in the proposed agile EO scheduler, expected to run onboard every satellite in a 

given constellation, applied to global urban flooding in this paper. This framework can exchange information (as identified at the top) be-

tween the satellites via peer-to-peer communication or via the ground (reverse bent pipe architecture). The blue arrows/text represent newly 

added components to the previous version of the algorithmic framework (Nag, Li, and Merrick 2018).  

ground, centralized implementation of our proposed algo-

rithm (e.g. scenario results in Table 2). The algorithmic 

framework and information flow summarized in Figure 2.   

 

The OM module propagates orbits in a known constellation 

and computes possible coverage of known regions of inter-

est (appropriately discretized into ground points – GP) 

within a field of regard (FOR). It provides the propagated 

states and possible access times per satellite, per GP to the 

ACS. The ACS uses this information, with known satellite 

and subsystem characteristics to compute: time required by 

any satellite at a given time to slew from one GP to another 

(including satellite movement), resultant power, momentum 

and stabilization profiles. The OM also provides available 

line-of-sight (LOS) availability, corresponding inter-sat dis-

tances at any time, as well as the priority of bundle delivery 

to the Comm/ISL module so that it knows which satellites 

need to receive the data sooner. The comm. module com-

putes the link budget for a known set of specifications and 

protocols, and uses the resultant data rate to simulate DTN 

and compute bundle drop rates and latency to deliver any 

known bundle between any given pair of satellites. Bundles 

exchanged between the satellites are modeled to contain 

seen GPs time series (Ω) or new GPs of interest, and their 

re-computed value (Δ), either in full, an update to the origi-

nal, or as parametric meta-data. The mechanism of re-com-

puting value at a GP (input on the left of Figure 1) is de-

scribed on pg.4.  

The optimization module ingests the outputs of the OM, 

ACS and Comm modules to compute the schedule of when 

each satellite should capture any GP. The executed schedule 

dictates the number of observations a satellite will make 

over any region, which dictates the number, size and timing 

of bundles generated for broadcast, therefore, we include a 

feedback loop between the optimizer and the comm. mod-

ule. Slew characteristics depend on the previous GPs the sat-

ellite was observing and intended next, thus a feedback loop 

between the ACS and optimizer. If the constellation specifi-

cations, e.g. number of satellites, their arrangement, instru-

ments, FOR, are expected to change over operational life-

time, a feedback between the OM and the optimizer may 

also be added. In the current implementation, we assume 

that the proposed real-time scheduling will take a fixed time 

interval and that other operations, e.g. downlink, calibration, 

maintenance, etc., will be scheduled separately. 

 

Orbital Mechanics and Attitude Control 

The main revision to the OM and ACS modules comprehen-

sively described in (Nag, Li, and Merrick 2018) is that we 

now compute slewing time as a function of a pair of satt,s-

gpi , each representing a vector from satellite s at time t to 

ground point i. The dynamic programming (DP) algorithm 

in the optimizer now uses observable GPs as potential states, 

instead of discrete pointing options. Since the DP scheduler 

iteratively calls ACS for any pair of vectors, the ACS slew 

time cannot be pulled from a static table using the starting 

and ending satellite pointing direction as before, and are 

computed real-time. Onboard processing constraints limit 

our use of the full physics-based ACS simulator (developed 

on MATLAB Simulink), therefore we developed weighted 

least squares on a third order polynomial whose coefficients 

are a function of the satellite mass, ACS and other specifi-

cations that served as knobs in the original model. The pol-

ynomial provides a very efficient implementation of the 
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ACS-DP feedback loop in Figure 2, by allowing fast com-

putation of slew time as a function of α, the angle between 

any pair of vectors satt,s-gpi. This process is adaptable to 

non-planar angle dependencies as well, in case a full body 

re-orientation of the satellite is necessary, not just re-point-

ing an instrument.  

 

The OM module has been developed in house, leveraging 

NASA GSFC’s open-source General Mission Analysis Tool 

(Hughes 2007). The OM also generates data bundle priority, 

to be ingested by the comm. module as follows: The data-

bundle is tagged with the corresponding region or point of 

observation (where the data is generated). Priority is given 

to the next satellite to be able to access the same region or 

point, after the bundle generation, so that when it reaches 

the said region, it is up-to-date about it, as inferred by the 

last observing satellite. For example, if Sat11 generates data 

over “Dallas”, and Sat12 is the next satellite on scene, Sat12 

is given highest priority for the data-bundle to be delivered. 

If some satellites do not ever visit “Dallas”, they are re-

moved from the recipient queue. 

 

Delay/Disruption Tolerant Networking 

Delay/Disruption Tolerant Networking (DTN) is a new set 

of communication protocols developed with the intent of ex-

tending the Internet to users that experience long delays 

and/or unexpected disruptions in their link service. At its 

core, DTN defines an end-to-end overlay layer, termed 

“bundle layer”, that sits on top of the transport layer (i.e., 

TCP or UDP in the Internet, CCSDS link layer standards in 

space) and efficiently bridges networks that may experience 

different types of operational environments. To achieve that, 

it encapsulates underlying data units (e.g., TCP/UDP data-

grams) in bundles that are then transmitted from bundle 

agent to bundle agent, who store them persistently for safe-

keeping until the next network hop can be provisioned. This 

hop-to-hop philosophy is at the core of DTN and differenti-

ates it from the Internet, where transactions typically occur 

by establishing end-to-end sessions (between the data origi-

nator and data sink). 

 

At present, DTN is comprised of a large suite of specifica-

tions that encompass all aspects of network engineering, in-

cluding its core protocols (e.g., the Bundle Protocol (Scott 

and Burleigh 2007), the Licklider Transmission Protocol 

(Farrell, Ramadas, and Burleigh 2008), or the Schedule 

Aware Bundle Routing (Standard and Book 2018)), adapters 

for bridging different types of underlying networks, network 

security protocols and network management functionality 

(Asynchronous Management Protocol). For the purposes of 

this paper, however, only the parts of the Bundle Protocol 

and Schedule Aware Bundle Routing Protocol were imple-

mented. Together, they provide a medium to high fidelity 

estimate of how bundles would move in a DTN consisting 

of near-Earth orbiting spacecraft and allow us to quantify 

network figures of merit such as bundle loss or average bun-

dle latency. Our DTN model is implemented in Python using 

Simpy (Matloff 2008), a discrete-event engine built upon 

the concept of coroutines (or asynchronouos functions in the 

latest Python versions).  

 

Quantifying Value: Observing System Simulations  
We apply our proposed framework to episodic precipitation 

and resultant urban floods, to demonstrate its utility and 

scalability. We used the Dartmouth Flood Observatory 

(Brakenridge 2012) to study the frequency of global floods 

in 1985 – 2010, and identified 42 large cities that are within 

floodprone areas and marked a 100 km radius buffer around 

them to define the watersheds. We assume a 6 hour planning 

horizon, during which 5 of the 42 cities (Dhaka, Sydney, 

Dallas, London, Rio de Janeiro) flood to varying degrees as 

modeled by an OSSE nature run. For example, London tends 

to get slower, longer rains that might cause the Thames to 

flood, Dallas is more concerned with short, intense thunder-

storms causing flooding on smaller creeks. The OSSE de-

veloped for this paper uses an area of 80km x 80km, and is 

currently agnostic to flood-type disparities between cities.  
 

 
Figure 3 – Example of the spatial distribution of value (8-bit 

scale) of an ~80 km square region around Atlanta, GA (X/Y axis 

in degrees), for a single snapshot in time.  

 

To quantify value for the optimizer’s objective function, we 

modeled riverine flooding in the Atlanta metropolitan area 

for a single storm event from April 5-6, 2017, using the 

WRF-Hydro hydrologic model version 5 (Gochis et al. 

2018). The model was run with a grid resolution of 900 m, 

and was calibrated by adjusting parameters until modeled 

streamflow matched measured flow at nine U.S. Geologic 

Survey gages in the Atlanta metro area. The modeled chan-

nel flow rates were then normalized by the 2-year recurrence 

interval flow rate (Q2), as estimated from the USGS re-

gional regression equations for urban streams in that region 

(Feaster, Gotvald, and Weaver 2014). Q2 is the flow that has 

a 50% chance of happening in any year, and is an estimate 

of what constitutes a “flood” at any location. Finally, these 

normalized flood rates were then transformed on a log-scale 

to integer values between 1 and 256. We estimated the 



watershed land area draining to each channel point and the 

[1,256] value of that point was assigned to the entire water-

shed area. Areas with high value correspond to watersheds 

with active flooding. In these watersheds, it is important to 

obtain satellite-derived estimates of precipitation to deter-

mine if this flooding will worsen (with more rainfall) or 

abate. This process provides an expected value of observing 

every point in a region of interest at 15 min resolutions, to 

be used by the satellite scheduler, absval([gpx,ty]) in the next 

section. One snapshot is shown in Figure 3.  

 

This paper uses the following statistical model for value re-

computation. Since the OSSE time resolution is 15min, the 

cumulative value of observing any GP within 15min should 

be constant, i.e. if it has been seen once, subsequent obser-

vations within 15min are of zero value. Since value re-com-

putation based on collected data is not physically simulated, 

we estimate it from OSSE output (absval) in the following 

ways: The value of observing any GP after 15min is consid-

ered a fraction (=1/number_of_times_seen) of its OSSE-

provided value with some random noise added. This re-

computation ensures that a diversity of GPs is observed over 

time. Similarly, the value of observing a GP can be inversely 

proportionate to its distance to already observed GPs, to 

maximize the spatial spread of information collected and 

characterize the region better. The time-stepping nature of 

our algorithm causes it to be agnostic to the future value of 

any GP, therefore it can ingest changing values as they come 

along and compute schedules accordingly. We applied a 

standard normal distribution with a 2%-8% (uniformly ran-

dom) standard deviation to the OSSE-provided values, to 

generate slightly different value functions to be used by each 

satellite’s optimizer. This was to simulate different infer-

ences by satellites after onboard processing their different 

observations, owing to different schedules. If they observed 

the same GPs at the same time, they would have the same 

inference, but that is obviously not possible. We are devel-

oping a high fidelity, value re-computation model to replace 

this statistical model, whose onboard processing algorithms 

and predictive technology will be described in a future pub-

lication. It will simulate processing data collected from ex-

ecuted observing schedules, updating future value, re-com-

puting schedule and passing along insights the other sats.  

 

Dynamic Programming based Scheduler 
Our proposed optimization algorithm (Table 1) uses dy-

namic programming (DP) to greedily optimize the sched-

uler. Each satellite is theorized to possess its own DP sched-

uler on board (or its own thread on ground) - a cartoon ver-

sion is in Figure 4, where the gradient of the nodes repre-

sents varying absval([gpx,ty]), "xÎ [1,numGP], yÎ 

[1,horiz_tSteps], as obtained from the OSSE. The scheduler 

outputs a vector of tuples [gpi,ti]"iÎ[1,pathLength], which 

is the schedule for sat to observe gpi at ti. Compared to our 

previous implementation, the state space that the optimized 

path has to trace is now a graph of time steps and GPs, in-

stead of time steps and satellite pointing directions. At any 

time tPlan during mission operations, a schedule can be 

computed for a future planning_horizon. The scheduler (line 

4) processes bundles received until tPlan through the DTN 

and updates its knowledge of all other sats c as broadcasted 

at tSrcc, i.e. pathc[gpi,ti≤tSrcc], and its insights of the re-

gions, i.e. modelParams(ti≤tSrcc). For every time step tNow, 

it then steps through the GPs gpNow within the sat’s FOR, 

and computes the cumulative value val([gpNow,tNow]) of 

each path ending at [gpNow,tNow], e.g. in Figure 4. Via DP, 

line 11’s computation entails adding val([gpNow,tNow]) to 

val([gpBef,tBef]) for all possible nodes [gpBef,tBef] " 

gpBefÎ[1,numGP], tBef Î[ tNow-max(slewTime), tNow-

min(slewTime)]. slewTime is the full y-space of Eq.(2) for 

representative set of reorientations in the current mission 

scenario. The nodes between the red horizontal lines in Fig-

ure 4 are examples of [gpBef,tBef]; searching only a practi-

cal portion of the space (e.g., t-2 through t-9) mitigates some 

of the computational load that has been added due to the dy-

namic slew computation, instead of the previous static, slew 

time table. Note that val is re-computed using absval and the 

satellite’s knowledge of the executed observations by the 

rest of the constellation and their insights. Cumulative value 

is computed statistically as: 
  

computeValue() = ∑ ∑ 𝑣𝑎𝑙([𝑔𝑝
𝑥
, 𝑡𝑦])

ℎ𝑜𝑟𝑖𝑧_𝑡𝑆𝑡𝑒𝑝𝑠

89:
𝑛𝑢𝑚𝐺𝑃
𝑥=1   

(1) 

A future scheduler will implement a higher fidelity cross-

correlation function which extends the current OSSE. If the 

scheduling sat’s FOR at tNow overlaps with any other’s 

FOR (line 9), it must computeValue() for all possible paths by  

 

 
Figure 4—State space searched by the scheduler to compute the 

optimum path ending at [gpNow,tNow], with no FOR overlaps  
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the other s, and maintain cumulative value numbers for pos-
sible paths by every permutation of sats in set satsWoverlap-

pingFOR (line 13). Starting with the paths with maximum 
cumulative value, slew time of the last leg 
[gpBef,tBef]®[gpNow,tNow] (or combination of legs for over-

lapping sats) is dynamically computed. For the first instance 
where the time required is shorter than allowed between the 
tBef®tNow gap, the path is stored as the optimum path  
pathsat[gpNow,tNow], and all other paths ending at 
[gpNow,tNow] discarded (to prevent memory becoming as-
tronomical). Future implementations may explore ways to 
preserve some dominated paths since potentially optimum 
solutions, although tied with sub-optimum ones at tNow, are 
lost in the process.   
 
Table 1—Summarized Scheduling Algorithm 

1: Inputs – sat, absval([gpx,ty])  

2: Output – pathsat[gpi,ti]  

3:  For c in Constellation-{sat} do 

4:   modelParams(ti≤tSrcc), pathc[gpi,ti≤tSrcc] ¬ 

   DTN(c,tSrcc,sat,tPlan)  

5: End For 

6: For tNow in planning_horizon do 

7:  For gpNow in GroundPntsInFOR(sat, tNow) do 

8:   GroundPntsInBND=[tNow-max(slewTime): 

          tNow-min(slewTime),1:numGP] 

9:   For s in satsWoverlappingFOR(sat,gpNow) do  

10:   For [gpBef,tBef] in GroundPntsInBND do 
11:   v[s]=computeValue(paths[gpBefs,tBefs]+  

 [gpNow,tNow],absval, pathcÎConst 

 [gpi,ti≤tSrcc], modelParams(ti≤tSrcc)) 

12:   End For 

13:   v_combi = v[permute(s in satsWoverlappingFOR)] 

14:   For vn in reverse_sort(v_combi) 

15:    tslew=computeManueverTimes(s_combi, 

       [gpBefs_combi,tBefs_combi], [gpNow,tNow]) 

16:    If tslew≤[tNow-tBefs_combi]  then 

17:     paths[gpNow,tNow]¬ 

         paths[gpBefs,tBefs]+[gpNow,tNow] 

18:     break // forLoop for vn 

19:    End If 

20:   End For 

21:  End For 

22: End for 

23: End for  

 

The advantages of this algorithm are: 

1. Runtime is linearly proportionate to the number of time 

steps in planning horizon n(T). The scheduler may be run 

for only the duration of FOR access over a region. It needs 

to be rerun only if value of the GPs (expected to be ac-

cessed) changes, as inferred or informed.  

2. Since the scheduler steps through the planning horizon, it 

can be stopped at any given point in the runtime, and the 

resultant schedule is complete until that time step. Sched-

ules can thus be executed as future schedules are being 

computed by the onboard processor. 

3. A complex value function with non-linear dependencies 

(e.g. on viewing geometry or solar time) or multi-system 

interactions (e.g. Simulink or proprietary software calls) 

are easy to incorporate.  
4. Algorithmic complexity per satellite per region to be 

scheduled is O(n(T)×n(GP)2×n(S)), where n(GP) is the 
number of ground points within FOR and n(S) is the num-
ber of satellites that can access the same GPs at the same 
time, i.e. GPs within FOR overlaps. Since GPs are typi-
cally designed to Nyquist sample the footprint, runtimes 
are instrument dependent. If satellite FORs are non-over-
lapping, runtime or space complexity does not depend on 
the size of the constellation. For well-spread constella-
tions observing non-polar targets, n(S) = 1, or a couple.  

 
Integer programming (IP) was able to verify that optimality 
of the above algorithm for single satellites was within 10%, 
and find up to 5% more optimal solutions (Nag, Li, and Mer-
rick 2018). The DP solution was 22% lower than the IP op-
timality bounds for constellations, which is well within the 
optimality bounds of greedy scheduling for unconstrained 
submodular functions (Piacentini, Bernardini, and Beck 
2019). The DP schedules were found at nearly four orders 
of magnitude faster than IP, therefore far more suited for real 
time implementations. Currently, the scheduler is (re)run at 
the same frequency as DTN-informed value (re)processing, 
however future implementations will explore methods to de-
couple them, because rapider value updates but longer plan-
ning horizon are better for solution quality. 
 

Results 
We simulate a case study of 24 (20 kg cubic) satellites in a 

3-plane Walker constellation observing floods in 5 global 

regions over a 6-hour planning horizon. All satellites are 

simulated at a 710 km altitude, 98.5 deg inclination, circular 

orbits similar to Landsat. The constellation is a homogene-

ous Walker Star-type, with 3 orbital planes of 8 satellites 

each. While the gap between satellite accesses to a region is 

~10 mins when there is an orbital plane overhead, a mini-

mum of 3 planes is needed for the maximum gap to be 

within 4.5 hours (median gap ~ 1hr). Two planes would not 

be able to appropriately respond to a 6-hr flood phenomenon 

even with agile pointing, crosslinks onboard autonomy. For 

the chosen altitude, at least 8 satellites per plane ensures 

consistent in-plane LOS (cross-plane LOS in polar regions 

only), therefore the 24-sat topology is the minimum nodes 

for continuous DTN to enable <6-hr urban flood monitoring. 

 

Instruments potentially used for precipitation and soil mois-

ture sensing are narrow field of view (FOV) radars, which 

justify the need to continuously re-orient the <10 km foot-

print to cover a large flooding area. Examples are the Ka-

band radar on a cubesat called RainCube (Peral et al. 2015) 

for precipitation, L-band bistatic radar on CYGNSS, and a 

Cubesat P-band radar (Vega Cartagena et al. 2018) for soil 

moisture. This paper presents results for an 8km footprint 



instrument. The field of regard (FOR) which limits the max-

imum off-nadir angle of the payload/instrument is set to 55 

deg, because it corresponds to 5x distortion of the nadir 

ground resolution, which is the OSSE’s limit to allow com-

bining observations in a given region. Spatial resolution de-

pendence of value can also be included in the objective func-

tion. The presented scenario will be varied in terms of the 

mission epoch and regions of interest since it affects access 

intervals, observations and bundle traffic, and performance 

sensitivity reported in a future publication.   

The ACS model, characterized with the satellite specs from 

(Nag, Li, and Merrick 2018), is fitted by the following pol-

ynomial, where t is time for maneuver, and α is angle to 

span. The standard deviation is around 0.2116, so add 

0.4232 to get ~95% percentile. 

𝑡

= 6.1974 × 10IJ × αL + 1.3904 × 10IL × αO

+ 1.4165 × 10I: × α + 4.6231 
(2) 

While we present results based on full body re-orientations 

of a small satellite, our proposed algorithm can support con-

straints from the gimbaled re-orientation of payloads for 

fixed, larger satellites, by replacing the tslew computation 

model in Table 1 line 15. 

 

Performance of Inter-Satellite Networking 

To estimate the performance of the DTN protocol stack, we 

first evaluated the supportable data rate in the inter-satellite 

links between spacecraft in the constellation. We make the 

following assumptions: All spacecraft transmit at S-band 

within the 6MHz typically available to class A missions; the 

link distance is set to 6000km (from the OM module; we use 

the worst case for the inter-plane links since their distances 

are variable); they are equipped with an SSPA that can de-

liver up to 5W of RF power, and a dipole placed parallel to 

the nadir/zenith direction (typical for small sats). This de-

sign ensures minimal complexity since the SSPA can be di-

rectly connected to the antenna without needing splitters. 

Since the orientation of the spacecraft at any point in time is 

highly variable, we close the link budget assuming that both 

the transmitting and receiving antennas operate at the edge 

of the -3dB beamwidth. We consider that no atmospheric 

effects impair the links, and we select a ½ LDPC coding 

scheme together with a BPSK modulation, SRRC pulse 

shaping and NRZ baseband encoding. Using these inputs, 

we pessimistically estimate the link performance at 1kbps. 

Since multiple spacecraft can be in view of each other at any 

point in time (especially over the poles), and they carry om-

nidirectional antennas, there is potential for interference. 

For the physical layer, we assume that signal interference is 

mitigated using some form of multiple access scheme (e.g. 

Frequency or Code Division Multiplexing) – the reported 

1kbps data rate must be interpreted as that presented by the 

multiple access scheme to the upper layers of the protocol 

stack. Interference can also affect DTN’s routing layer. 

  
To route data through the time-varying topology of the 24 

satellite constellation, we simulate the system assuming that 

each of them is a DTN-enabled node with a simplified ver-

sion of the Bundle Protocol and the Schedule Aware Bundle 

Routing Protocol.  The DTN simulation uses the following 

inputs: The OM-provided contact plan (opportunities be-

tween any satellite pair in the network) is the basis for all 

routing decisions, and is specified as a six element tuple: 

Start time, end time, origin, destination, average data rate, 

range in light seconds. Second, the traffic generated in the 

constellation, provided by the optimizer as a function of av-

erage collections, indicating when bundles are created, who 

sources them, who they are destined for, and the OM-

provided relative priority flag with 14 levels. Bundles of size 

of 2000 bits (1645 bits of observational inference data plus 

20% of overhead due to the protocol stack) are generated 

and broadcasted for every GP observation, and communica-

tions are assumed error-less at 1kbps. The priority levels are 

also used to set the Time-To-Live (TTL) property of all bun-

dles such that: Priority 1 has a 15min TTL, priorities 2 and 

3 have a 30min TTL, and priorities 4 to 15 have a 50min 

TTL. These rules let the network automatically discard stale 

information and minimize traffic congestion.  

 
 

Figure 5 – Latency of data bundle delivery over all satellite pairs 

compared to the gaps between satellite FOR access to any region. 

For any satellite pair of given priority of DTN comm, if longest 

latency is less than shortest gap, each satellite can be considered 

fully updated with information the other, i.e. perfect consensus in 

spite of distributed scheduling on a disjoint graph. Each box repre-

sents 25%-75% quartiles, circle is median, whiskers show max/min 

 

End-to-end latency experienced by 8341 bundles generated 

and sent over a 6 hour simulation (<1min DTN runtime) is 

shown in Figure 5. This latency is computed on a bundle-

per-bundle basis, and measures the absolute time difference 

between the instant a bundle is delivered to the destination’s 

endpoint (akin to TCP port), and the time it was originally 

created. Assuming a perfect multiple access scheme, any 



spacecraft might receive a copy of a bundle that was not 

originally intended for it, causing the problem of packet du-

plication in the system due to physical interference. If not 

dealt with, these extra copies would be re-routed and create 

exponential replication problem that would overwhelm the 

entire system. To mitigate this, we take advantage of the ex-

tension blocks defined in the Bundle Protocol (Scott and 

Burleigh 2007). Particularly, every time router decides the 

next hop for a bundle, it appends an extension block with 

the identifier of the intended next hop. If another spacecraft 

receives a copy inadvertently, the router simply discards it.  

 

Results indicate that latency is indeed affected by the bundle 

prioritization, however the effect is not monotonic because 

prioritization only happens at the bundle layer (e.g., radios 

have queues of frames, but they do not know about priorities 

in upper layers). Bundles with priorities 1-6 typically expe-

rience latencies of ~10s, with few outliers up to 15 minutes. 

This is quick enough for most of any satellite’s knowledge 

to be transferred to the next two approaching any region 

(Figure 5). Also, no high priority bundles were dropped due 

to TTL expiration. Bundle with lower priorities experience 

larger latencies of ~2 minutes on average. The time to reach 

a region by satellites with priority³3 is long enough for all 

bundles to be delivered, therefore all generated schedules by 

individual satellites have implicit consensus (because they 

use the same inputs). Access gaps for satellites with prior-

ity³4 is out of Figure 5’s Y-axis range. Latency was found 

to deteriorate non-linearly with increasing number satellites, 

bundle size due to more model parameters, and bundle traf-

fic due to more observations. Future implementations will 

model bundle interference, trade-offs between omni vs. di-

rectional antennas, variations in bundle size and broadcast 

frequency, and their impact on latency.   

 

Performance of the Imaging Scheduler 
The DP-based optimizer ingests outputs from all modules to 

find the best observational path that maximizes cumulative 

value till any given time, per satellite. We compare results 

from the use case in running the proposed algorithmic 

framework in 2 scenarios. One, the scheduler runs on 

onboard and uses collected information from other satellites 

as they come through the DTN every 10 minutes. Lowering 

(increasing) this re-scheduling frequency based on onboard 

power or processing constraints will improve (lower) the 

quality of results. Two, the scheduler runs on the ground and 

uses collected information from other satellites as they 

downlink. The ground stations are placed near both poles to 

emulate an optimistic scenario of ground contacts (thus, 

value update and rescheduling) twice an orbit i.e. ~30 per 

day. Lowering the contact frequency will lower the quality 

of results, e.g. current Cubesat missions commit to 2 con-

tacts per day at NASA and 4-5 per day commercially. 

The onboard run uses updated value of any GP, based on all 

bundles about that GP that have arrived (executed schedule 

and inference data from others ingested in Table 1 line 5). 

Since the scheduler is distributed and runs per satellite, it 

risks knowing everything or nothing about any GP, based on 

DTN’s relay from other satellites. Our implementation 

shows that the constellation predicts GP value at an average 

of 4% different from their actual value, due to bundles about 

GPs arriving later than the satellite already observes them. 

This happens only for some outliers in the one or two hop 

connections (Figure 5), thus >95% of the GPs in all 5 re-

gions are observed. Longer the DTN latency, more the dif-

ference between the assumed (“what it thinks it’s seeing”) 

and recorded value (“what it’s actually seeing”) of fast-

changing phenomena, lower the cumulative value.  

 
Table 2—Comparison of optimizers run Onboard vs. Ground. A 

constellation with no agility sees 8.4% of the GPs, in either case) 

 
Scenario#1 

(Distributed) 

Scenario#2 

(Centralized) 

Cumulative Value (6h) 26347 21820 

% of all GP observed 95.2% 99.2% 

 

The centralized run has no risk of overlapping observations 

because all sats “know” every other’s schedule, allowing for 

>99% of GPs seen. However, value functions are based on 

information obtained approximately an orbit earlier, due to 

collection-uplink-reschedule-downlink latency between any 

satellite pair. Our implementation shows that the constella-

tion assumes GP value at an average of 70% different from 

recorded value, due to lack to timely communication of 

value updates. While the exact difference is a function of 

sensitivity of value updates to schedules executed by differ-

ent sats (currently fractional decay with observation, 2%-8% 

variation in inference), it shows that in fast changing envi-

ronments, a responsive constellation’s performance is better 

captured by OSSE-driven metrics beyond simple coverage.  

 

In the presented case study, the DTN-enabled decentralized 

solution provides 21% more value over 6 hours than the cen-

tralized implementation of the same algorithm. If we lower 

the transiency of the phenomena to an hour (currently 15 

mins for precipitation) i.e. time resolution of OSSE-outputs; 

or if we focus on the poles (currently mid-latitude floods) 

where there is more FOR overlap i.e. increased processing 

complexity, and ISL interference i.e. more DTN latency, the 

centralized solution may provide more value. The proposed 

scheduler may be evaluated for a given user scenario, and 

run either way or as a combination.  

 

The time taken to run the algorithm per sat was 1% of the 

planning horizon, evaluated on MATLAB installed in a Mac 

OS X v10.13.6 with a 2.6 GHz processor and 16 GB of 2400 

MHz memory.  
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