
©2020. All rights reserved.

Autonomous Spot:

Long-Range Autonomous Exploration of

Extreme Environments with Legged Locomotion (preprint version)

Amanda Bouman∗2, Muhammad Fadhil Ginting∗1, Nikhilesh Alatur∗2, Matteo Palieri1,

David D. Fan1, Thomas Touma2, Torkom Pailevanian1, Sung-Kyun Kim1, Kyohei Otsu1,

Joel Burdick2, and Ali-akbar Agha-mohammadi1

Abstract— This paper serves as one of the first efforts to
enable large-scale and long-duration autonomy using the Boston
Dynamics Spot robot. Motivated by exploring extreme environ-
ments, particularly those involved in the DARPA Subterranean
Challenge, this paper pushes the boundaries of the state-of-
practice in enabling legged robotic systems to accomplish real-
world complex missions in relevant scenarios. In particular, we
discuss the behaviors and capabilities which emerge from the
integration of the autonomy architecture NeBula (Networked
Belief-aware Perceptual Autonomy) with next-generation mo-
bility systems. We will discuss the hardware and software
challenges, and solutions in mobility, perception, autonomy, and
very briefly, wireless networking, as well as lessons learned
and future directions. We demonstrate the performance of the
proposed solutions on physical systems in real-world scenarios.3

The proposed solution contributed to winning 1st-place in the
2020 DARPA Subterranean Challenge, Urban Circuit.4

I. INTRODUCTION

Autonomous robot mapping and traversal of extreme en-

vironments under time constraints has a wide variety of

real-world applications, including search and rescue after

natural disasters [1], exploration of extreme planetary terrains

[2], [3], [4], and inspection of urban underground environ-

ments [5]. As a concrete mission, we focus on the DARPA

Subterranean (SubT) Challenge [6]: a robotic competition

that targets missions to explore, map, and search extreme

underground environments.

Extreme terrains typically involve mobility-stressing el-

ements that can impose conflicting requirements on the

development of mobility systems. For example, in the context

of the SubT challenge, the systems need to 1) be small

enough to move through passages as narrow as 80 cm in

diameter while carrying a large-enough payload capable of

providing high-levels of sensing, autonomy, computing, and

communication capabilities, and 2) remain operational for

long-duration missions (≥ 1 hour) while actively exploring

large areas (multi-kilometer in length) that require traversal

of mobility-stressing features, such as stairs, uneven terrain,

and risky, obstacle-laden areas.
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2Department of Mechanical and Civil Engineering, Division of Engineer-
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Fig. 1: Live-mission image of Autonomous Spot robot climbing down four
flights of stairs in the Urban Circuit of the DARPA Subterranean Challenge.
This platform is one of the elements in team CoSTAR’s solution that won
the Urban Circuit of this competition. (Image credit: DARPA).

Legged robots offer unique mobility capabilities which

make them highly suitable for traversing challenging en-

vironments that would prove difficult for wheeled robots,

as they have the ability to meet locomotion, size, payload,

and endurance requirements to operate in extreme environ-

ments. For some prominent examples, see: ANYmal [7], [8],

Robosimian [9], DRC-HUBO+ [10], Nimbro Momaro [11],

MIT Cheetah [12], BigDog [13], Ghost Robotics Vision

60 [14].

The robotics research community is now in the early stages

of empowering legged robots with high levels of autonomy

to carry out complex missions in challenging, real-life envi-

ronments [15]. Ramezani et al. [16] equipped the ANYmal

quadruped with a LiDAR SLAM framework for autonomous

mapping capabilities. The solution in [16] requires manual

teleoperation to build an initial map of the environment,

upon which the robot can autonomously navigate within the

constructed map. The method is demonstrated in an industrial

complex.

Bayer et al. [17] demonstrated fully autonomous explo-

ration in rough, single-level, indoor and outdoor terrains.

The researchers augmented an experimental hexapod plat-

form with commercial vision sensors which were used for

localization and terrain mapping. Miller et al. [14] endowed a

Ghost Vision 60 quadruped with higher levels of autonomy

to explore a tunnel environment during the 2019 DARPA

Subterranean Challenge, Tunnel Circuit. They present one

of the first efforts in autonomous legged exploration of an
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Fig. 2: Overview of the NeBula system architecture enabling high-level autonomy on Spot. Red paths denote NeBula’s belief-aware planning where the
planner aims to minimize mission risk by generating information-seeking paths that increase the accuracy of the shared world belief.

unknown, GPS-denied subterranean environments, focused

on single-level, tunnel-like environments.

Contributions: In this work, we focus on Boston Dynam-

ics’ Spot robot as our base mobility platform (Fig. 1). We

briefly discuss the NeBula (Networked Belief-aware Percep-

tual Autonomy) architecture and explain some of the key ele-

ments of integrating comprehensive autonomy with the Spot

robot. We describe the behaviors and overall performance

of the system in a complex, autonomous mission during the

Urban Circuit of the DARPA Subterranean Challenge. While

the main objective of this paper is to provide a system-level

overview of the entire autonomy stack, we will describe in

deeper detail some specific aspects of the algorithms that are

critical to enabling legged autonomy in complex missions.

Highlights of this paper or areas where we advance the

current state-of-practice on Spot and legged robots are:

1) Endowing a legged platform with high-level autonomy

so that it may traverse kilometer-scale distances in

a multi-level, underground, GPS-denied environment

within 60 minutes.

2) Enabling reliable multi-sensor odometry in

perceptually-degraded environments.

3) Demonstrating perception- and traversability-aware lo-

cal planning on legged platforms to negotiate challeng-

ing terrains and perceptually-degraded environments.

4) Developing a rugged and lightweight hardware system

to equip Spot with the NeBula autonomy package.

The performance of these technologies was successfully

field-tested at the Urban Circuit of the DARPA SubT Chal-

lenge (and practice runs leading to the competition), as part

of team CoSTAR’s solution.

Outline: In Section II, we provide an overview of the

NeBula architecture and describe its elements. In Section

III, we discuss the legged mobility system and the hardware

payload. Sections IV, V, and VI focus on selected algo-

rithmic aspects of legged robot odometry, local planning,

and high-level mission planning. Experimental results are

presented in Section VII, followed by future work discussion

and conclusions.

II. NEBULA AUTONOMY

Motivated by autonomous exploration of extreme surfaces

and subsurface terrains on the Moon, Mars and other plane-

tary bodies, NASA’s Jet Propulsion Laboratory (NASA JPL)

is developing an autonomy architecture referred to as NeBula

(Networked Belief-aware Perceptual Autonomy). The main

focus of NeBula is to provide computationally tractable

methods to predict and assess various outcomes and risks

in uncertain settings. These methods subsequently enable

reliable, coordinated multi-robot exploration of unknown and

hard-to-access terrains. To deal with uncertainty in unknown

environments, NeBula employs a probabilistic approach. It

takes the uncertainty into account to probabilistically fuse

various sensing modalities, creates a probabilistic represen-

tation of the robot’s knowledge of the environment, computes

risk, and “proactively” plans to minimize the mission risk.

Architecture: Figure 2 illustrates a high-level overview

of the NeBula architecture and how its modules are in-

terconnected. Spot interface module, which includes Spot’s

internal locomotion system and inbuilt factory sensors, and

NeBula’s sensors will be discussed further in Section III.

The odometry module, responsible for measuring and es-

timating the state and relative motion of the robot, will be

discussed in Section IV. The belief manager block constructs

and maintains the robot’s model of the environment. The

planning blocks include the 1) mission planning module

that switches between various behaviors such as exploration,

stair-climbing, communication-recovery, etc., 2) global plan-

ning which guides the coverage behavior and 3) traversability

analysis and local motion planning. We will briefly discuss

the planning modules in Sections V and VI. The communica-

tion block is responsible for enabling data exchange between

multiple robots and a base station (described in [18]).

The belief prediction module is a critical component in

the NeBula architecture that enables perception-aware and

uncertainty-aware planning. This module allows the planner

to take perceptual capability into account and helps reduce

the risk by increasing the accuracy of the world representa-

tion (red arrows in Fig. 2). We will discuss this feature of

NeBula further throughout the paper.

III. AU-SPOT MOBILITY SYSTEM

Locomotion System: Spot is a quadrupedal robot devel-

oped by Boston Dynamics to provide mobility on challenging

terrain, which may not be negotiated by traditional wheeled

robots, including steps and stairs, among others.



Fig. 3: “Autonomous Spot:” Spot powered by NeBula (Au-Spot).

Sensing system: Spot’s factory perception package from

Boston Dynamics comprises five custom RealSenses dis-

tributed around the robot. To enable higher levels of auton-

omy required in the SubT challenge, we augment Spot’s in-

built sensing package with NeBula Sensor Package (NSP).

The NSP includes a LiDAR, Intel RealSense cameras, high-

intensity LEDs, an IMU, gas and wifi detectors, and a

thermal camera. These sensors are integrated into a shock-

absorbing, rigid mechanical super structure. The NSP can

experience significant forces, moments, and vibrations as

Spot negotiates complex terrain at high speeds. A com-

bination of hard resin urethane, semi rigid carbon-infused

nylon, and aluminum are used in the manufacturing process

for increased structural integrity, sensor data fidelity and

lightweight build. Further, the design takes into consideration

atypical load paths for shock absorption during falls.

Power and Computing: The NeBula Power and Comput-

ing Core (NPCC) is designed to mount onto Spot as an aux-

iliary payload which provides power to all NeBula sensors

and computers used for autonomy. The payload enclosure is

designed with aluminum to provide protection to the internal

electronics if Spot were to fall. The payload is powered

from an external lithium high capacity battery to provide

isolation and extended battery life for Spot’s internal battery.

The NPCC also features a custom power distribution and

safety module, which provides fuses, overcurrent protection,

overvoltage protection, inrush current limiting and power

sequencing of five high efficiency voltage regulators for the

sensors, lights, and computers. The payload uses two high-

power computers for sensing, autonomy, and semantic scene

understanding. For brevity, in the rest of this paper, we refer

to the combined NSP, NPCC, and Spot robot as Autonomous-

Spot or Au-Spot (Fig. 3).

IV. NEBULA ODOMETRY ON LEGGED SYSTEMS

To enable autonomous robotic operation in extreme en-

vironments, a reliable odometry source is a prerequisite.

In such scenarios, darkness, presence of obscurants (e.g.

dust, fog, smoke), self-similar areas, and strong platform
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Fig. 4: Architecture of the NeBula Multi-Sensor Fusion Framework

vibrations caused by mobility-stressing terrains are common

features which pose severe challenges to robotic perception.

As a result, accurate odometry estimation on legged plat-

forms is a critical challenge, especially under perceptually-

degraded conditions.

Uneven and slippery areas make inertial sensing inaccurate

while the material composition of the surface where the

legged robot is walking on (e.g soft moquette, hard concrete)

has strong impacts on the accuracy of kinematic-based

odometry (KO). Darkness, or sudden excessive change in

illumination, along with dust and the occasional presence of

fog and gas, pose significant challenges to cameras. Potential

visual aliasing phenomena in texture-less or texture-repetitive

environments make feature-tracking problematic, decreasing

the overall reliability of vision-based odometry (VO). Self-

similar environments with repetitive geometry and lack of

distinctive landmarks make scan-matching based methods

ambiguous and prone to drift: moreover, active stereo cam-

eras (including the in-built factory ones on the Spot platform)

have a limited field of view, which renders them insufficient

for our long-range perception applications.

Solution Architecture: To overcome these challenges,

NeBula relies on a LiDAR-centric uncertainty-aware, multi-

sensor fusion framework where a selected odometry source

is fused as a prior with LiDAR information to enable

accurate ego-motion estimation under challenging perceptual

conditions. The main components of the proposed approach

are: (i) an anomaly-aware odometry multiplexer (HeRO), (ii)

a multi-sensor LiDAR-centric SLAM front-end (LOCUS)

and (iii) a SLAM back-end (LAMP) [19]. Fig. 4 provides

a high-level overview of the proposed approach. We discuss

each component in the following.

Odometry Multiplexer: To select the best odometry prior

to be fused with LiDAR information, we feed multiple and

heterogeneous sources of odometry available onboard (e.g.,

KO, VO, etc.) into an anomaly-aware odometry multiplexer,

referred to as HeRO [20]. At every time step, HeRO runs a

confidence test on each odometry stream (prior) to detect

potential anomalies (e.g., gaps, jumps, divergences) and

identify the most reliable input Y ∈ SE(3) to be used as

a prior in the LiDAR-based front-end.

Localization Front-End: The output of the odometry

multiplexer is fed into a multi-sensor LiDAR-centric SLAM

front-end module, referred to as LOCUS [21] that performs

a cascaded GICP-based scan-to-scan and scan-to-submap

matching operation to estimate the relative motion of the

robot between consecutive LiDAR acquisitions. Let Lk

denote the LiDAR scan acquired the k-th time step. We



indicate with Ek−1
k = Y−1

k−1Yk ∈ SE(3) the rigid body

transformation of HeRO’s output between two consecutive

LiDAR acquisitions.

In the scan-to-scan matching stage, GICP computes the

optimal transformation T̂
k−1

k that minimizes the residual

error E between corresponding points in Lk−1 and Lk.

T̂
k−1

k = arg min
T
k−1

k

E(Tk−1
k Lk, Lk−1) (1)

To enhance accuracy we initialize the optimization with

Ek−1
k . In the case where no input is received by HeRO, we

rely on the identity transformation as the prior and the system

reverts to pure LiDAR odometry.

To enable global consistency across the history of scans,

the motion estimated in the scan-to-scan matching stage is

further refined by a scan-to-submap matching step. Here, Lk

is matched to a local submap Sk which is a robot-centered

subset of the global map. The global map is composed of

accumulated past point clouds aligned to the robot pose in

the world frame.

T̃
k−1

k = arg min
T
k−1

k

E(Tk−1
k Lk, Sk) (2)

The initial guess of this optimization is T̂
k−1

k , which results

from Eq. (1). After scan-to-scan and scan-to-submap match-

ing, the final estimated motion T̃
k−1

k between consecutive

LiDAR acquisitions is used to update the robot pose in the

world.

Localization Back-End: The odometry produced by the

front-end is fed into the back-end of our SLAM system,

referred to as LAMP [19] which receives pose-to-pose con-

straints and solves a Pose Graph Optimization (PGO) and

Incremental Consistency Measurement (ICM) problem for

global localization when loop closures are detected during

traversal.

V. LOCAL PLANNING

This section describes our approach to enable Spot

to traverse challenging environments, where assessing the

traversability risk and planning safe paths is a prerequisite

for autonomous navigation.

A. Traversability Map

We model the traversability of the environment as a grid

map g = (m1, · · · ,mn) with n = nl×nw cells, arranged in

a locally 2D grid, where mi ∈ {safe, lethal} is a Bernoulli

random variable. mi = safe represents the event that the

robot can safely navigate through the i-th cell. We infer the

probability distribution p(g) over grid g and store it as a

traversability map. The steps involved in computing p(g) are

detailed in this subsection.

Risk Sources: There is a variety of traversability-stressing

elements which increase the probability of failure during

traversal. These elements can be purely geometric (e.g.,

positive obstacles, negative obstacles, steep slopes) or of

Fig. 5: The multi-layer traversability map (1g, · · · ,Ng), which includes
information about various traversability-stressing elements (including other
robots in 1

g, communication nodes in 2
g, large negative and positive obsta-

cles in N
g, etc.). The bottom map illustrates the aggregated traversability

map g.

semantic nature (mission items such as deployed commu-

nication nodes or other robots).

Multi-Fidelity Terrain Map: For detecting the afore-

mentioned traversability-stressing elements in unknown en-

vironments, we build a local terrain map of the robot’s

surrounding, via data collected from NSP. Specifically, we

build a multi-fidelity map at various ranges. We use depth

cameras for short-range sensing, instantaneous LiDAR point

clouds for medium-range sensing, and spatially fused point

clouds [22] for long-range detection. The combination of

these various sensing capacities yields an efficient trade-off

among range, density and accuracy in the resulting terrain

map.

Multi-Layer Traversability Map (MLT): To capture

various traversability-stressing elements, we construct a lay-

ered representation (Fig. 5) of the traversability map g =
{1g, ...,Ng}, where each layer ℓg captures a certain risk

source (as explained above). At each layer ℓ, we apply algo-

rithms and perform an analysis relevant to the corresponding

risk element. Specifically, positive and negative obstacles

as well as steep slopes are detected on the dense short-

range by applying a step filter relative to the local ground

plane. On the medium- and long-range: (i) Positive obstacles

are detected by performing ground segmentation [23] and

settling-based collision checks [24], (ii) Negative obstacles

by searching for surface discontinuities (holes) in the LiDAR

point cloud, and (iii) steep slopes by using settling methods

such as [24]. Mission items (e.g., deployed communication

nodes and other robots) can be detected semantically and

superposed on the traversability map.

Fast Traversability Evaluation: To enable online gener-

ation of MLT as the robot moves, we perform traversability

evaluation only on a representative and sparse set of sampled

cells Q = {is}
S
s=0 in the grid map. On each sampled cell

i ∈ Q, the traversability risks p(ℓmi = lethal) are computed

and stored in all layers ℓ ∈ N . To compute the traversability

risk at every cell in the grid, we approximate the MLT at

a higher resolution by interpolating with a Gaussian kernel

or by adding inflation with a radial decay to each query cell

i ∈ Q along the spatial dimension. Thus, we compute the

traversability p(ℓmn = safe) for all cells n in all layers ℓ.



Superposition: For action generation, we create a sin-

gle traversability map g by fusing the N different layers

{1g, ...,Ng}. The information in these layers are not indepen-

dent in general. We approximate a conservative risk estimate

by element-wise multiplication of traversability probabilities:

p(mi = safe) =

N∏

ℓ=1

p(ℓmi = safe) ∀i = 1, · · · , n (3)

The bottom layer in Fig. 5 illustrates an example

traversability map (plotting the maximum likelihood estima-

tion of p(g)), obtained during a real mission.

B. Uncertainty and Perception-aware Planning

To enable traversability through narrow passages and

obstacle-laden environments, one needs to reduce the map

uncertainty. We address this challenge by taking into account

uncertainty which comes from noisy, asymmetric, and lim-

ited sensors in order to find trajectories with minimal path

length that also reduce uncertainty in the map p(g) so as

to increase the probability that the path taken will be safe.

In the NeBula architecture, we formalize this notion with

an uncertainty-aware planner. This general framework can

be used to create behaviors which intelligently reduce risk

coming from uncertainties in sensing and the environment.

We outline the general framework here.

Uncertainty-aware Representation: Let µi be the mean

of the Bernoulli distribution of mi. Then we can model

the distribution (or our belief) of µi with its parameters,

p(µi|µ̂i, σi) (e.g. a mean µ̂i and variance σi in the case of

a beta distribution). The “confidence” about µi is captured

in σi, where fully unknown and fully known cells have the

highest and lowest σi values, respectively [25].

Map prediction: The uncertainty-aware representation

allows us to incorporate perceptual capabilities into the

planning. We define a policy π that returns an ordered

sequence of grid locations that the robot visits, along with

the orientations of the robot at those locations: π(·) =
{ik, θk}

K
k=0. Given the sensors available on the robot and

their configuration and noise characteristics, along with a

given policy π, we update our belief of the traversability

values in a recursive manner, which we call τ :

(µ̂i
k, σ

i
k) = τ(µ̂i

k−1, σ
i
k−1, zk(π)) (4)

where the measurement zk(π) is predicted from a generative

model, at the k-th time step along the trajectory π. This be-

comes increasingly important when the sensor configuration

is highly asymmetric on a robot, which is the case for Spot

as it has blind spots and areas where sensory measurement

noise is considerably higher than other areas. Maintaining

separate probability distributions for individual cells in the

map, we predict the map p(g) for k-th time step into the

future as follows:

gk ≡ {(µ̂1
k, σ

1
k), · · · , (µ̂

n
k , σ

n
k )} (5)

Risk-Aware/Perception-Aware Planning: Next we define

a risk measure that takes perceptual capabilities and un-

certainties into account when planning trajectories. We also

define an optimal policy π∗ as the policy which minimizes

the total path risk Rπ along the K-step path while moving

towards a given goal:

Rπ = 1−
K∏

k=0

p(mik = safe|µ̂i
k, σ

i
k, π) (6)

π∗ = argmin
π∈Π

E[Rπ] (7)

Efficient methods for computing predicted risk uncertainty

over a 2-D grid for a given sensor model have been consid-

ered in [26]. When computational complexity is a challenge

(with respect to the robot speed), to enable efficient real-

time computation of Eq. (7), we rely on a cascaded policy,

where one can optimize for position and orientation (along

the path) sequentially.

Execution: We execute the planning problem outlined

in Eq. 7 in a receding-horizon control (RHC) fashion: We

optimize for a K-step policy. Then, when executing the

policy, we select a waypoint at a distance d along the path π∗,

send it to the robot, and while robot is moving towards the

waypoint, we resolve the path planning problem to generate

a new path from the new robot position. Selecting d is a

trade-off between smoothness and tracking error, where a

larger d improves stability and smoothness, while a smaller

d keeps tracking error of π∗ lower. The combined effect

of perception-aware planning and RHC-based execution will

cause Au-Spot to prefer moving in directions that lead to

richer sensory input, which leads to a larger reduction in

uncertainty via collecting more task-relevant information.

VI. AREA COVERAGE AND SEARCH BEHAVIOR

Our mission planning objective is to coordinate a team

of autonomous robots to rapidly map and navigate a large

(multi-Km), unknown environment characterized by complex

topology and terrain under a one-hour time constraint. The

global planner realizes this objective by maximizing the

area covered by the sensors’ footprint along the planned

trajectory, within the mission time limit. The planner relies

on a representation of the environment with an information-

rich graph structure which reduces the policy search space

to one that is tractable when exploring large environments

over long time horizons.

Global Planner: We employ a sparse bidirectional graph

G = (V,E) that captures the connectivity of the free space

in the environment (e.g., [27]). A node vi ∈ V represents

a robot pose, and an edge eij ∈ E represents a robot

transition between connected nodes vi and vj . Each node vi
has attached to it a feature vector containing the probability

pc(vi) that the robot has seen a sensor-defined neighborhood

around the node. Likewise, each edge eij will induce a local

path computed according to Eq. 7. Then, to each edge eij
we attach a feature vector containing the path length ℓeij and

path traversability risk Reij computed by Eq. 6.

Graph Construction: We partition graph nodes into fron-

tier nodes vf ∈ V and breadcrumb nodes vb ∈ V . Frontier

nodes vf indicate the areas of the map that have not been

fully explored yet, typically, at the boundary of the known



and unknown free spaces. A breadcrumb node vb indicates

the areas of the map that have already been fully explored.

As the robot moves in the environment to cover and search

the space, the graph is expanded through the addition of

new breadcrumb and frontier nodes. In other words, visiting

a frontier node vf is expected to lead to changes in the map

belief p(vf ), whereas visiting a breadcrumb node will not

significantly impact our knowledge of the map coverage.

Graph Policy: A graph policy λ guides the robot towards

the next best node on the graph to maximize the covered

area. Specifically, we compute a mapping (feedback policy)

λ : V → V on the graph which maximizes a reward function

that encodes a trade-off between coverage information and

traversal cost. A macro action λ(vi) induces traversal along

edge eij and updates the graph from V to V ′. In the

following, we discuss steps involved in computing λ.

Coverage Information: The coverage belief of a graph

composed of nodes {vi, · · · , vN} ∈ V is defined as:

Pc(V ) = {pc(vi), · · · , pc(vN )}

where pc(vi) is the occupancy Bernoulli distribution over a

local map centered at node vi. We use entropy to measure

the posterior uncertainty of the graph coverage. Entropy

of a random variable x ∼ p(x) is defined as Hp(x) =
E[− log p(x)]. Thus, the graph coverage entropy can be

represented as:

Hpc
(V )=−

∑

vi∈V

pc(vi) log pc(vi)+(1− pc(vi))log(1− pc(vi))

Coverage Information Gain: The coverage information

gain (i.e., coverage uncertainty reduction) in belief pc(V )
induced by macro action λ(vi) is defined as:

I(V |λ(vi)) = Hpc
(V )

︸ ︷︷ ︸

current entropy

−Hpc
(V ′ |λ(vi))

︸ ︷︷ ︸

future entropy

(8)

where the second term represents the expected future entropy

of the graph after the agent has executed macro action λ(vi).
Generalized Reward: To capture energy and distance

measures in the coverage planning, we define the one-step

reward to be the weighted sum of information gain and

distance traveled under the macro action λ(vi):

Rew(vi , λ(vi)) = w1 I(V |λ(vi))− w2 ℓeij (9)

where w1 and w2 weigh the information gain and traveled

distance, respectively.

Graph Policy Optimization: Let v(k) denote the k-th

node visited under graph policy λ. Similarly, let e(k, k + 1)
denote the edge between nodes v(k) and v(k+1). We solve

for the mapping λ that maximizes the sum of future expected

reward:

λ∗ = argmax
λ(·)

E[
∑

k

Rew(v(k) , λ(v(k)))] (10)

This optimization can be solved via value iteration-based

methods or forward search methods.

Fig. 6: Map created by Au-Spot exploring Eagle Rock Substation, with
different odometry sources: proposed method in green against KO in red
(left) and KVO in red (right).

Fig. 7: Map created by Au-Spot while exploring an office building at
NASA’s JPL with different odometry sources: KO (left), KVO (middle),
and the Proposed method (right).

VII. EXPERIMENTAL RESULTS

The NeBula autonomy architecture is implemented on two

Boston Dynamics Spot robots and field-tested in subsurface,

multi-level, and perceptually-degraded GPS-denied environ-

ments, including underground unstructured environments and

industrial power plants.

As part of the Urban Circuit of the DARPA Subterranean

Challenge, two Au-Spots were deployed into an Industrial

Plant in February 2020 for live-mission exploration and 3D-

Mapping of the environment (Fig. 9). The missions included

detection of artifacts of interest such as backpacks, human

survivors, gas-leaks, and cellphones via different sensing

modalities including vision, thermal, gas sensors and wifi

detection among others. The competition divided into four

live-missions in unknown environments. Our Au-Spots ex-

plored a combined distance of 4km, including successfully

climbing multiple flights of stairs. Points were awarded for

accurate artifact detection and for successfully reporting this

information back to the base-station. The NeBula framework

successfully detected and localized a total of 16 artifacts,

giving team CoSTAR a 1st-place win.

Odometry Estimation: To demonstrate the performance

of the proposed odometry pipeline, we compare the localiza-

tion accuracy achievable using individual sensing channels

with the proposed uncertainty-aware multi-sensor approach

in perceptually-degraded environments. Figure 6 depicts the

results of the proposed method on data collected in the Eagle

Rock subway station, Los Angeles. The rough and varying

terrain causes KO to perform poorly, while a large amount of

visual features causes KVO to produce a sufficiently accurate



Fig. 8: Top view of area covered in urban environment by robot fleet
consisting of one Au-Spot [yellow] and two UGVs [red/blue] during one
run of the SubT Challenge, Urban Circuit. The map contains three different
floors connected by multi-flight staircases. Note the complex topology
(narrow passages, varying-sized interconnected rooms, and the outer circular
geometry) requiring an irregular exploratory behavior that is characterized
by a large looping path combined with many auxiliary paths necessary for
the inspection of smaller structures.

Fig. 9: 3D map generated by NeBula while traversing four flights of stairs.
The map was created in real-time during the run (see Fig. 1).

map. Conversely, Fig. 7 depicts results from data collected in

NASA JPL’s 198/161 offices. In this case, the soft carpet on

the floor results in KO providing much more accurate maps

than KVO. KVO is instead challenged by feature-less white

walls and the repetitive visual textures of the carpet. The

different features of various environments make perception

and odometry estimation challenging to a single sensing

channel alone, hence the need for multi-channel odometry

fusion. As seen in both figures, the proposed odometry

generation method results in more accurate maps than those

obtained by KO or KVO-based odometry.

Traversability: Our perception-aware local planner en-

abled Au-Spot to safely and efficiently navigate through

difficult environments, which contained a variety of unstruc-

tured obstacles and terrain, including ramps, slopes, piles

of twisted metal, machinery and rubble (Fig. 10). Negative

Fig. 10: Narrow corridors (Top Left), water/oil (Top Right), stair wells
(Bottom left), and raised concrete slabs (Bottom Right) are examples of
some of the difficult terrain successfully navigated by Au-Spot. For full
mission video, see [28].

obstacles such as dropoffs and holes were also successfully

avoided.

Coverage Planner: Au-Spot’s coverage planner success-

fully guided a fleet of two Au-Spots and two wheeled

UGV robots to collaboratively explore and map a large

unstructured environment within the one hour time limit

in the SubT Challenge. Fig. 8 depicts the area explored

by the robots during one of the four live-mission runs. In

this single (one hour) run, the fleet of robots mapped a

total volume of approximately 25,000 m3. One of the most

challenging elements of the course was traversing 4 flights

of stairs, which induces pitching motions, physical slippage

on the stair edges, and poor visual cues due to repetitive

patterns of the stairs and railings. Fig. 1 shows Au-Spot

successfully climbing down stairs, and Fig. 9 depicts the

map produced during the stair climbing operations, which

allows the robot to accurately localize artifacts on multiple

levels of the industrial power plant.

Complex Mission: The video in [28] depicts Au-Spot

navigating and mapping one of the courses in the Urban

Circuit of the DARPA SubT Challenge under time, commu-

nication, and computation constraints. The video begins as

Au-Spot leaves the staging area where the human supervisor

sends the “go-command”. Thereafter, Au-Spot’s behavior at

various phases of the mission, including when it is searching

for artifacts, descending stairs, and deploying communication

nodes, are presented. The video highlights how autonomous

traversability and coverage planning enables the robot to

thoroughly explore the environment, which includes chal-

lenging features such as hallways with narrow openings,

large open rooms, raised platforms, and rubble. Over more

than 1 km travel distance, the system was able to detect and

localize artifacts while maintaining a localization error of

less than 5 m – the maximum artifact localization error to

score points in the SubT Challenge.



VIII. CONCLUSIONS

Motivated by exploring extreme environments and in par-

ticular underground environments in DARPA Subterranean

Challenge, this system-focused paper discusses our devel-

opments toward endowing legged robots with hardware and

perception capabilities required for high-levels of autonomy

in extreme environments. Specifically, we have presented

our NeBula autonomy architecture applied to Boston Dy-

namics’ Spot robot. NeBula is an architecture for risk- and

perception-aware autonomy, applicable to a wide range of

robots. In this paper, we have discussed a few representa-

tive NeBula modules, including odometry, traversability, and

coverage planning, pertaining to the DARPA Subterranean

Challenge. We believe this work takes an important step

in advancing the state-of-the-practice and demonstrates the

capabilities of legged robots for accomplishing complex,

real-world, live-missions in extreme environments.
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