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Abstract

Exploration gathers information about the unknown. This information can come in many

forms, from knowledge of new terrain, to rock geology, to lifeforms. The value of these

different information forms to an explorer is determined by a set of information metrics,

one for each form of information, that depend on the goal of the exploration task. As

explorations become more complex, increasing numbers of information metrics must be

considered in order to succeed. These multiple information metrics must be considered

simultaneously during exploration and often conflict with each other to compete for the

finite resources of the explorer. Exploration also involves making decisions, based on the

collected information, to test hypotheses and collect more information in an efficient man-

ner.

This thesis introduces a new exploration technique which actively considers how much

information can be gained from taking sensor readings as well as the cost of collecting this

information. The methodology can consider multiple metrics of information simulta-

neously — such as finding new terrain and identifying rock type — as it explores and

these information metrics can be easily changed to perform new and different exploration

tasks. The method considers the costs, such as driving, sensing and planning times, associ-

ated with collecting the information. Exploration plans are produced which maximize the

utility, information gain minus exploration costs, to the exploring robot.

The multiple information metric exploration planner is used to solve two exploration

problems: creating traversability maps and exploring cliffs. These tasks are performed in

simulation and the information gain and exploration path lengths are compared as the

information metrics are changed. The multiple information metric exploration planner is

further demonstrated in a field experiment to explore a cliff, starting at the cliff top the

planner found a route to the bottom and collected sensor information from the face of the

cliff.
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CHAPTER 1 Introduction

Exploration gathers information about the unknown. This information can come in many

forms from knowledge of new terrain, to rock geology, to lifeforms. The value of these

different information forms to an explorer is determined by a set of information metrics,

one for each form of information, that depend on the goal of the exploration task. Explora-

tion also involves making decisions, based on the collected information, to test hypotheses

and collect more information in an efficient manner.

As explorations become more complex, increasing numbers of information metrics must

be considered in order to succeed. These multiple information metrics must be considered

simultaneously during exploration and often conflict with each other to compete for the

finite resources of the explorer. The explorer must know the relative importance of these

information metrics and weight them appropriately when making decisions about what to

discover next.

The ruggedness of terrain also influences the exploration strategy employed by robotic

explorers. The cost of driving is not the same for all traversable areas. Some traversable

areas are near the limits of mobility, making them difficult to drive over, others may be

smooth and easy to drive through. The ruggedness of terrain can also affect the sensor

coverage and thus the amount of information gained by taking a sensor reading. Terrain

can shadow sensor readings, creating holes in the viewed area. Conversely, high ground
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can offer better views of large areas. Explorers must consider the effects of terrain on both

information gain and exploration cost.

An example of the type of exploration task considered in this thesis is the search for signs

of life, both past and present, on Mars. In this scenario, the explorer may have information

metrics for the presence of water (both past and present), finding cliff faces (where water

runoff has been detected [33]), the geology of rocks (some rock types may be more likely

to have fossils), the presence of organic material and drilling conditions (to assess the dif-

ficulty of obtaining subsurface samples). Each of these items is an information metric for

the explorer.

Another exploration task which might be imagined is the search for water ice in perma-

nently dark regions of the Moon, Mercury and asteroids. In this case the explorer needs to

consider lighting information (to identify permanently dark regions where water ice can

exist [41]), drilling conditions, age of crater and the location within a crater (near the rim,

in the center, etc.) [12]. Except for the drilling conditions information metric, this water

ice example has different information metrics than the Martian life scenario. The two

examples also have different numbers of information metrics. Thus to be generally appli-

cable to many exploration problems, an exploration strategy must be capable of handling

different types and numbers of information metrics.

Each information metric may compete with the others. For example some places may have

good drilling conditions, making them favorable to take a core sample but be in a rock

type that is unlikely to have fossils or water. The explorer must balance these disparate

information metrics and weigh their relative importance to the exploration task. Figure 1-1

illustrates the kinds of decisions an explorer must make when exploring complex outdoor

environments. An explorer is continually making these types of trade offs. It might decide

to examine terrain that was occluded by a rock or to drive further and examine a crater.

The explorer might also weigh the benefits of driving in a gully, where the sensor view is

restricted but there is a great chance of finding signs of water or life, versus driving on a

ridge top where wide panoramic views are possible. 
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While an explorer is considering the information gain from possible actions, it must also

consider the cost of collecting this information. These costs might include the time spent

driving to the site, sensing and planning. They may also include the power used for drill-

ing. Therefore the explorer must maximize the information gain while minimizing the

costs of collecting it. This quantity is referred to as the utility of an action.

Current exploration methods assume that a remote expert, usually a human, will analyze

the current data and then specify which regions are important. This model for exploration

has a few shortcomings. First, it increases the costs of exploration by requiring a large

Figure 1-1:Robot’s decisions. Exploring robot must decide where to go next. Should it
go look at the rocks more closely? They are close by so the cost is small but
how much information will the robot gain? It could drive into the dry river
bed and follow it. This has the potential of finding water or signs of life but
the steep slopes of the banks make it risky to enter and once inside the
banks block the robot’s view of other terrain potentially reducing the
amount of information collected. It might start looking for a path to the
cliff floor, to gain information from seeing the face of the cliff. Finally it
might decide to view some of the unknown terrain at the top of the image.
The explorer must make these types of decisions continuously as it
explores a region.

Unknown terrain

Dry river bed

Cliff

Cliff floor

Rocks

Where should
I go next?
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remote infrastructure to exist. This might limit the number of robots exploring at any one

time since a human operator can only control so many robots at one time. Secondly, espe-

cially with planetary and undersea explorations, a significant amount of time is required to

exchange the data between the explorer and the remote expert due to communication limi-

tations. During this time no exploration is being performed. To overcome these obstacles,

this thesis looks at increasing the autonomy of robot explorers by allowing them to make

their own decisions on the importance of regions and where to travel.

1.1 Thesis Statement

This thesis asserts that exploration which considers multiple information metrics, and the

costs of collecting the information, provides a robust, general and intelligent method of

autonomously performing complex exploration tasks. By investigating exploration plan-

ning techniques that maximize information gain from multiple metrics while minimizing

driving and computation costs, this research will show the benefits of multiple information

metric exploration.

1.1.1 Thesis Assumptions

Several assumptions have been made in the development and implementation of the multi-

ple information metrics exploration planning methodology. The exploration strategy has

been designed for surface explorations of rugged, outdoor terrain. That is not to say that

the methodology presented in this thesis cannot be applied to other domains such as aerial

or indoor explorations, but many of the decisions made have been made to improve per-

formance for outdoor surface explorations.

In addition to being a rugged, outdoor terrain, it has been assumed that the environment is

static — no moving obstacles — and projectively planar — there are no overhanging

structures such as caves or ledges. It is also assumed that the robot is told the extent of the

region to explore. For example a robot might be commanded to explore a region 1km by

3km centered at position x. This removes the need to dynamically reallocate the robot’s

map.
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Finally some assumptions about the robot used with the exploration planner are made.

First it is assumed that the robot has good localization — either through DGPS or land-

mark based position estimation. This means that the robot knows where it is in its map

with good precision. It is also assumed that the planner is operated in conjunction with a

local obstacle avoidance program. This lets the planner ignore the robot dynamics, such as

rate of change of steering angle, and still maintain safety.

1.2 Autonomous Exploration Architectures

Most exploration methodologies fit into one of five exploration architectures: patterned

search, human goal selection, active vision, find new terrain and autonomous exploration.

These architectures are listed in order of their consideration of the environment; from pat-

terned search, which defines an a priori path to travel regardless of the environment, to

autonomous exploration which uses environmental information, sometimes with multiple

metrics, to determine the exploration path.

Patterned search seeks to view or cover an entire area by using a fixed path which is deter-

mined at the start of the search. Some methods require a map of the environment at the

start [10][78] to determine a coverage path, while others are able to modify the a priori

path as obstacles are detected [1][9][23]. Typically, a raster pattern is used, but other pat-

terns such as spirals have been attempted [55]. Essentially, patterned search methods have

determined where they will drive before seeing the environment. Thus, these methods are

not truly exploration but rather search methods.

In the human goal selection architecture, the exploring robot relays the information it has

gathered about the environment to a remote human operator. The human then decides

what tasks have the greatest utility for the robot and uplinks the appropriate commands.

This type of architecture was successfully used by Sojourner on Mars [36]. One can con-

sider basic path planners [31][61], where the shortest path to a human defined goal is

found, to belong in this category of exploration. Planners such as Generalized Robotic

Autonomous Mobile Mission Planning System (GRAMMPS) [8], which directed multiple
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robots to multiple goals are also in this category as are the planner/scheduler architectures

Coupled Layer Architecture for Robotic Autonomy (CLARAty) [67][18] and Contingent

Rover Language (CRL) [70][6]. These methods have been largely successful because they

take the most difficult parts of the exploration problem, deciding what is important and

where to go, and placing it in the hands of a knowledgeable human operator. These meth-

ods are not restricted to human generated goals. They reformulate plans based on per-

ceived terrain and modify human generated plans as circumstances change. However,

these methods focus on the creation, modification and execution of plans rather than on

the generation of goals.

The field of active vision approaches the exploration problem from a different perspective.

Generally, active vision approaches create a model of the environment and then plan the

next sensor view to maximize the expected improvement in the model fit to the data

[35][72]. These methods actively consider where the most information to be gained is but

because of the need for an environment model they are restricted to very simple environ-

ments such as polygons on a table. Also, they usually do not consider the cost associated

with collecting the information.

In the finding new terrain architecture the robot decides where to drive based on the single

information metric of finding previously unseen terrain. Generally, these techniques

divide the world into two classes: seen and unseen and do not consider how well a place

has been viewed by the robot. Some methods do not consider how much information will

be gained, but simply drive to the closest frontier of seen and unseen [75][76]. Others con-

sider how much unseen terrain will be viewed as well as the costs of collecting the infor-

mation [58].

The final exploration architecture reviewed here, autonomous exploration, is characterized

by robots which autonomously decide where to go, based on a perceived gain, and gener-

ally consider more than just finding new terrain as a gain. The most common form of this

exploration architecture is for the solution of the indoor mapping problem. These tech-

niques try to find unknown terrain but are also very interested in finding places where they
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can localize themselves with high accuracy [65][66]. However, these techniques tend to

focus on the localization part of the problem rather than the exploration part. Some tech-

niques look at items other than localization such as science goals [17] or integrate the

planning with robot perception and motor actions to solve a task [15][16].

1.3 Exploration using Multiple Information Metrics

This thesis introduces a new exploration technique which actively considers how much

information can be gained from taking sensor readings as well as the cost of collecting this

information. The methodology can consider multiple, metrics of information simulta-

neously — such as finding new terrain and identifying rock type — as it explores and

these information metrics can be easily changed to perform new and different exploration

tasks.

For each information metric, the robot computes the expected amount of information to be

gained from taking a sensor reading in a particular location. The computed expected infor-

mation gain is ideally the information theoretic expected information gain and is in the

units of bits. By computing a measure for each different information metric that is in the

same units, these values can be summed to get a total expected information gain for a loca-

tion without the need for many heuristically determined relation constants. Each informa-

tion metric can be weighted to specify its relative importance but ultimately the sum is a

summation of items with the same units.

The exploration methodology also considers the costs of collecting the information.

Again, to avoid the need for heuristic unit conversions, the same units are used for all the

costs. In the examples contained in this thesis, the costs of driving, sensing and planning

were considered. Units of time were the most appropriate choice here since sensing and

planning are easily expressed in terms of time and driving distance can be converted into

time by the robot’s speed. The effect of terrain on driving costs can be taken into account

by assuming slower driving speeds over rough terrain. Other units, such as energy, could

be used depending on the application.
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Next, the exploration methodology must decide where to go. This is done by finding paths

which maximize the utility to the exploring robot. Utility is a concept from decision theory

which quantifies how useful an action is to the decision maker and allows many different

decisions to be meaningfully compared [48]. In the exploration problem, the utility along

a possible exploration path is computed as:

(1.1)

where the expected information and cost are along the entire path being considered. Since

expected information and cost are in two different units (bits and seconds) a unit conver-

sion must be performed to compare them. This is done with the value of information met-

ric. Essentially this determines how many seconds the explorer is willing to spend to

collect one bit of new information. This conversion factor may change over the course of

an exploration indicating that the explorer is more willing to take risks to collect informa-

tion and spend more time as information becomes scarce.

The multiple information metric exploration planner developed in this thesis is able to

handle the complex exploration tasks, such as searching for water ice on the Moon or

signs of life on Mars, postulated earlier. Using information theory to assign expected

information gains to each exploration criteria or, information metric, allows the planner to

weigh the benefits of competing goals and also allows the exploration criteria to be easily

changed for different exploration scenarios. It also actively considers the costs of collect-

ing information and ultimately finds exploration paths which maximize the utility to the

explorer as defined in equation (1.1).

The methodology actively reasons about the environmental effect on the expected infor-

mation gains, calculating expected visibility from potential sensor readings. This is essen-

tial in the complex, outdoor terrains considered in this thesis, where sensor occlusions are

commonplace. Further, the method considers the effect of terrain on the costs involved in

collecting information, computing the traversability of the terrain and how that affects

driving times.

Utility ValueOfInformation ExpectedInformation⋅ Cost–=
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The major disadvantage with the methodology is the planning complexity. The planner

must find paths which maximize utility, however with no destination cell to plan to, the

planner must search over all possible paths to all possible destinations. The planning is

further complicated by the fact that information gains in the same neighborhood are

dependent — every time a sensor reading is taken, the explorer’s map changes and the

information gains in the region are also changed. This makes long term planning an

expensive option. This problem can be mitigated by only planning to the next sensor read-

ing, which is the approach used in this thesis. However, that can produce myopic plans

which may miss some efficiencies found in long term plans.

In this thesis, the multiple information metric exploration planner is used to solve two

exploration problems: creating traversability maps and viewing cliff faces. These tasks are

performed in simulation and the information gain and exploration path lengths are com-

pared as the information metrics are changed. The multiple information metric exploration

planner is further demonstrated in real life to solve the view cliff faces problem on a cliff

in a coal strip mine.

1.4 Contributions

This thesis makes several contributions to the field of autonomous exploration. While the

focus is on exploring complex outdoor worlds, the results may be applied to many other

domains of exploration.

The first contribution is the presentation of a general methodology for performing autono-

mous exploration. This methodology allows the exploring robot to consider more than one

thing while exploring. Further, the criteria of exploration are easily changed in the pre-

sented framework. This allows the method to be easily adapted and applied to many

diverse exploration problems. Finally, the costs of collecting the information are explicitly

accounted for.

The second contribution is the application of information and decision theories to the

problem of exploration. By expressing the information metrics in terms of the expected
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information gain a common unit, the bit, is applied to the very different criteria used in the

exploration. By also expressing all of the costs in units of seconds, the expression for

robot utility only contains two different units. These units are compared with the value of

information parameter which has the physical interpretation of how many seconds the

robot is willing to spend to gain one bit of information. This use of information theory has

significantly reduced the potentially large number of hand tuned constants that might be

required.

The final contributions of this work are the two exploration examples presented. These

examples not only demonstrate the validity of the approach but they are both important

exploration problems. The creation of a traversability map of an unknown area is a classic

problem in robotics, particularly in field robotics where traversability is not just a binary

— traversable or not — quantity. The introduction of the concept of having greater cer-

tainty near poor terrain is an interesting twist which provides maps that are more useful

than conventional traversability maps. The second example, finding cliff faces, has great

potential in the search for water and life on Mars.
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CHAPTER 2 Background

2.1 Exploration Domains

Much work has been done in the area of robot exploration and several methodologies have

been developed. In general the work can be broken down into two problem domains:

indoor exploration and outdoor exploration. A great deal of research has been done in

indoor exploration and much of it has focused on exploration for mapping the interiors of

buildings, often with an emphasis on localization while mapping. Much less work has

been done in outdoor exploration which is characterized by more complex terrain and

exploration tasks than found in indoor exploration.

2.1.1 Indoor Exploration

Much of the work in robot exploration has considered indoor environments. Most of this

work used the structure of indoor worlds, such as parallel and perpendicular walls, to help

solve the exploration problem [11][28][34][64]. Since this structure is not found in out-

door terrains, these techniques are largely inapplicable. 

Another environmental aspect which affects many of the indoor exploration techniques is

the binary nature of the world. A region is either traversable (part of the floor) or not tra-

versable (above or below the plane of the floor). Since it requires the same amount of

energy to drive the same distance over any traversable area, the cost of driving is only
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dependent on the distance of the path. In an outdoor situation, traversability is continu-

ously valued and driving costs depend on the distance and the traversability. However,

unlike the parallel and perpendicular wall assumptions, indoor algorithms making the

binary world assumption are easily converted to more complex terrain by modifying the

driving cost to include traversability.

Yamauchi [75] and Yamauchi et al. [76] present a frontier based robot explorer designed

to explore complex environments typically found in office buildings. The premise of this

method is that “To gain the most information about the world, move to the boundary

between open space and uncharted territory” [75]. The robot examines the map it has cre-

ated so far and classifies each cell as unknown, occupied or empty. It then extracts all the

regions, larger than the robot, where empty cells are adjacent to unknown cells. These are

called frontiers (Figure 2-1). The robot then plans the shortest path to the nearest frontier,

takes another sensor reading, finds new frontiers and repeats the process over again until

no new frontiers are discovered. They present their method on an indoor mobile robot.

While this method makes few assumptions about the environment it has several shortcom-

ings for outdoor exploration. First, it assumes that detecting and driving to frontiers is the

only source of information. For example, it makes no attempt to improve the certainty of

detected obstacles. The robot uses a certainty grid for its map but when determining fron-

tiers it reduces this world to unknown, occupied and empty. So as soon as a cell has a

probability of being occupied that is greater than the initial probability, it is occupied as far

as the exploration goes. It is possible that this was a bad sensor reading or that one would

like to have a higher certainty of obstacles. Finally, the algorithm always chooses the clos-

est frontier for exploration. It may in fact be better to go to a slightly farther frontier if it is

larger or less bumpy than a closer one.

Simmons et al. [58] look at using multiple robots to explore using a similar frontier strat-

egy. However, each frontier is evaluated based on the expected number of unknown cells

the robot can see from the frontier as well as the distance from the robot. Thus the explor-

ing robots choose the frontier which will provide the highest utility (information gain
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minus driving cost) rather than simply the closest frontier. The multiple robots also coordi-

nate their efforts to reduce overlap while exploring.

The previous papers all looked at exploring as simply finding new terrain. However the

exploration tasks considered in this thesis require more from the robot than just finding

new terrain. The following are some methods developed for indoor robots which consider

more than one criteria in their explorations.

Roy et al. [52] look at including the ability to localize the robot, using natural landmarks,

when planning paths. This produces paths which remain close to walls. While [52] was

not trying to explore new regions it is considering two criteria, shortest distance and local-

ization ability, when planning paths. A similar problem is the simultaneous localization

and mapping problem where the robot is trying to map an unknown area and at the same

time maintain good localization. Thus, finding new terrain and finding good localization

places can be considered the two criteria of these explorations. Many researchers have

looked at this problem, [65][66] are two good methods, however more attention is usually

given to the problem of localization than to deciding which paths to take in the explora-

tion.

In [15][16], Elfes presents an integrated approach to robot navigation which incorporates

task specific information needs, perception sensor capabilities and robot knowledge into

Figure 2-1: Frontiers. In this scene of a hallway, the black lines are walls or occupied,
grey is empty and white is unknown. The dashed grey lines are frontiers -
areas between empty and unknown regions. Opening A, which is also an
area between empty and unknown regions, is not a frontier, as defined by
Yamauchi, because it is too narrow for the robot to pass through.

A
Robot
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the motion planning process. An inference grid [15] is used to represent the robot’s knowl-

edge and task needs. The integrated architecture allows the robot to plan both motor and

perceptual actions to solve a given task.

2.1.2 Outdoor Exploration

The capabilities of outdoor robots have increased dramatically over the last five years with

robots being used in agriculture, mining and excavation [73]. Exploration robots have

gone to extreme environments such as Mars [36] and Antarctica [37]. A large part of the

research into outdoor and planetary robots has focused on terrain sensing and path plan-

ning for driving in rugged, outdoor terrains [8][13][22][31][37][59][61][68]. Despite the

progress, little work has been done in creating truly exploring robots which reason about

the environment as it is discovered to determine interesting areas.

Much of the outdoor exploration work has centered on space robotics and the exploration

of other planets, particularly Mars [24][68]. Most of this work has focused on getting from

point A to point B safely and, as such, much of this research has involved path planners

such as RoverBug [32] and D* [61], local navigation such as Morphin [57] and determin-

ing traversability of the terrain [37][53]. Typically though, point B is chosen by a human

operator. Recently, more work has been done in planning sequences of science goals and

actions to maximize the utility of the rover and replan as new information is gathered

[6][18]. However, it is still a human scientist who is determining the basic plan and more

importantly what is interesting and what is not.

Estlin et al. [17] present a planning system for science exploration with multiple robots.

The system clusters spectrometer readings to determine rock types. Goal points are set at

the two mutually most distant points in physical space for each rock type seen so far. The

planner is thus biased to explore towards the edges of its known world. The approach of

Estlin et al. differs from that of this thesis in that they only consider one type of informa-

tion, rock types, in their goal selection. Further, they do not explicitly consider how much

information will be gained when selecting goal points, choosing instead to use a heuristic

based on relative rock positions.
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Pedersen [44][45] used a Bayesian classifier to autonomously classify rock and meteorite

types from camera and spectrometer data collected by the robot Nomad. While Pedersen

does not consider path planning his classifier produces valuable information that could be

used to specify science goals in a planner such as CLARAty [18] or CRL [70]. Further,

since the result is produced as a probability, this information could be very easily incorpo-

rated into the multiple information metric exploration planner presented in this thesis.

2.2 Exploration Methodologies

While the previous section looked at exploration work done in the domains of indoor and

outdoor robotics, three methodology classes, which have received a great deal of attention,

deserve to be examined in detail. The first, patterned search, is concerned with seeing an

entire region and uses predetermined paths to complete a task. The second, active vision,

tries to determine the next best place to take a sensor reading to improve its model of the

environment. The third, behavior based techniques considers robot actions based on prim-

itive behaviors.

2.2.1 Patterned Search

The use of coverage patterns provides a technique to allow the robot to search an area.

These techniques assume that the robot has a constant width of interest, either from a sen-

sor or implement such as a broom. The coverage pattern algorithm drives the robot in such

a way that the entire environment is seen or covered by this width of interest. Typically the

coverage patterns assume that all parts of the environment are equally interesting and as

such it is common to use an a priori defined pattern which may be modified when obsta-

cles are detected. However, Gage [20] examines the use of random paths to get coverage.

Many of the patterned search methods require that the robot starts with a map of the area

to be covered. For example, Zelinsky et al. [78] present coverage planners based on the

distance transform and path transform path planners. To get complete coverage the robot

takes the longest path to the goal instead of the shortest. The distance transform based cov-

erage pattern spirals into the goal point and so causes the robot to turn excessively, adding
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large errors to dead reckoning positioning accuracy. Therefore, the authors prefer the cov-

erage planner based on the path transform which produces coverage paths that follow the

contours of obstacles and have fewer sharp turns. In Choset and Pignon [10], obstacles

inside the environment must be known a priori.

Cao et al. [9], developed a coverage pattern for use in a lawn mowing application. Their

method takes a map of the region to be covered and decomposes this into regular regions.

A regular region is one where a horizontal line will only intersect the region boundary in

two places. The planner then covers each regular region using a back and forth pattern

with horizontal rows. To handle unknown obstacles in the environment, the robot splits the

current regular region into two, one on the current side of the obstacle and one behind the

obstacle. It then covers each regular region separately. Only convex obstacles are consid-

ered. In Acar and Choset [1] a similar technique is introduced which can handle non-con-

vex obstacles.

One of the most general coverage planners is presented in Hert et al. [23]. This coverage

planner was designed for an autonomous underwater vehicle mosaiking images of the

ocean floor. It requires no a priori information of the environment, except for a descrip-

tion of the boundary region. It is general enough to handle any terrain that is projectively

planar (so no caves or overhangs). The paper also proves that the generated path lengths

are linear in the size of the area to cover.

In general these coverage planners are concerned with search or coverage and are not well

suited to outdoor exploration. Many of them were developed for lawn mowing or floor

sweeping type applications and assume that a map of the environment is known at the

start. Even [23], which requires no knowledge of the environment, is limited in three ways

for outdoor surface exploration. First, it assumes a binary world - traversable and not tra-

versable and so does not take terrain factors into account. This means that they assume

obstacles will not interfere with sensing and that all paths are equally easy to drive along.

Second, they consider discovering unknown terrain as the only gain of information and

that all unknown terrain is equally interesting to discover,
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Finally, as illustrated in Figure 2-2, this coverage planner may cause excessive turning

when the a priori pattern is incompatible with the environment. In Figure 2-2(a) a typical

raster pattern coverage path is shown. The orientation of the raster is determined before

any information about the environment is known and cannot be changed during the explo-

ration. When the two black objects in Figure 2-2(a) are discovered, the raster pattern is

shortened to cover the area between the rocks. However, in this case the raster pattern,

which was chosen before the two black objects were known, is not the most efficient way

to cover the area between the objects. It forces the robot to turn excessively and makes

very short straight row lengths. A more intelligent way to cover the area between the two

objects is shown in Figur e2-2(b). Unfortunately, pattern search techniques are intimately

tied to the a priori defined pattern.

Shillcutt et al. [55] are concerned with energy generation and consumption for solar or

wind powered robots performing coverage patterns. The paper looks at different robot

configurations and coverage patterns and evaluates how much energy was produced, con-

sumed and what percentage of the area was covered. This methodology is different from

most coverage or search pattern methods in that it does not just consider coverage as a

requirement for success but also looks at power consumption and generation. However,

Figure 2-2: Problems with patterned search. (a) Fixed pattern is incompatible with
environment features causing excessive turning and short rows. (b)
Covering the same area with fewer turns.

(a) (b)
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the methodology uses fixed a priori patterns, evaluates energy produced and consumed

based on prior knowledge of the environment, not information collected by the robot, and

assumes sparse obstacles in the environment making it inappropriate for the outdoor

exploration tasks considered here.

2.2.2 Active Vision

The field of active vision is concerned with actively controlling a perception sensor’s

parameters, such as position and zoom, to accomplish a specific task and in response to

the environment. Several common applications of active vision are attention, foveal sens-

ing, gaze control and hand-eye coordination [63].

One branch of active vision, planning the next view, has many similarities to the outdoor

exploration problem. Generally the planning the next view problem looks at where to take

the next sensor reading to provide the most information for a specific task. One example

of this is filling in the holes caused by object occlusions when mapping a scene [35].

Another looks at fitting a superellipsoid model to a scene mapped with noisy sensors and

planning the next sensor reading to maximize the decrease in uncertainty [72]. Both of

these techniques have similarities to the exploration problems considered in this thesis.

However, they are concerned with much smaller and simpler scenes, collections of poly-

hedral objects on a table, and both methods must model the environment to be able to plan

the next view. In a similar manner, Okamura and Cutkosky [42] explore an object, locating

specific features such as bumps and steps, with a robotic finger. The methodology guides

the exploration to verify which feature model best describes the discovered feature. These

techniques all consider quite simple scenes and guide the exploration to improve the fit of

a model to that scene. It is unlikely that these methods will scale well to the complex out-

door environments considered in this thesis.

Another concept to consider is the art gallery problem [43] where the positions to be vis-

ited so that an entire 2D scene can be viewed are calculated. A recent implementation of

this type of algorithm is [21] where the need for overlap to ease the registration of the mul-
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tiple scenes is considered. However, these problems require a 2D map of the region of

interest to work and are not applicable to exploration of an unknown environment.

2.2.3 Behavior Based Techniques

In behavior based robotics systems, a collection of primitive capabilities — the behaviors

— are used to decide what action the robot will take at any given time. Since these behav-

iors are simple, they can process sensor data quickly, letting the robot operate in a real,

dynamic environment at high speeds. Also, because the behaviors are generally indepen-

dent, self contained processes, the suite of behaviors used can be easily modified. The dis-

advantage of behavior based techniques is that the often competing desires of these

behaviors must be combined or selected into just one action which the robot will take.

How best to do this is not an easy choice and several prominent methods are discussed

below.

In the subsumption architecture [7] a priority-based arbitration technique is used. Each

behavior operates asynchronously operating on sensor data as it arrives and producing a

vote for how the robot should act when the behavior becomes active. Each behavior is

assigned a priority and the active behavior with the highest priority controls the robot, the

other behaviors are ignored. This arbitration scheme provides is very fast but does not

allow multiple behaviors to affect the robot’s actions simultaneously.

Another method for combining multiple behaviors is to use command fusion. Instead of

the all-or-nothing strategy of subsumption, command fusion techniques combine the

requested actions of all behaviors. In motor schemas [2], each behavior generates a vector

indicating which direction to travel and these vectors are summed to decide which direc-

tion the robot should travel. Another approach is the DAMN architecture where each

behavior votes for or against each of a set of actions [50]. Fuzzy logic has also been used

to perform command fusion from multiple behaviors [53]. A major drawback of command

fusion is that unless each behavior is given substantial knowledge of the current robot

state, kinematics and dynamics, commands which are not physically realizable may be

generated.
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The final approach considered here is utility fusion [51]. In the method proposed by

Rosenblatt, each behavior decides on the utility, or usefulness to the behavior, of the robot

being in a certain state. The behaviors generate a small local map with utilities which is

sent to the arbiter. The arbiter can then combine the utilities in a local map and evaluate

actions based on the kinematics and dynamics of the robot. Thus state, kinematic and

dynamic information needs to only reside in the arbiter and not the individual behaviors.

Further, utility theory provides a method of dealing with uncertainty.

This thesis uses a similar method to Rosenblatt’s utility fusion. The combination of infor-

mation metrics is similar to utility fusion except that expected information gain is being

combined rather than utility. Further, a global map is maintained by the exploration plan-

ner, allowing the information metrics to make decisions on information gain based on the

entire environment.

2.3 Information Theory

The theory of information was first presented by Claude Shannon in the late 1940’s as a

way to mathematically characterize communication systems [54]. One of the principle

problems considered by Shannon was how much information was present in a transmitted

message and how to optimally encode the message so that it could be reproduced at the

receiver. Since then information theory has been applied to many diverse areas [49]. 

This section introduces the concept of entropy which is important in the calculation of

information gain. Entropy will be used later in this thesis to compute the expected infor-

mation gains for each information metric used by the explorer.

Imagine a set of mutually exclusive events, . The probability of event Ei occur-

ring is pi and the pi’s sum to one. Together the E’s and p’s form a sample space for this

example problem which we’ll call Ω. Now, we define a measure of uncertainty called the

entropy of this sample space as1[49]:

1. Unless otherwise noted all logarithms used in this thesis are base 2

E0…En{ }
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(2.1)

where X is a random variable drawn from the sample space, Ω. The entropy of the sample

space quantifies how surprised we should be at the event assumed by X. The entropy,

H(X), is a value between 0 and 1 and represents the average amount of information con-

tained in an event.

For example, consider the following two binary sample spaces:

A. {E0, E1} P = {1, 0} H(X) = 0

B. {E0, E1} P = {0.5, 0.5} H(X) = 1

In sample space A, there is no surprise as to which event will occur. X will be the event E0

with probability of 1. Thus on average there is no information gained by observing X and

the entropy of sample space A is 0. However in sample space B, both events have the

same probability of occurring. Therefore, on average, we gain a lot of information by

observing X when it is drawn from sample space B and the entropy is one which is the

maximum possible value for entropy.

Equation (2.1) defines the entropy of a discrete valued variable. The concept of entropy

can be extended to variables with continuous distributions. If we let X be a random vari-

able drawn from a distribution with a probability density function f(x), then the entropy is

defined as [49]:

(2.2)

When applied to a continuous variable, two problems may occur with the entropy. First,

the entropy may be negative. Probability only requires that 

(2.3)
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and this restriction does not require f(x) to be less than 1 for all values of x. If f(x) does

exceed 1 for some values of x a negative entropy may result. In this case the concept of

average self information cannot be associated with the continuous entropy [49]. Secondly,

again based on the f(x) used, the entropy could become infinitely large. When using the

concept of entropy for continuous variables care must be taken in choosing f(x).
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CHAPTER 3 Methodology

This chapter presents a general methodology called the Multiple Information Metrics

Exploration Planner, which can be used to solve complex exploration tasks. The method

stores its knowledge in a map and, for all areas of the map, computes the expected infor-

mation to be gained, for multiple information metrics, from taking a sensor reading there.

Finally, it plans paths which maximize the utility of the robot, information gained minus

the cost of collecting it. By carefully choosing the appropriate information metrics and the

knowledge recorded in the map, the multiple information metrics exploration planner can

solve many complex exploration tasks.

3.1 Exploration Framework

This research models the explorer’s knowledge of the world or its map as a uniform grid,

M(t), which takes the robot’s pose, X, and maps it to a unique cell. The map, M(t), is the

robot’s current knowledge of the world and is a function of time since with each sensor

reading the explorer learns a little bit more about the world and its map changes to reflect

this. Each cell, m, in the map contains two vectors: Am a vector of cell properties or

attributes and Gm a vector of expected information gains (see Figure 3-1). The size and

composition of Am and Gm are the same for all cells, m, in the map and depend on the

exploration task, the number of information metrics and their type. However, Am does not
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need to be the same size as Gm. Some typical elements of Am and Gm are detailed at the

end of this chapter and two specific implementations are found in Chapter 4.

The cell attribute vector, Am, contains the information the explorer knows about that cell.

Some typical types of information stored in the elements of Am are cell height and travers-

ability. Each element of Am represents a different type of information. For binary valued

variables this number is the probability of the state being true. This is the approach used in

inference grids, which is an extension of the more common occupancy grids [15]. For

non-binary valued variables, such as cell height, two elements of Am are used. The first

indicates the property value and the second is the explorer’s certainty or confidence in that

property value. Typically the certainty is based on the number of sensor readings received

for that cell. This is similar to the goodness maps successfully employed in outdoor navi-

gation [37]. A more rigorous method would be to compute and store the probability distri-

Map - M(t)
Map Cell m

Attribute Vector - Am

Binary attribute

Continuous attribute 
(value and certainty)

Information Gain Vector - Gm

Information Metric #1

Information Metric #2

Figure 3-1: Map Cell Composition. Shows the composition of one cell in the map,
cell m, indicating the attribute vector with binary and continuous elements
and the information gain vector. The diagonal line in the attribute vector
indicates that an element is continuous and has two numbers, value and
certainty, associated with it.
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bution of these non-binary variables, however, this would require significantly more

computation and storage space than the value/certainty system used in this thesis.

The expected information gain vector, Gm, has one element for each metric of information

being considered by the explorer. Each element in Gm represents the expected amount of

information to be gained, over the entire sensor footprint area, by taking a sensor reading

in cell, m, for a particular information metric (see Figure 3-2). It is the expected informa-

tion gain since it is predicting how much new information will be received by taking a

sensor reading in this cell. Each element in Gm has the same units, that of information

gain, which from Information Theory is the unit bits [49].

The total expected information to be gained by taking a sensor reading in map cell m, is

the sum of the expected information gained from each information metric. The total

expected information is computed by performing a weighted sum of the elements in cell

m’s Gm vector:

(3.1)

Figure 3-2: Expected Information Gain. (a) The expected information gain in cell m is
the expected information to be gained over the entire sensor footprint
(shown as grey circle). (b) Here a wall obstructs part of the sensor view so
the information gain collection region is smaller (again shown as a grey
circle).

(a) (b)
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where the α multipliers are chosen to weight the relative importance of the various infor-

mation metrics. 

When a sensor reading is taken, the map, M(t), changes reflecting the new information

gathered. From (3.1) Gm, and the expected information, E[I] computed from Gm, are

dependent on M(t). Therefore, the G vectors and E[I]’s in nearby cells change with each

sensor reading and are not independent. In this case, nearby is defined by the sensor foot-

print. If the sensor footprint at cell m overlaps with the sensor footprint in cell n then Gm

and Gn are dependent. If there is no overlap, the vectors are independent (see Figure3-3).

3.2 Planning Exploration Paths

An autonomous explorer must decide where to drive and where to take sensor readings to

maximize the amount of information it collects. At the same time it must minimize the

costs of collecting this information such as driving time, sensing time and planning time.

The goal of the exploration planner is to find a path which maximizes the utility to the

explorer. The path is an ordered set of cells that the explorer must drive through or take

sensor readings in. The utility of a path, p, is defined as:

(3.2)

Figure 3-3:Region of dependency for G vectors. (a) Sensor footprints of cells m and n
overlap - Gm and Gn are dependent. (b) Sensor footprints do not overlap -

Gm and Gn vectors are independent.

m n m n
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 is the expected information gain of a cell as computed in equation (3.1) and

has units bits. It is a function of cell, m and the current map, M. S(m) is one if a sensing

action is to be performed in cell m and zero otherwise — indicating that no information is

gained unless a sensor reading is taken. CC(m) is the per cell cost which is the amount of

time, in seconds, spent in cell m. In this thesis CC(m) includes the driving time and sensing

time. CG includes any global costs, such as planning time and is also in units of seconds.

Finally, k is the value of information and is used to set the relative importance of informa-

tion and cost. It has units of seconds per bit and represents how much time we are willing

to spend to get that next bit of information. The value of information, k, does not need to

remain fixed throughout the exploration. It might be low at the start of the mission when

new information is easy to obtain. As the mission progresses the robot knows more about

its environment and new information is harder to find. At this point, k can be increased

allowing the robot to spend more time, and take greater risks, to collect new information.

In traditional path planning problems the robot knows where it is and where it wants to go.

Knowing the start and end points limits the number of possible paths and reduces the

search space. Many techniques exist to solve this problem and some, such as [61] and

[31], have been tested in outdoor conditions and shown to work well. Further, it is possible

to find the optimal path given the robot’s knowledge of the world and map resolution.

Unlike traditional path planning problems, the exploration path problem does not have a

destination cell to plan a path to. Instead, the exploration planner must maximize U(p)

over all possible paths to all possible destinations. Thus the number of possible paths to

search through is much greater than in the traditional path planning problem. In fact, the

exploration path problem is similar to the prize collecting travelling salesman problem

(PCTS) [4]. In the PCTS problem a salesman must visit a set of cities. In each city he

receives a prize but he incurs a cost for travel between cities. The goal is to find the opti-

mal route which maximizes the prizes but minimizes the travel cost. If each map cell in the

exploration path problem is equated with a city in the PCTS problem, the expected infor-

mation to be gained, , is the prize and the driving, sensing and planning costs

are the travel cost then the similarity between the exploration path problem and the PCTS

E I m M,( )[ ]

E I m M,( )[ ]
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problem is apparent. Since the PCTS problem is NP-complete [4] finding an optimal  path

for the exploration path problem is intractable.

In the PCTS problem, the prizes in each city are independent, collecting one prize does not

alter the value of prizes in other cities. In the exploration problem the prizes are the E[I]’s

which depend on the current map, M(t). To collect a prize the explorer must take a sensor

reading. This changes the map, M(t), which changes the E[I]’s in the neighborhood of the

sensing action. Therefore the E[I]’s in equation (3.2) depend not only on the cell location

but also on the path used to get there. Thus, if the planner gets to cell m from path A and

also from path B, it cannot treat the two as one for the remainder of the path plan.

Figure 3-4 illustrates the problems with path dependency. In this example the robot

receives information by taking sensor readings on the boundary of known and unknown

regions much like the frontier exploration strategies discussed in [58] and [75]. Figure 3-

4(a) shows the robot near a doorway. It expects to receive high information gain by taking

sensor readings in the doorway because this is the boundary of its known region. While

the map grid is not shown on the figures, the doorway is wide enough to encompass sev-

eral map cells, all of which have high information gain. 

Figure 3-4(b) shows a path where the robot visits and takes a sensor reading in each door-

way cell and then proceeds into the next room. This would be the optimal path if the infor-

mation gains in the doorway were independent — the robot could collect a lot of

information for very little travel cost. 

However, after every sensor reading, the map changes. Figur e3-4(c) shows the map after

the robot takes its first sensor reading in the doorway. Now, the boundary between known

and unknown is inside the next room and the remaining cells in the doorway no longer

have any information gain. Therefore, if the robot travels to the left side of the doorway,

takes a sensor reading then travels to the right side of the doorway and takes a sensor read-

ing it will not gain any information from reading on the right side. However, if the robot

went to the right side first and then the left, it would collect information from the right cell
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and not the left. This demonstrates the dependency of the information gains on the previ-

ous path. This dependency on path greatly increases the search space required to find p. 

Finally, Figure 3-4(d) shows that the correct path to take is to visit one cell in the doorway,

take a sensor reading and then proceed into the next room.

3.2.1 Greedy Search Planner

The lack of a destination cell and the dependency of information gains makes planning

exploration paths difficult. Once the planner calls for a sensor reading to be taken, it must

estimate what the map will look like after the sensor reading and use this estimated map to

plan the remainder of the path. In a simple and structured environment this may be possi-
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Figure 3-4:Path dependency of information gains. 
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ble, but in the complex outdoor terrain considered in this thesis it is unlikely that an accu-

rate or meaningful estimate of a future map can be created.

A solution to this problem is to only plan to the first sensor reading. In essence the planner

is asking the question “Where is the best place to take the next sensor reading so that util-

ity is maximized?”. This is the greedy search algorithm and is used frequently in robot

mapping tasks. In the implementation used in this thesis, the planner first propagates the

driving costs through the map using a wave-front propagation technique [30]. Then it

chooses the cell with the maximum utility as computed by equation (3.2). A similar plan-

ning method was successfully used for indoor exploration in [58]. The costs of sensing

and planning can be ignored in the planning process since they will be the same for all

paths. This greedy planner generates paths which are a series of cells to drive through and

end with a sensor reading.

While the greedy search algorithm will not produce globally optimal paths, it will be

shown in following chapters that this planner does produce reasonable exploration paths.

Further, one of the requirements set out in the design of this exploration planner was to

gain the greatest amount of utility in the shortest amount of time. Thus it is not obvious

that taking a less greedy path in order to improve the global optimality of the path (which

in essence is what more complex planners would do) is the right thing to do. Finally,

Koenig et al. [27] show that greedy search, as used in the map making problem, is in fact

not so bad after all.

3.2.2 Random Walk Planner

Another planning strategy investigated was a random walk planner. For this planner the

expected information gains were normalized so that the total expected information gain in

a cell was always between 0 and 1. The planner then generated a random number between

0 and 1. If the random number was less than or equal to the total expected information

gain then the robot took a sensor reading. If not, the robot moved randomly to an adjacent

cell (each cell had equal probability except the previous cell occupied by the robot — this

cell had zero probability). This planner performed poorly compared to the greedy planner



Autonomous Surface Exploration for Mobile Robots 31

Methodology

so results are not included in this document. If interested, results comparing the random

walk planner to the greedy planner for the multiple information metrics exploration prob-

lem can be found in [38].

3.3 Map Attributes

The methodology presented above is very general and can be applied to many problems

by creating and using the appropriate map attributes, Am, and information gains, Gm, in

the explorer’s map. The composition of Am and Gm must be designed based on the explo-

ration task’s goals and requirements. This section presents the four map attributes used in

this thesis: height, traversability, reachability and cliff, to demonstrate the form of map

attributes.

3.3.1 Height

Height (ah, ach) is a continuous valued variable so it has a value and a certainty in the

attribute vector. The height value (ah) is the maximum height that the robot has perceived

in the cell. It is relative to some global, fixed reference point. The height certainty (ach) is

a number from 0 to 1 which is proportional to the number of sensor readings received in a

cell.

3.3.2 Traversability

Traversability (at, act) is also a continuous valued variable which represents how easy or

safe it is for the robot to occupy the cell. The traversability value (at) of a cell is computed

by fitting a plane, centered at the cell in question, to the cell height data in a region equal

to the size of the robot. The traversability is determined by the roll and pitch of the plane

as well as the residual from fitting the plane [37]. Using a plane the size of the robot pro-

duces a traversability score that is in configuration space. If the origin of the robot is in a

cell with good traversability, this means that all parts of the robot are in good traversabil-

ity. Alternately, if the cell has poor traversability some part of the robot is on dangerous

terrain, perhaps a wheel would be in a deep hole. This use of configuration space travers-

ability means that the planner can consider the robot to be a point robot [30]. The certainty
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in the traversability (act) is related to the certainty in the height data used to calculate tra-

versability. A traversability computed over a region of low height certainty would be less

certain than one computed over a region with high height certainty. To maximize robot

safety, the worst case scenario was chosen and the traversability certainty is set to the min-

imum, or worst, height certainty over the region fitted with the plane.

3.3.3 Reachability

The reachability of a cell is a binary valued quantity — the cell is reachable or it is not.

Therefore, the reachability element in A, ar, denotes the probability that a cell is reachable.

A cell is reachable if the robot can drive to that cell from any other cell in the set of reach-

able cells. By definition a reachable cell is traversable, however, a traversable cell may not

be reachable if no traversable path from the start location to it exists. The set of reachable

cells is connected in that every reachable cell has at least one adjacent cell which is also

reachable.

The reachability of a cell, ar, is computed by assigning ar = 1 for any cell previously vis-

ited, ar = 0.5 for unknown cells and ar = 0 for untraversable cells. The remaining cells are

set using a decaying exponential based on the cost of driving to that cell from a cell where

ar = 1, the higher the driving cost the lower the value of ar.

3.3.4 Probabilit y of Cliff

The final map attribute considered in this thesis is the cliff attribute (ac). Like reachability

this is a binary attribute so ac denotes the probability that a cell is part of a cliff. The cliff

attribute is computed using the plane fit for the traversability attribute. If there is a large

discontinuity in the heights (ah) in this plane region then the cell is considered as a poten-

tial cliff. The value of ac is set proportionally to the slope of the plane - the larger the slope

the greater the probability of the cell being a cliff. As will be seen in the following chapter,

the cliff attribute will be used in an exploration problem that attempts to view the face of

the cliff. Thus ac is only non-zero for the cells which are below the cliff top.
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3.4 Information Metrics

As with the attribute vector, the information gain vector, Gm, helps determine what explo-

ration task will be performed. The elements in the information gain vector are the informa-

tion metrics that have been chosen for the exploration problem. These metrics quantify

what the robot will find interesting during the exploration. Without loss of generality, the

elements of the vector are normalized to be in the range of zero to one. By knowing that

the maximum information to be gained is one, the path planner can stop considering paths

with costs that would yield negative utility given the value of information parameter and

an information gain of one. This limits the distance of paths the planner needs to consider.

The actual sensor being used to collect information is not important for the exploration

methodology, however some assumptions have been made in the development of the

information metrics presented. First, it is assumed that the sensor has a 360 degree field of

view in azimuth. This removes the need to plan the heading of the robot. Further, it is

assumed that the height and range of the sensor is known.

The expected information gain in a cell is the amount of information that would be col-

lected by taking a sensor reading in that cell. Therefore it is necessary for the information

metrics to know, or speculate, which map cells will be seen from a given location. Let Vm

be the set of cells visible to the sensor from cell m. To compute Vm we first get the set of

cells Wm which contains all the cells inside a circle centered at m with radius equal to the

maximum range of the sensor. The number of cells in Wm is denoted #Wm. For each cell,

n, in Wm a ray is traced back to cell m using the efficient Bressenham’s Algorithm from

computer graphics [19]. If the height of this ray is lower than the height in any cell it

passes through then cell n is not visible and not in Vm. Otherwise cell n is added to the set

Vm. Thus the shadowing effects caused by known obstacles are taken into account.

Unknown cells are assumed to contain no features which obstruct sensor viewing. This

assumption was made for two reasons. First, the robot must assume either obstructing or

not obstructing and since it knows nothing about these cells either option is equally likely.
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Secondly, if unknown cells were assumed to obstruct sensor views, the robot would never

expect to see any unknown cells limiting its use as an explorer of unknown worlds.

This thesis has implemented five information gain metrics, or information metrics, which

are described below. As in the attribute section, these are not the only information metrics

possible, nor are they required by all exploration tasks. These metrics are simply the ones

needed in the examples that follow and are presented here to illustrate how information

metrics are defined.

(a) Height

Figure 3-5: First Three Information Metrics. (a) Height values of the robot’s map. The
higher a cell’s height the whiter its color. Black is unknown. (b) The
certainty in the height values. Black is zero, white is one. (c, d, e) The
expected information gains for the first three information metrics. Black is
zero, white is one.

(b) Height Certainty

(c) Frontier (d) Increase Map Certainty
Weighted by Traversability

(e) Determine Reachable



Autonomous Surface Exploration for Mobile Robots 35

Methodology

3.4.1 Frontier

The frontier information metric indicates how much unseen terrain the explorer can expect

to see. This information metric is used to attract the robot explorer to the boundary of its

known and unknown world and fill in the blank spots in its map. The greater the number

of unknown cells expected to be viewed from cell m, the greater the expected frontier

information gain. For a given cell, m, in the map the expected frontier information gain is

calculated as:

(3.3)

where  is the traversability certainty in cell n and UNKNOWN( ) is 1 if  is less

than a fixed threshold (set to 0.3 in this thesis) and 0 otherwise. A frontier cell is one

which is traversable and the traversability is known and has at least one cell adjacent (in

an 8 connected sense) to it which has an unknown traversability. Figure 3-5(c) shows the

value of the expected frontier information gain for a partial map. Notice that the non-zero

information gains are on the edge of the known and unknown world.

3.4.2 Increase Map Certainty Weighted by Traversability

The increase certainty weighted by traversability information metric rewards the explorer

for increasing the density of sensor readings in a cell and thus increasing the height cer-

tainty. The information metric computes the expected increase in height certainty due to a

sensor reading. It is more important to have high certainty about the terrain near obstacles

so the information metric weights the expected increase in height certainty by the travers-

ability. Height certainty is used because it can be predicted with a sensor model and tra-

versability certainty is derived from height certainty. The equation for gc is:
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(3.4)

where  is a parabola which in this thesis had a value of 1 for zero traversability and

0.05 for traversability of one.  is the expected value of the height certainty in cell n

after taking a sensor reading in cell m. The computation of  depends on the sensor

being used. This thesis assumes a sensor which takes range measurements with fixed

angular increments in both azimuth and elevation. A sensor such as a laser scanner would

fit in this class. For this type of sensor the number of readings in a cell (which is propor-

tional to the cell’s height certainty) is inversely proportional to the cube of the range [26].

The function of  used in this thesis is shown in Fi gure3-6 and was computed using

the kinematics of a laser scanner derived in [26] and a linear relation between the number

of readings per cell and certainty. Since the height certainty cannot be greater than one

Figure 3-6 has been limited to one indicating a region around the sensor yielding perfect

certainty.

An example of the increase certainty weighted by traversability information metric can be

found in Figure 3-5(d). Note how the values around the rocks and wall at the edges of the
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Figure 3-6: Graph of expected height certainty 
versus distance from sensor. For
the sensor used in this thesis.
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scene are high. Also note that the rock in the middle of the scene yields low increase cer-

tainty weighted by traversability scores because it is already well known as can be seen in

the height certainty map shown in Figure 3-5(b). Thus the increase certainty weighted by

traversability information metric encourages the robot explorer to see the world with

greater care, particularly in regions that could be dangerous for the robot.

3.4.3 Determine Reachable

The reachability information metric rewards the robot for going to places which will most

strongly impact its knowledge of reachability. It is calculated as:

(3.5)

Since  is the probability that cell n is reachable, the numerator is the sum of the entropy

over the sensor footprint [49]. This rewards the robot for viewing areas where the reach-

ability is most uncertain (high entropy). See Figure 3-5(e).

3.4.4 Viewing Cliff Faces

The viewing cliff faces information metric rewards the robot for seeing the face of a cliff.

This will be an important ability in exploration robots as scientists now believe they have

found evidence of past water flow down the faces of some Martian cliffs [33]. In general it

is not possible to view the cliff face from the top of the cliff, so the viewing cliff faces

information metric only has non-zero values at the bottom of the cliff. The view cliff face

information metric is defined as:

(3.6)
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where  is the expected height certainty in cell n as used in the increase map cer-

tainty weighted by traversability information metric.

When an explorer is at the top of a cliff, it is unlikely that its sensor will be able to see the

bottom of the cliff (unless it is a very short cliff). In this case the cells where gcliff  are non-

zero have unknown heights. However, the sensor did view these cells, it just did not detect

anything. Therefore, these cells are referred to as perceived cells and while the height is

not defined, the height certainty is set using the sensor model found in Figure 3-2. This

allows equation (3.6) to be defined even in places which are not yet known to the robot.

The intended exploration task for the viewing cliff faces information metric involves the

robot starting at the top of a cliff and finding a way to the bottom so that it can view the

cliff face. However, while it is at the top the regions of high information gain will be in the

perceived cells. Since the heights and traversability of the perceived are not known, these

high information gains are not seen by the path planner. They are not exerting a force

bringing the robot down to see the cliff face. To overcome this problem, the view cliff

faces information metric is modified slightly to find a way to the border of the cliff. There-

fore, the view cliff faces information metric will also have a high value on cells at the top

of the cliff which are near the cliff and the frontier as defined by the frontier information

metric (equation (3.3)). This will serve to pull the robot along the cliff edge and down to

the cliff base. This modification is illustrated in Figure 3-7(c).

3.4.5 Seek Lower Elevations

The seek lower elevations information metric rewards the robot for travelling to cells that

have a lower elevation than the cell currently occupied by the robot. Many potentially

important exploration tasks, such as looking at cliff faces from the base of a cliff or enter-

ing craters to search for water ice, can benefit from this simple information metric.

The seek lower elevations information metric is defined as:

E ach
n[ ]
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Figure 3-7: Viewing cliff faces information metric. (a) Height attribute of map. The
white cells are part of the cliff top. The grey cells are perceived cells, the
laser passed through these cells but did not hit anything. This is because
the cliff is here. (b) Shows the probability of a cell being a cliff. The main
line is the actual cliff, the small grey blocks at the bottom are due to small
dips in the terrain. (c) Viewing cliff faces information metric. Notice the
high information gain in the perceived region. Also note the high
information gain by the edge of the cliff and on the frontier of known
world. This will help the robot follow the cliff and get to the perceived
area.

(a) (b)

(c)
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(3.7)

where  is the height of the cell currently occupied by the robot,  is the height of the

cell being assigned the information metric and k is a chosen constant. In this thesis k was

empirically chosen to be 0.25.
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CHAPTER 4 Simulation Results

The exploration methodology presented in the previous chapter can be applied to many

different exploration tasks by the careful construction of the attribute and information gain

vectors in the explorer’s map. Changing the elements of the attribute vector changes what

information the explorer records about the environment. Changing the information gain

vector changes the metrics used by the explorer to determine what is interesting. Ulti-

mately, the behavior of the explorer and the exploration task it performs is determined by

the composition of these two vectors.

This chapter applies the methodology of Chapter 3 to two different exploration tasks: cre-

ating traversability maps and finding and viewing cliff faces. The compositions of the

attribute and information gain vectors are presented along with the exploration paths gen-

erated in a simulation.

4.1 Software Architecture

A block diagram of the software architecture used for the simulation examples is shown in

Figure 4-1. Each block is a separate process and the different processes exchange data

using the Task Control Architecture (TCA) through the central module [56].
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The simulated controller process receives the current plan from the exploration planner.

The plan consists of a sequence of positions to drive through. The final element in the plan

is a scan request. The simulated controller executes the plan, stepping the robot through

each desired location and then requesting a scan be taken by the simulated laser.

The simulated laser process simulates a sensor reading from a laser scanner. The simulated

laser has a map of the actual environment being explored (as opposed to the exploration

planner’s map which represents the robot’s knowledge of the world). The simulated laser

is capable of reading maps in the United States Geological Service (USGS) Digital Eleva-

tion Map (DEM) format or as a two dimensional array of heights. The maps can be real

locations mapped by the USGS or can be created using a stand alone graphical map draw-

ing utility developed for this thesis. 

The simulated laser process uses the sensor range, height above the ground, field of view

in azimuth and elevation and the angular resolution (number of readings per degree) in

Figure 4-1: Block Diagram of Simulation Components. 
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azimuth and elevation. To take a scan a ray is projected from the current position of the

sensor head onto the environment for each reading in the scan. The intersection point of

each ray with the environment is found and converted into global Cartesian coordinates.

The set of intersection points are then converted into an elevation map where each cell of

the map holds the maximum elevation seen in that cell by the laser scan. The elevation

map also contains a certainty reading for each cell which is proportional to the number of

laser readings contained in the cell.

The graphical user interface is used to visualize the information contained in the explora-

tion planner. Maps of the current values of each element in the attribute and information

gain vectors can be displayed. The exploration path planner can be changed and the explo-

ration paths are displayed.

The exploration planner block in Figur e4-1 is the process which implements the explora-

tion methodology of Chapter 3. This process contains the robot’s map which has the

attribute and information gain vectors in each cell. The actual values in the attribute and

information gain vectors are computed using attribute and information gain classes. By

adding and deleting classes it is easy to re-compile the exploration planner and use it for a

different exploration task. The exploration path planner also interacts with the map to gen-

erate paths which maximize the utility to the robot. The path planner is also implemented

as a class allowing different planners to be used.

The software architecture of Figure 4-1 can easily be modified to use the exploration plan-

ning system on a real robot. The simulated laser module needs to be replaced with a driver

for the actual sensor being used. This driver needs to convert the raw sensor data to the

elevation map with certainties expected by the exploration planner. The simulated control-

ler can be replaced by two processes on a real robot system. The first is just a process to

broadcast, using a TCA message, the current pose of the robot. The second process would

convert the generated exploration plans into robot driving commands. These commands

could be combined with commands from a local navigation system to maintain robot

safety. This type of architecture has been successfully employed to combine the D* grid
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based planner with Morphin a local navigation planner [59]. The exploration planner pro-

cess would remain unchanged. The graphical user interface would also remain unchanged

and using the power of TCA could also be run off board the robot.

4.2 Traversability Map Creation

The first exploration task presented is the creation of traversability maps. Traversability

maps are maps which indicate how easy it is to drive over an area. They tell the robot

where it is safe to drive and where it is not. The goal of the exploration robot in this task is

to create a traversability map which is useful for other robots that might operate in this

region at a later date. The traversability map created should have the traversability of a cell

as well as how certain the robot is about that traversability. It is more important to know

the traversability in rough terrain and near obstacles than in flat, benign terrain, both for

path planning — if we think a narrow passage is traversable and it is not, this could drasti-

cally alter a plan — as well as robot safety — it is easier to damage the robot in rugged ter-

rain than in flat terrain. Thus the explorer should be rewarded for increasing its certainty in

low traversability regions more so than in high traversability regions. It would also be use-

ful for another robot visiting the area to know which cells are reachable and which cells

are not reachable. Finally, the explorer should record the height in each cell. This will

allow robots to calculate sensor visibility regions.

Now that the exploration task is known, the elements of the attribute and information gain

vectors must be chosen so that the explorer can succeed in its mission. The attributes are

chosen so that all the data available from the sensors can be recorded. Also, attributes can

be added that represent derived information (variables computed from the data provided

from the sensors) that adds value to the finished map and may be useful in calculating the

information gains. The information gain vector elements are chosen to represent each and

every information metric which is important in solving the exploration task.
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4.2.1 Problem Setup

For the traversability map exploration problem the attribute vector has the following ele-

ments: height, traversability and reachability. Both height and traversability are continu-

ous valued variables and thus have certainties associated with them. The reachability is a

binary valued attribute and is the probability that a cell is reachable. These attributes have

been described in detail in section 3.3.

The information gain vector is determined by the goals of the exploration task. The explo-

ration task is to create a traversability map of a region. Therefore, the robot needs to con-

tinually view new, unseen terrain. The robot also needs to spend extra time and determine

the traversability of poor traversability areas with greater certainty. Finally, the robot

should determine which areas in the region can be reached from the starting point. To ful-

fill these three goals, the information gain vector for this example uses three information

gain metrics: frontier, increase map certainty weighted by traversability and determine

reachable. These information gain metrics have been described in section 3.4. The compo-

sition of the attribute and information gain vectors is summarized in Ta ble4-1.

The create traversability maps exploration task was performed on the crater world shown

in Figure 4-2. The crater world is 300m x 300m and has a flat ground with discrete rocks

protruding from the surface. Some rocks are small enough to be driven over, others are

not. The crater world also has a large, shallow crater in the north west corner of the map.

The crater is surrounded by an untraversable, low mound of debris. The mound is large

enough to prevent the robot from driving over it but low enough that the robot’s sensor can

see over top of it. A small opening in the northern part of the mound allows access to the

Table 4-1: Attribute and Information Gain Vectors

Attribute Vector Information Gain Vector

Height, value and certainty Frontier

Traversability, value and cer-

tainty

Increase Map Certainty, 

weighted by traversability

Reachability Determine Reachable
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interior of the crater which gradually slopes down for two meters. A five meter tall spire is

located in the center of the crater.

The exploration was performed in the crater world using four different sets of weights for

the three information metrics. The weights are the α i multipliers from equation (3.1) that

are used to denote the relative importance of the information metrics when computing the

total expected information gain in a map cell. The weights used for the four runs are found

in Table 4-2. Each of the weight sets were run from one of five different start locations

indicated by the letters A through E on Figure 4-2. 

4.2.2 Results

The complete results from all four exploration runs from all five starting positions can be

found in Appendix A. Sample results from starting point A of the four exploration runs

can be found in Figure 4-3 through Figure 4-6. In all simulation runs the exploring robot

started with a completely blank map, i.e. no a priori information about the environment.

The figures show the values of the map attributes height (both its value and its certainty),

traversability and reachability. The traversability certainty is not included in the figures

since it is very similar to the height certainty map. Each pixel in the image is a single map

cell. On the height image, the path taken by the exploring robot is drawn in white. The

small white x’s on the map indicate where a sensor reading was taken.

On the height and height certainty figures, the centers of some large rocks are black. This

is because the rocks are taller than the sensor head and thus the robot cannot see the tops

of the rocks. The black indicates no data in these cells. These cells are also black on the

traversability maps, indicating that the terrain is untraversable. On the reachability maps

however, the cells in the center of these large rocks are grey. Since the robot has no knowl-

Table 4-2: Information Metric Weights for Four Runs

Information Metric Run 1 Run 2 Run 3 Run 4

Frontier 0.33 1.0 0.0 0.85

Increase Map Certainty weighted by Traversability 0.33 0.0 1.0 0.15

Reachability 0.33 0.0 0.0 0.00
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Figure 4-2: Crater world simulation environment. (a) Elevation map - whiter cells are
higher elevations. The letters indicate the five starting positions used in the
simulations. (b) Edge map. It is difficult to see the low rocks in (a) so this
edge map is included to help the reader understand the environment.

(a)

(b)

A

B C

D

E
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Figure 4-3: Run 1a Path Results. Results of the traversability map creation exploration
in the crater world simulation environment with all three information
metrics weighted equally. In all images larger values are whiter. In the
height and height certainty only, black indicates no data. Traversability
certainty is similar to the height certainty image. Notice the high certainty
around the crater rim and most rocks.

(a) Height (b) Height Certainty

(c) Traversability (d) Reachability
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Figure 4-4:Run 2a Path Results. Results of traversability map creation using only the
frontier information metric. In all images larger values are whiter. In the
height and height certainty only, black indicates no data. Traversability
certainty is similar to the height certainty image. Compared to exploration
with all three information metrics equally weighted, sensor readings are
taken at fairly regular intervals. Certainty around the crater rim and rocks
not as high as in previous example.

(a) Height (b) Height Certainty

(c) Traversability (d) Reachability
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Figure 4-5:Run 3a Path Results. Results of create traversability map exploration
using only the information metric increase map certainty weighted by
traversability. In all images larger values are whiter. In the height and
height certainty only, black indicates no data. Traversability certainty is
similar to the height certainty image. Notice the much higher density of
sensor readings than previous two examples. Also notice the lower sample
density in the benign region to the south west of the crater (north is up).

(a) Height (b) Height Certainty

(c) Traversability (d) Reachability
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Figure 4-6: Run 4a Path Results. The addition of a small weight to the Increase Map
Certainty Weighted by Traversability causes the explorer to examine
obstacles more closely than in run 2 which only used frontier. However it
does not take samples as often as runs 1 or 2.

(a) Height (b) Height Certainty

(c) Traversability (d) Reachability
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edge of these cells, the probability of these cells being reachable is 0.5 which is drawn as

grey.

The results of the run 1a experiment, where all three information metrics are weighted

equally, is shown in Figure 4-3. This presents a very balanced exploration of the crater

world. The robot covers a lot of ground quickly, viewing most of the environment. By

comparing the black areas (very low traversability) in the traversability image with the

height certainty image it is apparent that most low traversability regions have been sensed

with high certainty (the white regions in the height certainty map). The robot is too short

to see the tops of some of the larger rocks which is why the centers of these rocks appear

as no data in the height certainty map. This effort to see poor terrain well is very visible

around the large rock immediately south west of the crater and the two large rocks to the

south of the crater. These rocks were too tall for the robot to see over and so the robot took

sensor readings on all sides of the rocks to view their extent.

Another point of interest in the run 1a experimental results is the path taken by the robot

around the crater rim. The robot follows the crater rim, both on the inside and outside and

takes many sensor readings. There are two reasons for the robot’s interest in the crater rim.

First, the rim is an obstacle and as such the robot wants to be certain about it because of

the increase map certainty weighted by traversability information metric. The second rea-

son is the determine reachability information metric. The robot first followed the outer

side of the rim. The rim is an obstacle, but is low enough to see over and into the crater.

The robot can thus see some traversable terrain inside the crater which it thinks is unreach-

able. The robot’s knowledge of the crater rim ends at the edge of its sensor footprint so the

robot explorer does not know if the crater rim continues or ends. Therefore the determine

unreachable information metric draws the robot along the crater rim to where the robot’s

knowledge of the rim ends in the hope of finding a path to the traversable terrain inside the

crater.

The results of the run 2a experiment (Figure4-4) shows how the robot explored the crater

world with only the frontier information metric. This exploration would be similar to that
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found in the methods of Yamauchi [75] and Simmons et al. [58]. Since the frontier infor-

mation metric has non-zero values only on the boundary of the known world, the explora-

tion took sensor readings at fairly regular intervals corresponding to the senor range. As

with run 1a which used three information metrics, run 2a did explore most of the map

(although it failed to enter the crater). However, comparing the height certainty images for

runs 1a and 2a shows a major difference both in the general quality of knowledge of the

environment but run 2a does not make any effort to get high quality data of poor travers-

ability regions. In contrast to run 1a, run 2a only sees the large rock immediately south

west of the crater from a distance and does not even see the entire crater rim.

The run 3a experiment (Figure 4-5) goes to the other extreme and shows an exploration

run which only considers increasing map certainty weighted by traversability. As in run

1a, extra attention is given to the crater rim and the large rocks. However, without the

frontier information metric trying to push the robot to the edge of the known, run 3a takes

many densely packed sensor readings.

The run 4a experiment (Figure 4-6) uses primarily the frontier information metric but adds

a small amount of the increase map certainty weighted by traversability information met-

ric. As expected, this exploration covers ground more quickly than runs 1a or 3a and the

addition of a small amount of increase map certainty weighted by traversability causes the

explorer to examine some obstacles in more detail than was found in run 2a. Note how the

explorer pays special attention to the outside of the crater rim and the large rocks to the

south of the crater. However, unlike run 1a, run 4a does not enter the crater.

To quantitatively compare the experimental runs it is useful to look at the amount of infor-

mation contained in the final maps of each of the exploration runs as well as to compare

the exploration path lengths and number of samples taken. To analyze the information

content in the final maps, three information measures are used: height information, Ih,

height information weighted by traversability, Itw, and reachability, Ir. These three infor-

mation measures roughly correspond to the three information metrics used in the explora-

tion.
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The equations used to compute the map information contents are:

(4.1)

(4.2)

(4.3)

where ,  and  are the height certainty, traversability and reachability of cell m as

defined in section 3.3. ENTROPY( ) is the information theoretic entropy of a binary valued

variable as defined in equation (2.1). Finally, w( ) is the same traversability weight parab-

ola used in the increase map certainty weighted by traversability information metric (see

section 3.4.2).

The map information contents for the four experimental runs at each starting location can

be found in Appendix A. Table 4-3 summarizes this data by providing the average infor-

mation content for each experimental run. The average for each run is computed over the

five staring location. The graphs in Figure 4-7 show the total map information content for

each run where the total information content is computed by summing the three informa-

tion scores (equations (4.1)-(4.3)) with the same α i weights used in summing the informa-

tion gains (see Tabl e4-2). Finally, the costs of each exploration can be found in Appendix

A and the average costs for each experimental run are presented in Table 4-4 below. The

normalized path length is the total path length of the explorations divided by the largest

dimension of the environment size, in this case 300 m.

Table 4-3: Create Traversability Map Average Exploration Gains

Final Map Information
Run 1
(kbits)

Run 2
(kbits)

Run 3
(kbits)

Run 4
(kbits)

Height Information 74.4 58.4 82.0 67.3

Height Info weighted by Traversability 11.14 8.1 13.0 9.76

Reachability Information 67.3 64.8 74.5 65.1
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(a) Run1 (b) Run 2

(c) Run 3 (d) Run 4
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Figure 4-7: Information gained vs. scan number. Graphs show how the total
information contained in the robot’s map increases with each sensor scan.
The four graphs correspond to the four information metric weights used.
Each graph has five plots corresponding to the five starting locations (A
through E). The total information is computed to reflect the weights given
to the information metrics during the exploration. (a) Total information is
computed as 0.33*Ih + 0.33*Itw + 0.33*Ir. Note that the plot which is

different than the other four corresponds to the starting location E, inside
the crater. In this case, the robot gets bogged down looking at the crater
instead of quickly finding new terrain. However, once outside the crater,
the exploration recovers. (b) Total information is computer as Ih. (c) Total

information computed as Itw. (d) Total information is computed as 0.85*Ih
+ 0.15*Itw.
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4.2.3 Conclusions

The above results show that the multiple information metrics exploration planner is capa-

ble of performing the Create Traversability Map exploration problem. The qualitative

results obtained by looking at the final exploration paths between the exploration runs

demonstrate that the information metrics are being used concurrently and are performing

their intended role. The frontier information metric is pulling the robot to the edge of the

unknown and increasing the distance between sensor scans. The increase map certainty

weighted by traversability, on the other hand, causes the robot to focus its attention on

trouble spots and take scans more frequently. This claim is also supported by the average

distance between sensor readings for the runs found in Table 4-4 and in Appendix A.

The quantitative results found in Tables 4-3 and 4-4 and in Appendix A support the quali-

tative analysis of the exploration results. On average, run 2 collected the least amount of

information in its map for all three information categories but expended much less effort

that the other three to collect it. Run 3 expended the greatest amount of effort, driving

almost three times as far as run 2, but it also collected the most information. While run 3

collected more information in the height information category than run 1, it also gained

significantly more information in the increase map certainty weighted by traversability.

On average run 4 produces results between run 2 and run 1.

The graphs in Figure 4-7 how the information contained in the explorer’s map increases

with each sensor scan. It is remarkable how similar the rates of information gain are for

Table 4-4: Create Traversability Map Average Exploration Costs

Exploration Costs Run 1 Run 2 Run 3 Run 4

Path Length (meters) 4006 2084 6303 3146

Normalized Path Length

(path length / site side length)

13.4 6.9 21.0 10.5

Number of sensor readings 266 90 462 175

Avg. Distance between Sensor Read-

ings (m/scan)

15.1 22.9 13.7 18.0
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each starting location in an experimental run. The one exception is for starting location E

in run 1 (Figure 4-7(a)). This is where the robot starts inside the crater. For the first 25 or

so sensor scans, this run gains information at a similar rate to the other starting locations of

run 1. However, at this point the robot has viewed most of the crater. It then spends the

next 75 or so sensor scans examining the rough terrain inside the crater more carefully.

This causes the rate of information gain to decrease since it is not seeing new terrain but

rather examining previously seen terrain more closely. At around scan 100, the explorer

finally leaves the crater and resumes collecting information at a high rate. It is interesting

to note that this pattern did not occur for starting location E on run 4. In this case, the

higher weighting given to the frontier information metric causes to the explorer to leave

the crater more quickly.

The graphs also show that the rate of information gain decreases with time, although it is a

slight decrease for run 2 (Figure 4-7(b)). What is interesting is that runs 1 and 4 gain infor-

mation at essentially two fixed rates. While the reason for this is not certain, it is possible

that the initial high rate of information gain occurs when unknown areas of the map are

being viewed. The lower rate then takes over when the map is more or less known and the

explorer is examining rough terrain more closely.

4.3 Finding and Viewing Cliff Faces

To demonstrate the flexibility of the multiple information metrics exploration planner to

solve varied exploration tasks, a second exploration problem will be studied. In this case,

the explorer is asked to find a cliff and then to view the face of that cliff. To view the face

of the cliff, the robot must take sensor scans from the base of the cliff. In the example

illustrated below, the exploration robot will start at the top of the cliff. It must determine

where the cliff is, find a way to the bottom and then take sensor readings along the base of

the cliff to view its face.
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4.3.1 Problem Setup

The first step is to determine the composition of the attribute and information gain vectors

needed to solve the specified problem. The attribute vector needs to contain the informa-

tion collected which is pertinent to the problem. Clearly, the height is important to record

as this is the raw data collected by the sensor. Height is a continuously valued variable and

so it has a value and a certainty in the attribute vector. Another important variable to

record is the probability that a cell is part of a cliff. Since the exploring robot is trying to

find cliffs, it should record where it sees them. While this robot is not trying to create a tra-

versability map as in the previous example, traversability will be stored in the attribute

vector, not so much as a final product but to be used during the exploration when planning

paths. These three attributes are discussed in detail in section 3.3.

The information gain vector is determined by the goals of the exploration. Clearly, the

robot needs to view unseen terrain and it needs to view cliff faces. Thus two elements in

the information gain vector are the frontier and the viewing cliff faces information met-

rics. Another information metric which may prove to be useful is the seek lower elevations

metric. Since the robot is trying to view the face of a cliff and it must do this from the base

of that cliff, there is value to the robot to go to locations which are lower in height or ele-

vation than its current position. Therefore the information gain vector used in this problem

contains the elements: frontier, viewing cliff faces and seek lower elevations. These met-

rics are detailed in section 3.4. The weights of each information metric (the  multipliers

from equation (3.1)) used were: 0.2 frontier, 0.7 viewing cliff faces and 0.1 seek lower ele-

vations.

The finding and viewing cliff faces exploration was performed on the cliff world shown in

Figure 4-8. The world is 300m x 300m in extent with a cliff ranging from 30 to 15m high

winding from the north east corner to the southern edge of the map. A path to the cliff base

is found approximately in the center of the cliff. As in previous images, the whiter a pixel

the higher its elevation. The cliff is not perfectly vertical and the distance from the top of

α i



Autonomous Surface Exploration for Mobile Robots 59

Simulation Results

the cliff to the base of the cliff, in a direction normal to the cliff face, varies from one to

three meters.

4.3.2 Results

The results of the exploration of the cliff are shown in Figure 4-9. Each pixel in the images

corresponds to one map cell. The robot started its exploration on the southern edge of the

map and is at the top of the cliff.

From the top of the cliff, the robot cannot see the bottom. Instead it notices a large region

where it thinks it should see something (i.e. nothing in its map is blocking or shadowing

this region) but it does not. The robot calls this type of terrain, perceived terrain, its sensor

has gone through that region but no returns or measurements were made. The most likely

cause of this perceived terrain is a negative obstacle or hole. The robot then hypothesizes

that the reason for this perceived region is a cliff and that the robot is on the top. Next, the

robot follows along the cliff edge due to high information gains from the cliff information

Figure 4-8: Cliff world. Elevation map of the cliff used in simulation tests of the cliff
exploration.
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Figure 4-9: Cliff exploration results. (a) Height map with the exploration path
superimposed. The small x’s indicate sensor scan locations. (b) Height
certainty. Notice that the exploration has high certainty (whiter cells) along
the cliff. (c) Cliff attribute. Probability of a cell being part of the cliff.
White cells are high probability, black cells low probability, grey is 50%
probability, indicating no information.

(a) Height (b) Height Certainty

(c) Probability of being a Cliff
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metric. Eventually, the robot finds the path down and takes it, aided by the seek lower ele-

vations information metric.

4.3.3 Conclusions

The robot explorer successfully explored the cliff world, viewing the entire face of the

cliff. The robot was able to postulate the existence of the cliff from the top, without being

able to see the bottom and follow this potential cliff until it found a route to the base. Once

at the base the robot then proceeded to drive along the cliff face and take sensor readings.

This example, which is much different in purpose and structure than the create traversabil-

ity map example above, also illustrates the flexibility of the multiple information metrics

exploration planner to perform different exploration tasks by appropriate choices of the

attribute and information gain vectors.
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CHAPTER 5 Field Results

The previous chapter showed the capabilities of the multiple information metric explora-

tion planner in simulation. While the simulations demonstrated the functionality of the

approach, they were performed in hand drawn worlds and did not consider sensor or posi-

tion noise. This chapter demonstrates the ability of the multiple information metric explo-

ration planner to explore a real cliff using real sensor data.

5.1 Experimental Setup 

The terrain sensor used in the experiment was a laser scanner from Zoller + Frohlich

(Z+F) [29]. The Z+F laser sensor can scan 360 degrees in azimuth and ±30 degrees in ele-

vation with a reading taken every 0.045 degrees in azimuth (for a total of 7999 readings)

and 0.043 degrees (for a total of 1400 readings) in elevation. The Z+F laser has a maxi-

mum range of 25.2m with a range resolution of 0.38mm.

The laser was placed on a cart which was instrumented with differential GPS for position

information and a compass and inclinometers for heading, roll and pitch information (see

Figure 5-1). Using the pose information, each laser scan was converted to a global refer-

ence frame and combined into a single global map used for planning the exploration paths.

The cart also held a computer to read the laser scan and a second computer to run the
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exploration planner. All processing was done on-board the cart and only power was off-

board.

A push cart provided an ideal platform to test the exploration planner. The cart was large

enough to hold all of the computers and sensors needed for the exploration. Using the cart

rather than a full robot, such as Nomad [71], allows the exploration planner to be tested

without the complications of low level motor controllers and local navigation planners

such as Morphin [57]. Several other investigations have shown that it is possible to com-

bine a grid based planner with a local navigator so the simplification of using a cart is

valid for the purpose of testing the exploration planner [22][59].

The exploration planner used three information metrics: frontier, viewing cliff faces and

seek lower elevations which are described in more detail earlier in this document. The

weights of each information metric (the  multipliers from equation (3.1)) were: 0.2

frontier, 0.7 viewing cliff faces and 0.1 seek lower elevations. The attribute vector used for

the experiment had elements for probability of cliff, height and traversability. Height and

traversability were continuous valued variables with a value and a certainty. It should be

Figure 5-1: Experiment Platform. The brass colored cube on top is the Z+F laser.

α i
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noted that the information metrics and weights used here are identical to those used in the

simulation experiment. In fact the exploration planner code used for the field test is identi-

cal to that used in the simulation. The only changes needed in the architecture of Figur e4-

1 was a laser driver for the Z+F laser to replace the simulated laser and a process to enter

the cart pose to replace the simulated controller.

The experiment was performed at a coal strip mine operated by Fieg Brothers Coal in

Somerset Co. Pennsylvania. The mine is a large hole approximately 15m deep and 35m

wide (see Figure 5-2). The diagonal line of dark rock in the lower middle part of Figure 5-

2 is the route to the bottom of the cliff. In general the ground was comprised of hard

packed soil, except along the top of the cliff and right along the base of the cliff where the

soil was soft, making it difficult to move the cart.

5.2 Experimental Procedure

The procedure used to explore the cliff was as follows. First a scan was taken with the Z+F

laser. The scan was tagged with the cart’s pose and converted into a digital elevation map

(DEM) based in the global coordinate frame. The DEM was then merged into the existing

Figure 5-2: Test site. 
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map of the exploration planner with the elevations in the DEM corresponding to the height

variable of the attribute vector. As in the simulation experiments the height certainty was

determined by the number of laser readings from the current scan falling in the map cell.

With the data from the new scan in its map, the exploration planner computes the informa-

tion gains for the frontier, viewing cliff faces and go down information metrics. Next the

planner uses the greedy planning strategy to find the path to the next scan point which

maximizes the utility as computed by equation (3.2). The position of the next scan point is

then drawn on the map and reported to the human experimenter.

With the position of the next scan point ready, the cart is manually moved to a spot close

to the desired position. An autonomous robot, especially a large non-holonomic robot like

Nomad, is unlikely to arrive exactly at a target waypoint. Therefore, the cart was maneu-

vered to the general region within 1 or 2 meters of the desired scan point. Once in place, a

new scan was commanded and the process repeated.

The Z+F laser can scan ±30 degrees in elevation. Since the scanner is mounted approxi-

mately 1.5m above the ground, each scan has a hole of no data around the cart. After the

first scan, all possible paths must pass through this unknown region so the planner is

unable to choose any paths with positive utility. To overcome this problem, the cart is

moved outside the no data hole and another scan is taken. Thus the exploration planning

does not start until after the second scan. This process is illustrated in Figure 5-3.

5.3 Results

The results of the cliff exploration are shown in Figures 5-4 through 5-7. In the figures of

the exploration planner’s map, higher elevations are whiter with black being unknown ter-

rain. In the information gain maps, a higher information gain is whiter. The +’s on the

maps are the desired scan locations and the x’s are the actual scan locations. The line con-

necting the x’s is a straight line approximation of the path driven by the cart. It closely fol-

lows the actual cart route except at the turn onto the downward path where the straight line

approximation cuts the corner.
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Figure 5-3: First laser scan. Notice the hole in the center where no data is collected
from the sensor. With no data around the robot the planner cannot find any
traversable paths. The sensor is manually moved outside the hole (as
shown in figure b) and a second scan is taken. The circle in the figures is
the robot.

(a)

(b)
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Figure 5-4(a) shows the height attribute of the exploration planner’s map after the second

laser scan. As described above, two scans were needed before the planning could start. In

the map, the cliff is along the left edge of the white region. The cart is on a rise which runs

along the cliff edge so the terrain on the right side of the map is a little lower than that in

the center. Figure 5-4(a) also shows the results of the first planning step. The planner

wishes to travel south, following the edge of the cliff. The computed position of the next

scan is indicated with a + sign. Figure 5-4(b) shows the information gains for this same

map. Notice the high information gain near the computed destination. The information

gain is high here due to high information gains in both the frontier and view cliff faces

information metrics. There is also a region of high information gain on the frontier along

the cliff edge to the north of the cart. This is another possible direction to search for the

path to the bottom.

Figure 5-5(a) shows the height map a few scans later. The cliff is still visible along the left

side of the map and is starting to curve to the east. This is the edge of the path to the bot-

tom, part of which can be seen as the isolated white blobs to the bottom of Figure 5-5(a).

The planner decides to continue following the cliff until the scan shown in Figure 5-5(b)

where the head of the path down to the cliff base becomes fully visible. At this point, the

go down information metric adds its weight to the frontier and viewing cliff faces informa-

tion metrics to attract the cart down this path. The computed scan point in Figure5-5(b) is

several meters below the previous scans and starts the cart on the way to the cliff bottom.

The exploration planner continued to guide the cart down to the cliff base and then along

the face as shown in Figure 5-6. This figure shows the complete exploration path and the

map at the end of exploration. It shows that the multiple information metric planner is

capable of guiding a robot to the face of a cliff. The technique is robust enough to handle

sensor and position noise and can even cope with errors in sensing locations. The explora-

tion path is superimposed onto a picture of the cliff in Figure5-7.
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Figure 5-4: Result of first planning step. (a) Map after the second scan. The +
indicates where planner wants to take next scan. (b) Information gains.
Notice high information gain at edge of cliff and unknown.

(a)

(b)
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Figure 5-5: Finding the path to the cliff base. Figures show the height attribute on the
left side and the total information gain on the right side. (a) Sensor is
detecting parts of a possible path to the base. (b) A couple of scans later,
the head of the path is more fully seen and the planner decides to
investigate further.

(a)

(b)
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Figure 5-6: Final exploration route. Higher elevations are whiter in color. Black is
unknown terrain. The +’s indicate scan position requested by the planner.
X’s are the actual scan locations. The line is a straight line approximation
of the path between scan points. It closely approximates the actual path of
the sensor except around the turning point where it cuts off the corner.

+

+

+

+

+

10m
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5.4 Conclusions

The results demonstrate that the multiple information metrics exploration planner is capa-

ble of successfully completing the finding and viewing cliff faces exploration problem in

the real world with real sensor and localization noise. Further, since the same exploration

planning software was used in both the simulation and field cliff demonstrations, these

results lend validity to the other simulation results.

In the field tests the cart was not placed at the exact spot requested by the exploration

planner. Instead the cart was moved to a spot close to the planned sensor location and the

sensor scan was taken. This experimental procedure was adopted based on experience

with actual field robots that combined global planners with local navigation [37]. In these

systems, the robot rarely achieved the exact waypoint specified by the global planner due

to the competing directions from the local planner as well as the vehicle kinematics which

made some motions difficult. The fact that the multiple information metrics exploration

Figure 5-7: Final Exploration Path. The general path taken by the robot is
superimposed on the image of the cliff.
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planner was able to handle these errors in waypoint tracking and still successfully explore

the cliff face is a sign of robustness in the planner and indicates that it might work well in

other explorations on real robots.

However, it is possible that these sensor scan positional errors introduced an experimental

bias in the results and that if the cart had been placed on the desired scan points the explo-

ration would have failed. This seems unlikely for several reasons. First, the positional

errors are on the order of two meters in most cases which for a sensor with a radius of 20

meters means that what is seen from the actual and desired scan points is mostly the same.

Further, given the actual and desired positions in the experiment, in no case is what would

be seen from the actual scan location significantly different than what is seen from the

desired location. Finally, at no point in the exploration does it appear that the desired sen-

sor location is diverting the robot away from the cliff and the actual location has been cho-

sen to pull the robot back into the cliff. In fact it is quite the opposite with the actual scan

location in many cases further from the cliff than the desired.
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CHAPTER 6 Conclusions

This thesis presents a novel methodology for solving complex exploration tasks that com-

bines multiple information metrics to guide a robot explorer in collecting the most infor-

mation about the environment. The information metrics used to explore, and ultimately to

determine what was important in the environment, depend on the exploration task to be

solved. The methodology also explicitly considers the cost of collecting the information

and plans paths which maximize the utility, or the information gain minus the collection

costs, of the exploring robot.

The thesis details several possible attributes for the robot’s map or knowledge database

including traversability, reachability and probability of being part of a cliff. Several infor-

mation metrics are also developed to illustrate how information metrics are defined and

are used in later exploration examples. The information metrics defined are: frontier,

increase map certainty weighted by traversability, determine reachability, view cliff faces

and seek lower elevations.

To demonstrate the feasibility of the multiple information metrics exploration planner and

how it can be applied to different exploration problems, two exploration tasks are com-

pleted in simulation. The first, Create Traversability Maps, creates maps of an unknown

region which tell the robot how safe it is to drive in each area. Special attention is given to
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making the maps accurate in and around unsafe areas, and the ability of the robot to drive

from a given start cell to another cell, the cell’s reachability, is also determined in the map.

The Create Traversability Maps problem builds a map with attributes: height, traversabil-

ity and reachability. It also uses the information metrics: frontier, increase map certainty

weighted by traversability and determine reachability which are developed in this thesis.

The effects of weighting the three information metrics differently is illustrated and com-

pleted traversability maps are presented.

The second exploration task performed in simulation is the Find and View Cliff Faces

task. In this problem the robot is asked to find a cliff in the environment and view the face

of the cliff. The robot starts at the top of the cliff, where the face is not visible, and has to

find its way down to the cliff base and then travel along the cliff face. The Find and View

Cliff Faces problem builds a map with attributes: height, traversability and probability of

being a cliff which are similar to those used in the create traversability maps problem. The

information metrics used are: frontier, view cliff faces and seek lower terrain. This exam-

ple shows that by using different information metrics and map attributes the multiple

information metrics exploration methodology can be applied to different exploration prob-

lems.

To demonstrate its ability to handle real world data and noise the multiple information

metrics exploration planner is tested in a real environment. The planner is connected to the

Z+F laser sensor and asked to perform the Find and View Cliff Faces exploration problem

on a real cliff. Using the same exploration planning code used in the simulated cliff explo-

ration and just changing the laser driver and vehicle controller modules, the multiple infor-

mation metrics exploration planner successfully explores a real cliff.

6.1 Contributions

This thesis has made several contributions to the field of autonomous exploration.
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• Presentation of a general methodology for performing autonomous exploration.

This methodology allows the exploring robot to consider more than one thing

while exploring and explicitly considers the cost of gathering information while

exploring. Further, the criteria of exploration are easily changed in the presented

framework. This allows the method to be easily adapted and applied to many

diverse exploration problems. The methodology was developed for surface explo-

ration of rugged, outdoor terrains and the examples provided performed explora-

tion in this type of environment. However, the multiple information metrics

exploration methodology is applicable to a much broader set of environments and

exploration tasks than this thesis considered. Provided that the environment can be

adequately represented in a grid based map, the costs of exploring can be quanti-

fied and the exploration goals can be expressed as the weighted sum of informa-

tion metrics, the multiple information metrics exploration methodology should be

applicable. Indeed, the methodology was successfully applied to an indoor world

to perform the create traversability maps exploration problem [38].

• Application of information and decision theories to the problem of exploration. By

expressing the information metrics in terms of the expected information gain, a

common unit, the bit, is applied to the very different criteria used in the explora-

tion. By expressing all of the costs in units of seconds, the expression for robot

utility only contains two different units — bits and seconds. These units are com-

pared with the value of information parameter which has the physical interpreta-

tion of how many seconds the robot is willing to spend to gain 1 bit of information.

Thus the approach used in this thesis has significantly reduced the number of hand

tuned constants needed to convert disparate units.

• Implementation of the multiple information metrics exploration planner to multi-

ple exploration tasks. The implementations in this thesis not only demonstrate the

validity of the approach but they also solve important exploration problems. The

creation of a traversability map of an unknown area is a classic problem in robot-

ics, particularly in field robotics where traversability is not just a binary traversable
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or not quantity. The introduction of the concept of having greater certainty near

poor terrain is an interesting twist which provides maps that are more useful than

conventional traversability maps. The second example, find and view cliff faces,

has great potential in the search for water and life on Mars.

• Demonstration of the exploration of a real cliff. The find and view cliff faces

example was implemented using a real laser sensor on a real cliff. This demonstra-

tion in the field proved that the multiple information metrics exploration planner

can function on real, noisy data.

6.2 Future Work

This thesis developed a novel method for exploring rugged, outdoor surfaces and applied

it to two important exploration problems in simulation. The method was also validated in a

field experiment which explored a cliff finding and recording the face of the cliff. How-

ever, there are still issues to be resolved and further research to be done to expand the mul-

tiple information metrics exploration planner.

6.2.1 Considering Robot Heading and Limited Field of View Sensors

The current implementation of the methodology only considers sensors with 360° fields of

view. This limitation was imposed to remove the need, when calculating the expected

information gains and planning exploration paths, to consider robot heading and thus sig-

nificantly reduce the computation required. However, not all robot sensors have a 360°

field of view and the general methodology presented in chapter 3 does not require this

restriction.

The easiest way to extend the current implementation to handle limited field of view sen-

sors is to increase the dimensions of the robot’s map to include heading. Currently a 2D

grid map is used to map the robot’s x and y position to a unique cell. By using a 3D map

the robot’s x, y and heading can be mapped to a unique cell. Given the sensor field of

view, the expected information gains for each possible heading at an x, y location can be
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calculated. Then the path planner would generate a path that not only specified the xy

locations but also the headings in those locations to maximize utility to the robot.

Extending the dimension of the map greatly increases the amount of memory required.

However, each map cell has two vectors, the attribute vector and the expected information

gain vector. In general, the attributes vector contains items such as height, reachability and

probability of being a cliff, which are independent of robot heading. Therefore instead of

simply adding an entire new dimension to the map it is possible to only extend the

expected information gain vector in this new dimension. This will reduce the memory

required without loosing any functionality.

Another possibility for handling limited field of view sensors was proposed by Younes

[77]. In this method the expected information gains and the exploration path are computed

assuming a 360° field of view sensor. Next, in each cell requiring a sensor reading, the

expected information gains are recomputed for all possible headings. The heading with the

largest expected information gain is the one used for the sensor reading. This approach

greatly reduces the amount of computation and memory required but the cost is a loss in

plan quality. Some cells with a low expected information gain for a 360° field of view may

actually have very high expected information gains for particular headings.

6.2.2 Considering Multiple Sensors

Most robot explorers have more than one sensor. For example, in Antarctica, Nomad had a

laser scanner, high resolution color camera and a spectrometer [69]. Each sensor collects

different types of information, has a different field of view and has a different cost to use

it. An exploring robot must therefore choose which sensor to use and when to use it when

exploring a region.

The multiple information metrics exploration planner can be easily extended to consider

multiple sensors. Instead of one expected information gain vector, the map now needs to

have one expected information gain per sensor. Thus each sensor has its own set of infor-

mation metrics which are calculated based in the field of view, range and other character-
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istics of that sensor. At each cell the planner will then know how much information it can

gain from taking a sensor reading with a particular sensor. The different sensor deploy-

ment costs can also be taken into account in the cost part of the utility equation.

One difficulty in this approach could be comparing the value of information from each

sensor. Ideally, the information metrics will be designed in such a way that one bit of

information from sensor A is equivalent to one bit of information from sensor B. How-

ever, in the real world, this may not always be possible. In this case, each sensor can have

its own value of information parameter, converting its expected information gains into

units of cost.

6.2.3 Representing Information Gain of Continuous Valued Variables

In implementing the methodology outlined in this thesis it is necessary to compute the

expected information gains for the various information metrics used in an exploration

problem. From information theory the information gain can be found by looking at the

change in entropy (see equation (2.1)).

For information metrics which depend on binary or discrete valued variables computing

the entropy is quite simple. In fact this was used for the information metric determine

reachability which used the binary valued variable reachability. For continuously valued

variables, such as height, the computation of entropy is more difficult. Equation (2.2)

shows that to calculate the entropy of a continuous value variable the probability density

function must be known over the entire range of the variable. Further, for some probability

density functions the entropy could be negative or infinite causing great difficulties in the

interpretation of continuous variable entropy.

In this thesis the probability density functions of continuous variables are not computed

and thus the information metrics based on these continuous variables, such as frontier, are

not true information gains from an information theoretic point of view. Instead of the

probability density function a value called certainty is used to indicate how accurate or

reliable the value assigned to that variable is. For example a cell might have a height of
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20m with a certainty of 70%. This certainty is not a probability but is a confidence mea-

sure and is being used much like an entropy score in this thesis (in fact it is being used as

one minus the entropy for information calculations). Using this confidence as an entropy

is an abuse of notation but it does work fairly well in practice (see the examples in chap-

ters 4 and 5 as well as [37], [38] and [39]).

Since the real formula for entropy of a continuous variable is known, why not use this

when computing the expected information gains like the frontier information metric? One

reason is that continuous entropies may be negative or infinite. Fortunately these degener-

ate cases usually only occur when some value of the probability density function is greater

than one [49] and with physical variables such as height this is unlikely to happen if the

probability density function computed reflects reality. This brings up another reason con-

tinuous entropies are difficult to use in practice — computing the true probability density

function, given the sensor measurements, is in general difficult.

Consider the laser scanner sensor used in this thesis and the continuous variable height.

Before the first laser scan is taken, the prior probability density function must be chosen

for the height variables in each map cell. This might be a flat line, indicating equal proba-

bilities for every possible height, or it might be generated from an a priori model of the

environment. With each laser scan, two types of information can be gained to alter the

probability density functions in each map cell. First, lasers will pass through some cells

without hitting anything. Given the height of the laser passing through the cell the proba-

bility that the cell height is less than the laser height increases. The second case is if a laser

hits something in a cell. In this case the probability that the height of the cell is greater

than the laser height increases. If some of the lasers in a scan hit a cell and some pass

through the same cell, a fairly accurate picture of the true cell height emerges. The effects

of a laser scan on the height probability density function for a particular cell are shown in

Figure 6-1. 

The probability density functions in Figur e6-1 are just sketches, exactly what slope to use

in figures (b) and (c) around the measurement points is not entirely obvious. The images
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Figure 6-1: Updating probability density function. (a) A priori probability density
function for height variable in cell m. (b) Updated probability density
function based on a laser reading at height x1 passing through cell m

without hitting anything. This indicates that the height of cell m is less
than x1. (c) Updated probability density function (from a priori density)

based on a laser reading at height x2 hitting something in the same cell, m.

This indicates that the height of cell m is greater than x2. (d) Combining

information from probability density functions (b) and (c) for cell m.
Based on these two laser readings in the cell, the probability of the height
being between x2 and x1 is much greater than for other values.
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also don’t account for noise, the possibility of overhanging terrain (such as caves) or the

possibility that particulate matter, such as dust or snow, in the air will generate a return

signal [37]. However, the figure does illustrate how one could generate a probability den-

sity function for height and then update it using sensor information.

The problem with using a probability density function in practice is in storing and repre-

senting it. It is unlikely that a closed form representation for the functions illustrated in

Figure 6-1 can be found and even if it could it is unlikely that the representation could be

maintained and updated as more data is added with each scan. One alternative is to dis-

cretize the distribution. This is equivalent to discretizing the variable and using the dis-

crete entropy equation. This does reduce accuracy but more importantly it greatly

increases the storage space required because this discretized distribution must be recorded

in all map cells.

While using the complete probability density function for continuos valued variables

would make the methodology presented in this thesis more theoretically sound from an

information theory point of view, it is unclear if this would significantly improve the per-

formance of the exploration path planning. Uncertainties in determining probability priors

and loss of accuracy in discretizing the density function mean that at best an approxima-

tion of the true probability density function is used. Combined with the cost of storing a

density function in every map cell, for every continuous variable, may make the use of

complete probability density functions impractical.

6.2.4 Planning Beyond the First Sensor Reading

This thesis implemented a greedy search technique to plan exploration paths up to the next

sensor reading. Using the greedy planner was justified because one property of the explo-

ration was to collect information as quickly as possible. However, the greedy planner’s

short term planning horizon does produce paths which are less efficient over the entire

exploration than might be possible with a planner that planned sequences of sensing

actions.
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The major impediment to developing a planner which plans multiple sensor readings is

that the expected information gains in neighboring areas are dependent on each other.

Plans are path dependent — planning the next step not only depends on where you are but

how you got there. The reason the information gains are dependent is that they are com-

puted from the current map. Once a sensor reading is taken, the map changes and so do the

information gains. Therefore not only does a long range planner need to plan path depen-

dent paths, which is a very large search space, it must also be able to reasonably predict

what each planned sensor reading will sense. This need to predict what will be seen, so

that the new information gains can be calculated, makes planning paths past the first sen-

sor reading almost impossible.

One way to plan past the first sensor reading is to group the information gains into large

regions and then plan a route through these regions. By assuming that the information gain

in each region is independent from those in other regions an optimal path through the

regions can be found by solving the prize collecting travelling salesman problem — each

region is a city and the aggregate information gain in the region is the prize. The assump-

tion of regional independence holds provided that a sensor reading in one region cannot

see any cell changed by a sensor reading in another region. This assumption should hold in

the centers of large regions but becomes less valid as one gets the edges of neighboring

regions. While this is still an NP-complete planning problem, if the number of regions is

kept small, the problem may be tractable.

What to do inside a region and when to continue on to the next region in this plan are two

questions that need to be answered. Since the problem of information gain dependence

occurs inside the region it makes sense to use the greedy planner once inside a region. One

way to determine when to continue on to the next region is to use a threshold on the

amount of information collected, once above that move on to the next region.

A better way to decide when to move on is to look at the rate of information gain. As the

robot explores an area it will generally gain a lot of information in the early part since it

knows little of the area. As the robot learns more about the region there is less to learn and
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so the rate of information gain decreases. Once the rate drops below a certain threshold the

robot continues on to the next region of interest. This concept can be formalized using an

area of biology called Foraging Theory [62]. Foraging theory has developed models which

describe how animals forage for food amongst multiple patches of food. Most importantly,

a model has been derived which, given a set of food patches (imagine berry patches), the

expected gain from each patch and the distance between patches, shows how much time to

spend in each patch collecting food. This theory has been applied not only in biology to

predict animal movements but also to web browsers to predict document viewing by

humans [47]. Foraging theory could be combined with the region planner to generate a

plan that specifies which regions to visit (like the patches of food) and how long to spend

in each patch. This explicitly takes into account the reduction in rate of information in a

region and gives a rule for passing on to the next region in the plan.

The concept of a regional plan sidesteps the issue of information gain dependence and

alleviates the need to predict the results of a sensor scan but still allows the robot to make

some long term plans that guide its exploration. This type of planner might work well in

cases where the robot has some a priori information, perhaps from satellite imagery, about

the environment to explore. If the robot starts with a blank map, as done in this thesis, then

it tends to have one region of well known data surrounded by unknown areas. In this case

the robot usually has to make decisions about whether to examine the edge of knowledge

close to its position or to travel to a further edge.

Another approach to planning beyond the first sensor reading is to predict what a sensor

scan will see. In this case, every time the planner called for a scan, it would predict what

the scan sees to create an estimate map, M’ (t) and then continue to plan based on this esti-

mated map. The estimate could be created using a statistical model of the environment

being explored. This still requires planning paths which are path dependent so the plan-

ning search space is large and it remains an open question as to how well the planner can

predict sensor scans. Further, as one plans more and more scans the quality of the map

estimate will degrade.



Future Work
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APPENDIX A Additional Simulation 
Results

This appendix contains a record of all the simulations run for the Create Traversability

Map exploration initially described in section 4.2. As mentioned there, the Create Travers-

ability Map exploration was run with four different information metric weights which are

summarized in Table A-1. For each information metric weighting the exploration was per-

formed from five different starting points which are indicated in Figure A-1. Each infor-

mation metric weighting was given a different run number (as indicated in Tab leA-1) and

each starting location was given a unique letter as shown in Figure A-1. In this way each

simulation run can be uniquely identified with a run number and letter. For example, the

run with equal weights to the three information metrics and starting in the upper right hand

corner of the map is called Run 1c.

The quantitative data presented in the next sections include the map information at the end

of the explorations for the categories of height information, height information weighted

by traversability and reachability and were computed using equations (4.1) through (4.3).

Further the total path lengths of the explorations and the number of sensor scans taken are

Table A-1: Information Metric Weights for Three Runs

Information Metric Run 1 Run 2 Run 3 Run 4

Frontier 0.33 1.0 0.0 0.85

Increase Map Certainty weighted by Traversability 0.33 0.0 1.0 0.15

Reachability 0.33 0.0 0.0 0.00
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presented. The normalized path length is the total exploration path length normalized by

the length of the environment, in this case 300 m, as is presented to give an idea of how

many times the size of the environment the robot had to drive in order to explore the

region. Finally the average distance between sensor scans is presented to indicated how

densely the robot sampled the environment.

A

B C

D

E

Figure A-1:Starting positions of Create Traversability Map exploration. Map shows
the crater world environment and the letters indicate the five starting
positions used for the simulation runs.
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Additional Simulation Results

A.1 Run 1

Table A-2: Run 1 Create Traversability Map Exploration Gains

Final Map Information
A

(kbits)
B

(kbits)
C

(kbits)
D

(kbits)
E

(kbits)

Height Information 71.1 75.4 74.2 79.8 71.5

Height Info weighted by Traversability 10.5 11.4 11.1 11.3 11.4

Reachability Information 64.8 67.4 67.5 71.4 65.4

Table A-3: Run 1 Create Traversability Map Exploration Costs

Exploration Costs A B C D E

Path Length (meters) 3408 4199 3984 4878 3559

Normalized Path Length

(path length / site side length)

11.4 14.0 13.3 16.3 11.9

Number of sensor readings 233 254 243 314 285

Avg. Distance between Sensor Read-

ings (m/scan)

14.6 16.5 16.4 15.5 12.5
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Figure A-2:Run 1a Path Results. 

(a) Height (b) Height Certainty

(c) Traversability (d) Reachability
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Additional Simulation Results

Figure A-3:Run 1b Path Results. 

(a) Height (b) Height Certainty

(c) Traversability (d) Reachability
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Figure A-4:Run 1c Path Results. 

(a) Height (b) Height Certainty

(c) Traversability (d) Reachability
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Additional Simulation Results

Figure A-5:Run 1d Path Results. 

(a) Height (b) Height Certainty

(c) Traversability (d) Reachability
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Figure A-6:Run 1e Path Results. 

(a) Height (b) Height Certainty

(c) Traversability (d) Reachability
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Additional Simulation Results

A.2 Run 2

Table A-4: Run 2 Create Traversability Map Exploration Gains

Final Map Information
A

(kbits)
B

(kbits)
C

(kbits)
D

(kbits)
E

(kbits)

Height Information 52.8 59.5 63.3 58.6 58.0

Height Info weighted by Traversability 7.3 7.7 9.6 7.8 8.1

Reachability Information 61.2 66.0 66.5 66.1 64.4

Table A-5: Run 2 Create Traversability Map Exploration Costs

Exploration Costs A B C D E

Path Length (meters) 1519 1997 2622 1915 2367

Normalized Path Length

(path length / site side length)

5.1 6.7 8.7 6.4 7.9

Number of sensor readings 78 89 103 89 92

Avg. Distance between Sensor Read-

ings (m/scan)

19.5 22.4 25.5 21.5 25.7
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Figure A-7:Run 2a Path Results. 

(a) Height (b) Height Certainty

(c) Traversability (d) Reachability
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Additional Simulation Results

Figure A-8:Run 2b Path Results. 

(a) Height (b) Height Certainty

(c) Traversability (d) Reachability
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Figure A-9:Run 2c Path Results. 

(a) Height (b) Height Certainty

(c) Traversability (d) Reachability
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Additional Simulation Results

Figure A-10:Run 2d Path Results. 

(a) Height (b) Height Certainty

(c) Traversability (d) Reachability
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Figure A-11:Run 2e Path Results. 

(a) Height (b) Height Certainty

(c) Traversability (d) Reachability
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Additional Simulation Results

A.3 Run 3

Table A-6: Run 3 Create Traversability Map Exploration Gains

Final Map Information
A

(kbits)
B

(kbits)
C

(kbits)
D

(kbits)
E

(kbits)

Height Information 79.1 86.7 87.6 75.8 80.9

Height Info weighted by Traversability 12.8 13.4 13.7 12.5 12.7

Reachability Information 71.9 78.2 79.8 69.2 73.3

Table A-7: Run 3 Create Traversability Map Exploration Costs

Exploration Costs A B C D E

Path Length (meters) 5791 7100 6997 5527 6099

Normalized Path Length

(path length / site side length)

19.3 23.7 23.3 18.4 20.3

Number of sensor readings 415 506 531 407 452

Avg. Distance between Sensor Read-

ings (m/scan)

14.0 14.0 13.2 13.6 13.5
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Figure A-12:Run 3a Path Results. 

(a) Height (b) Height Certainty

(c) Traversability (d) Reachability
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Additional Simulation Results

Figure A-13:Run 3b Path Results. 

(a) Height (b) Height Certainty

(c) Traversability (d) Reachability
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Figure A-14:Run 3c Path Results. 

(a) Height (b) Height Certainty

(c) Traversability (d) Reachability
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Additional Simulation Results

Figure A-15:Run 3d Path Results. 

(a) Height (b) Height Certainty

(c) Traversability (d) Reachability
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Figure A-16:Run 3e Path Results. 

(a) Height (b) Height Certainty

(c) Traversability (d) Reachability
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Additional Simulation Results

A.4 Run 4

Table A-8: Run 4 Create Traversability Map Exploration Gains

Final Map Information
A

(kbits)
B

(kbits)
C

(kbits)
D

(kbits)
E

(kbits)

Height Information 62.2 65.8 68.2 72.8 67.3

Height Info weighted by Traversability 9.1 9.5 9.7 10.2 10.3

Reachability Information 63.9 64.5 64.8 67.3 65.2

Table A-9: Run 4 Create Traversability Map Exploration Costs

Exploration Costs A B C D E

Path Length (meters) 2708 2799 3247 3965 3012

Normalized Path Length

(path length / site side length)

9.0 9.3 10.8 13.2 10.0

Number of sensor readings 158 154 173 219 171

Avg. Distance between Sensor Read-

ings (m/scan)

17.1 18.2 18.8 18.1 17.6
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Figure A-17:Run 4a Path Results. 

(a) Height (b) Height Certainty

(c) Traversability (d) Reachability
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Additional Simulation Results

Figure A-18:Run 4b Path Results. 

(a) Height (b) Height Certainty

(c) Traversability (d) Reachability
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Figure A-19:Run 4c Path Results. 

(a) Height (b) Height Certainty

(c) Traversability (d) Reachability



Autonomous Surface Exploration for Mobile Robots 119

Additional Simulation Results

Figure A-20:Run 4d Path Results. 

(a) Height (b) Height Certainty

(c) Traversability (d) Reachability
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Figure A-21:Run 4e Path Results. 

(a) Height (b) Height Certainty

(c) Traversability (d) Reachability


