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Abstract—The main performance bottleneck of modern digital
subscriber line (DSL) networks is the crosstalk among different
lines (i.e., users). By deploying dynamic spectrum management
(DSM) techniques and reducing excess crosstalk among users, a
network operator can dramatically increase the data rates and ser-
vice reach of broadband access. However, current DSM algorithms
suffer from either substantial suboptimality in typical deployment
scenarios or prohibitively high complexity due to centralized com-
putation. This paper develops, analyzes, and simulates a new suite
of DSM algorithms for DSL interference-channel models called au-
tonomous spectrum balancing (ASB). The ASB algorithms utilize
the concept of a “reference line,” which mimics a typical victim line
in the interference channel. In ASB, each modem tries to minimize
the harm it causes to the reference line under the constraint of
achieving its own target data-rate. Since the reference line is based
on the statistics of the entire network, rather than any specific
knowledge of the binder a modem operates in, ASB can be imple-
mented autonomously without the need for a centralized spectrum
management center. ASB has a low complexity and simulations
using a realistic simulator show that it achieves large performance
gains over existing autonomous algorithms, coming close to the
optimal rate region in some typical scenarios. Sufficient conditions
for convergence of ASB are also proved.

Index Terms—Digital subscriber lines (DSLs), distributed al-
gorithm, dual decomposition, interference channel, multicarrier,
power allocation, spectrum management.

I. INTRODUCTION

A. Motivation

D
IGITAL SUBSCRIBER LINE (DSL) technologies trans-

form traditional voice-band copper channels into broad-

band access systems, which are typically capable of delivering

data rates of several Mb/s per twisted-pair over a distance of 10

kft in the basic asymmetric DSL (ADSL). Despite over 160 mil-

lion DSL lines worldwide as of 2006, the major obstacle for per-
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formance improvement in modern DSL systems remains to be

crosstalk, which is the interference generated among different

lines in the same cable binder. The crosstalk is typically 10–20

dB larger than the background noise, and direct crosstalk cance-

lation (e.g., [1], [2]) is difficult in many cases, due to complexity

(both amount of computation needed and the requirements for

new chip sets) or unbundling requirement (i.e., incumbent ser-

vice providers must rent certain lines to their competitors).1

Recently, various dynamic spectrum management (DSM)2 al-

gorithms have been proposed to address this frequency-selec-

tive interference problem by dynamically optimizing transmis-

sion power spectra of different modems in DSL networks. DSM

algorithms can significantly improve data rates over the cur-

rent practice of static spectrum management, which mandates

spectrum mask or flat power backoff across all frequencies (i.e.,

tones).

This paper develops, analyzes, and simulates a suite of DSM

algorithms for power allocation (or, equivalently, bit loading),

called autonomous spectrum balancing (ASB). Overcoming the

bottlenecks in the state-of-the-art DSM algorithms, ASB is a set

of algorithms that, simultaneously, is autonomous (distributed

algorithm across the users without explicit real-time informa-

tion exchange), has low complexity, is provably convergent

under certain sufficient conditions, and achieves rate region

close to the global optimum. The methods of “static pricing”

and “frequency-selective waterfilling” developed in ASB may

also be of interest to the general problems of decoupling cou-

pled objective function and of multicarrier interference channel.

B. Related Work on DSM Algorithms

One of the first DSM algorithms is the Iterative Water-filling

(IW) algorithm [3], where each line maximizes its own data rate

by waterfilling over the noise and interference from other lines.

The IW algorithm is autonomous, has a linear complexity in the

number of users and number of frequency tones, and has been

shown to converge in typical DSL deployments, e.g., [3], [4].

Although IW can achieve near optimal performance in weak in-

terference channels, it is highly-suboptimal in the widely-en-

countered near–far scenarios (which will be described in detail

in Section II), such as mixed central office and remote terminal

1Although in an unbundled network DSM can be applied to in-domain lines,
in many cases out-of-domain lines cannot be coordinated, leading to some sub-
optimality. Similarly the network management center can be used to coordinate
lines in a centralized fashion, however such a network management center would
require full knowledge of the network topology, which is often difficult to im-
plement in practice. Further discussion can be found in Section I-B.

2The DSM algorithms discussed in this paper are different from the “dynamic
spectrum sharing” algorithms, which are used to refer to opportunistic sharing
of the spectrum resources in wireless communications.

1053-587X/$25.00 © 2007 IEEE
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TABLE I
COMPARISON OF VARIOUS DSM ALGORITHMS

deployments of ADSL and upstream VDSL. This is in part due

to the greedy and selfish nature of the algorithm.

Recently two optimal but centralized DSM algorithms were

proposed, the Optimal Spectrum Balancing (OSB) algorithm

[5] and the Iterative Spectrum Balancing (ISB) algorithm [6],

[7]. The OSB algorithm addresses the spectrum management

problem through the maximization of a weighted rate-sum

across all users, which explicitly takes into account the damage

done to the other lines when optimizing each line’s spectra.

OSB has an exponential complexity in the number of users,

making it intractable for DSL network with more than five

lines. As an improvement over the OSB algorithm, ISB was

proposed to implement the weighted-rate sum optimization in

an iterative fashion over the users. This leads to a quadratic

complexity in the number of users, which makes the ISB

feasible for networks with a relatively large number of users.

However, an even more critical issue is that both OSB and

ISB are centralized algorithms, which rely on a centralized net-

work management center (NMC) to optimize the power spectral

density (PSD) for all modems. The NMC requires knowledge

of the crosstalk channels among all lines and all background

noise. Identification and transmission of crosstalk channel mea-

surements back to the NMC are not supported in existing stan-

dards either. The operation of NMC requires a lot of overhead,

in terms of both bandwidth and infrastructure. Furthermore, reg-

ulatory requirements on unbundling service make it impossible

to perform a centralized optimization. Finally, many lines in the

same binder terminate on different quad cards in the DSL Ac-

cess Multiplexer because customers in the same neighborhood

sign up for service at different times, which makes it hard to

have central coordination even if one can tolerate the costs.

A semi-centralized DSM algorithm called SCALE is pro-

posed in [8]. SCALE algorithm achieves better performance

than IW with comparable complexity. However, the algorithm

is not autonomous since explicit message passing among users

is required. Such explicit real-time message passing in an un-

coordinated fashion requires modems to have sophisticated

processing capabilities not available in DSL modems, including

blind synchronization, blind identification of the crosstalk

channel, blind detection of the transmit constellation used by

the crosstalk, and blind detection of the crosstalk signal.

The band preference method is a practical way of imple-

menting an optimized DSM PSD in a distributed fashion [9].

While the band preference method calculates the bitloading in

a distributed fashion, the band-preference coefficients (which

correspond to a spectral mask imposed on the waterfilling al-

gorithm) need to be calculated in some way, centralized or dis-

tributed. This often requires the use of a centralized spectrum

management center. The performance of the band preference

method depends on the choice of the specific spectrum man-

agement algorithm used.

IW, OSB, ISB, and SCALE mentioned above all assume syn-

chronous transmissions of the modems, which allows crosstalk

to be modeled independently on each tone. This synchroniza-

tion is rarely true in practice. Instead, the signal transmitted on

a particular tone of one modem will appear as crosstalk on a

broad range of tones on the other modems. This inter-carrier-

interference (ICI) complicates the DSM problem further. The

state-of-the-art results for asynchronous transmissions are the

two centralized greedy algorithms proposed in [10], bit-sub-

tracting and bit-adding algorithms. Both algorithms start from

the power spectral density (PSD) obtained with the ISB algo-

rithm in the synchronous case, and search for local optimal solu-

tions in the neighborhood by taking ICI into account. But again

these are centralized algorithms.

C. Summary of Contributions

The advantages of ASB algorithms are summarized as fol-

lows. First of all, ASB is autonomous: it can be applied in a

distributed fashion across users with no explicitly information

exchange in real-time. Furthermore, the algorithm has low com-

plexity in both the number of users and tones, and is proved to

be convergent under certain sufficient conditions on the channel

gains. In the synchronous case, the ASB algorithm has a sim-

ilar complexity as IW, but in the near–far scenario achieves a

performance much better than IW and very close to ISB and

OSB. In the asynchronous case, the ASB algorithm reduces the

complexity from those in [10], and achieves significant better

performance than the ASB algorithm that does not consider the

ICI. These features are obtained despite the convexity and cou-

pling in the optimization problem of DSM. The comparisons be-

tween ASB algorithms and other existing algorithms are listed

in Table I. It compares various aspects of different DSM algo-

rithms, where ASB attains the best tradeoff among distributive-

ness, complexity, and performance. Here we use to denote

the number of tones and to denote the number of users.
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Fig. 1. Mixed CO/RT distribution.

The key idea behind ASB is to leverage the fact that DSL

interference channel gains are very slowly time-varying, which

enables an effective use of the concept of “reference line” that

represents a typical victim line. Roughly speaking, the reference

line represents the statistical average of all victims within a typ-

ical network, which can be thought as a “static pricing”. This

differentiates the ASB algorithm with power control algorithms

in the wireless setting, where pricing mechanisms have to be

adaptive to the change of channel fading states and network

topology, or Internet congestion control, where time-varying

congestion pricing signals are used to align selfish interests for

social welfare maximization. By using static pricing, no explicit

message passing among the users is needed and the algorithm

becomes autonomous across the users. When adapting its PSD,

each line attempts to achieve its own target rate while mini-

mizing the damage it does to the reference line. We show such

mechanisms can attain the balance between selfish and socially

responsible operation. At the same time, each user in ASB still

keeps a local “dynamic pricing” of the individual power con-

straint, which enables its own optimization problem to be de-

coupled across the tones within each user. We prove the con-

vergence of ASB under an arbitrary number of users, for both

sequential and parallel updates. Since IW can be recovered as

a special case of ASB in the synchronous case, our proof tech-

niques extend those in previous work on IW [3], [11].

The rest of the paper is organized as follows. We intro-

duce the system model in Section II, for both synchronous

and asynchronous transmission cases. The spectrum manage-

ment problem and a general framework of ASB are outlined

in Section III. ASB algorithms for the synchronous and

asynchronous cases will be given in Sections IV and V, respec-

tively. We provide convergence proofs and simulation results

in Sections VI and VII. The complexity properties of the ASB

algorithm and the IW algorithm are given in Section VIII, and

we conclude in Section IX.

II. SYSTEM MODEL

ASB can be applied to many network topologies. In this

paper we will often examine a typical near–far deployment for

downstream ADSL transmissions with a frequency band up to

1.1 MHz,3 as shown in Fig. 1, since it is one of the scenarios

where DSM techniques can give significant performance im-

provement. In this scenario there are at least two twisted-pair

3The near–far problem does not occur in the upstream ADSL case, where the
transmission frequency band is below 138 kHz and crosstalk is minimal at such
low frequencies.

copper lines in the network. The first line is from the central

office (CO) to customer 1. Since customer 2 is far away from

CO, the service provider deploys a remote terminal (RT)

near the edge of the network, which connects with customer

2 through a relatively short copper line. In the downstream

transmission case shown in the figure, the transmitting modems

(TX) are located at the CO and RT, and the receivers (RX)

are at the customer homes. Each DSL modem transmits over

multiple frequency tones (carriers). Multiple lines sharing the

same binder generate crosstalk (interference) to each other on

all frequency tones. Although the RT extends the footprint of

the DSL network, it also generates excessive interference to

the CO line due to the physical proximity between the RT TX

and the CO RX and since the two lines are in the same binder.

However, CO TX generates little crosstalk to RT RX due to the

long distance between them.

A similar near–far problem also occurs in the upstream trans-

mission for VDSL, which operates at a frequency band up to

12 MHz, and line lengths are typically limited to less than 1.2

km [12], [13]. As a result, VDSL modems are typically de-

ployed at one point in the network (e.g., a RT node), thus do not

have the mixed CO/RT problem in the downstream transmis-

sions. However, due to the difference in customer home loca-

tions, shorter lines exhibit strong crosstalks into the longer lines

receivers in the upstream transmissions. Furthermore, in mixed

VDSL/ADSL deployments, RT-deployed VDSL will interfere

with the CO-deployed ADSL signals in the downstream.

Next we introduce the mathematical models for both the syn-

chronous and asynchronous transmission cases, following the

notation in [5], [6], and [10].

A. Synchronous Transmission

Consider a DSL network with a set of users

(i.e., lines, transmitting modems) and tones

(i.e., frequency carriers). Assuming the standard synchronous

discrete multi-tone (DMT) modulation, transmissions can be

modeled independently on each tone as follows:

The vector contains transmitted signals

on tone , where is the signal transmitted by user at tone

. Vectors and have similar structures: is the vector

of received signals on tone ; is the vector of additive noise

on tone and contains thermal noise, alien crosstalk and radio

frequency interference. We denote the channel gain from trans-

mitter to receiver on tone as . We denote the transmit

Power Spectral Density (PSD) , where

denotes expected value, and denotes inter-carrier spacing.

The vector containing the PSD of user on all tones as

.

When the number of interfering users is large, the interference

can be well approximated by a Gaussian distributed random

variable. The achievable bit rate of user on tone is defined

as

(1)
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where is the normalized crosstalk

channel gain from user to user , and

is the normalized noise power density. Here de-

notes the SINR-gap to capacity, which is a function of the de-

sired BER, coding gain and noise margin [14]. For notational

simplicity, we absorb into the definition of and . The

bandwidth of each tone is normalized to 1. Each user is typ-

ically subject to a total power constraint , due to the limita-

tions on each modem’s analog frontend: . The

data rate on line is thus .

B. Asynchronous Transmission

In practice, it is often difficult to maintain perfect syn-

chronization between different DMT blocks due to different

transmission delays on different lines. Compared with the

synchronous transmission case, here the received PSD of user

on tone , , also depends on other users’ transmit

PSD on tones other than tone ,

Here is the ICI coefficients estimated in the worst case [10],

and has the symmetric and circular properties, i.e.,

. Then the achievable bit rate of user on tone

in (1) needs to be revised as (with set to 1)

(2)

where . All the other system parame-

ters and constraints are the same as the synchronous case.4

III. SPECTRUM MANAGEMENT PROBLEM AND THE GENERAL

FRAMEWORK OF ASB

We consider the following spectrum management problem

(3)

4While windowing [15] at the transmitter and receiver can be used to lower
the DMT sidelobes and help reject ICI, in our experience a high level of ICI still
remains, leading to significant performance degradation. Thus it is an important
problem to mitigate ICI through DSM techniques.

Here denotes the target rate of user , and we can

pick an arbitrary user to be user 1. Due to interference between

users, Problem (3) is nonconvex. Furthermore, it is highly cou-

pled across users (due to crosstalk) and tones (due to total power

constraint as well as ICI in the asynchronous case), making it a

very difficult optimization problem to solve.

The rate region achieved by all users is convex in the asymp-

totic case when number of tones becomes large [5]. Thus by

changing the values of of all users , the solu-

tions of Problem (3) can trace out the Pareto optimal boundary

of the rate region.

It appears that any algorithm that globally solves (3) must

have knowledge of all crosstalk channels and background noise

spectra, forcing it to operate in a centralized fashion. In order to

overcome this difficulty, we observe that for optimal solutions

of (3), each user adopts a PSD that achieves a fair compromise

between maximizing their own data-rate and minimizing the

damage they do to other users. Based on this insight, we intro-

duce the concept of reference line, a virtual line that represents

a typical victim user within the DSL system. One choice, but

not the only one, for the reference line is to set it as the longest

line seen within a network, which tends to have the weakest di-

rect channel and see the worst crosstalk spectrum. Then, instead

of solving (3), each user tries to maximize the achievable rate

on the reference line, subject to its own rate and total power

constraints.

Note that the reference line is a fictitious line, and is used

to represent a typical victim in a DSL network. This is inde-

pendent of a particular binder, as no specific knowledge of a

binder’s configuration is assumed. As such no centralized con-

trol is necessary, and the algorithm can be implemented in an

autonomous fashion. The only knowledge a modem needs is its

direct channel, background noise and the distance from the CO

to the RT if it is RT distributed. All of this information can ei-

ther be measured locally, or, in the case of the CO to RT distance,

can be programmed at the time that the RT is installed. This al-

lows ASB to be implemented in an autonomous fashion during

run-time, with the PSD and bitloading calculated locally.

Since the main purpose of introducing the reference line is to

characterize the damage that each user does to other interfering

users, we will make the achievable rate of the reference line

user-dependent. In other words, from user ’s point of view, the

reference line’s rate is , where the achievable

bit rate on tone in the synchronous case is defined as

(4)

and, in the asynchronous case, as

(5)

Intuitively, the reference line serves as a penalty term in each

user’s optimization problem to align selfish behavior with social
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welfare maximization, and eliminates the need of explicit mes-

sage passing among users. Thus, instead of solving Problem (3)

which requires global information, we let each user solve the

following problem in ASB algorithm:

(OPT1)

We want to emphasize that the each user autonomously solves

a different version of Problem (OPT1). For user , Problem

(OPT1) only involves optimization over its own PSD , which

determines the achieved rates of itself and the reference

line . The interference generated by other users are con-

sidered as fixed background noise in the optimization, and the

achieved rates of other users in the network do not need to be

considered. After each user solves its own version of Problem

(OPT1), the crosstalk values change accordingly. Then each

user has to solve Problem (OPT1) again, repeating the process

until the PSD converges. The complete ASB algorithms will be

given the Sections IV and V, where each version of ASB de-

ploys a unique way of solving Problem (OPT1). In Section VII,

we will use “area of the rate region” as the performance metric

when comparing ASB algorithms with other existing DSM al-

gorithms (e.g., [3], [5]–[7], [10]).

To facilitate the analysis in the following sections, we also

consider a variation of Problem (OPT1), where we relax user

’s target rate constraint and replace the optimization objective

by a weighted rate sum of user ’s own rate and the reference

line’s rate seen by user , i.e.,

(OPT2)

Here the weight parameter , where means

user performs a pure selfish optimization, and means

the reference line’s rate will be maximized.5 In the synchronous

case, it has been shown in [5] that the rate region of Problem

(OPT1) (in terms of and ) is convex in the asymptotic

case with large number of tones. We can always find a value

of such that the optimal result of Problem (OPT2) is the

same as that of Problem (OPT1) (i.e., find a such that the

solution of Problem (OPT2) satisfies ) as long

as the latter is feasible. Thus the key challenge of the ASB

algorithm is to efficiently solve Problem (OPT2). The above

correspondence is not necessarily true in the asynchronous

case. In that case, we can still use Problem (OPT2) as an

approximation of Problem (OPT1) to derive an algorithm that

achieves good performance.

Remark 1: The crosstalk channels into the reference line

and are modeled using the empirical models that have been

developed within the standards [12], [13], [16]. These are based

5Problem (OPT2) can be derived from Problem (OPT1) using standard
Lagrangian relaxation of user n’s target rate constraint, where the dual
variable is chosen to be w =(1 � w ), which ranges from 0 to 1. This
weighted rate maximization representation was also used in [6] and [8].

on extensive field measurements and give a good representa-

tion of the typical crosstalk channels seen in practice. Alter-

natively, it is also possible for the operator to use their own

crosstalk channel models based on measurements made within

their specific network, or with more advanced channel models

which take into account both the inter-pair distance and non-

ideal twisting of the twisted pairs within a binder [17]. For the

empirical models used in standards, the only information needed

to calculate the crosstalk channel is the length of the reference

line, and the distance from the CO to the RT if a modem is

RT distributed. All this information can be pre-set by the net-

work operator at the time that a modem is installed. Although

it may be possible to update this information periodically over

the timescales of months or longer, such procedures are not re-

quired for the operation of the ASB algorithm.

Remark 2: The ASB algorithms use a static background noise

spectrum for the reference line , which is set to the line noise

seen by the reference line in the absence of self-crosstalk, i.e.,

crosstalk from other DSL systems. In our experience, using this

choice for the reference noise leads to good performance in

a broad range of scenarios. We believe the reason for this is

that in most typical DSL deployments, the shorter lines, which

could potentially cause severe crosstalk to the weaker lines in

the system, will be configured such that they reduce their PSDs

in the frequencies where the weaker lines are active. As a result,

in a DSL deployment with a reasonable distribution of rates,

each line should expect to see only a marginal increase in its

background noise spectrum due to crosstalk from the other lines

in the system. This provides an intuitive explanation why the

choice of self-crosstalk-free reference noise yields good perfor-

mance. Mathematically, it means that the specific engineering

problem structures in this non-convex and coupled optimization

problem can be leveraged to provide a very effective approxima-

tion solution algorithm.

Remark 3: The reference line transmit PSD is also static,

and is set to the PSD adopted by the reference line in the absence

of self-crosstalk, and with a background noise of . This PSD

will be set based on the spectrum adaptation algorithm running

on the modem when it operates in a fully selfish mode. In the

simulations later in this paper, we use conventional single-user

waterfilling to set , although in principle any static spectrum

management algorithm could be used. Although this choice of

reference noise and reference line transmit PSD is suboptimal,

it allows for an autonomous implementation, and as shown in

Section VII, leads to a significant performance improvement

over state-of-the-art autonomous algorithms, and in some sce-

narios leads to near-optimal performance.

IV. ASB ALGORITHMS IN SYNCHRONOUS TRANSMISSION

In this section, we develop an ASB algorithm for the syn-

chronous case, where the achievable bit rates of user and the

reference line (from user ’s perspective) are given by (1) and

(4), respectively. Since the transmissions on different tones are

orthogonal to each other here, we can use dual decomposition

[18] to solve Problem (OPT2), defined for each user . Al-

though Problem (OPT2) is nonconvex, we know from [5] that

the corresponding duality gap of Problem (OPT2) is zero in the

asymptotic case where the total number of tones is large, thus
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solving the dual problem can lead to optimal primal solution.

We name the algorithm in this section as ASB-S1, where we

solve Problem (OPT2) through a dual decomposition. Each user

solves Problem (OPT2) by solving a nonconvex problem on

each of the tones and choosing the dual variable (i.e., dy-

namic price) such that the total power constraint is tight. Then

users take turns to perform this optimization until the PSDs

converge.

By incorporating the total power constraint into the objective

function, we have the following relaxation of Problem (OPT2):

Here and needs to be chosen such that

. Then Problem (OPT2) can be solved by the fol-

lowing unconstrained optimization problem:

(6)

where denotes the PSD

of all users except user . Further define

(7)

then it is clear that can be decomposed into a sum across

tones of , . As a result, Problem (6) can be

decomposed into subproblems, one for each tone . The op-

timal PSD that maximizes is

(8)

where . Although is

nonconvex in , the maximization is over a scalar variable only,

and the optimal value can be easily found as follows. First

solve the first order condition, , which is equiva-

lent to

(9)

Equation (9) can be simplified into a cubic equation which has

three roots that can be written in close form. Then comparing

the value of at each of these three roots, as well as checking

the boundary solutions and , we can find out

the corresponding value of .6

6If an integer bitloading constraint is applied, then we can simply calculate
the PSD required to support each integer bitloading, and then evaluate the ob-
jective function L at the PSD corresponding to each integer bitloading value.
The optimal choice is then selected. This allows integer bitloading constraints
to be incorporated without increasing complexity. Furthermore, spectral mask
constraints can also be applied in a straightforward fashion by disregarding any
solution to the cubic equation that lies above the spectral mask, and adding the
spectral mask level itself to the set of points evaluated in the optimization.

User then updates to enforce the total power constraint,

and updates to enforce the target rate constraint. Both pa-

rameters can be found by a simple bisection search. Users then

iterate until all PSDs converge. The complete ASB-S1 algorithm

is given in Algorithm I.

Algorithm 1: ASB Synchronous Model Version 1 (ASB-S1)

1: Initialize PSDs: , , .

2: repeat

3: for all user do

4: Initialize ,

5: while do

6:

7: Initialize ,

8: while do

9:

10: , .

11: if then

12:

13: else

14:

15: end if

16: end while

17: if then

18:

19: else

20:

21: end if

22: end while

23: end for

24: until all users’ PSDs converge

Remark 4: The ASB algorithm leverages strong design

points from both OSB and IW. Like OSB, ASB uses a weighted

rate-sum to account for the damage done to other lines within

the network when optimizing each line’s spectra. This weighted

rate-sum leads to a significant performance improvement over

IW and in some scenarios leads to near-optimal performance.

Like IW, ASB uses an iterative approach, optimizing the PSD

of each user in turn.

Remark 5: The concept of a reference line has been em-

ployed extensively in heuristic-based DSM algorithms in the

industry, including the reference PSD method that is currently

mandated in the VDSL standards [12], [13], [16]. The reference

PSD method is used in upstream VDSL transmissions to mit-

igate the near–far problem. A similar technique has also been

recommended for downstream transmissions in order to pro-

tect existing ADSL services from RT distributed VDSL [19].

There is a strong connection between ASB and the reference

PSD heuristics adopted in standards. Although the technique

for optimizing the PSD in ASB is different to that in the ref-

erence PSD method, both algorithms use representative “refer-

ence line” that shows what a typical line in the network looks

like, and how it should be expected to behave. In this paper, we

also develop proofs for convergence properties of ASB.
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Remark 6: In considering only a single reference line, the

ASB algorithm makes an implicit assumption that, by protecting

the typical victim line in the binder, a user will indirectly pro-

tect other shorter lines (i.e., stronger lines). The ASB algorithm

could be extended in a straightforward way to include multiple

reference lines, which does not impact the convergence proper-

ties and only leads to a small increase in complexity. For each

extra reference line introduced into ASB, an extra local maxima

will appear in the optimization of (8). ASB algorithm evalu-

ates the objective function at each local maxima and chooses

the global maximum. As the frequency increases, we observe

that the global optimal solution chosen by the ASB algorithm

jumps from a lower local optimal solution to a higher one. This

is because, as frequency increases, the longest reference lines

becomes inactive due to weak direct channel in the high fre-

quency band, thus it is no longer necessary to protect this line.

A higher PSD is then chosen that corresponds to a higher local

optima. This new PSD will protect the second longest reference

line, which is now the weakest line in the system for that par-

ticular frequency. When there are reference lines, the ASB

objective function exhibits up to local maxima. The first

local maxima correspond to protecting each of the reference

lines, while the st local maxima corresponds to the com-

pletely selfish waterfilling solution, which is employed in the

very highest frequencies when all reference lines have switched

off due to weak direct channels. To simplify presentation, in this

paper we only focus on the approach of using a single reference

line.

V. ASB ALGORITHMS IN ASYNCHRONOUS TRANSMISSION

In this section, we propose an ASB algorithm for the asyn-

chronous case, where the achievable bit rates of user and

the reference line (from user ’s perspective) are given by

(2) and (5). In this case, Problem (OPT2) is still non-convex

and highly coupled due to crosstalk. Different from the syn-

chronous case, a dual-based decomposition is not even appli-

cable here since the PSD across different tones are coupled

due to ICI.

We will introduce a greedy power shuffle algorithm into the

ASB framework, where each user first initializes the PSD level

by solving Problem (OPT2) assuming synchronous transmis-

sion (i.e., temporarily ignoring the ICI), then shuffle its PSD

(i.e., subtract a small amount from one tone and add it back

to another tone) to reach a locally optimal solution of Problem

(OPT2). Each user takes turns to perform this power shuffling

until the PSDs converge.

Let’s denote the objective function of Problem (OPT2) as

For notational simplicity, in the above expression we ignore

the dependence of on (which is assumed to be

fixed during user ’s PSD optimization). Define as the

incremental amount of power a user can change on a tone at

a time. In other words, represents the granularity of the

power shuffle, which trades off performance and convergence

speed.

For each user with fixed , each search iteration consists

of two phases: subtraction phase and addition phase. In the

subtraction phase, user reduces its PSD by on the tone

that yields the maximum increase in (or the smallest

decrease if decreasing on any tone leads to a decreased

objective). In the addition phase, user increases its PSD by

on the tone that yields the maximum increase in

(or smallest decrease similar as in the subtraction phase). This

iteration repeats until the net change of in the last

iteration (i.e., the sum of changes in both phases) is zero.

Note that the net change of objective function will never be

negative in a single iteration, since in the addition phase a

user can always add back to the same tone chosen in the

subtraction phase and recover the PSD level as in the previous

iteration.

The complete ASB-A1 algorithm is given in Algorithm 2.

Line 7 computes user ’s PSD similar as in the synchronous

case, given fixed transmission PSDs of other users, . Lines

8 to 10 refine the value of several times by taking ICI into

explicit consideration. For each value of granularity , we

apply the power shuffle (PS) subroutine (Algorithm 3) to up-

date until convergence is reached, which occurs once no fur-

ther greedy power swap can increase the objective. In a similar

fashion to the barrier method [20], we use the optimal solution

from the previous refinement as the initial position in the cur-

rent refinement. By using diminishing values of , we achieve

a much faster convergence rate and higher accuracy than can be

achieved with a single PSD granularity. Finally, user updates

in lines 11 to 15 using bisection search to make the target

rate constraint tight.

Algorithm 2: ASB Asynchronous Model Version 1 (ASB-A1)

1: Initialize PSDs: , , .

2: repeat

3: for all user do

4: Initialize ,

5: while do

6:

7: Compute as Lines 7 to 16 in ASB-S1

8: for all do

9: .

10: end for

11: if then

12:

13: else

14:

15: end if

16: end while

17: end for

18: until all users’ PSDs converge
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Algorithm 3: Power Shuffle (PS) subroutine

1: procedure

2: repeat

3: .

4: for all do

5:

6:

7:

8: end for

9:

10:

11: for all do

12:

13:

14:

15: end for

16:

17:

18:

19: until

20: return

21: end procedure

The PS subroutine is specified in Algorithm 3. Line 3 finds the

set of tones on which a decrease of PSD will not lead to a nega-

tive PSD. Lines 4 to 10 perform the subtraction phase, and lines

11 to 17 perform the addition phase. If a spectral mask constraint

is applied, then in the addition phase we exclude from consider-

ation any tones where addition would result in a spectral mask

violation. Each user always achieves a better objective

at the end of the PS subroutine, compared with the one achieved

by using ASB-S1 algorithm before the PS subroutine. This is

due to the monotonic increase of during the iterations

of the subroutine. Therefore, it is clear that the following is true.

Proposition 1: The PS subroutine always converges.

The convergence of the ASB-A1 algorithm is difficult to show

in general, due to the nonconvexity of Problem (OPT2) and the

fact that the PS subroutine can only reach a local optimal solu-

tion. In our simulations, however, the ASB-A1 algorithm always

converges.

Note also that, at the end of each iteration of the PS subroutine,

the power constraint of user is always tight. This is because

we take away from one tone in the subtraction phase, and

put it back into one tone in the addition phase. Thus the resource

is always fully utilized and no power violation occurs. This is

different from the bit-addition and bit-subtraction algorithms

in [10], where the power constraints are either loose or violated

during the whole process of the algorithm before convergence.

VI. CONVERGENCE ANALYSIS

In this section we prove convergence for various versions of

ASB. We will only consider the rate adaptive (RA) mode, where

users fix their weights and aim at maximizing their rates under

a total power constraint [14].7 We notice that previous DSL lit-

erature (e.g., [3], [5]–[8], [10], [11]) also focus on the RA mode

when discussing convergence. Even when adapts to enforce

target rate constraints, extensive simulations show that the algo-

rithms proposed in this paper still converge.

We first discuss the convergence of ASB-S1 in a two-user

case. The convergence of ASB-A1 has been briefly mentioned

in Proposition 1 for PS subroutine. We then consider the high

signal-to-noise ratio (SNR) regime for the reference line, under

which we prove stronger convergence results in both the syn-

chronous and asynchronous cases.

A. Convergence of ASB-S1 Algorithm

Here we discuss the convergence of the ASB-S1 algorithm,

where the nonconvexity of (9) makes it difficult to prove con-

vergence. In the two-user case, we can still show the following.

Theorem 1: Consider a two-user system with fixed and .

There exists at least one fixed point of ASB-S1, and the algo-

rithm converges if users start from initial PSD values

or on all tones.

The proof of Theorem 1 uses supermodular game theory [21]

and strategy transformation similar to [22], and is omitted here

due to space limitation. Supermodular game theory can be used

to deal effectively with nonconvexity problems, and the conver-

gence result in Theorem 1 does not require any condition on the

crosstalk channels. However, it is only for the case of fixed ,

and users have to initialize their PSD at particular values.

B. Convergence Under High SNR Regime of the

Reference Line

To reduce the computation complexity and gain more insight

into the solution structure, we simplify the problem under high

SNR approximation of the reference line as shown below.

1) Synchronous Transmission Case: The data rate of the ref-

erence line can be written as a linear function of the transmis-

sion power of user under additional assumptions. First, from

(4) we know that the reference line’s rate is a decreasing and

concave function in user ’s transmission power , and we can

approximate with the following linear lower bound:

(10)

In other words, this gives the upperbound on the rate loss of the

reference line due to the interference from user . Second, if we

assume that the reference line operates in the high SNR regime

whenever it is active, i.e., if then , then (10) can

be further simplified as

(11)

7The other categories of the spectrum balancing operation include Fixed

Margin (FM) mode and Margin Adaptive (MA) mode, In FM, users try to
minimize their power consumption under a target rate constraint. In MA, the
users maximize their margins after achieving the target data rate.
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where is the indicator function and equals to one when

event is true. Under (11), Problem (OPT2) becomes a convex

optimization problem. In particular, user ’s maximization ob-

jective function on tone in (7) is approximated by

thus the corresponding optimal PSD can be found in close form

as

(12)

where . This is a water-filling type of solu-

tion, with different water-filling levels for different tones. We

name it frequency selective waterfilling. Solution (12) is intu-

itively satisfying. The PSD for user should be smaller when

the power constraint is tighter (i.e., is larger), or the crosstalk

channel to the reference line is higher, or the noise level on

the reference line is smaller, or there is more interference

plus noise on the current tone.

This leads to a second version of the ASB algorithm in the

synchronous case, ASB-S2 algorithm as shown in Algorithm 4.

Algorithm 4: ASB-S2: ASB-S1 under high SNR regime

1: Replace Line 10 in Algorithm 1 with

The ASB-S2 algorithm turns out to be a special case of the

ASB-A2 introduced next for the asynchronous case, of which

the convergence results will be presented in Section VI-B-3.

2) Asynchronous Transmission Case: Due to the coupling

induced by ICI, it is very difficult to find the global optimal so-

lution of Problem (OPT2) in the asynchronous case. However,

if we also assume the high SINR regime and a linear approxi-

mation of the bit per tone formula on the reference line as in the

synchronous case, we have

Then, Problem (OPT2) becomes not only convex but also with

a objective function that is separable across tones., i.e.,

and the corresponding optimal PSD that solves Problem (OPT2)

is given as

(13)

where is chosen to make the total power constraint tight

. This is a generalization of the frequency selective

waterfilling solution of ASB-S2. The complete ASB-A2 algo-

rithm is given in Algorithm 5.

Algorithm 5: ASB-A2: ASB-A1 under high SNR regime

1: Replace Line 10 in Algorithm 1 with

3) Convergence of Algorithms ASB-S2/A2: We first consider

the convergence in the two-user case where users sequentially

optimize their PSD levels.

Theorem 2: The ASB-A2 algorithm globally converges to

the unique fixed point in a two-user system under fixed , if

.

Proof of Theorem 2 is given in Appendix A. The key idea be-

hind the proof is that the ASB-A2 algorithm leads to a contrac-

tion mapping in the PSD updates, when the maximum product

of the crosstalk channel gains is small enough. One extreme

case is in a practical CO/RT mixed deployment case, where the

crosstalk from CO to RT is negligible (i.e.,

.

Corollary 1: The ASB-S2 algorithm globally and geometri-

cally converges to the unique fixed point in a two-user system

under fixed , if .

Corollary 1 recovers the convergence results for iterative

water-filling in the two-user case [3] as a special case (by

deactivating the reference line).

We further extend the convergence results to a system with an

arbitrary number of users. We consider both sequential
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and parallel PSD updates of the users. In the more realistic but

harder-to-analyze parallel updates, time is divided into slots, and

each user updates its PSD simultaneously with other users in

each time slot according to (13) based on the PSDs from the

previous time slot, and the is adjusted such that the power

constraint is tight.

Theorem 3: Assume

, then the ASB-A2 algorithm globally and geometri-

cally converges to the unique fixed point in an -user system

under fixed , with either sequential or parallel updates.

Proof of Theorem 3 is given in Appendix B. For ASB-S2

algorithm, we have the following.

Corollary 2: If , then the

ASB-S2 algorithm globally and geometrically converges to the

unique fixed point in an -user system under fixed , with ei-

ther sequential or parallel updates.

Corollary 2 recovers the convergence results for iterative

water-filling in an -user case with sequential updates (proved

in [11]) as a special case. Interestingly, the convergence proof

for the parallel updates turns out to be simpler than that for

sequential updates. Although convergence proofs are given for

the case with a time-invariant update order, in our experience

the algorithm always converges even if the modems are updated

in a random fashion. Because of this, no centralized coordina-

tion is necessary for the updating of the individual modems, and

this can instead be triggered locally when a modem notices a

change in its local conditions, e.g., an increase in the measured

noise spectrum as a new modem comes online.

4) Physical Meaning of Convergence Conditions: The con-

vergence conditions in Theorems 2 and 3 and Corollaries 1 and

2 can be translated into constraints on the DSL network topolo-

gies. In downstream ADSL, the constraint can be translated into

the maximum distance between the transmitters of RT and the

CO, which limits the degree of crosstalk the RT transmitter can

generate to CO receiver. In upstream VDSL, this means that

lines cannot have lengths that are too different from one another,

otherwise the near–far effect from the short lines into the long

lines will cause severe crosstalk.

To make the physical meaning more concrete, we consider a

detailed DSL channel model that relates the channel gain to the

network topology. The magnitude of the direct channel can be

modeled as , where is the line propagation con-

stant, which depends on tone index , and is the line length.

The value of is well understood, and very accurate models

exist based on frequency, and the line diameter, construction,

materials, etc. The crosstalk channel, on the other hand, is not

as well understood.8 However, worst 1% case models for the

crosstalk channel have been developed, with which we can de-

velop bounds that will guarantee convergence in 99% of lines.

To be specific, the channel gain from transmitter to receiver

in the worst 1% case crosstalk model is ([12], [13])

. The constant ,

is the length (in kilometers) over which line and

8Significant progress has been made in developing more advanced crosstalk
channel models that take interpair distance and twisting imperfections into ac-
count [17], however this work requires detailed knowledge of the twisted pair
geometry in order to estimate the crosstalk channels, something that is not avail-
able in an autonomous algorithm.

Fig. 2. Physical parameters of the DSL network.

come into close contact in the same binder and electromagnetic

coupling can occur, is the frequency on tone (in megahertz),

and is the distance from the transmitter of to the re-

ceiver of line (in kilometers). A graphic illustration of the no-

tations is shown in Fig. 2.

The convergence conditions for ASB-S2 is based on

normalized channel gains . First con-

sider the two user downstream ADSL case. For the channel

from the CO TX to the RT RX, ,

where is the length from the CO TX to the RT

TX, and is the length of the RT line. In this case, we

have

. For ADSL, the maximum de-

ployment length is typically 5 km, so we can use this

to bound , i.e.,

. For any particular value of ,

the upperbound of can be maximized across , which is

typically achieved at which corresponds to the highest

frequency at 1.1 MHz (i.e., interference is most severe on high

frequencies). Next, consider the channel from the RT into the

CO,

, where

. We can again maximize across (up to 1.1

MHz) for any particular value of . To satisfy the conver-

gence condition in Corollary 1, we need to find such that

in the synchronous

case. Using an SNR-gap of 12 dB, which includes a coding

gain of 4.2 dB and a noise margin of 6 dB, it turns out that all

values of satisfy the convergence conditions as

shown in Fig. 3, which means ASB-S2 always converges in the

2-user case for all deployment scenarios. In the user case,

we find that, in the sufficient condition for convergence, the

constraint on the maximum distance between the CO TX and

RT TX is too loose to be useful in practice. In our experience we

find that ASB converges for a broad range of typical scenarios

seen in DSL deployments.

VII. SIMULATION RESULTS

In this section, we show the performance of the ASB algo-

rithms, using a realistic simulator based on empirical channel

models developed in standards and used extensively in the in-

dustry [12], [13], [16]. In these simulations we use continuous

bitloading and do not apply a bitcap. This is done since it results

in PSDs that allow a more intuitive interpretation. It is also pos-

sible to apply integer bitloading constraints, a bitcap, and PSD
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Fig. 3. Convergence conditions always satisfied in the two-user case since
max � max � < �2:2 dB.

Fig. 4. A four-user mixed CO/RT deployment topology (CP denotes customer
premises).

masks to ASB with negligible increase in complexity. We only

simulate the performances of the ASB-S1 and ASB-A1 algo-

rithms, which do not involve any high SNR assumptions.

A. Synchronous Transmission Case

Here we summarize a typical numerical example, represen-

tative of a large set of experiments we conducted, comparing

the performance of the ASB-S1 algorithms with IW, OSB, and

ISB in the synchronous transmission case. A four-user mixed

CO/RT scenario has been selected to make a comparison with

the highly complex OSB algorithm possible. As depicted in

Fig. 4, user 1 is CO line, while the other three users are RT lines.

ANSI noise model A [23] has been used, which consists of 16

ISDN, 4 HDSL and 10 conventional (non-DSM capable) ADSL

disturbers.

Due to the different distances among the corresponding trans-

mitters and receivers, the RT lines generate strong interference

into the CO line, while experiencing very little crosstalk from

the CO line. The target rates of users 2 and 3 have both been set

to 2 Mb/s. User 4 changes its target rate from 0 to 8 Mb/s, and

user 1 (the CO line) does not have a target rate constraint and

always sets its weight coefficient equal to unity in ASB-S1

(i.e., maximizes its own rate without protecting the reference

line). The reference line is chosen to match the longest line in

the network in terms of background noise and crosstalk channel

gains with users in the network. The reference line transmit PSD

Fig. 5. Rate regions obtained by various DSM algorithms.

is chosen according to single-user waterfilling without consid-

ering the interference from other users. Based on this reference

line, we get the rate regions9 shown in Fig. 5. Observe that ASB

achieves a near-optimal performance, almost identical to rate

regions attained by the globally optimal OSB and ISB, and sig-

nificant gains over IW. As a typical example, with a target rate

of 1 Mb/s on user 1, the rate on user 4 reaches 7.3 Mb/s under

ASB algorithm, which is a 143% increase (more than double)

compared with the 3 Mb/s achieved by IW.

Compared with IW, ASB exploits the special structure of the

DSL channel and thus achieves much better performance. Since

the direct channel gets worse with increasing frequency and

length, long lines cannot effectively utilize high frequencies.

The crosstalk channel strength, on the other hand, increases with

frequency. In the ASB algorithm, the RT lines transmit with

high power in the low frequencies where there is little crosstalk,

reduce power in the middle frequencies to protect the reference

line, and switch to high power again in the high frequencies

where reference line is not active. In the IW algorithm, how-

ever, the power allocation is as follows:

where the adjustable part is the same on all fre-

quencies. User first adjusts such that its total power con-

straint is tight. If the achieved rate is larger than the target

rate , it performs equal power-backoff at all frequen-

cies (i.e., increase the value of ), which unnecessarily reduce

the power at the very low (where little crosstalk is generated to

the CO line) and high frequencies (where the CO line is inac-

tive). As a result, the IW algorithm leads to highly suboptimal

performance, especially in near–far scenarios. As an example,

we plot the PSD allocations under the ASB, IW and ISB/OSB

algorithms in Fig. 6, with the achievable rates of four users as

, , for IW and

7.3 Mb/s for ASB-A1/ISB/OSB.

We also summarize a typical simulation of the ASB and IW

algorithms in a network with 10 lines, with the line length equal

to 5 km for the CO line, and 2 km to 4.5 km for the RTs in

9Note that only ASB uses the reference line idea.
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Fig. 6. Transmit spectra with synchronous transmission. (a) ASB-S1; (b) IW;
(c) ISB/OSB.

steps of 0.3125 km. The RTs are correspondingly located 2 km

to 4 km from the CO. The target rate for the CO modem was

Fig. 7. Mixed CO/RT distribution.

specified as 1.6 Mb/s. With this in mind, the target rates for

the RT modems, which are set equally on all RTs, are reduced

until the CO modem achieves its target rate. With IW, the RTs

are forced to reduce their rates to 0.8 Mb/s in order for the CO

to achieve it’s target. With ASB, due to the more intelligent

allocation of the RT transmit spectra, the RTs can maintain a

rate of 2.0 Mb/s while still ensuring that the CO modem achieve

1.6 Mb/s. The ASB algorithm achieves a gain of 122% in the RT

rate with respect to IW.

B. Asynchronous Transmission Case

Now consider the case of asynchronous transmission. Here

we summarize a typical numerical example comparing the per-

formances of the ASB-A1 and ASB-S1 algorithms. As depicted

in Fig. 7, the scenario consists of downstream transmission with

two ADSL modems, one 5 km CO line, and one 3 km RT line.

The RT TX is deployed 4 km downstream from the CO TX.

Figs. 8 and 9 show an example of the PSDs generated by

ASB-A1 and ASB-S1. The target rate for the RT is set to

3.85 Mb/s. Using ASB-S1, which does not take the effects of

the ICI into account when optimizing the transmit spectra, the

CO achieves 1.3 Mb/s. Using ASB-A1, the CO rate increases to

1.6Mb/s. With ASB-A1, the transmitpower is shifted further into

thehigh-frequencies topreventexcessiveICI to theCOline.Also,

since the ICI creates an unavoidable “noise” floor of at around

90 dBm/Hz, it is possible to increase the transmit PSD between

340 KHz and 680 KHz with minimal degradation to the CO line.

Fig. 10 shows the increase in performance relative to IW

achieved by ASB-S1 and ASB-A1, respectively, in an asyn-

chronous environment. As we see, even when the modems are

not synchronized, ASB-S1 achieves significant gains over IW.

Furthermore, if the transmit spectra are further refined through

the application of ASB-A1, even further performance gains are

possible. For example, if the CO rate is set at 1.4 Mb/s, ap-

plying ASB-S1 increases the RT rate by 48% over IW. Applying

ASB-A1 leads to a further increase in the RT rate of 186%,

leading to a total gain of 234% over IW.

C. Sensitivity Analysis of the Reference Line Choices

In previous simulation examples, we choose the reference

line to match the longest line in the binder. Here we study the

robustness of the performance to the choice of reference line
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Fig. 8. Transmit spectra with asynchronous transmission: ASB-S1.

Fig. 9. Transmit spectra with asynchronous transmission: ASB-A1.

Fig. 10. Performance gains of ASB-S1 and ASB-A1 over IW under asyn-
chronous transmission.

length. We run simulations in a two user scenario as in Fig. 7, as-

suming that the modems operate synchronously. For these sim-

ulations, we vary the length of the reference line, but hold the

length of the CO line in the binder at 5 km.

Fig. 11. Sensitivity of ASB-S1 to choice of reference line length.

Fig. 11 shows the achievable rate regions with the different ref-

erence line length. Obviously, optimal performance is achieved

by setting the reference length to 5000 m, the length of the weaker

CO distributed line. We notice that the performance is relatively

insensitive to the choice of the reference line length, especially

during a broad range of 4050 m to 6000 m. Only when the ref-

erence line becomes extremely inaccurate (i.e., around 4020 m

or less), which seldom happens in practice, performance starts to

degrade rapidly. This is because with a 4020 m reference line, the

ASB algorithm assumes that the RT TX is located only 20 m from

the reference line RX (recall that the RT RX is actually 4000 m

from the CO RX). This will lead to a huge crosstalk channel from

the RT to the reference line, and the RT is forced to reduce power

in the entire frequency band within which the CO transmits. As

can be seen, the performance of ASB is quite insensitive to the

mismatch between the length of the reference line and the length

of the longest line in the binder. And even for quite big errors in

reference line settings, the attainable rate region by ASB is still

much larger than IW.

Mathematically, this means that the dependence of the values

of the local maxima of this nonconvex optimization problem on

the crosstalk channel coefficients is sufficiently insensitive for

the observed robustness to hold.

VIII. COMPLEXITY ANALYSIS

Here we compare the complexity of ASB-S1 algorithm with

the IW algorithm, which is summarized in Table II.10 Running

time is measured based on the results of Matlab programs run-

ning on an MS-windows machine with a P4-2.8 GHz processor.

Real time operations based on hardware implementation would

be several orders of magnitude faster. The example we simu-

lated includes a total of tones and lines. Cy-

cles till convergence is number of outer-cycles required through

all of the users before convergence occurs. We typically see that

only three outer-cycles are necessary for the rates to converge

within 1% of the previous cycle.

10The complexity result of ASB-A1 algorithm was summarized in Table I,
and the corresponding analysis details are omitted due to space limitation. The
complexities of OSB, ISB, and SCALE are too high to be comparable to ASB
or IW, and are omitted here.
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TABLE II
ALGORITHM COMPLEXITY

A. Complexity Analysis for IW

Iterative waterfilling consists of an outer cycle that iterates

through users, and an inner loop that adjusts the total power of

the current user until the target data rate is achieved. For each

user , we use a bisection on within the inner loop, which

is both efficient and robust. In the inner loop, each user needs

to find the power required to hit its target rate constraint. Typi-

cally achieving a precision of in the total power setting is

sufficient to hit the target rate with high accuracy. This requires

iterations of bisection search.

For each iteration within the inner loop under a fixed value of

, a standard waterfilling algorithm must be applied with the

following complexity11:

1) Find the optimal water level such that the total power con-

straint is satisfied and allocated power is positive on all ac-

tive tones: operations [24].

2) Calculate based on the optimal water level:

operations.

3) Calculate the corresponding bitloading: operations.

Hence the total complexity of a single waterfilling is oper-

ations, where one operation is either an addition or a multipli-

cation. Considering the 34 iterations of the bisection search, the

iteration through all of the users, and the iteration of the whole

process until convergence, the total complexity of IW is then:

, where is the number of cycles

required until convergence.

B. Complexity Analysis for ASB-S1

ASB-S1 consists of three levels of iterations, with the out-

ermost cycle iterating through users. Within each cycle, each

users runs an outer loop where it updates until the target data

rate is achieved, and an inner loop where it updates until the

total power constraint is satisfied. The bisection search is used

in both loops. To achieve a precision of in both and

, we need a total of iterations. Within each it-

eration, the complexity is dominated by finding the roots of a

cubic equation [e.g., solving (9)], which requires 44 operations

in total [25]. This has to be repeated on all tones, leading to a

total complexity of . Hence the total complexity of ASB-S1

is . High SNR approximation

would further reduce the operations count.

It is important to realize that the order of complexity for ASB

is the same as IW: , and the actual running time of ASB

is still well within the bounds for practical implementation. This

implementation viability is in sharp contrast to the higher com-

11Also, the inverse Channel-Signal-to-Noise-Ratio (CSNR) must be calcu-
lated, and the tones sorted according to the CSNR. However this only needs to
be done once for each outer cycle, and can be re-used for all inner-loop itera-
tions. Hence this has a minimal impact on complexity.

plexity order and centralized schemes of OSB and ISB, which

do not offer much rate region gains over ASB.

IX. CONCLUSION

This paper developed a suite of DSM algorithms referred to

as ASB, which are autonomous, have a low complexity and

achieves significant performance gains over the prior state-of-

the-art autonomous algorithms such as Iterative Waterfilling. In

typical scenarios ASB also achieves near-optimal performance,

which was previously only possible with the centralized, and

highly complex Optimal Spectrum Balancing algorithm.

The convergence of the ASB is proven for an arbitrary

number of users in rate-adaptive mode. In particular, ASB

includes IW as a special case, thus the convergence proof of

our algorithm extends and generalizes the convergence proof

of IW. ASB can improve system performance with both syn-

chronous and asynchronous transmission, where the latter is a

particularly under-explored research area where only limited,

high-complexity heuristics were previously available.

The key concept that enables ASB to successfully tackle

the non-convex, coupled, and high-dimensional optimization

problem is the reference line, which allows each user to opti-

mize its transmit spectra independently. Each user attempts to

achieve its own target rate whilst minimizing the degradation

caused to the reference line, which represents a typical victim

line within the DSL network. ASB applies this approach of

“static pricing” coordination in a rigorous manner with prov-

able theoretical properties, leading to a significantly enlarged

rate region compared with IW. The reference line idea can be

readily implemented using the reference lines already devel-

oped within standards. Although we have focused primarily on

ADSL in this paper, ASB is also applicable in VDSL systems.

APPENDIX

A. Proof of Theorem 2

The following Lemma is useful for proving Theorem 2.

Lemma 1: Consider any non-decreasing function and

non-increasing function . If there exists a unique such

that , and the functions and are strictly

increasing and strictly decreasing at respectively, then

.

Proof of Lemma 1: For any ,

. Similarly for any ,

. It then can be

verified that .

Denote as the PSD of user on tone after iteration ,

where is satisfied at the end of any iteration for

any user . One iteration is defined as one round of updates of

all users. The PSD update in the two-user case can be written as

follows:

(14)
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where , ,

and , and . Also define

. Without loss of generality, we assume that the total

power constraint is always satisfied at the end of any iteration.

In general, the total power constraint needs not to be tight, e.g.,

when summation of (which is determined by (12)) over all

tone is less than the power constraint even when .

This might happen in the case where is small enough (i.e.,

user ’s target rate is small). However, we can make the power

constraint tight in this case by defining an extra “virtual tone”.

The data rate achieved by user on the virtual tone is ,

where is a very small number and is the PSD allocated

to the virtual tone. Furthermore, the reference line is chosen to

be inactive on the virtual tone (i.e., ). Now from the

perspective of any actual line, loading power on the virtual tone

has very small yet positive impact on its own total rate (with very

small value ), and has no impact on the reference line’s rate.

Hence the user will always take any left over power and load

onto the virtual tone, and always operate at full power. Then it

is clear that

(15)

Also define

and

where , and . It is clear that

( , respectively) is non-decreasing (non-in-

creasing) in , and strictly increasing (strictly decreasing)

at (unless ,

which means the PSD converges). From (15) we always have

. Now we can show that

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

where (16) follows from the definition of and , (17) fol-

lows by using Lemma 1 and letting , (18) follows from

the definition of and , the expression of in (14), and

the fact that and

for any and , (19) follows by exchanging indexes and

, (20) follows by using for all

and , (21) follows by using the circulant property

of , i.e., , (22) by applying the argu-

ments from (16) to (21) again, and finally (23) follows by the

condition in Theorem 2. This shows that the ASB-A2 algorithm

is a contraction mapping form an initial PSD values. It can be

shown that is a norm, thus ASB-A2

globally converges to a unique fixed point [26, p. 183].

B. Proof of Theorem 3

We first prove the convergence in the parallel update case.

The PSD of user in tone after iteration is

The rest of the proof can be obtained similar as in Theorem 2

with the following: (see the equation at the top of the next page).

For the sequential update case, the convergence can be proved

by combining Lemma 1 and proof of Theorem 3.4.1 in [11].

First, define
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, and . Using induction, we

can find an matrix such that .

The final step is to show the maximum eigenvalue of matrix

is less than 1, which guarantees that ASB-A2 algorithm is

an contraction mapping in the sequential updates. Details are

omitted due to space limitations.
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