
Citation: Raigoza, K.; Sands, T.

Autonomous Trajectory Generation

Comparison for De-Orbiting with

Multiple Collision Avoidance. Sensors

2022, 22, 7066. https://doi.org/

10.3390/s22187066

Academic Editor: Radu Danescu

Received: 21 July 2022

Accepted: 13 September 2022

Published: 19 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Autonomous Trajectory Generation Comparison for De-Orbiting
with Multiple Collision Avoidance
Karla Raigoza and Timothy Sands *

Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
* Correspondence: tas297@cornell.edu

Abstract: Over the past four decades, space debris has been identified as a growing hazard for
near-Earth space systems. With limited access to space debris tracking databases and only recent
policy advancements made to secure a sustainable space environment and mission architecture, this
manuscript aims to establish an autonomous trajectory maneuver to de-orbit spacecrafts back to Earth
using collision avoidance techniques for the purpose of decommissioning or re-purposing spacecrafts.
To mitigate the risk of colliding with another object, the spacecraft attitude slew maneuver requires
high levels of precision. Thus, the manuscript compares two autonomous trajectory generations,
sinusoidal and Pontragin’s method. In order to determine the Euler angles (roll, pitch, and yaw)
necessary for the spacecraft to safely maneuver around space debris, the manuscript incorporates
way-point guidance as a collision avoidance approach. When the simulation compiled with both
sinusoidal and Pontryagin trajectories, there were differences within the Euler angle spacecraft
tracking that could be attributed to the increased fuel efficiency by over five orders of magnitude
and lower computation time by over 15 min for that of Pontryagin’s trajectory compared with that
of the sinusoidal trajectory. Overall, Pontryagin’s method produced an autonomous trajectory that
is more optimal by conserving 37.9% more fuel and saving 40.5% more time than the sinusoidal
autonomous trajectory.

Keywords: autonomous trajectory optimization; trajectory generation; Pontryagin; space debris;
collision avoidance

1. Introduction

Since the 20th century Space Race, spacecraft have been launched into near-Earth
orbits, with the majority of them and their successors remaining in space, even after their
operational lifetime. Having these retired spacecrafts accumulate in Earth orbits as newer
spacecraft are deployed creates hazards, termed space debris, the long-term effects of which
have been explored. As early as 1978, NASA scientists Donald Kessler and Burton Cour-
Palais mathematically predicted that with enough spacecraft mass orbiting Earth, they will
begin to collide with each other at an exponential rate to produce more and smaller objects
in space, further contributing to precarious space debris. With an increase in satellites
in low-Earth orbit (LEO), they concluded that this cascading flux of spacecraft collisions
will create an orbital debris belt around Earth limiting the ability to successfully send new
spacecraft into and beyond Earth’s orbit [1]. Over four decades later, the amount of LEO
satellite deployments has increased, as foreseen by Kessler and Cour-Palais, and there is a
growing concern that the theoretical spacecraft critical mass needed for the exponential
space debris collision phenomena that is the Kessler Syndrome might become a reality.

While space missions and launches have not been modified to mitigate the Kessler
Syndrome directly, there still remains a call for a more sustainable space environment to
either remove current space debris or design a new space mission architecture to include the
return/removal of spacecrafts in-orbit in place of decommissioning. Most recently, in April
2022, the United States government outlined the first policy document by any government
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to combat space debris openly. In the In-Space Servicing, Assembly, and Manufacturing
National Strategy report, the National Science and Technology Council included “timely
debris collection and removal” among other demands for renewable in-space spacecraft de-
sign policies [2]. This expectation for a redesign of space mission architectures to moderate
the effects of the Kessler Syndrome is the premise of this manuscript.

For a spacecraft to be externally removed or internally maneuvered from its current
position, precision is necessary so not to collide with any other spacecrafts and form more
space debris. An object traveling at 10 km/s with a mass of 1 kg has the potential to
split a 1000 kg spacecraft into objects of at least 1 kg if it collides with a high-density
component [3]. To alleviate this risk, corporations such as the North American Aerospace
Defense Command (NORAD), Lockheed Martin, and the National Aeronautics and Space
Administration (NASA) collected data of launched spacecrafts. The NORAD was the
first to develop a database, titled CelesTrak, of launch dates, heat shields, and booster
rockets for spacecrafts in the late 1950s [4]. In 2020, Lockheed Martin partnered with the
United States Space Force (USSF)-assembled Space Fence, which has the power to detect,
monitor, track, and characterize space debris within LEO altitudes. Today, Space Fence
is the most advanced database of space debris that is revolutionizing the way the near-
Earth space environment is modeled [5]. Additionally, NASA has also been developing its
own 3D database of Earth’s orbiting space debris within its Orbital Debris Program Office
(ODPO) [6]. To better envision the progression of orbital space debris, the comparison
of cataloged objects of at least 10 cm in diameter between 1975 and 2019 is shown below
in Figure 1. Given that space debris tracking databases have been created but not made
available to the public, this manuscript adopts a collision avoidance approach to generate
spacecraft slew maneuvers so that the specific locations of space debris can be easily
adapted to the model.

Figure 1. Progression of the space debris formation surrounding Earth from 1975 (a,b) to 2019
(c,d) with a minimum of 10 cm in diameter as modeled by NASA’s Orbital Debris Program Office
(ODPO) [6] . Image usage is consistent with NASA policy, “NASA content (images, videos, audio,
etc.) are generally not copyrighted and may be used for educational or informational purposes
without needing explicit permissions.” [7].

Applying autonomous trajectory generation methods whose provenance lies in [8];
this manuscript models a spacecraft as it de-orbits from LEO using a collision avoidance
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technique four times. Fine precision for this maneuver is required to avoid collisions with
space debris objects; thus, accuracy, fuel consumption, and run time for two autonomous
slew trajectories are analyzed. This comparison of autonomous attitude slew maneuvers
is between the sinusoidal trajectory [8,9] and Pontryagin’s method [10], where fuel con-
sumption is optimally minimized. When implementing a collision avoidance approach, the
model will operate using way-point guidance to manually enter the positions of anticipated
space debris. As the spacecraft travels back to Earth’s surface, this maneuver provides an
opportunity for the spacecraft to be decommissioned by burning up in Earth’s atmosphere
or to be repurposed for future space missions if it returns with its structural integrity
still intact; both are in compliance with the space debris removal policy as established in
the In-Space Servicing, Assembly, and Manufacturing National Strategy Report [2]. With
this applicability within the aerospace industry, it is crucial to note the development of
autonomous trajectories and collision avoidance measures made in academia.

1.1. Literature Review

The current research state of autonomous trajectory navigation [11] and of collision
avoidance techniques centers around support for deterministic artificial intelligence [9],
which necessitates autonomous trajectory generation [10]. Due to the nature of the cutting-
edge collision avoidance methodology, there is more research completed in the field of
autonomous and optimal trajectory than there is with collision avoidance. The inclu-
sion of autonomous collision avoidance into trajectory generation for deterministic arti-
ficial intelligence seems to be an area ripe with opportunity. Exactly such is proposed in
this manuscript.

In the field of aerospace, optimal techniques are enticing, as with any other field, but
it is especially difficult to demonstrate and confirm without testing. As a result, there have
been efforts to set position and attitude as constraints as well as disturbance restrictions [12].
Additionally, research has shown alternative ways to overcome the limited control actuators
aboard spacecraft when it comes to trajectory generation [13,14]. Given that control moment
gyroscopes are a common component in attitude and control, they still pose an analytical
risk when considering gyroscope singularity [15]. To mitigate this computational hazard,
guidance attitude trajectories are only designed for small bodies [16]. With this growing
comfortability of spacecraft trajectory generation, it is apparent that there has been a more
recent resurgence towards autonomous and optimal attitude generation [17]. This can be
seen in the orbit assembly and agile maneuvering requirement of constellation satellites [18].
Given this literature review, autonomous spacecraft trajectory generation methods along
with collision avoidance techniques were identified.

1.2. Problem Overview

The concepts of the Kessler Syndrome and the obligation for a more sustainable and
renewable space environment for the future of space missions guide the significance of this
manuscript. Along with the appropriated industry feasibility and academically reviewed
research areas, the manuscript proposes the following novelties:

1. Generate sinusoidal and Pontryagin-based autonomous slew trajectories.
2. Generate way-point guidance Euler angles (roll, pitch, and yaw) as a collision avoid-

ance technique.
3. Compare the performance and accuracy of the generated trajectories as the spacecraft

de-orbits using the commanded Euler angles and the way-point guidance Euler angles.
4. Verify the results of the simulation using the normalization of the quaternions.

The remainder of the manuscript presents the methods utilized and the governing
equations in generating the autonomous trajectory as well as the collision avoidance
techniques for a de-orbiting spacecraft from LEO (Section 2). Furthermore, the spacecraft
simulation results for both trajectories are detailed (Section 3). Lastly, there is a validation
discussion of the results and a comparison of the trajectory results (Section 4).
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2. Methods and Model

The following section consists of the autonomous trajectory and collision avoidance
methods along with their respective governing equations used in modeling the spacecraft
de-orbiting maneuver with three-dimensional (rotational and translational) motion and six
degrees of freedom. To create this analytical simulation, the spacecraft was decomposed
into its nine major subsystems in MatLab Simulink: commanded Euler angles, way-point
guidance, trajectory, actuators and control, sensors and observers, disturbances, dynamic
translational kinetics, and natural forces (see Appendix A for more detail).

2.1. Model Mechanics

As the simulation runs from left to right for a duration of 1000 s, the commanded
Euler angles are manipulated in accordance with the controllers (designed to use a PID
controller for sinusoidal trajectory generation and time optimal control for Pontryagin’s
trajectory), dynamics (using quaternion kinematics along with a Direction Cosine Matrix),
disturbances (including magnetic, aerodynamic, solar and gravity gradient disturbances),
translational kinetics (as well as rotational), and natural forces (gravity and drag) to most
accurately mimic a spacecraft trajectory in a space environment. Since the maneuver is
completed in LEO, the external forces active on the spacecraft are principally aerodynamic
drag (Figure 2). Accounting for the spacecraft external disturbances, the atmospheric
effects of the sun were considered, as the sun’s beta angle is tracked and the atmosphere
has variable density (including the effects of eclipses).

Figure 2. Spacecraft disturbances regarding order of magnitude approximations of external space
environment torques as a function of altitude. For LEO (altitudes of <103 km), it is apparent that
aerodynamic drag is a dominant force. Courtesy of Peter Yao.

In generating the model for this simulation, a crucial equation is that of the full-
coupled non-linear translational and rotational motion equation that includes the relative,
Euler, coriolis and centrifugal forces (Equation (1)).

∑ F = ma︸︷︷︸
Relative

+m
dω

dt
× r︸ ︷︷ ︸

Euler

+ 2mω× v︸ ︷︷ ︸
Coriolis

+mω×ω× r︸ ︷︷ ︸
Centrifugal

(1)

For a more detailed derivation on this equation, Sands (2022) provides a more in-depth
discussion [19]. The terms of the 6 degree of freedom motion equation displayed overhead
are defined in Table 1. Above, ω is coupled, so as the altitude of the spacecraft changes
to avoid collisions with space debris, the orbit is controlled by conserving momentum,
swapping linear for angular momentum. Therefore, it is possible to control the orbit
without using fuel by solving for attitude Euler angles, which thus is the basis of the
model simulation.

Given the broad scope of the Simulink model, it is easier to visualize the mechanics of
how it operates in the space environment. While the simulation includes nine subsystems,
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not all components are analyzed in this manuscript. The subsystems that are the focal
points of this manuscript are the way-point guidance and trajectory components, which will
be specified in greater detail below, including the methodology and governing equations.

Table 1. The 6 DoF Motion Equation Variable Definitions.

Variable Definition Variable Definition

F Applied force m Mass
r Displacement Radius vector relative to rotating frame v Velocity Radius vector relative to rotating frame
a Translational acceleration dt Time step
ω Angular velocity dω Angular acceleration

2.2. Autonomous Trajectory Generation

The trajectory subsystem consists of the autonomous trajectory generation. Since
2020, sinusoidal trajectory approaches have been used for their simplicity and applied to
deterministic artificial intelligence space systems, which has created the benchmark for this
manuscript [20]. Similarly, sinusoidal trajectory generation can be viewed as a traditional
approach and, when juxtaposed with that of a fuel-optimized trajectory using Pontryagin’s
method, it has resulted in a lower control effort [10]. To further compare the computational
power of sinusoidal and Pontryagin’s optimal trajectory generation, this manuscript has
incorporated collision avoidance techniques. For the purposes of this manuscript, there
are two trajectories that are calculated and whose results are compared with each other:
sinusoidal trajectory and Pontryagin’s optimal trajectory (as detailed in Appendix A).

2.2.1. Sinusoidal Approximation Trajectory Method

One way to command a spacecraft to a trajectory autonomously is by using a sinusoidal
approximation. When a spacecraft applies a new trajectory and assumes an instantaneous
attitude maneuver, the trajectory would be represented as a step function. While this would
be ideal in terms of time efficiency, in reality, instantaneous slew is not possible. Thus, for
the purposes of creating a smooth, differentiable trajectory in this analytical model, it can
be assumed that the trajectory generation scheme is made using simple harmonic motion
represented as a sinusoidal piece-wise wave function [21].

In providence of this method, a derivation is best detailed in Sands (2020) [9], where
the position, velocity and acceleration shown below on the left side of Equations (2)–(4),
respectively, are the generalized autonomous trajectory equations. When applied to the
desired 30◦ yaw maneuver, the resulting simplified position, velocity, and acceleration
trajectory equations are depicted on the right side of Equations (2)–(4), respectively. The
terms of the sinusoidal trajectory equations stated below are defined in Table 2.

zd = A0 +
(A− A0)

2
[1 + sin(

π

∆tmaneuver
)(t +

3∆tmaneuver

2
)− ∆tquiescant] −→

1
2
[sin(

π

tmaneuver
(t + 2.5)) + 1] (2)

żd =
(A− A0)

2
(

π

∆tmaneuver
)cos(

π

∆tmaneuver
(t +

3∆tmaneuver

2
)− ∆tquiescant) −→

30
77.1239

(
1
2
)

π

tmaneuver
[cos(

π

tmaneuver
(t + 2.5)) + 1] (3)

z̈d = − (A− A0)

2
(

π

∆tmaneuver
)2sin(

π

∆tmaneuver
(t +

3∆tmaneuver

2
)− ∆tquiescant) −→

−30
77.1239

(
1
2
)

π

t2
maneuver

sin(
π

tmaneuver
(t + 2.5)) (4)

To analyze the sinusoidal trajectory results, it is noted that the desired Euler angle
appears in the amplitude of the sine wave. When Equations (2)–(4) are multiplied with
the desired Euler angles (roll, pitch, and yaw), it produces the commanded Euler angles in
terms of the angle, rate, and angular rate trajectory, respectively.
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Table 2. Sinusoidal Trajectory Variable Definitions.

Variable Definition Variable Definition

zd Position motion state t Current time of the maneuver
żd Velocity motion state tmaneuver User-defined duration of maneuver
z̈d Acceleration motion state tquiescant User-defined quiescent period used to validate code
A Motion state displacement amplitude A0 Motion state initial displacement amplitude

2.2.2. Pontryagin’s Method Optimal Trajectory

Another approach in generating an autonomous trajectory for a spacecraft is by
utilizing Pontryagin’s minimum principle as an optimization tool. While the sinusoidal
trajectory applies a sinusoidal approximation of the trajectory, Pontryagin’s minimum
principle presents an alternate approach through its formation of a boundary value problem.
By deriving and incorporating Pontryagin’s minimum principle, an optimal trajectory is
determined with respect to the cost function (for the purposes of this manuscript it is fuel
consumption). The anticipated results of Pontryagin’s method are to be faster and consume
less fuel than that of the sinusoidal trajectory.

In applying Pontryagin’s method to this simulation, the prominent motion of the
spacecraft is that of the rotation. As derived from Newton’s second law and Euler’s
equations, the governing equation for the rotational motion is represented in Equation (5),
assuming the spacecraft is a rigid body [20].

∑ τ = Iθ̈ + ω× Iω (5)

where I is the mass moment of inertia, ω̈ is the angular acceleration, and ω is the angular
velocity of the spacecraft. The first term is characterized as the double integrator and the
second term can be recognized as the transport theorem. Together, the sum of the double
integrator and transport theorem (which are in compact vector–matrix notation) produce
the summation of the major external torques. In this equation, the double integrator is
the dominant term, which is where Pontryagin’s method can be applied. To generate an
autonomous optimal trajectory operated by Pontryagin’s minimum principle, the equation
of focus is shown below (Equation (6)) along with its conditions. The cost function is
represented in the integral as the force exerted from the spacecraft, which is assumed to
be proportional to the fuel consumption. The resulting force is applicable to the three-
dimensional rotational motion torque. With Pontryagin’s method, it approximates the
external torque required for rotational and translational motion. The terms of Pontryagin’s
trajectory equations declared underneath are defined in Table 3.

Minimize : J[x, u] =
1
2

∫ t f

t0

uTu dt (6)

Subject to: ẋ = v
v̇ = f /[M]

(x0, v0) = (0, 0)
(x1, v1) = (−1, 0)

t0 = 0
t f = 1

As a heuristic form of optimization, Pontryagin’s method proceeds the derivation
of the Hamiltonian from Equation (6) and is used to form the boundary value problem
with the addition of f = −λv

[M]
, λx = a, and λv = at + b to the state conditions, where λx

and λv are the Lagrangian coefficients for the position and velocity, respectively, a and b
are constants, and m is the mass of the spacecraft. Incorporating these new definitions of
state conditions, the force, velocity, and position equations can be reformulated in terms
of constants a, b, c, d, and m. Solving at the initial and final conditions produces values for
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the constants that express the optimal force, rate, and state outputs with respect to time,
displayed in Equations (7)–(9).

f ∗ = 12t− 6 (7)

v∗ =
6t2 − 6t
[M]

(8)

x∗ =
2t3 − 3t2

[M]
(9)

Table 3. Pontryagin’s Trajectory Variable Definitions.

Variable Definition Variable Definition

f , f ∗ Variable force and optimal force t0, t f Used-Defined initial and final time

v, v̇, v0, v1, v∗ Velocity motion state, rate of velocity, initial and final
velocity, and optimal velocity [M] Mass matrix

x, ẋ, x0, x1, x∗ Position motion state, rate of position, initial and final
position, and optimal position u Control variable and fuel consumption

approximation

2.2.3. Scaling and Balancing

To assure the accuracy of very small and large numbers in the computational math-
ematical analysis, the mass was scaled to unity (Equation (10)), where the real mass is
divided by a number very similar to that of the real mass that yields a mass term approx-
imation of 1 (i.e., unity). By scaling equations with universally known values, it allows
developments and observations to be widely adapted to state spaces that initially it was
not designed for.

[M]unitized =
[M]real

[M]nominal
(10)

Now that the optimal force, rate, and state equations are calculated, a balancing of
equations is needed to unscale and obtain equations with the original mass. In multiplying
the nominal mass to Equations (7)–(9), it provides the fully scaled and balanced optimal
force, rate, and state Equations (11)–(13).

f ∗ = [M](12t− 6) (11)

v∗ = 6t2 − 6t (12)

x∗ = 2t3 − 3t2 (13)

When the Pontryagin’s trajectory equations are multiplied with the desired Euler
angles (roll, pitch, and yaw), it produces the commanded Euler angles in terms of angle,
rate, and the angular rate trajectory, respectively. Since Pontryagin’s method is conducted
with respect to the principal frame, the commanded Euler angles are converted to the body
frame before being transferred to the actuators and control subsystem.

2.3. Collision Avoidance

The other critical subsystem for this manuscript is that of way-point guidance that
consists of the derivation of the commanded Euler angles necessary for collision avoidance.
As mentioned in the literature review, collision avoidance is a topic that is still being
formulated in the research, thus there is less of a precedented method to approach this
simulation. For the purposes of this manuscript, the collision avoidance technique used is
that of way-point guidance, which acts as an estimation for determining necessary Euler
angles for a maneuver. The following section presents the methodology behind way-point
guidance to generate the required commanded Euler angles for the anticipated space debris
that coincides within the trajectory.
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Way-Point Guidance Method

The way-point guidance technique operates on the assumption that the location of the
space debris coinciding within the projected trajectory is known. This method of collision
avoidance is constructed by manually setting the duration of slew time as well as the miss
distance, which is the distance tolerance between both objects when they are passing each
other, and the forward travel distance, which is the distance between the spacecraft and the
space debris as the spacecraft is traveling forward. These parameters are related to each
other in Equation (14) below.

atan =
Miss Distance

Forward Travel Distance
(14)

For the purposes of this manuscript, it is assumed that there are four space debris
objects whose positions in relation to the planned trajectory are known. Each set of collision
avoidance commanded Euler angles are then propagated throughout the rotational and
translational model of the spacecraft motion to produce a trajectory.

3. Results

With the description of the methods used to establish the model, the corresponding
simulation results are detailed in this section. The proposed simulation was run with a
spacecraft mass of 100 kg de-orbiting at a starting altitude of 1000 km for a total of 600 s
with four way-point guidance maneuvers (t1 = 50 s, t2 = 150 s, t3 = 300 s, and t4 = 450 s), all
with a slew time of 100 s and a time step of 0.001 s. Each way-point guidance maneuver
was set to the same yaw degree change with a miss distance of 0.3 km and a forward travel
distance of 10,000 km. The initial commanded Euler angle was set for a 30-degree yaw
maneuver and was run using the fourth-order Runge Kutta solver.

3.1. Sinusoidal Autonomous Trajectory

Applying the sinusoidal trajectory equations generated previously, the simulation
produced the following results which are displayed numerically in Table 4 and graphically
in Figures 3–5. The recorded parameters include the Euler angles, run time, and thrust
required (which is proportional to the fuel consumption of the spacecraft), as well as the
accuracy and precision of the simulation. It is to be noted that the accuracy of the simulation
reached the maximum digit precision allowed by MatLab.

Figure 3. The Euler angle tracking errors for a spacecraft de-orbiting from LEO altitude (1000 km)
using a sinusoidal autonomous trajectory for roll (yellow), pitch (pink), and yaw (blue).
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Figure 4. Graph of the Euler angle tracking for a spacecraft de-orbiting from LEO altitude (1000 km)
using a sinusoidal autonomous trajectory for roll (yellow), pitch (pink), and yaw (blue).

Figure 5. The control measured in terms of thrust applied, which can be estimated for fuel consump-
tion, for a de-orbiting spacecraft using the sinusoidal autonomous trajectory in LEO for roll (yellow),
pitch (pink), and yaw (blue).

Table 4. Simulation results of the sinusoidal trajectory.

Parameter Units Value

Final Roll Position degrees 5.1687× 10−8

Final Pitch Position degrees 9.9275× 10−8

Final Yaw Position degrees −30.0000
Total Run Time seconds 2257.4624

Total Thrust Required N 2.8587× 109

Precision - 2.2204× 10−16

3.2. Pontryagin’s Autonomous Trajectory

In a similar effort, the generated equations for Pontryagin’s autonomous trajectory
were applied to the simulation model. The results of the simulation are displayed numeri-
cally in Table 5 and graphically in Figures 6–8. The recorded parameters include the Euler
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angles, total run time, and thrust required (which is proportional to the fuel consumption of
the spacecraft), as well as the accuracy and precision of the simulation. It is to be noted that
the accuracy of the simulation reached the maximum digit precision allowed by MatLab,
equally precise as the sinusoidal trajectory results.

Table 5. Simulation results of the Pontryagin trajectory.

Parameter Units Value

Final Roll Position degrees −6.7792
Final Pitch Position degrees 18.2819
Final Yaw Position degrees 18.1840

Total Run Time seconds 1343.5235
Total Thrust Required N 1.7765× 104

Precision - 2.2204× 10−16

Figure 6. The Euler angle tracking errors for a spacecraft de-orbiting from LEO altitude (1000 km)
using the Pontryagin’s autonomous trajectory for roll (yellow), pitch (pink), and yaw (blue).

Figure 7. Graph of the Euler angle tracking for a spacecraft de-orbiting from LEO altitude (1000 km)
using the Pontryagin’s autonomous trajectory for roll (yellow), pitch (pink), and yaw (blue).
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Figure 8. The control measured in terms of thrust applied, which can be estimated for fuel consump-
tion, for a de-orbiting spacecraft using the Pontryagin’s autonomous trajectory in LEO.

4. Discussion

With the results of the simulation completed using way-point guidance for both
sinusoidal and Pontryagin’s autonomous trajectories, a discussion of how the results
compare in relation to each other and with what was expected is presented in this section.

4.1. Results Validation

To verify the accuracy of the model, the quaternions were normalized and monitored.
The quaternions should remain constant throughout the simulation, so plotting the nor-
malization of the quaternions should graphically depict the accuracy of the simulation. As
shown in Figures 9 and 10, the differences within the normalized quaternions are very small,
on the order of 10−7 for the sinusoidal trajectory and on the order of 10−14 for Pontryagin’s
trajectory. It is also noted that the sinusoidal trajectory produced the larger, more step-like
quaternion deviations when compared with that of the smaller, more jitter-like error in
Pontryagin’s trajectory.

Figure 9. Graph of the normalized quaternions for the spacecraft on the sinusoidal trajectory.
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Figure 10. Graph of the normalized quaternions for the spacecraft on Pontryagin’s trajectory.

4.2. Comparison between the Sinusoidal and Pontryagin Trajectory Results

With the results verified in terms of the maximum digit precision available and moni-
tored accuracy in regards to the normalized quaternions, a discussion of the results can
be made. In comparing the results of the Euler angles, Pontryagin’s trajectory produced a
lower yaw with higher roll and pitch degrees than the sinusoidal trajectory (Tables 4 and 5).
This could be attributed to the optimization of fuel consumption in relation to the slew
maneuver, as the Pontryagin trajectory conserved over five magnitudes of fuel more than
the sinusoidal trajectory, the traditional autonomous trajectory generation method. Pon-
tryagin’s method has the potential to save 37.9% of fuel when used to de-orbit a spacecraft
from LEO using collision avoidance techniques (Figures 5 and 8). When comparing the
computation time of Pontryagin’s autonomous trajectory generation to that of the sinu-
soidal approach, Pontryagin’s method was over 15 min faster and has the capability to
save 40.5% more time than if the trajectory was generated with a sinusoidal approximation.
Overall, the results of the simulation prove that Pontryagin’s method is more optimal
for autonomous trajectory by conserving 37.9% more fuel and 40.5% more time than the
sinusoidal autonomous trajectory.

4.3. Future Research

The results of the simulation proved to be fruitful, as the autonomous trajectory gener-
ated from Pontryagin’s method outperformed the sinusoidal trajectory, as expected. This
opens the door for further integration of optimization techniques for a more artificially
intelligent collision avoidance approach to spacecraft de-orbiting maneuvers. Additionally,
another area for future research could be applied to increase the breadth of the simula-
tion to include a touch down on the Earth’s surface. With this expansion of the current
Simulink model, it could make the model more applicable to the current needs of the
aerospace industry.

Author Contributions: Conceptualization, K.R. and T.S.; methodology, K.R. and T.S.; software, K.R.
and T.S.; validation, K.R. and T.S.; formal analysis, K.R. and T.S.; investigation, K.R. and T.S.; resources,
T.S.; data curation, K.R.; writing—original draft preparation, K.R.; writing—review and editing, K.R.
and T.S.; visualization, K.R.; supervision, T.S.; project administration, K.R. and T.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Sensors 2022, 22, 7066 13 of 17

Data Availability Statement: Data may be made available by contacting the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:
LEO Low-Earth Orbit
NASA National Aeronautics and Space Administration
NORAD North American Aerospace Defense Command

Appendix A

Figure A1. MatLab model with complete display of all Simulink subsystems.

Figure A2. MatLab model with complete detailed display of the trajectory Simulink subsystem.
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Figure A3. MatLab model with complete detailed display of the sinusodial generation block in the
trajectory Simulink subsystem.

Figure A4. MatLab model with complete detailed display of optimal trajectory generation using
Pontryagin’s method block in the trajectory Simulink subsystem.

Figure A5. MatLab model with complete detailed display of the way-point guidance Simulink
subsystem.
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Figure A6. MatLab model with complete detailed display of the controllers and actuators Simulink
subsystem.

Figure A7. MatLab model with complete detailed Display of the sensors and observers Simulink
subsystem.

Figure A8. MatLab model with complete detailed display of the dynamics Simulink subsystem.
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Figure A9. MatLab model with complete detailed display of the spacecraft disturbances Simulink
subsystem.

Figure A10. MatLab model with complete detailed display of the kranslational Kinetics Simulink
subsystem.

Figure A11. MatLab model with complete detailed display of the natural forces Simulink subsystem.
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