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Abstract—Self-organizing networks promise significant expen-
diture savings for operators when rolling out modern cellular
network infrastructure, such as Long-Term Evolution (LTE) and
LTE-Advanced systems. Savings in capital expenditures (CAPEX)
and operational expenditures (OPEX) can be achieved in both the
network deployment and network operation phase. Particularly,
self-organized optimization of network coverage and network ca-
pacity is a key challenge to cope with the boost in mobile data
traffic that is expected in the next years and to benefit from the
growing market. We present a traffic-light-related approach to
autonomous self-optimization of tradeoff performance indicators
in LTE multitier networks. Introducing a low-complexity inter-
ference approximation model, the related optimization problem
is formulated as a mixed-integer linear program and is embed-
ded into a self-organized network operation and optimization
framework. Tuning site activity, transmission power, and antenna
downtilt are parameters of eNodeBs and Home eNodeBs. The
optimization procedure is carried out considering time-variant
optimization parameters that are automatically adapted with
respect to changes in the network. Simulation-based evaluation
of representative case studies demonstrates applicability and the
benefit potential of our overall concept.

Index Terms—Coverage and capacity optimization (CCO), mul-
tiobjective optimization, self-optimization, self-organizing net-
works (SONs), self-planning.

I. MOTIVATION AND BACKGROUND

ACCORDING to recent market studies, cellular networks

have to cope with the boost in data traffic in the next years

[1]: The overall mobile data traffic is expected to grow from

0.6 EB in 2011 by one magnitude in 2015 and by a factor of

18 in 2016. By that time, the forecast expects smartphones and

tablets to be accountable for more than 50% of the traffic and,

particularly, high-data-rate services, such as mobile video, to

dominate the requested mobile services. To support these future

mobile demands and to maximally benefit from the exploding

market, most operators introduce modern fourth-generation

(4G) wireless communication systems based on the Long-Term
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Evolution/System Architecture Evolution (LTE/SAE) standard

[2] and its extension LTE-Advanced [3]. The LTE rollout comes

along with many opportunities to reduce cost and complexity

for deploying and operating 4G wireless access networks. From

the operator perspective, hardware deployment and installation

cost (capital expenditures) and cost for network management,

physical resource rental, and equipment maintenance [opera-

tional expenditures (OPEX)] highly determine network prof-

itability and, therefore, are strong criteria for rollout decisions

(see [4] and [5]).

Self-organizing networks (SONs) are a key concept to take

full advantage of the mentioned opportunities, particularly in

the context of 4G multitier networks (MTNs). A high degree

of process automation promises significant OPEX reduction,

and the application of self-triggered advanced optimization

techniques (self-optimization) shall improve system capacity,

coverage, and service quality without manual intervention. The

strong interest in this topic is reflected by many recent activities

in the scope of SONs under the guidance of the Next Generation

Mobile Networks (NGMN) Alliance and the Third-Generation

Partnership Project (3GPP). While the NGMN Alliance mainly

provides economical and technical guidelines [6], [7], 3GPP is

responsible for the standardization of related network compo-

nents (see [8] and [9]). Concerning self-organized LTE MTNs

(SO-MTNs), relevant 3GPP specifications are covered by differ-

ent releases: LTE Release 8 contains fundamental specifications

for LTE systems that are currently deployed by most operators

[2], [10]. In addition to LTE system fundamentals, it covers ba-

sic specifications for Home eNodeB (HeNB) components, self-

establishment of network equipment, and automatic neighbor

relation list management [11]. However, it has been decided

that SON algorithms themselves are not standardized in Release

8 [12]. LTE Release 9 contains specifications for enhanced

HeNB and studies on self-organization for HeNB, self-healing,

and self-organized coverage and capacity optimization (CCO).

Further releases (10–12) continuously extend the specification

of LTE system features, particularly with respect to future LTE

Advanced systems [3], [13], [14]. In [15], 3GPP defines the

CCO-related technical requirements and specifies scenarios for

CCO assessment, e.g., coverage hole situations or coverage

overflow constellations when neighboring cells have too much

overlap and when system capacity is degraded.

Several initiatives have been established to investigate and

to contribute to self-optimization and self-configuration in

wireless communication networks [16]: As part of the Celtic

Initiative [17], the Celtic GANDALF project contributed at a

very early stage, for example, to automated troubleshooting
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and automatic tuning of network parameters [18]. The End-to-

End Efficiency project, which is funded by the European Union

(EU) within the Seventh Framework Programme (FP7), covers

some SON-related use cases, such as handover optimization or

intercell interference coordination [19]. Within the same EU

program, the SOCRATES project was established considering

SON aspects, such as integrated handover parameter optimiza-

tion and load balancing, automatic generation of initial inser-

tion parameters, and cell outage management [20]. According

to the SON use case specifications provided by SOCRATES

[21], NGMN Alliance [7], and in [16], our work is mainly

related to self-planning with respect to automatic CCO. This

task is basically located at the intersection of self-configuration

and self-optimization. Since we consider cells that are per-

manently switched off for CCO evaluation, our work might

also be related to the context of self-healing. Particularly, by

tuning transmission power and antenna downtilt, we consider

a subset of optimization parameters that is supposed to be

the most effective not only for CCO [16] but for self-healing

purposes as well [21].

Presenting an approach to closed-loop autonomous self-

optimization of coverage and capacity [16] that is applicable

centralized (whole network) or semicentralized (cluster-wise),

our work fulfills the following 3GPP requirements: First, hu-

man intervention is not necessary once optimization parameters

are initially specified. In fact, the optimization parameters that

are sensitive to dynamic changes in the network, e.g., the traffic

distribution and related interference parameters, are automat-

ically updated within the autonomously running CCO loop.

Second, static optimization components, e.g., the performance

measure thresholds for CCO triggering and the available config-

uration space, are fully customizable by the operator. Third, dif-

ferent cells and network areas are independently customizable.

In our approach, periodic or aperiodic detection of degraded

system performance automatically triggers optimization pro-

cedures that autonomously improve the performance by (re-)

configuration of basic control parameters, namely, transmission

power, antenna tilt, and transmitter activity (switch on/off).

Since maximization of coverage and maximization of capacity,

generally, are tradeoff tasks [22], we consider a typical multi-

objective optimization problem, as discussed in [23] and [24].

To cope with the contradicting objectives, we develop a traffic-

light-related decision scheme that optimizes MTN coverage and

capacity either jointly or in a hierarchical manner if significant

performance degradation need to be resolved. Furthermore, we

introduce a novel interference approximation model that allows

for reducing the overall computational complexity and that

leads to a linear formulation of the CCO problem.

Related work considering CCO is presented in [25] and [26],

where reinforcement learning methods are applied to iteratively

improve an expert system that defines rule-based decisions for

self-organized configuration of cell parameters. In contrast to

our CCO framework, such a model-free approach does not

require any a priori information since it does not consider

an explicitly formulated system model but is based only on

the observations it gets as feedback from system measurement

reports. On the other hand, the missing system model makes

it hard to interpret the decisions taken by a model-free ap-

proach, and consequently, it is difficult to influence model-

free approaches straightforwardly. Therefore, in our work, we

consider a model-based optimization approach that explicitly

reflects underlying system dependence relations but that adapts

its parameters automatically with respect to the observation

feedback from the dynamic system.

Further related work is the self-optimization of HeNBs

with respect to coverage optimization and interference control,

considered within the SOCRATES project [20]. Similar to

the work presented in [27], the considered macrocell (MC)

environment is static, and the eNB control parameters are not

jointly optimized. On the other hand, cell outage management

in SOCRATES [20] and self-organized eNB downtilt opti-

mization in [25] do not consider joint HeNB configuration.

Our approach, however, considers both tiers, i.e., MCs and

femtocells (FCs), jointly for optimization. Most of the related

work in the SON area considers a hexagonal grid network

model [28]. Since we observed effects that were specifically

caused by that artificial topology, e.g., a very high frequency

reuse potential due to cell symmetry, we switched to a more

realistic irregular network layout that implements propagation

characteristics of an urban environment.

The rest of this paper is organized as follows: In Section II,

we describe the considered LTE MTN model and the measures

and metrics that are used for system performance assessment

and system optimization. Particularly, we introduce our novel

interference approximation model as part of the optimization-

specific system model. We present the traffic-light-related

approach to autonomous CCO and the corresponding opti-

mization model in Section III. In Section IV, we carry out a

simulation-based proof of concept by demonstrating the perfor-

mance of our approach in representative case studies. Finally,

we conclude this paper and discuss future work in Section V.

II. SYSTEM MODEL

We consider downlink transmission in an LTE MTN, i.e.,

LTE eNodeB (eNB) related MCs and HeNBs that are deployed

indoors and that are associated with FCs. All cells are operated

within the same network, and all transmitters utilize the same

access technology [orthogonal frequency-division multiple ac-

cess (OFDMA)] in the same frequency band. Such a system

is also often referred to as a heterogeneous network (HetNet)

[3], but we will keep the phrase MTN since it emphasizes

the considered MC–FC topology. OFDMA FCs have been

proposed not only to overcome the indoor coverage problem

but also to deal with the growth of traffic within MCs [29]. We

assume FCs to provide coverage of approximately 10–50 m for

stationary or low-mobility user entities (UEs) that are located

at home or in small offices [30]. The corresponding HeNBs are

connected to the backhaul via a broadband connection such as

optical fiber or digital subscriber line, which basically enables

for centralized coordination.

In addition to an open-access policy for FC usage, we

consider cochannel FC deployment, which provides the largest

amount of available transmission bandwidth to eNBs and

HeNBs. However, full spectrum sharing can cause strong

cochannel (cross-tier) interference, and hence, interference
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control becomes even more important compared with a single-

tier network topology. Concerning autonomous CCO, it is a

challenge to incorporate intercell and cross-tier interference

into the optimization model without introducing too much com-

plexity. In Section II-B, we propose an approximation model

that describes multitier interference effects in a computationally

efficient way.

Each user in the system requests a certain data rate and

is associated with a predefined priority level. While the data

rate is directly related to the requested service, the UE priority

can correspond to either the service class or the user type,

e.g., Voice over Internet Protocol (VoIP) services might have

a higher priority than data services, or business clients may be

favored over private customers.

For system optimization, we consider the following control

parameters: Each eNB can apply several antenna downtilts

(electrical), i.e., it can increase its footprint by tilting up or

increase received signal power (RSP) near its location by tilting

down. Furthermore, each eNB may use different antennas and

adjust its transmission power within a certain range. HeNBs

are equipped with a static antenna and can control their trans-

mission power. Since we do not consider power allocation for

particular physical resource blocks (PRBs), all power modifica-

tions affect the whole transmission band.

A. Link Quality Computation

According to the LTE system specification, 16 channel qual-

ity indicators (CQIs) are distinguished [2]. Each CQI corre-

sponds to a supported modulation scheme and code rate for

downlink transmission, i.e., we can compute spectral efficiency

in terms of bits per second per hertz for each CQI. The

smallest nonzero spectral efficiency in present LTE systems is

0.25 bit/s/Hz for quadrature phase-shift keying (QPSK) and

code rate 1/8, and the largest spectral efficiency is 4.8 bit/s/Hz

for 64-quadrature amplitude modulation (QAM) and code rate

4/5. The system link budget specification defines what RSP and

what receiver reference sensitivity (RS) level are required to

support a certain CQI, such that the receiver can decode the data

with a transport block error probability below 10%. The RS typ-

ically considers thermal noise (−174 dBm/Hz) multiplied by

the transmission bandwidth, the receiver noise figure (9 dB), an

implementation margin (2.5 dB for QPSK, 3 dB for 16-QAM,

and 4 dB for 64-QAM), and a diversity gain (−3 dB; see

[10]). Different QoS requirements of a UE can be modeled by

modifying the corresponding CQI specifications accordingly.

To compute the link-wise RSP information with respect to

a certain transmitter configuration, we utilize the ray optical

approach presented in [31] and [32]. Comparing the achiev-

able RSP with CQI-specific RS requirements, we select the

maximum supportable CQI, and the corresponding spectral

efficiency describes the maximum supported link quality. If UE

t has rate demand rt and is served by either eNB or HeNB

((H)eNB) a, which supports spectral efficiency eat on its link to

t, the required bandwidth for successful downlink transmission

is computed as

bat =
rt

eat
. (1)

B. Interference Approximation Model

Since interference is one of the main limiting factors for

network coverage, capacity, and performance [21], it has to be

suitably considered for network operation and for network op-

timization. Resource allocation in terms of power and spectrum

allocation is the key component to apply intercell interference

coordination (ICIC) [7]. Practical schemes for interference co-

ordination are, for example, interference mitigation techniques

or soft frequency reuse [29], [33], [34]. For network operation

(simulation), we consider a system that applies interference

mitigation, i.e., certain parts of the transmission band might

be blocked to mitigate interference effects to other cells. For

incorporation into network optimization (CCO), we introduce

the following approximation model that describes the according

resource consumption in a computationally efficient way.

Generally, resource allocation considering ICIC is performed

on the basis of signal-to-interference-plus-noise ratio (SINR)

information, i.e.,

SINRatn =
pangatn

∑

a′ �=a pa′nga′tn + σ2
an

where pan denotes the transmission power of (H)eNB a on

PRB n, gatn is the channel gain on that PRB experienced by

UE t, and σ2
an is the (thermal) noise power [35]. As resource

allocation of other (H)eNBs a′ appears as an interference term

in the denominator, optimal resource allocation is a computa-

tionally hard combinatorial problem for practical problem sizes

[29], [36]. To evade this level of additional complexity on top

of CCO, we propose the following approximation model that

partitions the bandwidth, which is consumed at a transmitter

entity into resource bSRV that is allocated for serving user rates

on the basis of the signal-to-noise ratio (SNR) and into resource

bITF that is reserved (blocked) additionally for ICIC, i.e., the

total bandwidth consumption of an (H)eNB a is modeled as

linear superposition. Thus,

ba = bSRVa + bITF
a . (2)

Component bSRVa is the sum over the bandwidth that is allocated

to users that are served by a, where the user-specific amount

is computed according to (1). The blocked bandwidth bITF
a is

computed as a linear combination over all resources that are

allocated by interfered transmissions and where a link from

a′ to user t is interfered with impact factor qITF
aa′t ∈ [0, 1]. The

impact factor basically depends on the SNR difference and on

the frequency reuse potential of the related cells. Fig. 1 shows

a realization of the proposed approximation, assuming an equal

SNR for all transmission links and all interference links, a con-

stant interference impact factor of 1/2, and that each eNB has

to allocate two PRBs for serving an assigned UE. The depicted

allocation is obtained by assuming resource-allocation algo-

rithms that benefit from the frequency reuse potential, e.g., eNB

1 blocks the same PRBs to mitigate interference to UEs 2 and 3.

In a HetNet, there are typically many FCs, i.e., HeNBs,

located near each other and, hence, interfered by the same eNB.

Consequently, the transmit efficiency of those FCs can be sig-

nificantly increased by blocking bandwidth for FC interference
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Fig. 1. Exemplary PRB allocation at eNBs and approximation of resource consumption for eNB 1.

mitigation in the related MC. Inter-femtocell interference is ex-

pected to be low since the HeNB coverage area is generally very

small. This property allows for a reuse of the same PRBs at the

considered HeNBs without significant SINR degradation. Con-

sequently, it is beneficial for the system performance to align

the bandwidth that is blocked for interference mitigation at the

interfering eNB jointly over all affected FCs. We incorporate

these considerations into our approximation model as follows:

Each eNB additionally blocks bandwidth for FC interference

mitigation according to the maximum consumed bandwidth

at potentially interfered FCs. The bandwidth consumption at

HeNBs is determined by applying the approximation model,

considering FCs only. The amount of blocked bandwidth typ-

ically varies from eNB to eNB due to the spatial diversity

of rate demand and FC distribution. Since our interference

approximation model is an estimator for the expected average

amount of bandwidth that has to be reserved in the spectrum

to support the overall UE rates, we denote it as the bandwidth

reservation concept (BRC).

Please note that the BRC considers resources as a continuous

variable and that it does not describe how and where the

consumed resources are allocated in the spectrum. Skipping

the combinatorial problem of PRB assignment, our approach

allows for computationally efficient modeling of the HetNet

interference situation, particularly when highly loaded cells

operate near the limit of available bandwidth.

C. System Performance Measures

For system performance assessment, we consider the mea-

sures (performance counters) that are listed in Table I. The

measures either refer to the assessment of the related key

performance index (KPI) at one time step or they describe the

performance for the whole observation period, i.e., typically

for one operation cycle. The metrics for system optimization

refer to the overall observation period only. This is reasonable

since the considered optimization parameters are not varying

over an operation cycle. On the basis of the aforementioned UE

attributes, we define the measures from Table I as follows.

For optimization, we apply the cumulated priorities of cov-

ered UEs as a metric to describe system coverage performance.

Generally, a UE is covered if it experiences a certain minimum

SINR. We consider the sum rate of served UEs as a metric

TABLE I
SYSTEM PERFORMANCE MEASURES

to maximize system capacity. Here, a UE is served if the link

quality and the available resources at the assigned transmitter

are large enough to provide at least a certain minimum data

rate to the UE. Both metrics are used in the CCO objectives in

Section III-C.

For system simulation, we define UE coverage identically

as for the optimization. We consider the average of cumulated

priorities of covered UEs over all time steps as the cumu-

lated priorities of covered UEs for an observation period. This

measure might be compared directly with the optimization

metric. Analogously, we compute the cumulated priorities of

served UEs for an observation period. During simulation, some

covered UEs may not be served if there is not enough band-

width for serving all users jointly. Hence, if the latter measure

is smaller than the cumulated priorities of covered UEs, it

indicates capacity problems. The sum rate of served UEs is

averaged over the observation period to facilitate comparison

with the optimization metric.

The measures defined so far are aggregated over time, i.e.,

one value assesses the related KPI for the whole observation

period. To investigate the time-variant performance behavior

during simulation, we introduce the following two indicators

that describe the coverage and capacity status at a certain time

step. We consider

no. of served calls

no. of served calls + no. of unattended calls
(3)

as a coverage indicator. In contrast to the coverage measure

from before, here, a UE is defined as covered if its call,

i.e., its service-related data rate demand, can be served by an

(H)eNB. Hence, indicator (3) takes into account the actual user
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distribution and the specific user rate demands and the present

resource allocation at (H)eNBs. Correspondingly, the unat-

tended calls comprise all users that experience an insufficient

SINR (noncovered users) and the users that cannot be served

due to a lack of available transmission bandwidth.

Since we consider a system that applies interference mitiga-

tion techniques, we distinguish a bandwidth that is utilizable

(free) for serving users from a bandwidth that is blocked to

mitigate interference to other cells. Thus, the free bandwidth is

given by the difference between the total available transmission

bandwidth and the blocked bandwidth. Defining the ratio of the

bandwidth that is utilized for serving users and the free band-

width as a utilization ratio at an (H)eNB, we might consider

1−
bandwidth utilized for serving users

free bandwidth
=1−utilization ratio

as an indicator for the cell capacity status. This indicator can

become quite low although only a few users in the cell are

served. That effect arises if the amount of bandwidth that is

blocked to mitigate interference to UEs in other cells gets very

large, and consequently, the utilization ratio increases. Since

this measure might overemphasize the influence of surrounding

cells in terms of the blocked bandwidth, we consider

1 − ω utilization ratio − (1 − ω)
free bandwidth

total bandwidth
(4)

as a cell capacity indicator instead. Keeping in mind that the

free bandwidth is defined as the total bandwidth minus the

blocked bandwidth, the last term adds a partial amount of

blocked bandwidth—according to the chosen parameter ω—as

contribution to the cell capacity. This partial amount of blocked

bandwidth might be interpreted as potential capacity.

Since algorithms for radio resource management (RRM)

typically aim at serving all requested user rates, we assume that

the maximal utilization of available bandwidth is equivalent to

the maximization of the served sum rate when cells are highly

loaded.

In addition to the KPI measures previously introduced, spec-

tral efficiency might be be taken into account to assess system

capacity. However, we do not consider that measure since our

implemented RRM algorithms are not intended to maximize

spectral efficiency, and consequently, the simulation results

would not show any improvement that is (potentially) achieved

by applying our CCO approach.

III. SELF-OPTIMIZATION OF COVERAGE AND CAPACITY

Considering the MTN framework described in Section II, we

apply the following approach to joint CCO. The optimization

model comprises three key components.

1) The objective function represents the KPI metrics that

shall be maximized by tuning according control param-

eters, i.e., the optimization variables.

2) The optimization constraints model system dependence re-

lations and system restrictions, mostly in a technical sense.

3) Traffic-related input parameters describe spatial radio

conditions for different system configurations and the

distribution of user rate demand.

Fig. 2. DN generation principle. (a) Considered network area with (rectan-
gles) buildings. (b) Area is divided into patches of equal size.

Fig. 3. DN separation for (relevant) buildings.

The spatial radio conditions are obtained by the RSP and link

quality computation according to Section II-A. Alternatively,

this information might be derived from system observations

and UE measurements, e.g., according to the X-map estimation

approach proposed in [20].

A. Demand Prediction Model

To take into account the (future) situation of UE locations

and demands, we adapt the demand node (DN) concept in

[37]. It provides an approach to abstract from single UEs and

their mobility to reduce the number of UEs that have to be

considered. DNs model the spatial distribution of aggregated

UEs and their joint rate demand and priority with respect to a

certain reference time period. This concept is very useful when

computation time and memory are critical resources and UE

abstraction is reasonable, e.g., for transmitter location planning

or anticipative network configuration. DN distribution, priority,

and rate demand are very important parameters that have to

be accurately chosen to model the (future) de facto behavior.

Generally, DNs can be extracted from information provided by

operators or according to simulation statistics.

For proof-of-concept purposes, we generate DN parameters

according to the derived simulation statistics. Figs. 2 and 3

show how DNs are created: First, the network area in Fig. 2(a)

is divided into equal patches according to Fig. 2(b). Initially,

each patch corresponds to a DN. Since indoor users are of

special interest, buildings are represented by their own DNs

and are consequently separated from surrounding DNs. Fig. 3

visualizes this principle for two patches that cover a building;

separation here leads to three resulting DNs. DN priority pt
and DN rate demand rt can be generated as follows: Consid-

ering value v (pt or rt), we assume knowledge of observation

vpast from previous operation cycle(s) and information vfuture

for the next operation cycle, e.g., from historical data. Such

data might include individual forecast information provided by

the operator monitoring center and consider related prediction
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TABLE II
INPUT PARAMETERS AND OPTIMIZATION VARIABLES

algorithms [38] or information from the marketing department

regarding exceptional events such as the launch of new services

[16]. Introducing reliability indicator µ ∈ [0, 1] that describes

the level of confidence we have in prediction accuracy, we

compute

v = (1 − µ)vpast + µvfuture.

Prediction accuracy is evaluated by monitoring procedures

during the operation cycles. In case of significant differences

between predictions and realizations, the DN generation pro-

cess can be adapted accordingly.

B. Notation

We introduce notations according to Table II to describe

CCO-related input parameters and optimization variables. For

each selectable configuration at an eNB (MC) i ∈ SMC or

HeNB (FC) j ∈ FFC, we create element s or f in configuration

index set S or F , respectively. Setting related variable ys
or yf to one corresponds to the selection of the associated

configuration. We denote the set of configuration indexes that

belong to the same eNB i ∈ SMC or HeNB j ∈ FFC by Ci and

Cj , respectively. Hence, it holds that S =
⋃

i∈SMC Ci and F =
⋃

j∈FFC Cj . The configuration of eNBs provides transmission

power and antenna downtilt as control parameters, whereas

HeNB configuration considers the transmission power only.

To ensure the selection of exactly one configuration at each

transmitter, we generally apply
∑

s∈Ci

ys = 1, i ∈ SMC (exactly one config. per eNB) (5)

∑

f∈Cj

yf = 1, j ∈ FFC (exactly one config. per HeNB). (6)

For the sake of simplicity, we use notation transmitter s ∈ S ,

f ∈ F although this actually means a certain configuration at

the corresponding transmitter. Since many expressions in the

following are related to transmitters s ∈ S and to transmitters

f ∈ F , we introduce wildcard symbol a ∈ S ∪ F for short

notation. Utilizing the DN concept in Section III-A to abstract

from single UEs, it is facilitating to interpret DNs as UEs: Each

DN t requests a certain data rate rt and is associated with

priority pt, as described in Section II. Serving a DN requires

its assignment and a sufficiently large amount of available

resources to fulfill at least its minimum data rate demand rMIN
t .

As resources, we consider bandwidth bat that has to be allocated

for serving t, and that is computed according to (1).

Since we want to distinguish coverage-related terms from

capacity-related terms, we consider decision variables z̃st and

z̃ft that indicate which DN is covered by what (H)eNB and

decision variables sst and zft that describe the (H)eNB-to-DN

assignment for transmission. Variables bst and bft represent the

amount of bandwidth that is allocated at the (H)eNB to serve

DN t. We define

S ∗ T = {(s, t) ∈ S × T : est ≥ eMIN}
F ∗ T = {(f, t) ∈ F × T : eft ≥ eMIN}

St = {s ∈ S : (s, t) ∈ S ∗ T }
Ft = {f ∈ F : (f, t) ∈ F ∗ T }
Ts = {t ∈ T : (s, t) ∈ S ∗ T }
Tf = {t ∈ T : (f, t) ∈ F ∗ T }

to exclude variables for combinations that are irrelevant due

to an insufficient link quality (CQI 0). Finally, Ti =
⋃

s∈Ci
Ts

describes all DNs that can be assigned to eNB i ∈ SMC for

at least one configuration of i. Parameter eMIN is chosen such

that each transmission link supports CQI 1 or higher. Likewise,

eMAX is set to the maximally achievable spectral efficiency

in the system. Both eNBs and HeNBs can utilize a maximum

transmission bandwidth of BMC = BFC. To specify reasonable

values for the maximum feasible sum of covered priorities at

transmitters, we consider average user priority p̄a that might

be derived from (simulation) statistics. Furthermore, we define

a coverage-related minimum target rate rCOV. Assuming an

average spectral efficiency ea for each entity of a transmitter

category (eNB or HeNB) and an average available transmission

bandwidth Ba, we suggest setting the maximum feasible sum

of covered priorities to

pMAX
a =

Baea

rCOV
p̄a. (7)
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C. Joint Coverage and Capacity Maximization

We consider

max

{

λCOV

∑

t∈T

ptz̃t + λCAP

∑

t∈T

rSRVt

}

(8)

over variables ya, z̃at, zat, bat, b
ITF
a , ba, z̃t, zt, and rSRVt as

an objective function for Joint Coverage and Capacity MAX-

imization (JoCoCaMAX), where z̃t is the binary indicator for

coverage of DN t, and rSRVt describes the effectively served rate

[see (10) and (14)]. According to the discussion in Section II-C,

we assume the maximization of covered priorities to maximize

coverage and the maximization of the effective sum rate to

maximize capacity. By introducing weighting factors λCOV

and λCAP, we apply a scalarization approach to cope with the

multiobjective optimization problem [24].

Generally, coverage of a DN and its priority value by an

(H)eNB a requires the selection of the particular transmitter

and configuration combination. Furthermore, covered DNs are

counted only once in the objective function, i.e., constraints (5),

(6), and

z̃at ≤ ya, ∀(a, t) ∈ (S ∪ F) ∗ T (9)

z̃t =
∑

s∈St

z̃st +
∑

f∈Ft

z̃ft ≤ 1, ∀t ∈ T (10)

must hold. We model the minimum SINR condition for cover-

age by transmitter a as a minimum link quality constraint, i.e.,

eat

ea′t

≥ (z̃at + ya′ − 1)δITF,
∀(a, t) ∈ (S ∪ F) ∗ T
∀a′ ∈ St ∪ Ft

(11)

with respect to all potentially interfering transmitters a′ and

where the constraint becomes a tautology for all decision

variables ya′ that equal zero. Note that for λITF = 1, we allow

best link coverage only.

Since we want to obtain feasible solutions also for the case

that all covered DNs (UEs) become active and request some

data rate, we limit the sum of maximal coverable priorities at

transmitters by
∑

t∈Ta

ptz̃at ≤ pMAX
a , ∀a ∈ S ∪ F (12)

where pMAX
a is predefined according to (7) and might differ for

various transmitters.

For the capacity (transmission)-related decision variables zst
and zft, we consider constraints analogously to (9) and (10).

Generally, DN rate demand can be served by either an MC or

an FC, allocating the required amount of bandwidth bat that

is computed according to (1). The maximally served rate is

limited by the actual requested rate rt, i.e.,

bat ≤
rt

eat
zat, ∀(a, t) ∈ (S ∪ F) ∗ T (13)

but the total DN rate demand does not necessarily have to be

fulfilled. However, the effectively served rate

rSRVt =
∑

s∈St

estbst+
∑

f∈Ft

eftbft≥rMIN
t zt, ∀t∈T (14)

has to exceed at least the minimum rate requirement rMIN
t ;

otherwise, the DN cannot be assigned to a serving station.

This problem can arise if the available (remaining) bandwidth

resources at potentially serving (H)eNBs are not sufficient due

to the limitation constraint, i.e.,

ba=
∑

t∈Ta

bat+bITF
a ≤ B+(1−ya) · ∞, ∀a ∈ S ∪ F (15)

where we assume B = BMC = BFC, and the infinity term

on the right-hand side is introduced to avoid feasibility prob-

lems for nonselected configurations. The interference-related

bandwidth consumption bITF
a is computed according to the

interference approximation model discussed in Section II-B,

i.e., all FCs f ∈ F block an amount of bandwidth

bITF
f =

∑

(f′,t)∈F∗T ,

f′ �=f

qITF
ff ′tbf ′t (16)

to mitigate interference to users that are served by other FCs f ′.

Analogously, all MCs s ∈ S block

bITF
s =

∑

(s′,t)∈S∗T ,

s′ �=s

qITF
ss′t bs′t + max

f∈Fs,
yf=1

{

esf

eMAX

bf

}

(17)

where we assume that all DNs served by an FC and all inter-

FC interfered FCs are located nearby the HeNB and that the

interference impact factor in the cross-tier term, hence, scales

with the eNB signal strength to the HeNB location.

Finally, the constraints

∑

t∈Ti

ptz̃t ≥ pMIN
i ,

∑

t∈Ti

rSRVt ≥ rMIN
i , ∀i ∈ SMC (18)

ensure a minimum supported level of coverage and capacity

at the considered eNBs. We apply these constraints during the

optimization procedure to restrict the potential degradation of

coverage and capacity. Particularly, preserving KPI values from

previous optimization steps allows for a monotonous improve-

ment of solutions in iteratively conducted CCO processing.

Since all considered terms are linearly formulated and the

optimization variables are Boolean or from the positive con-

tinuous domain, the presented model is a mixed-integer linear

program (MILP). We utilize state-of-the-art MILP solvers such

as CPLEX [39] or Gurobi Optimizer [40] to compute (optimal)

CCO solutions.

D. Optimization Tradeoff

Generally, maximization of coverage and maximization of

capacity are tradeoff tasks, and we apply a scalarization ap-

proach to solve the joint optimization problem.

Considering JoCoCaMAX for λCOV, λCAP > 0 in (8), every

computed solution is Pareto optimal [24]. Since the weight vec-

tor (λCOV, λCAP) gives the normal of the tangential hyperplane

at the associated Pareto optimal point, the particular setting of

the weighting factors determines which Pareto optimal points

are found. If the coverage status and the capacity status are

both at a sufficient level, we apply JoCoCaMAX with respect

to the preservation of achieved KPIs according to (18) and
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Fig. 4. Operation scheme for an SO-MTN, considering (hexagons) eNB MCs,
(rectangles) HeNBs in buildings, and (mobiles) UEs.

considering customizable weightings λCOV, λCAP > 0 to fur-

ther improve both KPIs.

Otherwise, we apply the following approach to cope with

insufficient KPIs whenever one or both KPIs are significantly

degraded: By choosing according weighting factors λCOV,

λCAP ∈ {0, 1} for single target maximization [24] of a primary

(worst case) KPI, we counteract insufficient system perfor-

mance in a hierarchical manner. Nevertheless, we restrict the

potential degradation of each achieved KPI status in (18) by

defining parameters rMIN
i and pMIN

i accordingly for all eNBs

i ∈ SMC. This leads to the variants Restricted Coverage MAX-

imization (RCovMAX) and Restricted Capacity MAXimization

(RCapMAX), which both optimize a single (worst case) eNB

with respect to the preservation of achieved KPI performance

for all other eNBs. This approach is an integral part of the

optimization procedure described in the following section.

E. Autonomous Traffic-Light-Based System Control

Considering an MTN in its operational phase, we propose

a scheme for autonomous self-organized system control and

optimization guided by Fig. 4: All MTN cells monitor the

following relevant network status information, which serve

as input to track system performance in terms of the KPIs

introduced in Section II-C:

• number of served calls and number of unattended calls;

• requested data rate demand and UE priorities;

• utilized and blocked bandwidth.

The observation of insufficient system performance might

automatically trigger optimization procedures, i.e., aperiodic

optimization. Such a mechanism requires complex routines for

event detection and network status classification, particularly,

it has to be defined for how long a detection phase has to be

to provide reliable detection results. Hence, in this paper, we

apply time-triggered optimization, i.e., periodic optimization.

The proposed MTN control and optimization scheme is

applicable on single eNB level, on a cluster level, or on a

full network level. We define a cluster as a group of eNBs

such that the strongest interferers to the contained eNBs are

Fig. 5. Processing scheme for cluster-wise closed-loop autonomous optimiza-
tion of coverage and capacity. The related traffic light cases and the according
optimization preferences are shown in Fig. 6.

elements of the group. Since the interference situation depends

on the particular user and traffic distribution, clustering is

performed as an entry point of the CCO routines and utilizes the

available DN information and the interference approximation

model in Section II-B. For sufficiently long trigger intervals, it

makes sense to apply CCO at least in a semicentralized way,

i.e., cluster-wise established control instances (master units)

collect all necessary information and perform optimization

centrally for their cluster. We expect that this approach provides

a beneficial tradeoff between computational complexity and

optimization quality. The chance to find the global optimum for

the network, however, increases with the internal cardinality of

the considered clusters.

If the optimization loop is triggered, the following consecu-

tive subroutines are executed.

1) Generate predictions for DN priorities and DN rate de-

mands according to Section III-A.

2) Compute input parameters for CCO and for the interfer-

ence approximation model with respect to the generated

DN information.
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Fig. 6. Traffic-light-related performance cases (best first) and corresponding
optimization preferences.

3) Apply the traffic-light-related CCO loop in Fig. 5, con-

sidering the optimization preferences in Fig. 6.

4) If the CCO results (potentially) improve the MTN per-

formance, the corresponding optimal configurations are

applied at all (H)eNBs.

Particularly, the first two steps autonomously adapt the

optimization-related parameters every time optimization is trig-

gered. Since all further steps depend on the DN information

generated in step one, this task is very important. Fig. 5 shows

the optimization loop that is applied to implement the traffic-

light-related CCO: We first compute the KPI traffic lights

according to the JoCoCaMAX evaluation for the currently

selected (H)eNB configurations at CCO candidates and with

respect to the generated DN information. The selected config-

urations are fixed for the evaluation process, which leads to a

significantly reduced solution space and makes this step very

fast. If the KPI-related optimization metric exceeds a predefined

traffic light threshold, the resulting light indicates a green,

yellow, or red KPI status. Note that this is the expected future

traffic light status if the DN information includes the prediction

component, as introduced in Section III-A. The coverage and

capacity metrics obtained from the evaluation step define the

feasible settings for the minimum required number of covered

DN priorities pMIN
i and the minimum required amount of

served rate rMIN
i for all evaluated eNBs.

Depending on the particular performance status, we choose

the according optimization strategy and the related optimization

parameters: We apply the hierarchical optimization strategy

mentioned in Section III-D whenever one KPI level is signif-

icantly degraded, i.e., for status 2–9 in Fig. 6. We suggest to

prefer coverage as the primary KPI whenever the performance

of this KPI is not indicated by a green traffic light. Particularly,

for status 7–9 (insufficient coverage), we allow the capacity in

solutions to potentially degrade to a red traffic light in favor of

having the maximal degree of freedom available for coverage

maximization. This concept is implemented by choosing the

minimum parameters for constraints (18) accordingly. The op-

timization loop shown in Fig. 5 tries to maximally improve the

worst performing eNB according to a climbing-up principle and

removes it from the CCO candidate list if an improvement is not

possible. Finally, JoCoCaMAX is applied one time subject to

the preservation of the achieved coverage and capacity metrics.

After this step, the optimization loop terminates.

Generally, the KPI performance of all eNBs is preserved

in each optimization step by considering constraints (18) with

respect to the KPI metrics achieved in the evaluation step

for current configurations. Only for single eNB optimization,

the secondary KPI might degrade to a lower level, but the

degradation is bounded by a status-related minimum value. For

objective function (8), we do not consider eNBs that are not

an element of the CCO candidate list or not the worst eNB.

However, a minimum performance of those eNBs is guaranteed

by applying the constraining approach previously described.

IV. SIMULATION RESULTS

We demonstrate performance and behavior of the proposed

concepts and models for autonomous self-organized optimiza-

tion of coverage and capacity by simulative evaluation of

representative case studies. Our intention is particularly to

provide a proof of concept by demonstrating applicability and

achievable performance gains. With respect to this purpose,

we consider a reduced set of possible transmitter configura-

tions to keep the complexity appropriate, and we apply our

approach to one cluster, i.e., we consider the whole network

as one cluster. Investigation of further improvements by con-

sidering a larger configuration state space and the analysis of

potential performance loss due to more clusters are open for

future work.

A. RRM and Scheduling

For our simulation framework, we implemented RRM algo-

rithms that are sufficient for proof-of-concept purposes. Par-

ticularly, our RRM is not intended to provide all features

that RRM typically comprises [41]. Our RRM implementation

covers admission control, (H)eNB station assignment, PRB

allocation, rate allocation, and interference mitigation.

We apply the following model to avoid the scheduling of

resources over time (time scheduling): PRBs are the smallest

elements of resource allocation assigned by the (H)eNB RRM.

A PRB comprises 12 subcarriers (SCs) with a 15-kHz band-

width each. PRBs are nonconsecutively assigned to UEs such

that the UE rate demands are fulfilled. UEs with a low rate

demand may not require a full PRB for a certain period of

time, but they need one PRB from time to time. We model

this time scheduling by frequency scheduling, i.e., we allow

separate allocation of SCs over an extended time duration and,

hence, consider finer granularity in the frequency domain. This

approach is exemplarily motivated in Fig. 7, where we assume

that serving UE1 requires the allocation of a 45-kHz trans-

mission bandwidth. This is realized by an assignment of every

fourth PRB, where T describes the smallest time interval before

PRB reallocation is possible. We transform this scheduling over

time into an assignment in the frequency domain such that UE1

gets the first, fifth, and ninth subcarrier instead of the first, fifth,

and ninth PRB. This assignment is equivalently realizable in

the time domain for choosing the extended time duration as
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Fig. 7. Modeling scheduling over time by subcarrier allocation.

T ′ = 12T and if we assume T ′ to be sufficiently small such

that channel conditions do not change (significantly) over this

period.

The following RRM processing loop is independently ap-

plied for each simulation step.

1) Greedy Initialization: First, an initial assignment of users

to cells is performed. This is done by a simple greedy algorithm

that assigns each user to the cell with the best pilot SINR,

assuming a full interference situation.

2) Reassignment and Drop Users: In general, the user dis-

tribution is nonuniform, and therefore, cells experience differ-

ent loads. This fact might even lead to overloaded cells, i.e.,

not all users assigned to such a cell can be served. In that case,

we try to reassign the users that are not served to neighboring

cells that are not overloaded. Users that do need a small amount

of additional resources are preferred for reassignment. This

procedure is repeated until there are no overloaded cells or if

there are no further candidates for reassignment. If there are no

candidates left but there still exists an overloaded cell, some

users in that cell need to be dropped. The first execution of

this block assumes no interference, whereas all subsequent calls

take into account the current interference situation.

3) Resource Reservation: Interference mitigation is con-

ducted by asking neighboring cells not to use particular re-

sources (subcarriers). This procedure is applicable for real

systems since users typically know the neighboring cells and

their related signal strength. They share this information with

their serving cell such that the cell might trigger a request for

resource reservation if needed. For application to real systems,

the communication overhead can be kept low by assessing the

potential benefit of the reservation before asking the neigh-

boring cells to block resources. However, for our simulation

purposes, this can be neglected. Overall, this step allows for

the elimination of interference to the reserved resources, i.e.,

subcarriers, from (some) neighboring cells.

4) Resource Allocation: Using the information from the

preceding steps, the conditionally optimal resource allocation is

performed for all cells in parallel. Parallel execution is possible

since usage and reservation of resources are fixed at this stage.

If it turns out that no feasible allocation exists, more users

need to be reassigned or dropped, and all according steps are

repeated.

Fig. 8. Considered MTN in Munich, Germany, and visualization of signal
strength (RSP) distribution for two different antenna configurations of an eNB.
(a) Considered building map and MTN transmitters. (b) Initial MCs; light-gray
areas indicate handover zones. (c) eNB applying (left) 0◦ and (right) 5◦ antenna
downtilt.

B. Simulation Setup

We consider an LTE MTN according to Section II and

apply an RRM and scheduling implementation, as described

in the previous section. As target network area, we choose

the urban environment of Munich, Germany, that is shown

in Fig. 8(a): eNB antennas (large red circles) are mounted

on top of buildings (gray polygons), and HeNBs (small red

circles) are located indoors; users are depicted in small green

circles and can move outdoors as pedestrians or vehicles or

they stay inside of a building. Table III specifies the relevant

system and simulation parameters. The 12 eNB site locations

are derived from a previously conducted MTN deployment

stage; the according (initial) MCs are shown in Fig. 8(b).

The light-gray areas indicate potential handover zones, i.e., the

strongest two signals do not differ by more than 2 dB. HeNBs

are randomly distributed over buildings, following a uniform

distribution while keeping a minimum distance of 35 m to

the surrounding eNBs. The reference period associated with

one simulation step is 1 s. This is particularly relevant for UE

service requirements, UE mobility, and RRM procedures.

UEs can be located indoors and outdoors and show dynamic

behavior in terms of rate demand and mobility. UEs enter

the scenario with a randomly chosen lifetime such that the

expectation of active UEs stays constant during simulation.

After a UE has exceeded its lifetime, it disappears, and new UEs

might enter the scenario. The UE traffic profile describes the

requested mobile service, i.e., the type of service, the data rate

demand to meet the QoS requirements, and the priority level.

Table IV shows the considered services and their proportion in

the overall traffic. Basically taken from the recommendations in
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TABLE III
SYSTEM PARAMETERS FOR SIMULATION

TABLE IV
USER TRAFFIC PROFILE

[42], we modified the traffic profile, aiming at the generation of

an MTN that operates at the limits of its capabilities most of the

time, and that is temporarily overloaded. The effective service

distribution is chosen according to the proportions in Table IV.

Since we consider priority one for all services, the total sum

of coverable priorities equals the number of active UEs in the

system.

The applied UE mobility model determines how a UE moves

across the simulation area over time. Indoor UEs move accord-

ing to a random walk model and do not leave the building.

Outdoor UEs are either pedestrians that move according to the

random walk model or vehicles that follow a random waypoint

model. In the considered urban scenario, the waypoints are

modeled by an appropriate set of road points that describe

the irregular course of the roads. At each crossing point, the

UE randomly chooses the direction to go on; the way back is

excluded from that decision. All related mobility parameters are

listed in Table V.

To generate locally bounded overload situations, we intro-

duce a moving traffic hotspot model: Specifying a certain num-

ber of hotspot UEs and a hotspot radius, those UEs are located

circularly around a hotspot center UE and stay within the given

radius. The hotspot center UE is a vehicle UE that moves

TABLE V
USER MOBILITY PARAMETERS

TABLE VI
OPTIMIZATION PARAMETERS

along roads according to a configurable speed. All hotspot UEs

become active when the predefined hotspot activity period starts

and change their state to inactivity if the hotspot period is over.

The considered hotspot moves along roads in the middle part of

the MTN area.

C. Simulation and Optimization Procedure

Dynamic UEs are simulated according to the previous sec-

tion. With respect to the applied (H)eNB configurations, the

implemented RRM algorithms are performed to serve UE rate

demands. We compute all information that is required to evalu-

ate the system performance measures according to Section II-C.

Furthermore, we compute the average DN rate demands and the

average DN priorities over the considered operation cycle for

each serving station. This information serves as input data for

the traffic-light-related system control from Section III-E. Over-

all, we consider round about 2400 DNs that are generated in a

preprocessing step according to Section III-A using quadratic

patches of 100 m. The DNs are subdivided into outdoor DNs

and indoor DNs by roughly one third to two thirds.

For system optimization (CCO), we consider the following

configuration state space: Each of the 12 eNBs can apply 0◦

(low) or 5◦ (high) antenna downtilt for an omnidirectional an-

tenna pattern [see Fig. 8(c)]. Furthermore, each eNB can adjust

its transmission power according to the available power profile

that is specified in Table III. All 200 HeNBs provide just one

antenna pattern (omnidirectional) and support the power profile

that is specified in the according part of Table III. Hence, eNBs

and HeNBs can select from a set of seven and three different

configurations, respectively. We consider further optimization

parameters that are listed in Table VI. Since we apply the CCO

configuration results for identically repeated traffic simulations,

we have a perfectly reliable traffic forecast, which corresponds

to µ = 1 in the DN model in Section III-A. This allows for

investigation of the achievable performance gains, assuming

best case input parameter selection. The traffic light thresholds

for coverage and capacity refer to the optimization preferences
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in Fig. 6. The coverage threshold parameter from Table II and

the utilization weight in the capacity measure (4) are chosen

as λITF = 0.9 and ω = 0.9, respectively. The impact factors

qITF
aa′t introduced in Section II-B are set to 1, indicating that the

frequency reuse potential for interference mitigation is assumed

to be low in the dense urban scenario. Finally, we choose

tradeoff weighting factors λCOV and λCAP, such that they get

the same weight if all traffic is covered and slightly adapt them

with respect to the imbalanced preferences for coverage and

capacity.

Note that optimization parameters are defined once in ad-

vance to the start of the closed-loop operation scheme and that

they are fully customizable with respect to operator preferences.

Further modification of parameters, however, is possible be-

fore each operation cycle, but it requires human intervention,

which should take place only in emergency situations. With

this parameter settings, the optimization loop is triggered, and

an optimal configuration for that period is determined. After

applying the obtained optimal configurations at (H)eNBs, we

go back to the beginning of the considered operation cycle

and repeat the UE simulation. Following this approach, we are

able to provide a fair comparison between nonoptimized and

optimized configuration results.

D. Proof-of-Concept Results

In the following, we present three exemplary case studies

and briefly discuss the accuracy of our proposed interference

approximation model. The first case study shows that in case

of a short but strong traffic variation within an observation

period, an optimization process with long-term perspective can

fail to react on short-term events (degradation). By the second

example, we demonstrate the benefit potential of our approach

when the degradation periods are treated within suitably sized

optimization intervals. However, this example also shows that

even if a degradation period is not perfectly separated, there

is still significant potential for performance improvement by

appropriate reconfiguration. The third case study serves as an

example to investigate the behavior of our approach if it has to

cope with a coverage and capacity tradeoff situation. Finally,

the last part of this section illustrates the accuracy of our

interference approximation model.

1) Obliteration of Events (Degradation): In the first case

study, we investigated CCO for an operation cycle of 1 h and

a traffic hotspot activity of 5 min. According to Section IV-C,

the full operation cycle was monitored before optimization

was triggered. Afterward, the UE simulation was identically

repeated but with optimized configurations. Comparing the

behavior of the nonoptimized system with that of the optimized

system shows the following. On average, we achieve almost

no improvement by applying CCO. Contrariwise, the KPI

deficiencies at eNBs in the sphere of influence of the hotspot

slightly increase. The reason for this behavior is quite intuitive:

By generating DN information that is averaged over 1 h, the

influence of the 5 min of hotspot activity is obliterated, and

hence, the system is mainly optimized for the period of hotspot

inactivity. Consequently, this leads to performance degradation

during the hotspot activity period. We conclude that averaging

Fig. 9. Second-wise evaluation of the (upper) coverage indicator and the
(lower) capacity indicator at the eNB (4) that is most affected by the traffic
hotspot. The traffic hotspot is active from 20 to 40 s. (a) eNBs apply default
configurations. (b) eNBs apply configurations according to CCO results.

TABLE VII
COVERAGE AND CAPACITY INDICATORS FOR THE eNB
THAT IS MOST AFFECTED BY THE TRAFFIC HOTSPOT

over periods with significant variation in user behavior has to be

treated carefully. More precisely, we suggest that such periods

should be separately considered if the duration of one period is

considerably larger than the other period.

2) Handling Temporary Degradation (Traffic Hotspot): For

the second case study, we considered an operation cycle of

1 min and hotspot activity in the period from 20 to 40 s. The

CCO procedure is triggered every 5 s such that periods of sig-

nificantly different UE behavior are fully separated. Although

realistic trigger periods and the hotspot duration are typically

much longer than the considered values, we expect the results to

scale with the ratio of hotspot duration and the length of trigger

periods. However, scaling is limited by the case of full separa-

tion. Coverage and capacity indicators of the eNB that is most

affected by the traffic hotspot (eNB 4) are illustrated for opti-

mized and nonoptimized configurations in Fig. 9: The hotspot

activity period is easy to identify since coverage and capacity
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Fig. 10. CCO-related eNB cell footprints while handling coverage problems (switched off eNBs) and capacity problems (traffic hotspot). (a) Switched off
eNBs cause coverage holes (white spaces). (b) Remaining eNBs predominantly compensate the degraded network coverage. (c) Reconfiguration with respect to a
temporary traffic hotspot (bunch of spots below eNB 4). (d) Combination of coverage- and capacity-triggered reconfiguration.

indicators significantly decrease during that time. However, in

the optimized case, the coverage indicator is uncritical, whereas

the capacity indicator, although improving, remains in the crit-

ical zone. Considering the depicted KPI traffic light threshold

lines, we count the number of time instances where the KPIs are

above or below the corresponding lines and show the results

in Table VII. The coverage problems are fully resolved by

applying the optimized configurations, whereas the capacity

deficiencies are lowered by lifting up the indicator from red

to yellow for ten time steps. This improvement is mainly

achieved by reducing the interference from eNBs that surround

the eNB that serves the hotspot UEs. In the optimized system

configuration, the related eNBs increase their antenna downtilt,

and the serving eNB increases its transmission power to the

maximum. Fig. 9 shows high volatility and, sometimes, clearly

worse values for the capacity indicator in the optimized case

compared with the nonoptimized case. Both effects are caused

by our RRM implementation: First, volatility is explained by

the fact that the RRM is restarted for each time instance without

taking into account former assignments. Second, the RRM

is not designed to maximize the capacity indicator but stops

processing when a feasible assignment has been found. Thus,

our RRM does not take full advantage of the CCO benefits

as long as it has not to cope with problems in covering and

serving UEs. In other words, the monitored KPI values of the

nonoptimized system can outperform the values achieved by the

optimized MTN but only when the nonoptimized system does

not suffer from any KPI deficiencies.

3) Coverage and Capacity Tradeoff: Since in the second

case study the unattended calls in (3) result mostly from a

lack of available resources (bandwidth), the coverage indicator

mainly accounts for capacity problems. Therefore, we present

this case study that emphasizes coverage problems due to

insufficient RSP: We switch off eNB 2 and eNBs 7–10 perma-

nently to cause artificial coverage problems, particularly in the

potential influence zone of eNBs 4, 11, and 12 [see Fig. 10(a)].

Otherwise, we keep the simulation setup from the second case

study including hotspot activity in the period from 20 to 40 s.

First, we evaluate the scenario for the initial configuration that

TABLE VIII
SYSTEM-WIDE COVERED USERS, SERVED USERS,

AND SERVED RATE FOR CASE STUDY 3)

is derived from MTN deployment (see Section IV-B). Second,

CCO is triggered one time with respect to the UE traffic over

the overall simulation period. Third, the investigated simulation

period of 60 s is separated into three isochronous cycles for

operation and optimization such that the traffic hotspot activity

is exactly covered by the middle cycle. In this cycle, in addition

to coverage problems, there arises a lack of capacity. Hence,

tradeoff handling becomes a serious problem for CCO in the

second cycle.

Table VIII shows that the initial configuration can be sig-

nificantly improved in terms of coverage and capacity perfor-

mance. Furthermore, one-time CCO and cyclic CCO reveal

similar behavior for the first and third cycles. Marginal diver-

gences are expectable since our CCO approach utilizes a model

of the system and does not reflect it perfectly. In the second

cycle, however, we observe a significant difference: Applying

the cyclic CCO results reduces the coverage slightly while it

considerably improves the capacity, i.e., the number of served

users and the served rate. Contrarily, the one-time optimization

has to take into account the coverage problems from the first

and third cycles jointly, which reduces the degrees of freedom

for improving the capacity in the second cycle.
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TABLE IX
ACTIONS PERFORMED IN THE MTN FOR CASE STUDY 3) DUE TO AUTONOMOUSLY RUNNING CCO

To illustrate how our CCO approach basically works, we

discuss the details in Table IX with respect to the configuration-

related cell footprints shown in Fig. 10. Note that white spaces

indicate coverage holes, where the RSP is below −121 dBm.

The initial configuration leads to cells where coverage holes

exist, particularly at the cell border of eNBs 11 and 12 [see

Fig. 10(a)]. Consequently, the coverage holes at eNBs 11 and

12 and severe capacity problems have to be considered in the

first optimization cycle. Interestingly, the CCO solution for

the first cycle keeps the same tilts but powers up all eNBs,

supported by many FCs that operate at high power. This so-

lution improves the coverage situation significantly—compare

the white spaces in Fig. 10(b)—and allows for the reduction of

the capacity problems. In the second cycle, the active hotspot

causes capacity problems, particularly at eNB 4. Due to the

reconfiguration results from the first cycle, the coverage per-

formance is still tolerable. As expectable, eNB 4 applies the

high downtilt and operates at full power to serve most of the

hotspot users. Furthermore, all stations except for eNB 11 use

a high downtilt to mitigate interference to their neighboring

cells and, particularly, to the eNB 4 coverage zone. Overall,

the CCO results for the second cycle lead to a system footprint

that reveals more coverage problems as in the first cycle, which

is indicated by increasing white spaces. For the last cycle, the

coverage problems become more important again, whereas ca-

pacity is still an issue. The coverage problems, however, cannot

be fully resolved without reducing the capacity significantly.

Consequently, CCO leads, similarly to the first cycle, to power

changes at eNBs and to a slightly increased capacity.

This case study clearly points out the coverage and capacity

tradeoff strategy that is applied in our CCO approach. Cov-

erage performance is the preferred optimization objective but

only up to the point when the capacity performance becomes

(more) crucial. In this case, we allow the coverage to decrease

slightly in favor of gaining degrees of freedom for capacity

improvement. The preferences, however, can be adapted, or

even inverted, by choosing according optimization parameters.

The operating network benefits from the CCO since the cor-

responding reconfiguration provides the opportunity to locally

focus on the traffic hotspot, if necessary. This is, for instance,

reflected by the resource consumption at eNB 4, which can

increase the bandwidth for serving users from round about

66% for operation cycles one and three to more than 90% in

cycle two. Moreover, the one-time CCO results demonstrate

that even if the degradation period is not perfectly separated,

there is still significant potential for improvements by applying

our approach.

4) Interference Approximation Accuracy: To evaluate our

interference approximation model from Section II-B, we com-

pare the bandwidth that is allocated according to our model to

the bandwidth that is actually allocated during simulation. We

observe that the approximation gets more accurate the higher

the load of the incorporated cells is. This is not a serious

drawback, since on one hand, we are mostly interested in high

load situations and, on the other hand, if a cell is only slightly

loaded, neither interference nor reconfiguration is a crucial

matter. As the proposed optimization model considers the SNR

information to compute the required transmission bandwidth,

the obtained value is, in general, lower than the value from

actual simulation, where the SINR is considered. However,

the approximation model estimates the total bandwidth con-

sumption (transmission plus blocked) very accurately with a

deviation that is less than 2% on average.

Moreover, we investigated the accuracy of our interference

approximation model with respect to the previous case study

3). In this setup, all simulated MCs operate at full utilization for

most of the time, which is predicted almost exactly by the ap-

proximation model. As this specific example represents a high-

interference scenario, the bandwidth utilized at eNBs for actual

data transmission is just around 2–3 MHz. The only exception is

eNB 4, which mainly serves the hotspot users and utilizes about

8 MHz of bandwidth for data transmission during the hotspot

activity period. Due to the applied interference approximation,

the integrated CCO approach considers round about 75% of this

amount for transmission and a correspondingly higher amount

of blocked bandwidth.

However, particularly the exchange of blocked bandwidth to

bandwidth that is utilized for serving users at the hotspot eNB
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illustrates that the blocked bandwidth can serve as a kind of

potential capacity if there is a capacity shortage situation. This

observation is also reflected in the considered capacity indicator

(4), where we reduce the capacity by means of the last addend

if the free bandwidth is high, which means, by implication, that

the blocked bandwidth is low.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented concepts, models, and

algorithms for self-organized autonomous optimization of cov-

erage and capacity in LTE MTNs. A traffic-light-related control

mechanism automatically triggers reconfiguration of (H)eNB

transmission parameters to improve system performance, if

necessary. Running autonomously, the proposed optimization

loop takes into account the multitier topology of the network

and reconfigures eNBs and HeNBs with respect to situation-

aware adapted input parameters. Furthermore, we have intro-

duced an interference approximation model that particularly

allows for a linear formulation of the CCO problem. Our model-

based optimization approach is fully customizable by choosing

corresponding optimization parameters: The modification of

coverage and capacity weighting factors in (8) enables a prior-

itization of the target KPIs. Furthermore, the hierarchical strat-

egy to cope with the CCO tradeoff problem can be (re-)defined

by setting the traffic-light-related optimization preferences

[see Fig. 6]. All optimization parameters are customizable for

each eNB, i.e., the CCO approach is independently configurable

for different network areas. Although we can assume a correla-

tion between downlink performance and uplink behavior of the

system [43], all presented results hold in the first instance for

the downlink perspective.

By simulation-based evaluation of representative test cases,

we have demonstrated applicability and the performance of

our overall concept. We have achieved performance gains for

situations that suffer from a lack of network capacity, from a

lack of network coverage, and for mixed degradation constella-

tions. For a higher degree of freedom in the configuration state

space, e.g., by application of sectorized antennas, we expect

further improvements. We have observed that an obliteration of

short-term events, e.g., a temporary traffic hotspot, can happen

due to averaging over (relatively) large monitoring periods and

that such an effect can lead to further performance degra-

dation. Although the application of very short optimization

cycles is a solution to avoid such problems, it is generally

not applicable in practice since the related (computational)

complexity is too high. Hence, for future work, we suggest a

combination of sufficiently short periodic optimization cycles

and aperiodic trigger mechanisms that are sensitive to heavy

degradation.

In addition to the aforementioned aspects, future research

will particularly cover the application of adaptive clustering, an

acceleration of optimization procedures by heuristics, and the

analysis of spatial scalability, i.e., how does the network size af-

fect the overall complexity and solution accuracy. Furthermore,

we will implement an alternative method for DN generation

and will analyze CCO robustness with respect to uncertainty

in traffic predictions.
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