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Abstract— Surveillance operations include inspecting and
monitoring river boundaries, bridges and coastlines. An au-
tonomous Unmanned Aerial Vehicle (UAV) can decrease the
operational costs, expedite the monitoring process and be
used in situations where a manned inspection is not possible.
This paper addresses the problem of searching and mapping
such littoral boundaries using an autonomous UAV based on
visual feedback. Specifically, this paper describes an exploration
system that equips a fixed wing UAV to autonomously search
a given area for a specified structure (could be a river, a
coastal line etc.), identify the structure if present and map
the coordinates of the structure based on the images from the
onboard sensor(could be vision or near infra-red). Experimental
results with a fixed wing UAV searching and mapping the
coordinates of a 2 mile stretch of a river with a cross track
error of around 9 meters are presented.

I. INTRODUCTION

This paper describes an exploration system that equips a

fixed wing UAV to autonomously search a given area for a

specified structure such as river or coastal line, identify the

structure if present and map the coordinates of the structure

based on images from an onboard sensor(could be vision or

near infra-red). We assume that the GPS position of the UAV

is known whereas the GPS coordinates of the structure are

unknown. Such a system could capture changing coastline or

river boundaries, i.e., be helpful in situations where the GPS

coordinates of the structure are not exactly known. Since the

GPS coordinates of the river boundaries are assumed to be

unknown, we first find the river in the given area and then

track the river using the UAV. There are two main problems

that arise while building such a mapping system:

• Real time detection of the river using images from an

onboard camera.

• Control design for tracking the detected river using a

fixed wing UAV.

Related to these problems, the following are the main con-

tributions of this paper:

1) An off line learning algorithm and a real time detection

algorithm that can identify the river in a given image.

The real time algorithm runs at around 3 Hz and works

on both color and near infra red images.

2) Given a search area specified by the user, the UAV

exploration system can autonomously identify the river

in the given area and map its coordinates along a

specified river direction.

3) Experimental results with a fixed wing UAV searching

for the river and mapping its coordinates for nearly 2
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miles of a river with a cross track error of 9 meters in

Camp Roberts, California.

II. RELATED VISION BASED FOLLOWING LITERATURE

Vision based following has engaged researchers for nearly

two decades. Majority of the work done in this area relevant

to this paper is on ground vehicles following roads or

lanes. The two well know vision based tracking systems

for ground vehicles that travel at large speeds are that of

Dickmans et al. [1] and Taylor et al. [2]. Dickmans et al.

provide a road detection algorithm based on extended kalman

filter and employed a control strategy based on full state

feedback. The vehicle was tested at speeds up to 100 m/s

[1] in the race track(Autobahn). Taylor et al. [2] provide

a simple edge detection algorithm and compare different

control strategies (lead-lag control, full state feedback and

input-output linearization) for the road following problem.

The vehicle in the experiments [2] travelled at a speed of

around 70 km/hr.

Though there have been many approaches to vision based

landing [3] [4] and navigation [5] [6] of UAVs, structure

following by small autonomous UAVs is a relatively new

area. Our previous vision based road following work on a

short runway (refer [7]) was the first contribution in this

area without the use of any artificial markings. In [7], a

binary classifier is applied on simple pixel properties (such

as RGB color values) to discriminate the target (river) from

the background. Then, a connected component analysis is

applied to extract the target region. However, this approach

is not flexible enough to apply to varying colors of river and

the background.

In our second vision based following experiments [8], an

autonomous UAV tracked an aqueduct in the Crowslanding

Airbase, California for a distance of 700 meters based on

vision. The vision algorithm proposed in that work had two

main components: 1) A semi supervised learning algorithm

that extracts the target structure from a single sample image

and 2) a realtime detection algorithm that can detect the

target structure. The learning algorithm automatically gen-

erated a cross-section profile of the target structure with the

boundaries marked in it. The detection algorithm used this

cross-section profile to fit a cubic-spline curve to the target

structure. Though this vision algorithm worked on different

structures such as roads, highways and canals, the algorithm

did not work with the river that could have irregular bound-

aries. Also the vision algorithm in [8] assumed that the
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Fig. 1. Our first vision-based UAV navigation on outdoor environment
without artificial markings [7]: The experiment was done on a short runway.
The road detection was based on a off-line learning (supervised) of lane
marking and road pixel colors.

Fig. 2. Our Second vision-based UAV navigation tracking a canal [8]: The
experiment was done on a canal stretch of around 700 meters.

structure in each image is almost linear and the intensity

profiles are vertically correlated which may not be the case.

A. Challenges and the current approach

The following characteristics of a river makes it difficult

to detect relative to roads and aqueducts:

• The boundaries of most rivers are irregular.

• Rivers lack the directional texture which was a key

property used in [8].

• In fact, most rivers do not have any texture (except an

occasional texture generated by accidental sun reflection

or churning water at an obstruction).

One might try to detect a river by assuming that that the

river in a video image is mostly an uniform region. Then

one could apply an image segmentation algorithm to find

candidate regions and classify the river by looking at their

shapes (thin region crossing the whole image). However, the

image segmentation requires non-realtime computation and

its results are noise sensitive.

Therefore, in this paper, the idea of [8] is applied where

the time consuming segmentation algorithm is used only in

a off-line learning procedure. This offline procedure is used

to automatically extract the parameters for a pixel classi-

fication algorithm. For pixel classification, simple intensity

and texture features are used. Texture features are used here
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Fig. 3. State transition diagram of the exploration system.

because even though a river may not have any texture, the

surrounding land does. Then, a real time algorithm uses the

learnt parameters to find the river and non-river components.

Before presenting the detection and control algorithms, the

overall design of the exploration system is discussed in the

following section.

III. OVERALL DESIGN OF THE EXPLORATION SYSTEM

This section explains the different states of the UAV and

how the states are switched from one to another. The UAV

can be in any one of the following states:

• Idle

• Explore

• Vision-based tracking

• GPS-based tracking

• Align

• Safe state

Figure 3 shows the state transition diagram. The Idle state

is the initial state of the UAV. In this state, the airplane can

be either loitering around any GPS waypoint or tracking

a fixed turn rate command. If one wants the UAV to start

searching for the river, the human operator can change the

state of the UAV from Idle to Explore. In the Explore state,

the UAV is automatically guided to a circular search area

where it should look for the river. The center and the radius

of the search area are parameters that can be specified by

the human operator (these parameters are specified before

each flight and currently we do not change them on the fly).

After the UAV reaches the circular search area, the UAV is

made to track the circumference of the search area. The real

time vision algorithm (section IV) onboard searches for the

river in the images collected along the circumference of the

river. Once a river segment is found, the GPS coordinates

of the river segment are computed using the roll, pitch,

yaw angles and the GPS coordinates of the UAV. Then, the

UAV automatically transitions to the Align state based on

the direction specified by the user. In the implementation,

the user could choose the UAV direction to be either west

to east or east to west. Figure 11 illustrates an example

WeA11.3

360
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Fig. 4. (a) Example image for learning; and (b) the image segmentation
result. (c) The river is detected by finding the longest region across the
whole image.

where the user has chosen the east to west direction. In

the Align state, the UAV tries to orient itself along the

calculated GPS coordinates of the river. Once the UAV has

oriented itself, it first transitions to GPS-based tracking

and then to vision-based tracking. In GPS-based tracking

the UAV tracks the curve produced by the GPS coordinates

of the river. In Vision based tracking, the UAV tracks the

curve produced directly by the real time vision algorithm.

Though GPS-based tracking may not required, adding this

state improved the transition of the UAV from the Align

state to the Vision-based tracking state. Both these tracking

states involve the following basic control problem: Given a

curve, generate turn rate commands such that the fixed wing

UAV follows the curve. For this control problem, we use

the strategy suggested in [9]. Please refer to [8] for further

details. The UAV can be transitioned from any state at any

time by the human operator to a state called the Safe state.

As the name indicates, in the Safe state, the UAV is forced

to loiter around a known GPS waypoint. In practice, this is

very useful as the human operator has the ability to send the

UAV to this Safe state if the UAV is not following the river

well or in the case of other unfortunate events.

IV. RIVER DETECTION ALGORITHM

The proposed algorithm works on both color and near-

infrared images. We provide examples of both types. Figures

4-7 are color images and figures 15 are infrared. The

near-infrared has a very nice property that water absorbs

near-infrared wavelengths and appears black in the image.

Therefore, for the field test, a near-infrared camera was used

to maximize robustness.

A. Learning

The learning phase first applies the pyramid-linking image

segmentation algorithm suggested by Burt et al. [10] [11]. An

example image segmentation result is shown in Figure 4b.

In the majority of images, the river component happens to

be the longest region crossing the entire image. Hence, the

goal is to find such a region across the whole image. The

principle axis of inertia is found first for each segmented

region by using the image moments. The angle, θR, of the

principle axis for a given segmented region (R) is defined

as:

θR =
1

2
tan−1

2m11

m20 − m02

, (1)

where mij =
∑

q∈R (xq − x̄)i(yq − ȳ)j , x̄ =
∑

q∈R

xq

|R| ,

ȳ =
∑

q∈R

yq

|R| and (xq, yq) are the image coordinates of

(a) (b)

Fig. 5. The semi-supervised learning procedure requires user’s validation
on the classification result due to possible false detections: (a) false detection
due to segmentation error, and (b) false detection by a competing structure
(nearby road). The use of infrared can reduce the false alarms a lot.

pixel q present in the segmented region (R). The longest

region is found by examining the variance of the point

distribution along the principal axis. The final river detection

result is as shown in Figure 4c.

The segmentation-based algorithm is not accurate enough

for fully automated off-line learning. False detections occur

due to segmentation errors or by competing long regions

(such as nearby roads) as shown in Figure 5. Therefore,

the learning procedure involves manual validation where a

human operator provides additional feedback on whether a

result is correct or not. The user intervention is minimal

because it requires only a few mouse clicks during the entire

learning process even with a poor detection rate (say, 60-

70%). The detection rate greatly improved when using the

near-infrared sensor because the infrared intensity values of

the river region are more uniform than those of the visible

color sensor.

Once the result is validated, the pixel statistics of the river

and the background are collected. Five features are used

(three for near-infrared): RGB color values (total 3 or a single

intensity value for the near-infrared) and X- and Y -gradient

values for each pixel. To obtain the gradient values, 3 × 3
Sobel masks were applied. For each feature, its statistics are

fitted into a parametric distribution such as a Gaussian or

gamma distribution. Based on histograms of the collected

experimental data, gamma distributions are used for color or

intensity values and Gaussian distributions with zero-mean

are used for gradient values.

B. Realtime detection

Based on the learnt distributions, Bayesian likelihood is

used to classify whether a given pixel belongs to the river or

not. For fast calculation, log-likelihood and pre-calculated

table-lookup is used for the gamma distributions (RGB

and near-infrared intensity can only have 256 values). An

example pixel classification result is shown in Figure 6b.

There are some false classifications because the color of the

river is similar to that of trees. However, the classifier still

rejected many of the tree pixels due to the use of texture

features.

A connected component analysis is applied to the result of

the pixel classification algorithm. The method in Section IV-

A is applied to find the longest region. Once the river region

is found, a curve is fitted along the center of the river region.

The curve fitting procedure is illustrated by figure 7. To fit

the river curve, the detected river region is divided into n
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Fig. 6. (a) An example target image and (b) the pixel classification result.

(a) (b)

Fig. 7. Curve fitting procedure: (a) the river region is divided into n (n = 7

in our example) regions along the principal axis, and (b) a spline curve is
fitted onto the regions’ centers of mass.

(n = 7 in our example) regions along the principal axis of

inertia. Then, a spline curve is fitted onto the regions’ centers

of mass. The final result is shown in Figure 7b.

These image coordinates on the curve are then converted

to ground coordinates using the roll, pitch, yaw angles and

the height measurements from the sensors onboard of the

plane. Then using the GPS information of the UAV, the GPS

coordinates of the river can be estimated.

V. EXPERIMENTAL RESULTS

The exploration system was tested using a Sig Rascal

model aircraft (Figure 8). Low level aircraft control and

stabilization was performed by a commercial Cloud Cap

Piccolo avionics package (Figure 9) [12]. The camera was

mounted at an angle of θ = 10 degrees with respect to the

yaw axis of the aircraft (figure 10). The vision and the control

algorithms run on a PC104 onboard the UAV. The PC104

communicates directly with the Piccolo avionics through a

serial port. The flight tests were conducted at the Camp

Roberts, California. Figure 11 is a picture of the river over

which the UAV was flown. Figure 11 also shows the safe

waypoint where the UAV can be sent in the case of any

unfortunate incidents. The circumference of the search area

and the direction shown in figure 11 can be specified by the

user.

Test video of the river was collected first by flying a

helicopter under manual control. The helicopter was flown

at an altitude between 100 to 150 meters over the river. The

recorded onboard video was used as an input to the learning

phase of the river detection algorithm. For the experiments

using the fixed wing UAV, the UAV was flown at 135 meters.

This height was chosen to image the river with adequate

resolution. The vehicle would be able to detect and follow the

river if it was flying at a higher altitude but the data collected

would not be as useful due to poor resolution. Moreover,

Fig. 8. Sig Rascal Model Aircraft used for flight tests.

Fig. 9. Piccolo avionics package that performs low level flight control and
stabilization.

the vehicle was not flown at a lower altitude because the

controller would not perform well due to an excessively

myopic view of the river.

The GPS coordinates of points on the river as estimated

using the vision algorithm during the exploration are shown

along with GPS map of the Camp Roberts river in figure

12. We fitted a curve to these estimated GPS coordinates.

Figure 13 shows this curve. The average cross track error

of the estimated curve with respect to the centerline of the

river is approximately 9 meters. The GPS coordinates of the

UAV while tracking the river is shown in figure 14. The

yellow square region in figure 13 indicates a part of the

river where no data was collected. This is also the region

where the curve fitting is poor. In this region, the fixed wing

UAV was unable to follow sharp turns in the river. Figure 15

shows the processed, near infra red images collected when

the UAV was tracking the river.

VI. CONCLUSIONS

This paper addressed the problem of searching and map-

ping a stretch of river using a fixed wing UAV. The as-

sumptions are that the GPS coordinates of the river are not

known whereas the GPS position of the UAV is known. A

possible future direction would be to solve this problem
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Fig. 10. Camera is oriented at an specified angle θ with respect to the
yaw axis. Hence, if the aircraft is flying parallel to the ground plane, then
θ = 0 is the case where the camera is looking straight down.

Safe waypoint

Fig. 11. River in Camp Roberts miltary base, California.

Fig. 12. Coordinates of the river estimated from the vision algorithm during
the exploration shown with the map of the Camp Roberts river.

Fig. 13. Estimated coordinates of the river after curve fitting.

Fig. 14. GPS coordinates of the UAV tracking the river.

with faster detection algorithms. Currently the detection

algorithm processes the frames individually and does not use

information from previous frames. By performing filtering

across frames, one can increase the image processing speed

and hence as a result the control would be better. If the GPS

information of the UAV is also not known, then this searching

and mapping problem becomes a variant of a Simultaneous

Localization and Mapping (SLAM) problem using vision.

This SLAM problem in these outdoor environments with the

fixed wing UAVs travelling at 20 m/s would be a difficult

and a useful problem to solve.
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