
Autonomous, Teleoperated, and Shared Control of Robot Systems

Robert J. Anderson

Sandia National Laboratories

P.O. Box 5800, MS 1176

Albuquerque, NM 87 185

bjander @ isrc.sandia.gov

~~~~ 41 3 f$;s 

I 
Abstract 

This paper illustrates how different modes of operation 

such as bilateral teleoperation, autonomous control, and 

shared control can be described and implemented using 

combinations of modules in the SMART robot control 

architecture. Telerobotics modes are characterized by 

different “grids” of SMART icons, where each icon repre- 

sents a portion of run-time code that implements a passive 

control law. By placing strict requirements on the mod- 

ule’s input-output behavior and using scattering theory to 

develop a passive sampling technique, a flexible, expand- 

able telerobot architecture is achieved. An automatic 

code generation tool fo r  generating SMART systems is 

also described. 

1: Introduction. 

Sandia National Laboratories is developing intelligent 

robotic systems for unstructured environments. Typical 

problems include the remediation of large waste storage 

tanks, the decommisioning of nuclear facilities, and the 

remote handling of hazardous waste. These tasks must be 

accomplished in cluttered, poorly modeled environments 

with limited human access. All of these tasks require a 

number of mundane repetitive operations such as scan- 

ning, scraping and bin disposal, combined with a number 

of complex teleoperated tasks such as insertion, part 

acquisition, and camera based path planning. In this 

paper we describe how SMART: (Sequential Modular 

Architecture for  Robotics and Teleoperation) can be used 

to accommodate all these different modes of operations. 

SMART [l] is a modular telerobotic control architecture 

which combines passive network based modules to imple- 

ment telerobotic behavior[2,3 1. Each module represents a 

portion of real-time code which implements 

positionhelocity or force perturbations. There are mod- 

ules for input devices, sensors, kinematics, dynamic fil- 

ters, constraints, and robots. The operator combines dif- 

ferent sets of these modules to implement a behavior. By 

switching through different behaviors the task is accom- 

plished. 

2: Building Autonomous Control Systems. 

True autonomous robots do not exist -- at least not at 

Sandia. All robots receive command and control informa- 

tion from a human operator in one form or another. This 

interface may be as high level as a CAD-description of a 

part to be designed and a request to “make part.” It may be 

an intermediate level where the operator teaches points 

using a teach pendant and then generates a robot program 

with the robot following the pre-taught points, or it may be 

a low-level interface, where the operator commands every 

motion using a direct input device such as a space-ball or 

force reflecting master. 

For our purposes, the term “autonomous operations” will 

refer to any operation in which the operator interfaces to 

the robot only at an asynchronous level. Thus, if the oper- 

ator specifies a series of tagpoints, and tells the robot to 

move to them one at a time, it is an autonomous operation. 

If the operator has to continuously press a button on a 

teach pendant for the robot to move, then it is a teleoperat- 

ed operation. In this section we will demonstrate how 

SMART modules can be combined to implement 

autonomous robot behavior. 

2.1: Joint Space Motion. 

The simplest type of autonomous robot controller is ajoint 

motion controller, which has two fundamental elements: a 

trajectory generator and a joint servo-controller. In 

SMART this is implemented using three modules, a PATH 

module, a joint  servo module (such as the 

TITANJOINTS module), and a termination module 

(KB1) (Figure 1). 

The PATH module generates a joint-interpolated manipu- 

lator path for a series of preloaded points. Between each 

pair of points the manipulator accelerates, moves at con- 

stant velocity, and de-accelerates following a trapezoidal 

velocity profile. By overlapping the acceleration profile of 

one path segment with the de-acceleration profile of the 

previous path segment smooth transition speeds are 

obtained. 

http://isrc.sandia.gov


A joint servo module such as the TITAN-JOINTS 

module receives a steady stream of set-points from the 

previous module and drives the robot accordingly. 

This can be done by driving the manipulator’s actua- 

tors directly in SMART or passing the setpoints to a 

dedicated robot controller. 

The termination module, KB1, insures that the velocity 

commands generated by input devices such as the 

PATH module, is directed toward the robot. It also 

provides some additional filtering and reduces wave 
Figure 

TITAN JOINTS 

2: World space controller for Titan 
- 

reflections in the discretized system. 

KB1 II PATH 11 TITAN JOINTS 

Figure 1 : Joint space autonomous controller for Titan 

2.2: World Space Motion. 

To implement world space motion a kinematics module, 

such as the TITAN-JCIN module needs to be added to the 

system (Figure 2). The robot kinematics module continu- 

ally maps the position and orientation of the tool tip to a 

set of joint angles, and maps the force and velocity 

between world space and joint space using wave vari- 

ables. 

The trajectory generator operates almost identically in 

world space, generating straight-line paths between 

taught positions and orientations. In world space, howev- 

er, the motion is scaled to the maximum Cartesian veloci- 

ties, rather than the individual joint velocities. 

2.3: Graphical Programming. 

When working in unstructured hazardous environments 

most operations are performed infrequently, and cannot 

be taught using a standard robot teach pendant paradigm. 

For these operations, researchers have developed a new 

approach based on interfacing with a 3-D graphical 

model of the environment using commercially available 

robot simulators such as IGRIP, SimStation, or RobLine 

(Figure 3)[4,5] . First, the operator calibrates the graphi- 

cal world to the real-world using structured lighting, visu- 

al targeting, and/or calibration probes. Once the graphi- 

cal model is deemed suitably accurate, the operator 

manipulates “tagpoints” in the workcell. The tagpoints 

store the position and orientation of desired locations in 

the workcell and also record auxiliary data such as the 

gripper state, the speed with which to proceed to the next 

point, or the event that should be triggered when that 

point is reached. 

The supervisory graphical programming system takes the 

tagpoints depicted in the graphical display and downloads 

them to the PATH module. Once downloaded it initializes 

a start motion command. The module will then continu- 

ously generate motion profiles until the sequence of points 

is completed. The connected kinematics module receives 

the world space positions and orientations and continu- 

ously maps them into the local robot joint space, while the 

joint servo module receives a continuous stream of joint 

set-points from the kinematics module and drives the 

robot accordingly. In  this fashion autonomous motion of a 

robot is achieved. 

3.0: Teleoperation. 

Pure teleoperation requires that the operator directly com- 

mand all motion of the slave robot in real-time. When the 

operator is directing motion through the use of teach pen- 

dants, space balls or force reflecting masters, the robot 

should move. When the operator releases the device, the 

robot should stop. 

Figure 3:Graphical Programming 



3.1 Joint-Based Teleoperation 

The most direct teleoperation interface for a robot slave is 

achieved with a scaled replica master input device. Any 
motion on any joint of the master is directly conveyed to 

the similar joint on the slave, and any force detected by a 

joint on the slave is directly conveyed to the similar joint 

on the master. If the joint torque signal provides a poor 

measure of the tool contact forces, then a force sensor 

may be used in conjunction with the master, but the forces 

from the sensor must be brought into joint space by map- 

ping through the manipulator Jacobian. 

This system may be implemented in SMART using the set 

of modules shown in figure 4. A force-reflecting master 

module (in this case the OMEGA-JOINT module which 

connects to the Schilling Omega force reflecting master) 

replaces the termination filter on the left-end of the 

SMART network, and a KBB2 module converts differ- 

ences in position between the master and slave into a 

force to driqe the slave and to backdrive the master. The 

JR310INT module maps forces measured from a JR3 

force sensor into robot joint space. 

OMEGAJOINTS I KBB2 TITAN JOINTS 

robot is an order of magnitude better than obtainable by a 

scaled master device. For these reasons generic world 

based teleoperation has been developed[6]. 

Generic teleoperation is implemented in SMART by uti- 

lizing kinematic modules for both the master and slave, 

moving the KBB2 module into world space to create a 

world error function, and adding an INDEX module, 

which enables arbitrary force and position scaling 

between master and slave along each degree-of-freedom 

@OF) (Figure 5). 

3.3: Unilateral Teleoperation. 

Bilateral teleoperation, as illustrated in sections 3.1 and 

3.2 can provide the operator with important force contact 

information, but is expensive to implement and is often 

fatiguing to operators. In many cases, unilateral teleoper- 

ation is more appropriate. In unilateral teleoperation, the 

operator drives the robot with a non-force reflecting input 

device, either in “rate mode” or in “position mode.” In 

rate mode the operator directly commands the robot 

velocity, using either a teach pendant or a forceltorque 

ball. Figure 6 shows a SMART system for the Schilling 

Titan manipulator using the CIS Dimension 6 

forcdtorque ball. 

In unilateral teleoperation the operator is dynamically 

decoupled from the system, and the operator imped- 

ance will not affect the system’s response. When 

implemented in the bilateral SMART architecture, 

however, the force information is still transmitted to 

the input device module and can still be used to 

Figure 4: Joint Teleoperation with Force Feedback 

3.2: World-Based Teleoperation. 

Joint based teleoperation has the advantage of being sim- 

ple to implement, both algorithmically and computation- 

ally. It also has numerous disadvantages. First, a kine- 

matically identical master is needed for every slave to be 

controlled. Second, it is potentially dangerous since 

small motions on the master may lead to very large 

motions on the slave, since master workspaces are 

typically a fraction of slave workspaces. Third, anc 

most importantly, the resolution of the slave is lim- 

ited by how accurately the operator can hold the 

master. For instance, if the master can be posi- 

tioned precisely only within 1 mm and there is E 

1:lO ratio between master and slave, then the slave 

can only be positioned within 1 cm. This is espe. 

I KB02 1 1  TITANKIN 11 JR3XJOINT 1 1  TITAN JOINTS 

, ~ ~ ~ ~ ~ , ~ ~ ~ ~ ~ ~ - ~  

I E  
cially problematic when an industrial robot is u s e d l  

as the slave since the positioning accuracy of the Figure 5: Generic Teleoperation with Force Feedback 



KB1 ~ TITAN KIN I TITAN JOINTS 

Figure 6: Unilateral Teleoperation 

enhance operations. In particular, all unilateral input 

devices in SMART have a force threshold. If the operator 

drives the robot so that sensor and virtual constraint mod- 

ules generate a net force which exceeds this threshold, 

any further motion in the offending direction is prevented. 

4.0 Shared Operations 

The previous two sections have shown the extremes of 

telerobotics: where either the robot is operated solely by a 

trajectory generator, or solely by the human operator. 

Generally, a faster, safer solution is obtained by merging 

human input and autonomous operations, with the appro- 

priate combination depending on the task. In this section 

a number of methods to achieve this will be discussed. 

4.1 Imbedding World Knowledge 

One of the first things to add to the teieoperator system is 

world model information, such as the locations of known 

objects and the limitations of the slave manipulator. Two 

SMART modules have been implemented to incorporate 

world knowledge into the system, the OBSTACLE mod- 

ule and the CLAMP module. 

The OBSTACLE module generates a virtual force field 

around modeled objects in the environment. First the 

robot tool and the environment are decomposed into con- 

vex object primitives. Then every update cycle, the dis- 

tance between pairs of objects are computed and used to 

generate nonlinear spring-damper forces along the vectors 

of nearest proximity[’l]. The net force is injected into the 

system and serves as a barrier force that prevents the 

human operator from driving the slave into known 

objects. 

The CLAMP module prevents the operator from overdriv- 

ing either the position or the velocity of the slave robot. A 

nonlinear damping force is activated whenever any joint’s 

velocity exceeds ninety percent of maximum velocity, and 

a nonlinear spring-damper force is activated whenever 

any joint comes within a few degrees of its travel limits. 

Unlike a linear “coordinating torque” term which tends to 

inhibit manipulator motion at any velocity, the CLAMP 

module only slows manipulator motion when actual 

joint velocities are about to be exceeded. This reduces 

the fatigue of the human operator, but still ensures the 

master and slave robots stay synchronized. 

4.2: Superimposing Inputs. 

One of the most natural methods to share autonomous 

and telerobotic operations is to superimpose inputs. 

Here the trajectory generator provides the dominant 

desired motion, and the human operator perturbs the 

base motion using a teleoperator input device. For 

instance, in scanning the waste surface in a waste storage 

tank a trajectory generator may control the scan path 

across a surface patch, while the operator controls only the 

vertical motion of the manipulator. The OBSTACLE 

module may be used to simulate the contours of the waste 

surface in this case. Figure 7 shows a superposition sys- 

tem using both the OBSTACLE module and the CLAMP 

module. Here a one-degree-of-freedom TORQUE-ARM 

module is used as a force-reflecting master and a MULTI- 

PLEX module is used to determine both the degree of 

freedom of the coupled motion and the appropriate force 

and position scaling along that degree of freedom. 

4.3: Record, Replay and Training. 

Another method to combine human path planning abilities 

with robot repeatability is to train a system in a virtual 

world and then replay the motion in the real world. 

The REPLAY module uses “motion cassettes” to sample 

the joint position and virtual manipulator state during the 

training mode of operation, while the operator drives the 

virtual system using teleoperator input devices. The 

VISUAL module provides the communication link to a 

remote graphics host running a 3-D robot simulator pack- 

age to provide the operator with a virtual view of the oper- 

ation. 

The motion cassettes are then loaded into the actual sys- 

tem for driving the robot. Since the entire motion path has 

already been previewed for safe collision-free operation 

using the graphical simulator, the operator can repeat, 

slow or reverse motion along the recorded motion path as 

desired. This is especially useful for operations such as 

arc welding and cutting in which the operator knows the 

path a priori, but must carefully monitor the speed along 

the path during operation based on visual feedback. A 

simple speed dial can then be used to control the rate of 

motion along the previously taught path. Figure 8 shows 

the SMART modules needed to implement both the train- 

ing and the operational systems. 



Figure 7: Superposition system with imbedded World Knowledge. 

4.4: Local/Remote Operations. 

The SMART system is designed using transmission line 

principles. These principles have been shown to lead to 

guaranteed stable behavior for arbitrary time-delay in a 

delayed master-slave system [SI. Nevertheless perfor- 

mance of a bilateral master-slave system tends to degrade 

after the time delay exceeds 200 msec. In these cases it is 

advantageous to dynamically uncouple the teleoperator 

from the sIave system. This can be done by scaling either 

the forces or the velocities to zero. 

Figure 9 shows a bilateral master slave system imple- 

mented using two remote SMART networks. The 

RECEIVE/TRANSMIT module pair allow a SMART sys- 

tem to be arbitrarily connected over ethemet. To dynami- 

cally decouple the master and the slave the force scaling 

on the SCALINGmodule would be set to zero. In this 

system local virtual forces are still generated on the mas- 

ter side of the system to prevent collision with obstacles 

and to prevent overdriving the robot. The remote system 

combines local compliance in the KBB2 module with 

force feedback from the JR3-JOINTS module to reduce 

the effects of collisions with the SLAVE manipulator. 

4.5 Task Sharing. 

In  many cases telerobotics is achieved not by having the 

autonomous system and the human operator sharing every 

task, but by splitting up the tasks into subtasks which are 

b) 

performed either by the human, by the autonomous sub- 

/ 

system, or by a combination of both. In this case the robot 

control system must be able to rapidly switch between dif- 

ferent modes of operation. 

In dismantlement operations for example, the location of 

manipulator tools are usually pretaught, and the robot will 

execute an autonomous sequence to grab a tool. The 

human operator may then teleoperate the robot to places of 

interest,to drill or cut at a point for instance, and then the 

system will take over to complete the operation. In sur- 
face finishing or scanning the human may teleoperate the 

robot to first delineate the comers of the region of interest, 

and then while the robot scans the surface area, the opera- 

tor controls motion normal to the surface. 

5.0 Enabling Technologies. 

The different collections of modules shown in the previous 

sections illustrate some of the behaviors that can be 

achieved by combining SMART modules. Currently over 

KB1 REPLAY 11 TITANJOINTS I 

a) 1 KB1 I CIS / /  TITAN K I i  / I  REPLAY 

Figure 8: Training system: a) Teleoperator Training in virtual world, b) Operations in real world. 



I KRAFTJOINTS 1 KRAFTKIN 11 INDEX 1 1  OBSTACLE /I TITAN KIN 11 SCALING /I TRANSMIT 

I I !I II 

maps the Laplace variable, s, to the unit delay, d = i 1 , 

using the bilinear transformation, 

s = 2(I-d)/T(I+d) 

where T is the sampling period. Force and velocity 

signals at each module port are then mapped to the 

wave variables, a, and b, using the mappings, 

a = f + ZOV 

Figure 9: Long Distance Teleoperation: a) Local master 
system, b) Remote slave system. 

a hundred different modules have been coded and tested, 

including modules for seven different input devices, six 

different sensors, eight different robots, and various 

dynamics and constraint behaviors. 

A typical telerobotic system in SMART may consist of up 

to twenty different combinations of these modules each 

containing from four to thirty modules, which the operator 

will switch in to achieve different subtasks. A number of 

technologies have been developed to help the system 

designer build a system. 

5.1 Achieving Modularity in a Discrete System. 

The key to the flexibility of building complex modular 

system is the inherent stability of the SMART architec- 

ture. Each module is first designed as a passive subnet- 

work in the continuous domain. Control laws are imple- 

mented in a passive manner by simulating the behavior of 

passive spring-mass-damper systems connected to inde- 

pendent force and velocity generators. Non-linearities 

due to kinematic mappings and constraint functions are 

represented by memoryless Jacobian elements and nonlin- 

ear dampers. All dynamic, energy-storing behavior is 

incorporated into linear-time-invariant sub-networks. 

By applying scattering theory techniques each module is 

discretized while preserving its passivity. For example 

each dynamic element is mapped to the discrete domain 

using the passivity preserving Tustin’s method, which 

b = f - ZOV 

where f is the force across the port on the module, v, is 

the velocity entering the port. The term, 20, is called 

the characteristic impedance. In a transmission line this 

term would be derived from the line characteristics, and 

is in general a complex number, In SMART however, 

this number is a parameter under the designer‘s discre- 

tion. By choosing 20 to be a positive real constant, we 

can guarantee that the output scattering operator mapping 

for a module, 

b = S a  

where, S, is the scattering operator, an induced norm less 

than or equal to one. Connecting the output waves of 

each module to the input waves of the neighboring mod- 

ules completes the system. 

Since the characteristic of a passive system is that the 

scattering operator is less than or equal to one, scaling of 

the wave signal by a sample delay, will not affect 

the passivity of the module, and thus the modules stabili- 

ty behavior is immune to sampling delay. This allows 

SMART to transfer information between modules in any 
order, simplifying the implementation of the modular 

control system considerably. 

Furthermore, each module can be tested for nonpassivity 

simply by driving the module with a series of test input 

waves at each of the module’ s ports. If the sum of the 

squares of the output waves exceeds the sum of the 

squares of the input waves for a module, then the module 

is non-passive and cannot be arbitrarily placed in a 

SMART grid without additional considerations. These 



stability techniques are discussed in detail in [9]. 

5.2: Position Synchronization. 

Assuming that each module in the system fulfills the pas- 

sivity requirements, then stability of the system for arbi- 

trary connections of modules is assured. For a telerobotic 

system, however, position tracking of the system must 

also be achieved. A system based solely on force and 

velocity signals implemented through wave variables 

would eventually accumulate positioning errors, and the 

robot motion would deviate from the operator’s intended 

path. 

In SMART exact position tracking is accomplished by 

feeding the position and orientation forward throughout 

the grid, summing up the net effects of all the input 

devices, filters, and kinematic mappings until a final set- 

point position is achieved for the slave robot at the end of 

the grid. If; the force/velocity feedback paths are stable 

for any position using the scattering operator approach of 

the previous section, then the modules can use the derived 

forcelvelocity information to properly modify the posi- 

tiodorientation feedforward path. 

To insure that the position of the input devices is synchro- 

nized with the location of the slave robot a synchroniza- 

tion step is initiated every time a new grid is swapped in. 

During the synchronization stage the feedforward position 

propagation is reversed, so that the position of the manip- 

ulator is propagated back through the kinematics and filter 

modules until an initial starting location for the teleopera- 

tor is derived. 

5.3: Implementation Details. 

Currently SMART is set-up to run on a VME system 

under the VxWorks real-time operating system using C- 

source code. The code is developed on a UNIX host 

machine and cross-compiled for the VxWorks target cen- 

tral processing units (CPUs) such as the Force 68k, 

Motorola, and Heurikon processors. If desired, the code 

may also be cross-compiled for one or more Mercury I860 

attached processors. Modules can be arbitrarily distrib- 

uted across the cpus in the VME backplane. Typical 

installations will use from two to five CPUs and a single 

attached processor. 

Associated with each module in SMART are a minimum 

of four required routines, a initialization routine called 

module-init(), a filter constant setting routine called mod- 

uleJc-set(), an update routine called module-update() 

and a print routine called modulegrint(). 

Upon initialization the module-init() routine is called for 

each module. This sets up I/O drivers, spawns processes, 

allocates memory and does whatever else is necessary to 

initialize a module on a given CPU. It will also set-up the 

system with default filter constants if none have been pre- 

assigned by the user. It then spawns the main smart-sys- 

tern-update() process, and if on the first cpu, spawns a 

smart-monitor process as well. 

The moduZefc-set() routine is typically called before the 

moduZe-init() routine using the user’s predetermined filter 

constants. It can also be called again at any time to 

change the current operating mode of the module. 

The mdule-update() routine is the main workhorse mod- 

ule. It is called synchronously every few milliseconds by 

smrt-system-update() to process the wave and position 

inputs and to generate the wave and position outputs for 

the module. 

Once the system is running the operator can do a number 

of things. The operator can change filter constants on any 

module at any time. He can activate the robot. He can 

download a set of points to the path module and execute 

them. He can also swap in a new grid using the 

smart-set_grid() command. This will automatically deac- 

tivate any robots, reconnect the modules for the new grid, 

and synchronize input devices to the robot’s position. 

The smart-monitor() task verifies that all CPUs maintain 

a heartbeat and continuously updates the state of the sys- 

tem. It ensures that all CPUs are initialized, that all mod- 

ules are synchronized, and that robot activation com- 

mands are acknowledged. 

5.4 Automatic Code Generation 

To create a SMART system on the host computer, the oper- 

ator first works with a Graphical User Interface (CUI) called 

the SMART Editorpig 101. By using the editor the opera- 

tor defines the different grids of operation by selecting and 

dragging the SMART icons onto a display field. Once the 

grids are laid out and verified as valid @e., each grid must 

represent a closed network, and each port must have consis- 

tent degrees-of-freedom and orientation states), the operator 

clicks the “Assign numbers” button. Using internal heuris- 

tics and a knowledge of the available hardware, the sys- 

tem will then attempt to assign CPUs and attached proces- 

sors for each module. In addition to the processor assign- 

ment, a configuration file for each module is parsed which 

contains sets of valid filter constants. 

Using a GUI tool the operator can toggle thru the sets of 

filter constants appropriate for each module by name. 

Here the term “filter constants” refers to any parameter 

unique to a module that the operator might want to change 



to achieve different operational modes. For instance, the 

PUMA-KIN module has filter constants describing the 

Denavit-Hartenburg-(DH) parameters for a PUMA robot. 

In this case the user selects between pre-determined sets 

of DH parameters corresponding to PUMA 560 series or 

PUMA 760 series arms. 

Once the user has determined the filter constants and 

processor numbers for each module in each grid, he clicks 

on the “Generate Code” button. This will create C-source 

code for each CPU in the target system, which describes 

the system, the modules, and the initial filter constants for 

each module. Numerous heuristics are used based on the 

chosen set of modules and target hardware platform, to 

determine an appropriate update period, T, characteristic 

impedance, 20, and distribution of modules accross the 

cpus. Once generated, the user can include additional 

application code as necessary. 

Finally, pressing the Compile button will result in the 

code being compiled for each processor, and the appropri- 

ate VxWorks startup scripts to be generated. By resetting 

the target VME the newly developed code will be auto- 

matically downloaded and executed. 

6.0: Conclusions. 

In this paper we have discussed how the SMART system 

can be used to achieve different telerobotic behaviors 

ranging from pure teleoperation to pure trajectory track- 

ing. Shared modes of operation included imbedded intel- 

ligence, superposition, record and replay, remote and 

local intelligence, and rapid reconfiguration between any 

other mode of operation. 

To date, SMART has been applied to tasks ranging from 

force-reflecting bilateral teleoperation, to multi-arm robot 

coordination, to flexible robot control, to painting with 

redundant thirty foot robots. The development of the 

COMM-RECVand COMM-XMIT module pairs com- 

bined with special purpose remote viewing technology 

has allowed us to conduct shared teleoperator develop- 

ment and operations with remote sites. 

Current work includes an extension of the OBSTACLE 

module to include whole arm obstacle avoidance, and the 

inclusion of more externally generated SMART modules. 

7.0: Acknowledgements. 

This work was performed at Sandia National Laboratories 

and supported by the U.S. Department of Energy under 

contract DE-AC04-76DP00789. 

Figure 10: SMART Editor Window 

References. 
[ 11 R. J. Anderson, “SMART A Modular Control Architecture 
for Telerobotics”, IEEE Robotics and Automation Society 

Magazine, Vol. 2, No. 3, Sept. ‘95 pp. 10-18. 

[2] G. Raju, G. C. Verghese and T. B. Sheridan, “Design Issues 
in 2-port Network Models of Bilateral Remote Manipulation”, 
IEEE International Conference on Robotics and Automation, 
Scottsdale, AZ, pp. 1316-1321, 1989. 
[3] R. J. Anderson and M. W. Spong, “Bilateral Control of 
Teleoperators with Time Delay”, IEEE Transactions on 
Automatic Control, vol. 34, pp. 494-501, 1989. 

141 M. McDonald and R. D. Palmquist, “Graphical 
Programming: On-Line Robot Simulation for Telerobotic 
Control,” Proceedings of International Robots and Vision 
Automation Show, Detroit, Michigan,, pp. 22.59-22.73, April 
1993. 

[5] J. H. Park and T. B. Sheridan, “Supervisory Teleoperation 
Control Using Computer Graphics”, Proceedings of the 1991 
IEEE International Conference on Robotics and Automation, 
Sacramento, CA, pp. 493-498, April 1991, 

[6] A. K. Bejczy, and M. Handlykken, “Generalization of 
Bilateral Force-Reflecting Control of Manipulators,” 
Proceedings of 4th RomAnSy, pp 242-255, 198 1. 

[7] R. J. Anderson, “Teleoperation with Virtual Force 
Feedback”, Proceedings of the ’93 SPIE Int. Symp. on Optical 
Tools for Manufacturing and Advanced Automation, Sept. 1993, 
Boston, MA. 

[8] R. J. Anderson and M. W. Spong, “Asymptotic Stability for 
Force Reflecting Teleoperators with Time Delay”, The 
International Journal of Robotics Research, vol. 11, pp. 135- 
149,1992. 

[9] R. J. Anderson, “Building a Modular Control System using 
Passivity and Scattering Theory”, IEEE International 
Conference on Robotics and Automation, Minneapolis, Minn., 
April 22-28, (accepted for publication), 1996. 



DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency 
thereof, nor any of their employees, makes any warranty, express or implied. or 
assumes any legal liability or responsibility for the accuracy, completeness, or use- 
fulness of any information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any spe- 
cific commercial product, process, or service by trade name, trademark, manufac-. 
turer, or otherwise docs not necessarily constitute or imply its endorsement, rccom- 
mendation, or favoring by the United States Government or any agency thereof. 
The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof. 


