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Autonomous Stair Climbing for Tracked Vehicles

Anastasios I. Mourikis1, Nikolas Trawny1, Stergios I. Roumeliotis1, Daniel M. Helmick2, and Larry Matthies2

Abstract— In this paper, we present an algorithm for au-
tonomous stair climbing with a tracked vehicle. The proposed
method achieves robust performance under real-world condi-
tions, without assuming prior knowledge of the stair geometry,
the dynamics of the vehicle’s interaction with the stair surface,
or lighting conditions. Our approach relies on fast and accurate
estimation of the robot’s heading and its position relative to
the stair boundaries. An extended Kalman filter is used for
quaternion-based attitude estimation, fusing rotational velocity
measurements from a 3-axial gyroscope, and measurements of
the stair edges acquired with an onboard camera. A two-
tiered controller, comprised of a centering- and a heading-
control module, utilizes the estimates to guide the robot fast,
safely, and accurately upstairs. Both the theoretical analysis
and implementation of the algorithm are presented in detail,
and extensive experimental results demonstrating the algorithm’s
performance are described.

Index Terms— Stair Climbing, Autonomous Robots, Inertial
Sensing, Attitude Estimation, Computer Vision.

I. INTRODUCTION

S
TAIRWAYS and steps are omnipresent in man-made

environments. Designed to easily bridge large vertical

distances for humans, stairs represent a serious challenge to

vehicles and robots. In order for robots to operate efficiently

in urban environments, this challenge needs to be addressed.

Robotic stair climbing can be applied in numerous scenarios,

for example, in urban search and rescue missions, in military

operations, to increase mobility of handicapped people, or

to improve the efficiency of household helping robots. For

these reasons, autonomous robotic stair climbing has been the

subject of ongoing research in the last years.

In many current applications, mobile robots are still tele-

operated, with only limited autonomy. Climbing stairs, as for

example required in search and rescue missions in urban areas,

is very demanding on a human operator [1]. Usually the robot

maneuvers outside the field of view of the operators, forcing

them to rely only on feedback from the robot’s camera. The

latter is usually mounted very close to the ground, has a

narrow field of view, and the returned images are often blurred

due to the robot’s highly dynamic motion. This greatly im-

pairs the operator’s perception of the vehicle’s current spatial

orientation. Combined with the latency in data transmission

and the robot’s high slippage on the stair edges, this can

result in inaccurate and slow stair climbing, collisions with

the stair walls, and even in toppling of the vehicle. It is

therefore desirable to endow a robot with autonomous stair-

climbing capabilities, thus enabling faster, safer, and more
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Fig. 1. Robot climbing stairs autonomously. Picture taken at the Digital
Technology Center, University of Minnesota.

precise operation while at the same time reducing the user

load.

The controller employed for autonomous stair climbing re-

quires frequent and precise estimates of the vehicle’s position

and heading relative to the staircase, in order to safely guide

it up the stairs. The motion profile (high slippage, shocks)

and the complex interactions of the robot tracks with the

stair render exact modeling of the vehicle-ground dynamics

intractable. Besides, an overly detailed model would prohibit

the algorithm from being flexible and robust over a wide range

of parameter values, such as stair dimensions and surface

material. At the same time, the number of required sensors

on the robot should be kept as low as possible in order to

minimize cost, weight, and power consumption. In order to

maximize speed and reduce the risk of collision or toppling,

it is necessary to maintain the robot heading approximately

perpendicular to the stair edges. This can be accomplished

by a heading controller based solely on vehicle dynamics, if

combined with an accurate, high-bandwidth attitude estimator.

In this paper, we outline an algorithm that allows robust,

safe, fast, and accurate traversal of stairs of various dimen-

sions, using a 3-axial gyroscope and a single camera as the

only sensors. An extended Kalman filter (EKF) integrates

the angular velocities measured by the gyroscopes to form

an orientation estimate. This estimate is then updated using

measurements of the projections of stair edges, extracted from

the camera images. Furthermore, the stair edge observations

allow estimating the robot’s offset relative to the center of

the staircase. These values are used by a two-tiered controller
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Fig. 2. The block diagram of the stair-climbing algorithm.

(cf. Fig 2) to guide the vehicle upstairs. This algorithm

is very versatile and can be applied, for example, on an

iRobot PackBot [2], as the one used in our experiments (cf.

Section V), on a Remotec Andros remote vehicle [3], or on

any tracked robot equipped with gyroscopes and a camera.

The remainder of this paper is structured as follows. After

an overview of related work in Section II, we present our

algorithms for estimating both the robot’s attitude as well as

its deviation from the center of the stairs in Section III. Our

proposed control algorithm is outlined in Section IV. We have

successfully implemented and tested these algorithms on a

tracked robot, for which we present experimental results in

Section V.

II. RELATED WORK

Stair climbing has been carried out with robots using

different types of locomotion. One can roughly distinguish

wheeled, legged, and tracked robots.

A. Wheeled Robots

Wheeled robots usually have to resort to mechanic exten-

sions to overcome stairs. One application of such a technique

is in patient rehabilitation, where stair climbing could greatly

enhance mobility, and thus quality of life, of people con-

fined to wheelchairs. Lawn and Ishimatsu [4] present a stair-

climbing wheelchair using two (forward and rear) articulated

wheel clusters attached to movable appendages. The robot is

equipped with step-contact sensors, but relies on user steering

and is thus only semi-autonomous.

B. Legged Robots

In [5], Figliolini and Ceccarelli present the architecture

of the bipedal robot EP-WAR2, that uses electropneumatic

actuators and suction cups for locomotion. In order to climb

stairs, the robot relies on an open-loop control algorithm

implemented as a finite-state machine. The main limitation

of the approach is that operating in a different staircase

necessitates manual recalibration.

Albert et al. [6] implemented a stair-climbing algorithm on

the bipedal robot BARt-UH. The authors employ stereo vision

and the projection of a laser line in order to estimate stair

dimensions. These are then used in a planning algorithm that

produces piecewise analytical joint trajectories. The trajectory

parameters are tabulated for different stair dimensions and

interpolated as needed. Therefore, BARt-UH can be consid-

ered an autonomous stair climber. However, the demanding

control of a legged robot, due to its higher center of gravity

and its intricate actuation, result in high computational load

and overall system complexity. This severely limits the robot’s

speed during stair climbing.

The humanoid robots of Sony and Honda, QRIO and

ASIMO, are also capable of autonomous stair climbing.

QRIO [7] employs stereo vision to segment planar surfaces.

These surfaces are used in a path planning algorithm that

allows the robot to climb up and down stairs, sills and ledges.

In [8], Hirai et al. outline the foot placement algorithm

employed in Honda’s humanoid ASIMO. Both robots use

dense stereo vision, requiring the robots to move slowly in

order to ensure image quality.

Stair climbing with a hexapod robot has been demonstrated

by Moore et al. [9]. The robot RHex makes use of a special

curved leg design and pre-programmed leg trajectories, ren-

dering it capable to climb stairs of various dimensions. The

employed algorithm, however, is strictly open-loop. It is thus

unable to prevent collisions with the stair walls or balustrades,

and cannot compensate large heading deviations induced by

slippage or shocks.

C. Hybrid Locomotion

Matsumoto et al. [10] have devised a hybrid biped leg-

wheeled system, combining the advantages of wheeled lo-

comotion with the greater flexibility of legs. They derive

a wheel torque control algorithm to robustly position the

robot’s center of gravity, using gyroscopes, accelerometers,

encoders, and torque/force sensors for feedback. The robot

forward-tilt angle is estimated by a combination of angular

velocity integration and gravity vector measurements, although

details about the estimation of the center of gravity location

are omitted. The torque derivations are based on a quasi-

static analysis, assuming low robot speed and smooth motion.

Moreover, the stair dimensions are used as parameters of the

control law, but are not estimated online and therefore need

to be known a priori.

D. Tracked Robots

Several works have examined stair climbing for tracked

robots, which is within the focus of this paper. Tracked robots

have a larger ground contact surface than wheeled vehicles,
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and are more stable than bipeds due to their low center of

gravity. Liu et al. [11] derive the fundamental dynamics of the

stair-climbing process for a tracked robotic element, analyzing

the different phases of riser climbing, nose crossing, nose

line climbing and the effects of grouser bars or cleats. The

analysis is limited to 2D, and slippage, shocks, and intermittent

loss of track-surface contact, phenomena that are commonly

encountered during stair climbing, are neglected. The resulting

model is therefore not sufficiently accurate to allow exact

trajectory prediction, but is well-suited for preliminary design

studies of one- and multi-element tracked robots.

In [1], Martens and Newman note the difficulties involved

in teleoperated stair climbing of tracked robots. This task

is very demanding on the operator, due to limited sensor

feedback and track slippage. The results are slow speed and

inaccurate heading, which can lead to toppling of the robot. In

order to allow semi-autonomous stair climbing, they develop

a stabilizing feedback controller that enables the robot to

maintain its heading, using only accelerometers. However,

the fact that accelerometers measure both gravity and body

accelerations can lead to large errors when employing these

sensors to estimate the robot’s attitude.

Steplight et al. [12] rely on measurements from sonar, a

monocular camera, and two accelerometers for attitude estima-

tion. The authors argue that these sensors are complementary,

each providing reliable estimates under different conditions.

An example is the above-mentioned use of accelerometer

measurements to infer attitude using the gravity vector: this

provides quite accurate results when the robot is standing

still, but fails when the robot is subject to shocks and bumps.

A so-called “broker module” determines which estimate to

use at every time instant, depending on a confidence measure

provided by each sensor. This confidence measure is largely

based on heuristics, and is often inversely proportional to the

deviation from the prior attitude estimates.

An approach for determining the robot’s heading using only

monocular vision is presented by Xiong and Matthies [13].

The algorithm extracts lines from stair images in order to

determine the two quantities necessary for steering control,

namely (i) the offset angle describing the robot heading

relative to the stairs, and (ii) the ratio of the distances to the left

and right boundaries of the staircase, which is an indicator for

the relative distance from the centerline. This work is extended

in [14], where an EKF is used to fuse 3D attitude information

from gyroscope measurements, vision, and a laser scanner.

The high frequency of the inertial measurements, and thus of

the EKF, allows for high-bandwidth control that increases the

robustness and accuracy of stair climbing significantly.

One of the main drawbacks of both [13] and [14] are the

ad-hoc assumptions underlying the computation of the yaw

estimate and its variance from the images. First, it is assumed

that the robot is oriented parallel to the plane of the stair

edges at all times (i.e., zero roll and constant pitch). This does

not reflect the pronounced disturbances induced by slippage

and bouncing (cf. the roll and pitch angle profiles during stair

climbing shown in Fig. 3). Second, when the projections of

the stair edges on the image plane are processed to estimate

the yaw, its covariance is approximated by the inverse of
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Fig. 3. The time-evolution of the robot’s roll and pitch angles during a
typical ascent. Note the significant variation in the pitch angle.

the squared y-intercept of the line on the image plane. This

approximate yaw measurement and its associated variance

is then provided to the EKF as an inferred measurement in

order to update the attitude estimates. However, the imprecise

approximations of both the derived yaw and its variance

degrade the resulting attitude estimates.

This paper further improves the work presented in [14], in

that a new measurement model is derived that allows tight

integration of the visual information (that is, the detected stair

edges) into the EKF, thus increasing robustness and accuracy

of the attitude estimate. Additionally, an improved method to

detect the ratio of the distances to the left and right wall is

presented, based only on camera and gyroscope data. This is

used for maintaining the robot’s trajectory along the stair cen-

ter, thus decreasing the risk of collision with the balustrades.

Employing a camera for updating the attitude estimates, and

keeping the robot close to the centerline, eliminates the need

for a laser scanner, resulting in reduced mass, volume, cost,

and power consumption. The presented analysis shows that

our measurement model allows observability of two degrees

of freedom when only stair edges (parallel to one global unit

vector) are detected. Furthermore it is proven that the robot

attitude becomes fully observable if at least one additional

line (of known global direction, different from that of the stair

edges) is detected in the image (cf. Appendix III).

III. ATTITUDE AND DISTANCE RATIO ESTIMATION

To safely control the robot’s trajectory on the stairs, precise

estimates of the robot’s attitude, as well as of the distance

ratio to the left and right boundaries (e.g., walls or railings)

of the traversable surface of the stairs, are necessary. Due

to the highly dynamic robot-surface interaction, resulting in

significant slippage, odometry is not sufficiently accurate and

reliable for this task. Instead, we employ an EKF to fuse

rotational velocity measurements with measurements of the

projections of stair edges on the camera images. In this
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Fig. 4. The robot on the stairs with the defined frames shown: The global
frame {G} affixed to the stairs, the local frame {L}, attached to the robot,
and the camera frame {C}. The width of the stairs is denoted by w.

section, we describe the various components of the estimation

algorithm.

A. Attitude Estimation

1) Dynamic Model replacement: In order to estimate the

robot’s 3D attitude, it would be desirable to precisely model

the robot dynamics, and treat the control commands as inputs.

In our approach we employ sensor modeling instead, using the

measurements from the gyroscopes to propagate the attitude

estimate, and camera information to update it. The main

reasons for this are: (i) dynamic modeling is dependent on

robot and stair parameters, and would thus require calibration

for every new stair, and (ii) dynamic model-based observers

require a large number of states that increase the computa-

tional needs without producing superior results. This has been

documented in the literature before; the interested reader is

referred to [15], [16] and [17] for a detailed discussion.

2) Attitude Representation: The robot’s attitude describes

the relationship between the global coordinate frame {G}
and the robot-fixed local coordinate frame {L}. As shown

in Fig. 4, {G} is affixed to the stairs, such that the y-axis is

parallel to the edges of the steps and the z-axis is pointing

upwards. Additionally, we define a camera-fixed coordinate

frame {C}, whose relationship to the local frame {L} is

known and constant.

The Euler angles yaw, pitch, and roll, which are the most

commonly used attitude representation [18], are subject to

singularities. The direction-cosine matrix, another popular

representation, suffers from redundancy, comprising nine ele-

ments of which only three are independent. We have therefore

selected the quaternion attitude representation, allowing for

compact, singularity-free, and efficient attitude computation.

The following derivations are largely based on [17], [19] and

can be found in more detail in [20].

The four-element unit quaternion of rotation is defined as

q̄ =

[
q

q4

]
=

[
k̂ sin(θq/2)
cos(θq/2)

]
, q̄Tq̄ = 1 (1)

where k̂ is the unit vector along the axis of rotation, and θq

denotes the rotation angle. Using the convention of [21], the

product of quaternions is defined such that it corresponds to

the product of rotation matrices in the same order, i.e.,

K
J C(K

J q̄) · J
I C(J

I q̄) = K
I C

(
K
J q̄ ⊗J

I q̄
)

(2)

where J
I C is the rotation matrix that expresses the basis vectors

of frame {I} in terms of frame {J}. We use the quaternion1

q̄ = L
Gq̄ to describe the global frame {G} expressed in the local

robot frame {L}. The correspondence between quaternion and

rotation matrix is given by

L
GC(q̄) = I3×3 − 2q4⌊q×⌋ + 2⌊q×⌋2 (3)

where ⌊q×⌋ denotes the skew-symmetric cross-product matrix

⌊q×⌋ =




0 −q3 q2

q3 0 −q1

−q2 q1 0


 (4)

Our controller uses as inputs the yaw and pitch angles, which

can be extracted from the rotational matrix following the Euler

X-Y-Z angles (roll-pitch-yaw) convention [22].

3) Attitude Kinematics: The time evolution of the quater-

nion depends on the rotational velocity ω of the robot. Given

ω, the attitude is governed by the differential equation

˙̄q(t) =
1

2
Ω(ω(t)) q̄(t) (5)

where

Ω(ω(t)) =

[
−⌊ω×⌋ ω

−ωT 0

]
(6)

In order to compute the attitude during robot operation, we

employ a first-order numerical integrator [23] for the quater-

nion, assuming that ω evolves linearly during the integration

time step ∆t = tk+1 − tk. Under this assumption, we can

integrate Eq. (5) as

q̄k+1 =

(
exp

(
1

2
Ω(ωa)∆t

)
+

1

48

(
Ω

(
ωk+1

)
Ω

(
ωk

)

− Ω
(
ωk

)
Ω

(
ωk+1

))
∆t2

)
q̄k (7)

where

ωa =
ωk+1 + ωk

2
(8)

denotes the average rotational velocity during the integration

interval [tk, tk+1].
4) Gyroscope Sensor Model: Instead of the true rotational

velocity required for the quaternion integration, the gyro-

scopes provide only a noise-corrupted measurement ωm. The

objective of the EKF is to obtain an estimate of the atti-

tude by fusing these gyroscope measurements with additional

information from a monocular camera. During propagation,

the rotational velocity measurements ωm are integrated. The

resulting estimate is corrected using stair-edge observations

from the camera in the update step, which will be discussed

in Section III-A.9.

In order to obtain the estimate, the EKF requires knowledge

of the measurement noise characteristics. Noise in gyroscope

1For clarity of notation, we will henceforth drop the prescripts and simply
denote the quaternion L

Gq̄ representing the robot’s attitude as q̄.
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measurements is known to be correlated [19]. We therefore

employ a noise shaping filter, modeling the measured rota-

tional velocity ωm as the true value ω corrupted by the drift

rate bias b and drift rate noise nr. The bias itself is modeled

as a random walk process and included in the state vector,

i.e., x =
[
q̄T bT

]T

7×1
. The gyroscope measurement model

can hence be written as

ωm(t) = ω(t) + b(t) + nr(t) (9)

ḃ(t) = nw(t) (10)

where nr,nw are independent, additive white Gaussian noise

processes with zero mean

E[nr(t)] = 0, E[nr(t)nr(t
′)T ] = σ2

rc
I3×3δ(t − t′) (11)

E[nw(t)] = 0, E[nw(t)nw(t′)T ] = σ2
wc

I3×3δ(t − t′) (12)

In the above expressions, δ(·) denotes the Dirac delta function.

The state space model is

[
˙̄q

ḃ

]
=

[
1
2 Ω(ωm − b − nr) q̄

nw

]
(13)

⇔ ẋ = f(x, ωm,n) (14)

Note that the updates using the line measurements from

the camera will also affect the bias estimates through the

correlations between bias and quaternion.

5) Continuous-Time Error-State Model: The error state of

the proposed attitude estimator includes the error in the bias

and the quaternion estimate. While the bias error is defined as

the vector difference between the true and the estimated bias,

b and b̂ respectively,

∆b = b − b̂ (15)

a multiplicative error representation is chosen for the quater-

nion. Here, the attitude error is modeled as the infinitesimal

rotation that causes the estimated attitude to match the true

orientation. In quaternion algebra, this is expressed as

q̄ = δq̄ ⊗ ˆ̄q ⇔ δq̄ = q̄ ⊗ ˆ̄q−1 (16)

Application of the small angle approximation δθq ≃ 0 ⇒
cos(δθq/2) ≃ 1, sin(δθq/2) ≃ δθq/2 leads to

δq̄ =

[
k̂ sin(δθq/2)
cos(δθq/2)

]
≃

[
k̂δθq/2

1

]
=

[
1
2δθ
1

]
(17)

As evident from Eq. (17), the error information is contained

primarily in the tilt angle vector δθ3×1. Therefore the attitude

uncertainty can be represented by a 3 × 3 covariance matrix

E[δθ δθT ], thus circumventing the loss of rank that would

arise in a 4 × 4 covariance matrix E[δq̄ δq̄T ] due to the unit

quaternion constraint.

The error state vector2 of the EKF is given by

x̃ =

[
δθ
∆b

]

6×1

(18)

2Notice that the state vector x is of dimension 7 × 1, whereas the error
state vector x̃ has size 6 × 1.

Substituting Eqs. (16), (17) in (5), and (15) in (10), we can

derive the system propagation equation for the continuous-time

error state [20]:
[

˙δθ

∆̇b

]
=

[
−⌊ω̂×⌋ −I3×3

03×3 03×3

] [
δθ
∆b

]
+

[
−I3×3 03×3

03×3 I3×3

] [
nr

nw

]

⇔ ˙̃x = Fc · x̃ + Gc · n (19)

The covariance of the noise vector n is E[nnT ] = Qcδ(t−t′),
where Qc is a block-diagonal matrix, with diagonal elements

σ2
rc

I3×3 and σ2
wc

I3×3 (cf. Eqs. (11) and (12)).

6) State Propagation: For implementation on a digital

computer, we need to discretize the continuous time state

model. Based on Eqs. (9) and (10), the discrete-time gyroscope

model can be written as

ωk = ωmk
− bk − nrk (20)

bk+1 = bk + nwk (21)

and thus the estimated values of these quantities are computed

as

ω̂k+1|k = ωmk+1
− b̂k+1|k (22)

b̂k+1|k = b̂k|k (23)

The subscript (·)k+1|k denotes the estimate at time step k + 1
conditioned on all available measurements up to time step k.

In order to propagate the attitude estimate, we employ the

quaternion integrator of Eq. (7) with the estimated rotational

velocity ω̂.

7) Covariance Propagation: The error-state equation

(Eq. (19)) is discretized as

x̃k+1 = Φk · x̃k + nd (24)

In order to implement the discrete form of the covariance

propagation equation of the EKF, we need to determine the

state transition matrix Φk, as well as the discrete-time system

noise covariance matrix Qd. Assuming that ω is constant

over the integration time step ∆t, we can compute the state

transition matrix as

Φ(tk+1, tk) = exp

(∫ tk+1

tk

Fc(τ) dτ

)
(25)

while the discrete-time system noise covariance matrix Qd is

computed according to

Qd =

∫ tk+1

tk

Φ(tk+1, τ)Gc(τ)QcG
T
c (τ)ΦT(tk+1, τ) dτ

The detailed expressions for Φ and Qd can be found in

Appendix I. For clarity of notation, from now on we denote

Φ(tk+1, tk) = Φk.

Following the regular EKF equations [17], we can compute

the covariance of the propagated state estimate as

Pk+1|k = ΦkPk|kΦ
T
k + Qd (26)

In order to increase the accuracy of the attitude estimates, it

is necessary to use exteroceptive measurements of features in

the robot’s environment, to periodically update the orientation

estimates. In the application under consideration the most

prominent features are the stair edges. We have therefore
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developed an algorithm that processes the images recorded

by an onboard camera, detects the projections of the stair

edges, and employs these observations to update the attitude

estimates.

8) Addressing Processing Delays: In our implementation,

the gyroscope measurements are processed at a rate of 100Hz,

whereas the time needed for processing each image is approxi-

mately 60msec. In order to treat the existing processing delays,

we employ an approach similar to the one proposed in [24]

for treating measurements that depend on previous states. In

particular, at time-step k, when an image is registered, a copy

of the filter state is created and added to the state vector. The

error state is also duplicated, and thus the augmented error-

state vector at time-step k is given by

x̆k|k =

[
x̃k|k

x̃sk|k

]
(27)

where x̃sk|k
denotes the static copy of the state, which does

not evolve in time. During the time interval [k, k+d], while the

image is being processed, rotational velocity measurements are

integrated to propagate the evolving state, while the second,

static copy, remains unchanged. The benefit of this formulation

is that when the measurement becomes available at time-step

k + d, both the current state and the state at the time instant

of the image registration are included in the augmented filter

state vector. Thus, the measurement error can be expressed as

a function of the augmented filter state, and the standard EKF

equations can be applied for updating.

In order to correctly update the current state, the covariance

matrix of the augmented filter state must also be computed.

We note that, since state augmentation creates two variables

that contain the exact same information (cf. Eq. (27)), these

are initially fully correlated. Thus, the covariance matrix of

the augmented state vector at time step k, immediately after

the augmentation is performed, is:

P̆k|k =

[
Pk|k Pk|k

Pk|k Pk|k

]
(28)

At every time step when a rotational velocity measurement

is processed, the current robot state is propagated as shown

in the preceding section, while the previous, static state,

remains unchanged. Thus, the error propagation equation for

the augmented state vector is:

x̆k+1|k =

[
Φk 06×6

06×6 I6×6

]
x̆k|k +

[
nd

06×1

]

= Φ̆kx̆k|k + n̆d (29)

and the covariance matrix of the augmented state is propagated

according to

P̆k+1|k = Φ̆kP̆k|kΦ̆
T
k +

[
Qd 06×6

06×6 06×6

]

=

[
ΦkPk|kΦ

T
k + Qd ΦkPk|k

Pk|kΦ
T
k Pk|k

]
(30)

It is straightforward to show by induction that if d propagation

steps take place in the time interval between image registration

and the time that the line measurements become available to

the filter, the covariance matrix P̆k+d|k is determined as

P̆k+d|k =

[
Pk+d|k Fk+dPk|k

Pk|kFT
k+d Pk|k

]
(31)

where

Fk+d =

d−1∏

i=0

Φk+i (32)

Pk+d|k in Eq. (31) is the propagated covariance of the state

at time-step k+d, which is computed by recursive application

of Eq. (26).

The expression in Eq. (31) indicates that exploiting the

structure of the propagation equations allows for the co-

variance matrix of the filter to be propagated with minimal

computation. Essentially, compared to the case where only

the current state is kept in the state vector, the only additional

computation that needs to be performed every time a new

gyroscope measurement ωmk+i
, becomes available, is the “ac-

cumulation” of the state-transition matrices, Φk+i, to evaluate

the term Fk+i. Since only one matrix multiplication per time-

step is necessary, this can be performed very efficiently.

9) State and Covariance Update: In this section, we de-

scribe the measurement model we employ for performing EKF

updates. In each of the images recorded by the camera, a

straight-line detection algorithm is applied (cf. Appendix II)

to obtain measurements of the projections of the stair edges

in the image. In the following we assume, without loss of

generality, that all quantities are expressed with respect to a

normalized camera frame with unit focal length.

The output of the line detection algorithm is a set of M line

measurements, given by

ℓmj
= ℓj + nj , j = 1 . . . M (33)

where ℓmj
is the measured line, ℓj is the true line on the image

plane, and nj is a 3 × 1 noise vector, with covariance matrix

Rj (cf. Eq. (80)). A line is defined by its polar representation,

i.e.,

ℓj =
[
cos φj sin φj −ρj

]T
(34)

where (φj , ρj) are the line parameters, representing the ori-

entation and magnitude of the line’s normal vector (
−−→
OPj

in Fig. 5). A point p with homogeneous image coordinates

p = [u v 1]T lies on the line ℓj if it satisfies the equation

u cos φj + v sin φj − ρj = 0 ⇒ pT ℓj = 0 (35)

We now derive a geometric constraint relating the measure-

ments of the lines on the image plane with the robot’s attitude.

Let O denote the principal point of the image plane, F denote

the focal point of the camera, and uj = [sin φj −cos φj 0]T

be a (free) unit vector along the line on the image plane. From

Fig. 5 we observe that the vectors uj and
−−→
FPj =

−−→
FO+

−−→
OPj =

[ρj cos φj ρj sin φj 1]T define a plane that contains the

observed line (i.e., it contains the vector ei). The normal vector

to this plane is defined as

−−→
FPj × uj =




ρj cos φj

ρj sin φj

1


 ×




sin φj

− cos φj

0


 =




cos φj

sin φj

−ρj


 = ℓj (36)
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Stair edge

Fig. 5. Spatial relationship between the observed unit vector ei, the line on
the image plane with unit vector uj , the line measurement vector ℓj , and the

observation jacobian HT
qj

. The focal point of the camera is denoted as F ,

and the point on the line with minimum distance ρj to the principal point O
as Pj .

Since the vector ei is contained in the plane with normal vector

ℓj , we obtain ei ⊥ ℓj , and thus

(
Cei

)T
ℓj = 0 ⇒ eT

i CT (C
Gq̄s)ℓj = 0 (37)

where C(C
Gq̄s) is the rotational matrix that transforms vectors

from the global frame to the camera frame at the time instant

that the measurement was recorded.3

The expression in Eq. (37) defines the geometric constraint

that relates the vector ℓj , associated with a line projection

in the image, to the global unit vector ei. This expression is

exact for the true quaternion representing the rotation between

the global and the camera frame, and for the true projection

of a line on the image. These quantities, however, are not

available in practice. Instead, a noise-corrupted measurement

of the line equation (cf. Eq. (33)) and the estimate of the

robot’s orientation at the time of the image registration, ˆ̄qs,

are known. Due to errors in the line measurement and the

robot’s orientation estimate, when the constraint of Eq. (37) is

evaluated using the estimates of the corresponding quantities,

a residual arises:

rj = zj − ẑj

= eT
i CT (C

G
ˆ̄qs)ℓmj

− 0

= eT
i CT (C

G
ˆ̄qs)ℓmj

(38)

where C(C
G

ˆ̄qs) is the estimated rotation matrix between the

camera and the global frame.

In order to express the residual as a function of the errors

in the robot attitude estimate, ˆ̄qs, and in the line measure-

ment, ℓmj
, we denote the quaternion representing the rotation

between the camera frame and the robot frame as C
L q̄, thus

obtaining:

C(C
G

ˆ̄qs) = C(C
L q̄)C(ˆ̄qs) (39)

3An alternative way to derive the constraint in Eq. (37) is to note that the
vanishing point along the vector ei projects on the point p = C(C

Gq̄s)ei in
the image plane. Since this point lies on the line ℓj in the image, Eq. (37)
follows directly from application of Eq. (35).

and

C(C
Gq̄s) = C(C

L q̄)C(q̄s)

= C(C
L q̄)C(δq̄s)C(ˆ̄qs) (40)

where δq̄s = q̄s ⊗ ˆ̄q−1
s represents the error quaternion at the

time instant of the image registration. Thus we can rewrite

Eq. (38) as:

rj = eT
i CT (C

G
ˆ̄qs)ℓmj

− eT
i CT (C

Gq̄s)ℓj

= eT
i CT (ˆ̄qs)

(
CT (C

L q̄)ℓmj
− CT (δq̄s)C

T (C
L q̄)

(
ℓmj

− nj

))

By employing the small angle approximation [19]:

C(δq̄s) ≃ I3×3 − ⌊δθs ×⌋ , (41)

and ignoring quadratic error terms, we obtain the following

expression for the residual:

rj ≃ eT
i CT (ˆ̄qs)⌊CT (C

L q̄)ℓmj
×⌋δθs + eT

i CT (ˆ̄qs)C
T (C

L q̄)nj

=
[
01×6 Hsj

]



δθk+d|k

∆bk+d|k

δθs

∆bs


 + Γjnj

= Hjx̆ + Γjnj (42)

where we have denoted

Hsj
=

[
eT

i CT (ˆ̄qs)⌊CT (C
L q̄)ℓmj

×⌋ 01×3

]

=
[
Hqj

01×3

]
(43)

Γj = eT
i CT (ˆ̄qs)C

T (C
L q̄) (44)

Eq. (42) defines the linearized residual error equation for one

line, that results from the projection of a known unit vector

ei. If multiple lines are detected in an image, the residuals

corresponding to all lines can be stacked to form a residual

vector, which can consequently be used for performing EKF

updates.

In our implementation, we are employing measurements of

the projections of the stair edges, which are parallel to the

global y-axis. Although straight lines other than stair edges

can generally also be detected in the images (cf. Fig. 12), it

is not easy to determine the corresponding global unit vector.

In order to discard any measurements that do not belong to

lines parallel to the global y-axis (unit vector e2), we perform

a gating test with every detected line, prior to using it for state

updates. In particular, for each line we compute the residual

rj using Eq. (38), and require that it satisfies the Mahalanobis

distance test:

r2
j

Hsj
Pk|kH

T
sj

+ ΓjRjΓ
T
j

< γ (45)

where γ is equal to the 99-percentile of the χ2
1 distribution

(i.e., γ = 6.63). Fig. 6 shows an example image recorded by

the robot’s camera. The lines that pass (fail) the Mahalanobis

distance test are superimposed with solid (dashed) lines. Note

that the accepted lines do not necessarily belong to the stair

steps, but they are all parallel to the global y-axis.
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In order to perform the EKF updates, all lines that pass the

gating test are used to define the M × 1 residual vector

r = Hx̆ + Γn

=
[
0M×6 Hs

]
x̆ + Γn (46)

where r is the vector with elements rj (Eq. (38)), Hs is

a matrix with block rows Hsj
(Eq. (43)), Γ is a block-

diagonal matrix with elements Γj (Eq. (44)), and n is an error

vector with block elements nj (Eq. (33)). Since the errors

in the measurements of the individual lines are independent,

the covariance matrix of n is a block diagonal matrix, R,

with diagonal elements Rj (computed using Eq. (80) in

Appendix II).

Eq. (46) defines the innovation of the EKF update. The

covariance matrix of the innovation is given by

S = HP̆k+d|kH
T + ΓRΓT

= HsPk|kH
T
s + ΓRΓT (47)

and thus the Kalman gain matrix is determined as:

K = P̆k+d|kH
T S−1 =

[
Kk+d

Ks

]
(48)

where Kk+d is the Kalman gain for the current state, and Ks

is the gain for the static state (i.e., for the state at the time

instant of image registration). It is important to note that the

static copy of the state does not have to be updated, as only

the current attitude is necessary for motion control. Therefore,

evaluation of Ks is not necessary, and is omitted to reduce

computations. The block element of K corresponding to the

current state is given by (cf. Eqs. (31), (47) and (48)):

Kk+d = Fk+dPk|kH
T
s (HsPk|kH

T
s + ΓRΓT )−1

The current error-state correction is computed as

[
δ̂θk+d

∆̂bk+d

]
= Kk+dr

The update for the quaternion is given by

ˆ̄qk+d|k+d = δ̂q̄k+d ⊗ ˆ̄qk+d|k (49)

where

δ̂q̄k+d =

[
1
2 δ̂θk+d√

1 − 1
4 δ̂θ

T

k+dδ̂θk+d

]

The update for the bias estimate is simply

b̂k+d|k+d = b̂k+d|k + ∆̂bk+d (50)

Finally, the covariance matrix for the current state is updated

as:

Pk+d|k+d = Pk+d|k − Kk+dSKT
k+d (51)

For clarity, we present the steps of the attitude estimation

algorithm in Table 1.

Algorithm 1 Attitude Estimation Kalman filter

Propagation: Every time a rotational velocity measurement is

received:

• propagate the current state estimate using the estimated

rotational velocities at the last two time steps in Eq. (7),

and Eqs. (22) and (23)

• propagate the covariance of the current filter state, using

Eq. (26)

• if a copy of a previous state is present (i.e., if an image

is currently being processed), compute the matrix Fk+i

using Eq. (32)

Copying the state: Every time an image is recorded:

• create a copy of the current quaternion estimate and the

current state covariance matrix

Update: Every time line measurements from an image become

available:

• perform gating tests for all detected lines (Eq. (45))

• use the lines that pass the gating test to update the state

using Eqs. (49) and (50)

• update the covariance of the current state vector using

Eq. (51)

• discard the static copy of the state

B. Estimating the distance ratio dL/dR

In order to avoid collisions with the boundaries of the stairs,

the centering controller requires an estimate of the robot’s

distance to the walls. Given the projections of the stair edges,

it is possible to estimate the ratio of the distances from the

camera to the left and right ends of the stairs. We note that

this ratio will in general differ from the ratio of the distances

of the robot’s center from the ends of the stairs. However, for

small steering angles this difference is not significant, and we

found that it does not hinder the controller’s performance.

The 3D coordinates of two points that lie on the left and

right ends of a stair edge are given respectively by:

GpL =




xo

w
zo


 and GpR =




xo

0
zo


 (52)

where the width of the stairs is denoted by w, and the

coordinates xo and zo can be arbitrary (cf. Fig. 4). The

projective image coordinates of the projection of the left

endpoint on the image are determined by:

pLp =
1

cL

[
C(C

Gq̄s)
CpG

] [
GpL

1

]

=
1

cL

[
C(C

Gq̄s) −C(C
Gq̄s)

GpC

] [
GpL

1

]

=
1

cL

C(C
Gq̄s)

(
GpL − GpC

)
(53)

where the vector GpC = [xc yc zc]
T denotes the position

of the camera in the global coordinate frame, and cL is an
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arbitrary nonzero scalar. From the last expression we obtain:



xo − xc

w − yc

zo − zc


 = cLCT (C

Gq̄s)pLp (54)

By employing similar derivations for the right endpoint of

the stair edge, we obtain



xo − xc

−yc

zo − zc


 = cRCT (C

Gq̄s)
T pRp (55)

for some nonzero multiplicative constant cR.

At this point, we note that the distance of the camera

from the left side of the stairs is dL = w − yc, while

the distance from the right side is dR = yc. Moreover, an

estimate for the right-hand side of Eqs. (54) and (55), up

to a multiplicative constant, can be computed by employing

the estimate for the camera attitude, C(C
G

ˆ̄qs) = C(C
L q̄s)C(ˆ̄qs)

and the measured image coordinates of the endpoints of the

line, pRpm
and pLpm

. Thus, if the multiplicative constants

in Eqs. (54) and (55) were known, it would be possible to

directly estimate the quantities dR = yc and dL = w − yc

from these equations. However, due to the scale uncertainty

introduced by the use of a single camera, only the ratio of the

multiplicative constants can be computed. By noting that the

first and third elements of the vectors in the left-hand side of

Eqs. (54) and (55) are equal, we can estimate the ratio cL/cR

as

cL

cR

=

√√√√
(
eT
1 CT (C

G
ˆ̄qs)pRpm

)2
+

(
eT
3 CT (C

G
ˆ̄qs)pRpm

)2

(
eT
1 CT (C

G
ˆ̄qs)pLpm

)2
+

(
eT
3 CT (C

G
ˆ̄qs)pLpm

)2

and thus an estimate for the ratio of the distances dL/dR can

be computed as

dL

dR

=
w − yc

yc

=
cL

cR

∣∣∣∣
eT
2 CT (C

Gq̄s)pLpm

eT
2 CT (C

Gq̄s)pRpm

∣∣∣∣ (56)

In every processed image, an estimate for the ratio dL/dR

is computed from each of the lines that are found to be

parallel to the global y-axis. Our experiments have shown

that these estimates can vary significantly within an image,

due to the fact that the localization of the lines’ endpoints is

not very reliable. Several factors contribute to this: (i) Due

to the properties of light reflection, the corners between the

stairs and the adjacent walls are illuminated less than the rest

of the stairs. (ii) Due to the accumulation of dirt and the

effects of use, the ends of stair edges often have different

appearance than the center. (iii) The robot undergoes rapid

rotations about its x-axis (which coincides with the camera

z-axis), as a result of the tracks’ interaction with the steps

(cf. Fig. 9). These rotations result in image blurring, that is

more significant at larger angles from the optical axis. (iv)

The camera lens exhibits vignetting, thus resulting in lower

contrast towards the periphery of the images.

The above discussion indicates that it is necessary to employ

a robust scheme for fusing the ratio estimates of different

lines, to ensure that spurious measurements do not cause large

fluctuations in the robot’s ratio estimate. In order to discard

Fig. 6. An example image recorded by the camera, with the detected lines
that passed the Mahalanobis test superimposed as solid lines. The dashed lines
are those discarded by the gating test.

conspicuous outliers, we do not consider lines that are shorter

than lines above them in an image. This constraint arises from

the geometry of the projection model, which dictates that lines

that are closer to the robot (and thus lower in the image)

should appear larger4. Moreover, we employ a median filter to

compute the median ratio estimate from all the lines detected

in the last five image frames. Since the median is not sensitive

to the existence of a small percentage of outliers in the data,

the ratio estimates we obtain are more robust. We note at this

point that the delay introduced by this temporal averaging is

not significant: since images are processed at a rate of 15Hz,

any large change in the true ratio of distances (for example,

due to large slippage), will be detected on average in less than

0.2sec.

IV. MOTION CONTROL

A. Overview

The two main objectives of the stair-climbing control al-

gorithm are: (i) maximize the time that the robot is heading

directly up the stairs, and (ii) keep the vehicle away from the

staircase boundaries. The first goal is necessitated primarily

by the observation that the actual stair-climbing speed is

significantly affected by the robot heading. Specifically, even

when both track motors are commanded to rotate at the same

rate, the actual linear and rotational velocities of the vehicle

depend on the angle between the track cleats and the stair

steps. When the cleats are parallel to the stair edges, both

tracks exert maximum and approximately equal forces on the

steps which results in efficient stair climbing at high speed. In

contrast, if the cleats engage the stair edges at a large angle,

the track-surface interaction becomes highly nonlinear and

difficult to model. This is primarily due to the elasticity of the

tracks, the time-varying friction coefficients, and the rapid and

unpredictable changes in the percentage of the tracks’ surface

4An exception applies for lines that extend up to the end of the image. In
our implementation, these lines are not discarded by this rule.
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that is in contact with the stairs. This complex interaction

causes disturbances in the motion of the vehicle (intense track

slip, large lateral velocities and rotational accelerations) whose

magnitude increases with the robot velocity. This situation can

lead to uncontrollable motion and failure due to collisions or

even toppling of the vehicle.5

Under ideal conditions of operation, a heading controller

designed so as to minimize the heading error estimated by

the EKF (Section III) should be sufficient for guaranteeing

that the robot will travel straight up the stairs. As long as

the vehicle starts at the center of the stairs, it should be

expected that it will finish close to the staircase centerline.

However, the trajectory disturbances due to the highly dynamic

motion profile, often cause the robot to move towards the

boundaries of the staircase. In order to avoid collisions with

the walls or the stair railing, it is necessary to be able

to detect when the vehicle approaches the stair sides and

provide appropriate correction. To this end, we have designed

a centering controller, which, given the ratio of the distances

to the stair boundaries (Section III-B), changes the reference

signal (heading direction) of the heading controller and brings

the vehicle closer to the centerline. This two-tiered approach

to the design of the stair-climbing controller system (cf. Fig. 2)

is described in detail in the following two sections.

At this point, we should note that the centering controller

computes a heading direction θr, every time it receives an

estimate of the distance ratio, dL/dR. These estimates become

available asynchronously from the image processing algorithm

at a rate fc ≃15Hz. The heading controller receives as input

(i) the heading reference direction θr dictated by the centering

controller, (ii) the yaw, θ̂, and pitch, α̂, estimates from the

EKF, and (iii) the desired linear velocity of the vehicle, V ,

specified by the user. The output of the heading controller is

the commanded rotational velocity, ωd, of the robot. Although

estimates of the vehicle’s heading are provided from the EKF

at a rate of fe=100Hz, the heading controller operates at

fh =30Hz. This rate has been determined experimentally to

be fast enough to react to the dynamics of the vehicle while

placing reasonable computational demands on the system. The

input and output signals for both controllers are depicted in

Fig. 2.

B. Centering Controller

As previously mentioned, the optimal heading direction for

a stair-climbing vehicle is θr = 0. However, when the robot

approaches the staircase boundaries, the threat of collision

requires the centering controller to deviate from the optimal

heading direction and steer the robot away from the stair

sides. The information available to the centering controller for

predicting whether the robot is outside a “safe zone” around

the centerline, is the ratio of the distances dL/dR to the left

and right boundaries of the staircase (Fig. 7). Since the ratio

5These observations are corroborated by numerous trials of human operators
attempting to remotely control the vehicle up the stairs. The most common
modes of failure are: (i) collision with the staircase boundaries, (ii) toppling
of the vehicle. The main reasons for these events were high lateral velocities
and/or sudden changes of the motion direction that caused the vehicle to align
parallel to the stair edges.

ω

dL dR

CG

O

θ

Fig. 7. Diagram of vehicle on the stairs. CG is the center of gravity, O is the
center of rotation, θ is the heading direction, and dL, dR are the distances
to the left and right of the stairs, respectively. Note in this plot that the dark-
grey regions correspond to the “non-safe” areas close to staircase boundaries,
while the white and light-gray regions are considered as “safe” areas. When
the vehicle steers away from the stair ends, at a commanded angle θr = θd,
it needs to pass through the light-grey area and move within the white region
before the heading controller switches its reference signal θr back to the
nominal heading direction of 0 degrees.

is a non-symmetric function of the robot location relative to

the staircase centerline, the centering controller uses instead

as input the normalized ratio δ = min(dL/dR, dR/dL), 0 ≤
δ ≤ 1. Additionally, the sign value sδ = sign(dL/dR − 1)
is computed to determine the direction of the deviation from

zero heading. The output of the centering controller is the

reference signal θr provided to the heading controller (Fig. 2).

The centering controller is implemented as a step function with

hysteresis:

θr =

{
0, δ ≥ δc

sδ · θd, δ < δc
(57)

where θd = 10o is the magnitude of the direction change, and

δc = 3
7 (δc = 4

7 ) is the normalized distance ratio threshold

for detecting when the robot leaves (enters) the safe region

around the stair centerline. Note that the threshold δc receives

different values (hysteresis when switching between regions)

depending on the direction the normalized ratio δ approaches

these from. This is necessary so as to avoid oscillations of

the reference signal θr on the region boundary. The values

of θd and δc have been determined experimentally in order

to minimize the disturbances on the vehicle motion and the

probability of collision with the stair boundaries.

C. Heading Controller

In order to ensure that the vehicle will follow the heading

direction dictated by the centering controller, a model-based

heading controller has been designed. In what follows, we

describe the system model employed for this purpose and the

derived state-feedback controller.
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Fig. 8. Motor controller and motor block diagram.

1) System Model: A dynamics-based model of the vehicle

is developed in order to design a heading controller for use

during stair climbing. A detailed description of modeling

techniques for tracked vehicles is presented in [25] and [26].

In this work, we have approximated the dynamics of the

robot climbing stairs as a second-order linear system. This

approximation does not invalidate the model; it limits though

the range of application of the designed heading controller to

small angles (|θ| < 30o) of robot heading direction. The main

advantage of this linearized model is that it allows for the use

of formal control-system design techniques when designing

the heading controller [27].

As shown in Fig. 7, the center of gravity (CG) of the vehicle

used in our implementation is above its center of rotation O.

The equation that describes the rotation of the vehicle in a

plane defined by the stair edges is

Izω̇ = TO + mgdCG sin α sin θ − Mr (58)

where ω̇ = θ̈ is the rotational acceleration, θ is the heading

direction, and TO is the torque exerted by the motors about the

vehicle’s center of rotation, O. The parameters in the above

equation are: (i) Iz is the moment of inertia about the z-

axis, computed by weighing the individual subcomponents of

the vehicle and measuring their location relative to O, (ii)

m is the mass of the robot, (iii) g is the magnitude of the

gravitational acceleration, (iv) dCG is the distance of the CG

from O, (v) α is the inclination of the stairs, and (vi) Mr is

the rotational resistance. This last parameter is computed as

Mr = µmg cos αL/8, where L is the length of the tracks,

and µ is the coefficient of lateral resistance, estimated from

experimental data as in [28]. For small values of the heading

direction (sin θ ≃ θ), Eq. (58) can be approximated by the

following equation:

Iz θ̈ = TO + mgdCG sin α θ − Mr (59)

In this last expression, the torque, TO, on the robot body is

computed as:

TO = (FR − FL)b/2 (60)

where b is the distance between the tracks and FR (FL) is

the force exerted by the right (left) track of the vehicle on

the steps. These forces are related to the corresponding motor

torques Tm
R and Tm

L by the following expressions:

FR =
ng

rs

Tm
R , FL =

ng

rs

Tm
L (61)

where rs is the radius of the sprocket that drives each track

and ng is the gear ratio between the motor and the sprocket.

Substituting from Eq. (61) in Eq. (60), it is:

TO = (Tm
R − Tm

L )
ngb

2rs

(62)

The commanded motor torque Tm
j , j ∈ {R,L} is the output

of the motor controller (cf. Fig. 8) which is modelled as a

PD controller with characteristic function hmc(s) = kp +kds,

and input the difference ω̃m
j between the desired ω̄m

j and the

actual ωm
j rotational velocity of the motor. Since the response

of the motor controller is extremely fast compared to the

vehicle dynamics, the relationship between Tm
j and ω̃m

j can

be approximated as:

Tm
j = kmc ω̃m

j = kmc

(
ω̄m

j − ωm
j

)
, j ∈ {R,L} (63)

Applying the final value theorem to hmc(s), it can be shown

that kmc = kp, which is known from the motor specifications.

Substituting from Eq. (63) to Eq. (62), it is:

TO =
kmcngb

2rs

(ω̃m
R − ω̃m

L ) (64)

The motor rotational velocity ωm
j is given by:

ωm
j = Vj

ng

rs

, j ∈ {R, L}

where Vj is the linear velocity of the corresponding track, and

ng and rs are defined as before. Employing this last expression

and the kinematic relationship between the linear velocities of

the two tracks and the rotational velocity of the robot, i.e.,

ω = (VR − VL) /b ,

it is readily shown that ωm
R − ωm

L =
ng

rs
ω, ω̄m

R − ω̄m
L =

ng

rs
ω̄,

and thus

ω̃m
R − ω̃m

L =
ng

rs

ω̃ (65)

where ω̃ = ω̄ − ω is defined as the difference between the

commanded, ω̄ = ˙̄θ, and the actual, ω = θ̇, rotational velocity

of the vehicle body. Substituting from Eqs. (64) and (65) in

Eq. (59), we have:

Iz θ̈ =
kmc

2

(
ngb

rs

)2

( ˙̄θ − θ̇) + mgdCG sin α θ − Mr

Rearranging the terms in this last equation and making the

following substitutions

kv =
kmc

2Iz

(
ngb

rs

)2

, kg =
mgdCG sinα

Iz

, ωd = ˙̄θ − Mr

kvIz

we have:

θ̈ = −kv θ̇ + kg θ + kv ωd

This model can be written in standard state-space form as:

[
θ̇

θ̈

]
=

[
0 1
kg −kv

] [
θ

θ̇

]
+

[
0
kv

]
ωd ⇒

ẋ(t) = A x(t) + b u(t) (66)
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2) Controller Design: Once the state-space model (cf.

Eq. (66)) is developed, a number of techniques can be

employed to design the controller. In this work, we have

selected a pole placement approach which has the advantage

of being able to explicitly specify the resulting dynamics of the

controlled system within the constraints of the actuators [27].

The result of this design is a control law expressed as:

u(t) = −kT x(t)

where k is the vector of the controller gains.

A few modifications to Eq. (66) are required before applying

the pole placement design method. The first of these is to

discretize it at a rate equal to that of the controller. As

mentioned before, a heading control rate of fh=30Hz was

determined sufficient for reacting to the vehicle dynamics. The

discrete-time form of Eq. (66) is:

x(k + 1) = Ad x(k) + bd u(k) (67)

where Ad and bd are the equivalent discrete-time state and

and input matrices.

The second modification is the augmentation of the state

vector with a heading-error integral term x̃I , and the addition

of a reference signal θr(k), i.e.,
[

x̃I(k + 1)
x(k + 1)

]
=

[
1 hT

0 Ad

] [
x̃I(k)
x(k)

]
+

[
1
0

]
θr(k)

+

[
0
bd

]
u(k)

⇒ x̆(k + 1) = Ăd x̆(k) + c̆d θr(k) + b̆d u(k) (68)

with hT = [−1 0]. This extra state term x̃I is required so as to

eliminate any steady-state error that may occur in the system

due to disturbances caused by the unmodeled dynamics of

the interaction between the vehicle tracks and the stair steps.

The reference signal θr(k) is included in this last equation in

order to allow for the centering controller to modify the system

behavior by changing the heading direction of the vehicle

when the robot moves close to, or away from, the staircase

boundaries.

The design of the heading feedback control law, u(k) =
−k̆d x̆(k), affects several aspects of the system. The first

obvious effect is on the dynamics of the resulting system in

terms of stability, response speed, and damping. A secondary

consideration, contradictory to the first, is the minimization

of the energy expended during stair climbing. A balance of

these two is achieved by selecting a damped system on the

order of ζ = 0.7 without affecting the natural frequency of the

system significantly [27]. The effect of the controller design

on the response of the system has also been iterated both in

simulation and experimentally in order to refine the design.

V. EXPERIMENTAL RESULTS

A. Implementation details

The estimation and control algorithms described in the pre-

ceding sections have been implemented on an iRobot Packbot

tracked vehicle. The robot, shown in Fig. 1, is equipped with

two retractable small arms, that are used as extensions of the

tracks to facilitate climbing the first step of the stairs. After the

initial alignment to the stairs (described in detail later in this

section) is complete, the robot positions its arms at an angle of

60o from the ground, and starts approaching the stairs. Once

the robot starts ascending, the arms are extended forward, to

maximize traction. The two different positions of the robot’s

arms can be seen in Figs. 1 and 2.

The proprioceptive measurements in our implementation are

provided by an Inertial Science ISIS IMU, operating at 100Hz.

A Pointgrey Firefly camera is used, recording grayscale images

at a rate of 15Hz, with a resolution of 640×480 pixels. The

algorithms have been implemented in C++, and run in real time

on a Pentium-3 onboard computer (800 MHz CPU, 256MB

RAM) operating under Linux. The most computationally ex-

pensive procedure of the algorithm is the detection of the

lines in the images, which requires approximately 60msec of

processing time per image. The time necessary for propagating

the state and the covariance is approximately 0.2msec, while

the time needed for covariance update is approximately 3msec

in the worst case (the actual update processing time depends

on the number of detected lines).

Both sensors (gyroscope and camera) have been calibrated.

Intrinsic camera calibration has been performed by application

of Zhang’s method [29], to estimate the linear parameters of

the perspective model and the nonlinear distortion parameters.

Using the resulting calibration, the pixel coordinates of image

points can be transformed to the normalized image plane by

employing the inverse model of Heikkila et al. [30]. The

rotation between the camera and robot frames is known from

the engineering drawings of the robot. The gyroscope cali-

bration consists of determining the continuous-time standard

deviation of the noise processes nr and nw, which have been

estimated as σrc
= 6.3 × 10−5(rad/sec)/

√
Hz, and σwc

=
8 × 10−6(rad/sec2)/

√
Hz.

At the beginning of every run up the stairs, the state vector

and its covariance must be initialized. An initial estimate

for the gyroscopes’ biases and their variance is produced by

computing the sample mean and sample variance of gyroscope

measurements, recorded while the robot remains static for

5sec. In order to initialize the attitude, we consider the ground

at the bottom of the stairs approximately horizontal6, and

thus the only remaining unknown variable is the robot’s

rotation about the z-axis (yaw). This is estimated using the

algorithm presented in [13], from the projections of lines in

the image. If the robot is not initially aligned with the global

coordinate frame, it rotates until the angle between the robot

and global frames is smaller than a threshold (equal to 5o in

our implementation).

The robot’s attitude is initialized using the estimate for the

robot’s yaw after the initial alignment, and assuming zero

rotation about the global x- and y-axes. The standard deviation

of the initial attitude errors is set to 0.66o for the roll and

pitch errors, and 2o for the yaw error. These values correspond

to ±3σ error intervals of (−2o, 2o) for the roll and pitch

errors, and (−6o, 6o) for the yaw (cf. Fig 11). The relatively

6Alternatively, the roll and pitch angles can be determined from the values
of the accelerometers of the IMU, or from an inclinometer, in case the robot
is on uneven terrain.
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large initial standard deviation for the yaw is chosen so as to

allow for correcting potentially large errors in the initialization,

which may result if the robot is too close to the stairs (and thus

visibility is limited), or if spurious lines exist in the image.

As soon as the robot reaches the top of the stairs, it has

to immediately detect this, stop, and switch to a different

“behavior” (possibly searching for the next flight of stairs

to climb [13]). Failure to do so may result in collisions and

equipment damage. Since the latency of the EKF attitude esti-

mates is very low (approximately 0.2msec), we have decided

to employ these in order to detect the robot reaching the

top of the stairs. In particular, when the robot’s pitch in 10

consecutive time-steps (corresponding to a time interval of

0.1sec) is smaller than 5o in absolute value, the robot stops.
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Fig. 11. The time evolution of the standard deviations for the angular errors.

B. Results

A large number of tests has been carried out to examine

the performance of the proposed stair-climbing scheme, and

we hereafter present representative results from one of the

experimental runs. In Fig. 9, the estimated Euler X-Y-Z

angles (roll-pitch-yaw) representing the robot’s attitude, and

the estimated distance ratio dL/dR are plotted. Note that

the Euler angles are not directly estimated by the filter, in

which a quaternion representation of rotation is used. They

are presented in the figure to facilitate visualization, since

plotting the time evolution of the quaternion elements does

not provide an intuitive understanding of the robot’s attitude.

The robot’s yaw angle is also compared with the reference

angle θr determined by the centering controller.

In this run, the robot completed climbing the first step

at approximately t = 2.7sec, and shortly after, the first

reliable distance ratio became available. The robot correctly

determined that it was positioned too close to the left wall,

and the centering controller commanded the robot to head at

an angle of 10o to the right (cf. Fig. 9). At approximately

t = 7sec the robot entered the center zone, and therefore the

reference angle of the heading controller became θr = 0o.

However, due to slippage, the robot again moved to the left

“non-safe zone” after 2sec (cf. Fig. 7), and the reference angle

was set to −10o once again. At approximately t = 11sec, the

robot’s distance ratio crossed the threshold δc = 4/7, and the

robot remained in the center zone until it reached the top of

the stairs, at approximately t = 13sec.

In Fig. 10, we plot the residuals of the line measurements,

computed by Eq. (38), for all the lines that passed the gating

test (Eq. (45)) during the run. These residuals are compared

to the ±3σ bounds corresponding to the diagonal elements of

S (Eq. (47)). We observe that no noticeable bias is present,

which indicates that the estimator is consistent, and that the

employed sensor noise models are sufficiently accurate. The

plots in Fig. 11 show the standard deviation of the angular

errors. The plotted lines represent the square roots of the
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(a) (b) (c)

(d) (e) (f)

Fig. 12. (a) Location: Tampa Police and Fire Training Academy tower, Tampa, FL, material: metal, slope: 35o, illumination: daylight (b) Location:
CS&E Department 5th floor, University of Minnesota, material: plastic/carpet, slope: 28o, illumination: poor indoor lighting (c) Location: CS&E Department
study commons, University of Minnesota, material: metal, slope: 30o, illumination: indoor lighting (d) Location: Columbia Heights Central Middle School,
Minneapolis, MN, material: linoleum, slope: 30o, illumination: heavily back-lit (window on top of stairs) (e) Location: Walter Library lobby, University of
Minnesota, material: marble, slope: 25o, illumination: indoor lighting (e) Location: Digital Technology Center, University of Minnesota, material: carpet,
slope: 33o, illumination: indoor ambient daylight.

diagonal elements of the state covariance matrix corresponding

to the attitude. From this figure, it becomes clear that the

pitch is unobservable, as the variance of the errors around the

robot’s y axis monotonically increases. Contrary to that, the

variance of the errors in the roll and yaw remains bounded,

indicating that these degrees of freedom of the attitude are

observable. These results corroborate the theoretical analysis

of observability, presented in Appendix III.

Although we are not able to obtain ground truth attitude

information for the entire duration of this experiment, we

observe that the robot’s pitch and roll angles at the top of

the stairs are equal to 0.4o and 0.1o, respectively. In all our

experimental runs, we have observed that the roll and pitch

at the top of the stairs is consistently smaller than 1o, in

absolute value. Comparing these results with the estimated

standard deviations of the angular errors (equal to 0.15o for

roll and 1.4o for pitch in this run), and taking into account the

inaccuracies in the construction of the stairs, indicates that the

covariance estimates accurately describe the uncertainty in the

robot’s attitude, and thus are consistent.

As shown in Fig. 9, the heading controller is able to reduce

the error between the actual vehicle direction and that dictated

by the centering controller to within roughly 5o. The variations

from the nominal heading direction are due to disturbances

in the system, caused by the dynamics of the interaction

between the vehicle tracks and the stair steps, which are very

difficult, if not impossible, to model. In contrast, the errors

in the yaw estimates provided by the EKF become smaller

than 1o after only a few seconds (cf. Fig. 11). Thus, the

estimation errors are significantly smaller than the errors in the

vehicle’s commanded heading direction. This is actually the

main reason for selecting sensor- instead of dynamic modeling

when designing the estimator for this task. Similar cases have

previously appeared in the literature (e.g., [15]) where even in

the case of an orbiting satellite whose external disturbances

are minimal, efforts to incorporate the vehicle dynamics in

the design of the state estimator have not resulted in increased

accuracy. On the contrary, the non-linear dynamics often have

a negative impact on the performance of the estimator, as these

introduce high-frequency components and biases that increase

the errors in the state estimates [17].

We note at this point that the results presented in this

section, that pertain to a single run of the robot up the stairs,

are typical of the algorithm’s performance. Averaging over

all our recorded runs, the rms value of the deviation of the

robot’s heading from the commanded direction was equal to

3.54o, while the average value of the normalized distance ratio,

δ = min(dL/dR, dR/dL), was equal to 0.62. These values are

computed using the estimates for the robot’s attitude and for

the ratio of distances dL/dR, as no ground truth is available.

This performance has been determined, through extensive

experimental validation, to be sufficient for the purposes of

autonomous stair climbing.



15

C. Reliability

One of the primary concerns during the development of

the stair-climbing algorithm is the algorithm’s robustness to

variations in environmental factors (e.g., illumination condi-

tions, slope and appearance of stairs, slippage characteristics

due to the surface material of the stairs, to name a few). We

have conducted over 300 tests on different types of stairs,

for example stairs covered by marble, metal, linoleum, and

carpet, both indoors and outdoors, during different times of

the day, and with slopes varying from 25o to 35o. It is worth

noting that the algorithm has been successfully demonstrated

at the NSF Industry/University Cooperative Research Center

(I/U CRC) on Safety, Security, and Rescue Research (SSR-

RC) Spring 2005 Symposium in Tampa, FL, as well as at

several community and industry outreach activities of the

Digital Technology Center of the University of Minnesota.

Example images from some of the tests we have performed

are shown in Fig. 12. We note that camera gain calibration is

performed adaptively based on the image intensity only in the

part of the image where lines are detected. This often results

in saturation in other parts of the image, especially when the

stairs are less well-lit than the background. This approach,

however, facilitates edge detection by increasing contrast in

the areas of interest.

In our tests, we have consistently observed that orientation

estimation is very accurate and robust. We attribute this to

the high accuracy of the gyroscopes, and the effective outlier

rejection (cf. Eq. (45)). The algorithm was able to correctly

estimate the robot’s heading in all the tests we performed. The

only mode of failure that we have observed in our experiments

is erroneous estimation of the ratio of distances to the left and

right boundaries of the stairs. This only occurred in badly-lit

indoor environments, when the surface of the stairs is covered

by dark-colored material. In these cases, the endpoints of

the stairs cannot always be reliably detected, thus sometimes

resulting in the robot coming in contact with the wall or

railing. This type of failure occurred in less than 10% of the

cases where the robot attempted to climb dark and badly-lit

stairs, and we believe that by placing a small light source on

the robot, this problem can be eliminated.

VI. CONCLUSIONS

In this paper, we have presented an algorithm for au-

tonomous stair climbing with a tracked vehicle. Through

extensive experimentation, we have verified that this task can

be accurately and reliably performed by a robot that receives

and processes data from only two sensors: (i) the rotational

velocity measurements provided by a 3-axial gyroscope, and

(ii) the line parameters estimated from the stair-edges’ projec-

tions on a camera image. Specifically, we have designed an

EKF estimator that fuses these measurements and computes

precise attitude estimates at a high rate. Additionally, we

have described the process we employ for estimating the

robot’s relative distance to the stair ends, from the stair-edge

measurements. This information is utilized by a centering

controller that modifies the vehicle’s heading direction every

time the robot approaches the staircase boundaries. Finally,

we have designed a state-feedback heading controller, based

on the dynamics of the vehicle, that computes the required

rotational velocities of the robot in order to steer the vehicle

in the heading direction dictated by the centering controller.

Contrary to previous approaches, our algorithm offers a tight

integration of inertial and visual information, and can be

applied on different robot models and stair types.

At this point we should note that the algorithm described

in this paper, relies on the assumption that all stair edges are

parallel, straight lines. Extending the algorithm to work in

more general stairways, such as spiral staircases, is a possible

direction of future research. Furthermore, we are currently

investigating means to improve the robustness of estimating

the ratio of the distances to the left and right stair boundaries.

In the near future, we are planning to complement our existing

algorithm with procedures for autonomous stair descent and

automated search for stairs.
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APPENDIX I

DISCRETE-TIME MODEL

The discrete-time state transition matrix Φk is a block

matrix with the following structure:

Φk =

[
Θ Ψ

03×3 I3×3

]
(69)

The matrices Θ and Ψ can be computed as

Θ = I3×3 −
1

|ω̂| sin (|ω̂|∆t) ⌊ω̂×⌋

+
1

|ω̂|2
(
1 − cos(|ω̂|∆t)

)
⌊ω̂×⌋2 (70)

Ψ = −I3×3∆t +
1

|ω̂|2
(
1 − cos(|ω̂|∆t)

)
⌊ω̂×⌋

− 1

|ω̂|3
(
|ω̂|∆t − sin(|ω̂|∆t)

)
⌊ω̂×⌋2 (71)

When |ω̂| is small, both of the above expressions will lead

to numerical instability. By taking the limit and applying

L’Hôpital’s rule, we arrive at

lim
|ω̂|→0

Θ = I3×3 − ∆t⌊ω̂×⌋ +
∆t2

2
⌊ω̂×⌋2 (72)

lim
|ω̂|→0

Ψ = −I3×3∆t +
∆t2

2
⌊ω̂×⌋ − ∆t3

6
⌊ω̂×⌋2 (73)
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The discrete-time noise covariance matrix Qd has the fol-

lowing structure

Qd =

[
Q11 Q12

QT
12 Q22

]
(74)

and the elements follow after considerable algebra as

Q11 = σ2
r∆t · I3×3 + σ2

w ·
(
I3×3

∆t3

3

+
(|ω̂|∆t)3

3 + 2 sin(|ω̂|∆t) − 2|ω̂|∆t

|ω̂|5 · ⌊ω̂×⌋2
)

(75)

Q12 = −σ2
w ·

(
I3×3

∆t2

2
− |ω̂|∆t − sin(|ω̂|∆t)

|ω̂|3 · ⌊ω̂×⌋

+
(|ω̂|∆t)2

2 + cos(|ω̂|∆t) − 1

|ω̂|4 · ⌊ω̂×⌋2
)

(76)

Q22 = σ2
w∆t · I3×3 (77)

As in the case of the state transition matrix, we can derive the

form for small |ω̂| by taking the limit and applying L’Hôpital’s

rule

lim
|ω̂|→0

Q11 = σ
2

r∆t · I3×3 + 2σ
2

w

(
I3×3

∆t
3

3!
+

∆t
5

5!
· ⌊ω̂ ×⌋2

)

lim
|ω̂|→0

Q12 = −σ
2

w ·

(
I3×3

∆t
2

2!
−

∆t
3

3!
· ⌊ω̂ ×⌋ +

∆t
4

4!
· ⌊ω̂ ×⌋2

)

For a detailed derivation of the above expressions, the

interested reader is referred to [20].

APPENDIX II

LINE EXTRACTION

The images recorded by the robot’s onboard camera are

processed to detect the projections of the stair edges. The

detected lines are employed (i) for updating the robot’s attitude

estimate, and (ii) for estimating the ratio of the robot’s

distances to the left and right boundaries of the stairs. In the

following, we outline the steps of the straight-line detection

algorithm.

A. Edge detection

The first step in the processing of each image involves

application of Canny’s edge detection operator [31]. In order

to achieve invariance of the edge detection procedure to illu-

mination changes, as well as to the effects of blurring, that is

caused by the robot’s rapid orientation changes, the thresholds

in the Canny algorithm are selected adaptively. In particular,

the standard deviation, σG, of the image gradient along the

vertical image direction is computed, and the cutoff-values

in Canny’s hysteresis-based edge thresholding are selected as

(σG, σG/4).

B. Straight-line detection

The output of the edge detection process is a set of edge

segments. Given the normalized coordinates pi = (ui, vi), i =
1 . . . N of the points in the j-th edge segment, total least-

squares line-fitting is performed to obtain an estimate of the

best straight-line fit. Lines are parameterized using the polar

representation (cf. Eq. (34)), and the line parameters (φj , ρj)
are determined by minimizing the weighted sum of squared

distances of all the points pi to the line (cf. Eq. (35)):

(φj , ρj) = arg min
φ,ρ

J(φ, ρ)

= arg min
φ,ρ

N∑

i=1

1

σ2
(ui cos φ + vi sin φ − ρ)

2
(78)

where σ is the standard deviation of the errors in the image

coordinates of the detected edge points.

For each line, the covariance matrix of the line parameters

is computed, and denoted as

Pℓj
=

[
σ2

φj
corr(φj , ρj)

corr(φj , ρj) σ2
ρj

]
(79)

where σ2
φj

is the variance of the line’s orientation, σ2
ρj

is the

variance of the line’s distance from the origin of the image

coordinate frame, and corr(φj , ρj) is the correlation between

the line orientation and distance.

In order to discard all segments that do not correspond to

straight lines, we perform a χ2 compatibility test. Specifically,

the weighted sum of the squared distances of all points pi

to the line ℓj , J(φj , ρj), is a random variable, distributed

according to χ2
N−2. In order to filter out edge segments that do

not correspond to straight lines, we discard edges with values

for J(φj , ρj) exceeding a threshold equal to the 99-percentile

of the χ2
N−2 distribution.

Once all the straight lines in the image have been detected,

we examine whether some of the detected lines correspond to

the same physical line. For this purpose, all lines are examined

in pairs, and if the difference in the lines’ parameters is small,

total least-squares line-fitting is performed using the points

that belong to both lines. If the resulting line satisfies the

aforementioned χ2 criterion, then the two lines are merged.

This process is applied recursively, until no more lines can be

merged.

In the EKF update of the robot’s attitude, the covariance

matrix of the line equation vector, ℓj , is necessary (cf. Sec-

tion III-A.9). This is computed as:

Rj =
(
∇[φj ρj ]T ℓj

)
Pℓj

(
∇[φj ρj ]T ℓj

)T

=



− sin φj 0
cos φj 0

0 −1


Pℓj

[
− sin φj cos φj 0

0 0 −1

]
(80)

APPENDIX III

OBSERVABILITY ANALYSIS

In order to analyze the stochastic observability of the

proposed attitude filter, we will examine a slightly simplified
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system that neglects the gyroscope bias.7 Similarly to Eq. (46)

in Section III-A.9, we can then write the residual for all line

measurements as

r = Hqx̃
′ + η (81)

In this case, however, x̃′ = δθ, so that Hq is a matrix with

rows

Hqj
= eT

i CT (q̄)⌊CT (C
L q̄)ℓj×⌋ (82)

The noise term η = Γn is Gaussian with zero mean and

covariance

cov(η) = ΓRΓT (83)

As before, Γ and R are block-diagonal matrices, with diagonal

elements

Γj = eT
i CT (q̄)CT (C

L q̄) (84)

and Rj as in Eq. (80).

From the block-diagonal structure of Γ and R, we see that

cov(η) is a diagonal matrix with positive, scalar diagonal

elements

cov(η)jj = ΓjRjΓ
T
j (85)

Recalling the definition of Rj from Eq. (80), we see that it is

of rank 2, assuming that Pℓj
is of full rank. Moreover,

Null(Rj) = γ




cφj

sφj

0


 , γ ∈ R (86)

In order for cov(η)jj to be zero, ΓT
j = C(C

L q̄)C(q̄)Gei = Cei

must lie in this nullspace. Assuming that this is the case, we

proceed by applying the measurement constraint, Eq. (37)

CeT
i ℓj = 0 ⇒ γ

[
cφj sφj 0

]



cφj

sφj

−ρj


 = 0 (87)

⇒ γ = 0 ⇒ Cei = 0 (88)

Obviously, Cei = 0 is impossible, since by definition

||ei|| = 1, which completes the proof by contradiction. We

can therefore conclude, that all diagonal elements of ΓRΓT

are different from zero, so that cov(η) is always invertible.

Stochastic observability requires that there exist positive

constants α, β with α < β < ∞ and a positive integer N
such that, for all ν ≥ N ,

αI3×3 ≤
ν∑

µ=ν−N+1

ΦT
q (tµ, tν)HT

q (tµ) cov(η)−1(tµ)Hq(tµ)Φq(tµ, tν)

≤ βI3×3 (89)

or, in other words, that the inner sum of matrices is of full

rank [17].

Note that Eq. (70) implies that Φq = Θ is the rotational

matrix

Φq(tµ, tν) = C(
Lµ

Lν
q̄) (90)

7Intuitively, if the attitude is observable, the bias is also observable, as can
be verified for a simple 1-D example.

Pre- and post-multiplication of Eq. (89) with CT (Lν

G q̄) and

C(Lν

G q̄) respectively, changes the inner expression to

ν∑

µ=ν−N+1

C(G
Lµ

q̄)HT
q (tµ) cov(η)−1(tµ)Hq(tµ)C(

Lµ

G q̄) (91)

Due to the particular block-structure of Hq and cov(η), this

can be decomposed as

ν∑

µ=ν−N+1

M∑

j=1

cov(η)−1
jj C(G

Lµ
q̄)HT

qj
(tµ)Hqj

(tµ)C(
Lµ

G q̄)

which is a sum of outer product matrices, since GHT
qj

=

C(G
Lµ

q̄)HT
qj

is of dimension 3 × 1. The rank of the observ-

ability matrix is therefore equal to the number of linearly

independent vectors GHT
qj

. Algebraic transformation of GHT
qj

shows that this vector is the cross product of the line vector ℓj

and the unit vector ei, both expressed in global coordinates:

GHT
qj

= CT (q̄)
(
eT

i CT (q̄)⌊CT (C
L q̄)ℓj×⌋

)T

=
(
eT

i ⌊CT (q̄)CT (C
L q̄)ℓj×⌋

)T

= − ⌊Gℓj×⌋Gei

= Gei × Gℓj

This implies that all HT
qj

are orthogonal to ei and are thus

confined to one plane (i.e., do not span the 3D space). We

can therefore conclude that if we observe only edges parallel

to one unit vector (as is the case for stair edges parallel to

the global y-axis), the observability matrix will be at most

of rank 2. Note that this does not change regardless of the

robot’s trajectory. The rotation about the observed unit vector

ei, in our case the pitch angle, will remain unobservable, as

corroborated by Fig. 11.

However, in the general case where at least two linearly

independent unit vectors vi, i = 1, 2 are observed three times,

the attitude becomes fully observable. This is equivalent to

the matrix HT
q =

[
HT

q1
HT

q2
HT

q3

]
having full rank, where

HT
qj

= vi × ℓj , i = 1 or 2, j = 1, 2, 3, and vi and

ℓj are expressed with respect to the same coordinate frame.

Depending on the vectors vi and the observed lines ℓj , there

can arise several singular cases, of which the following is of

particular interest:

• vi = v: If we only observe one unit vector, the matrix

will be at best of rank 2. As discussed previously, this is

the case when the robot observes only stair edges, i.e.,

vi = e2.

• ℓj = ℓ: This condition requires that all unit vectors

project along the same line on the image (i.e., only one

line direction is observed in the image data).
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