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Abstract—There is an increased interest on the use of 

Unmanned Aerial Vehicles (UAVs) for wildlife and feral 

animal monitoring around the world. This paper describes a 

novel system which uses a predictive dynamic application that 

places the UAV ahead of a user, with a low cost thermal 

camera, a small onboard computer that identifies heat 

signatures of a target animal from a predetermined altitude 

and transmits that target’s GPS coordinates. A map is 
generated and various data sets and graphs are displayed using 

a GUI designed for easy use. The paper describes the hardware 

and software architecture and the probabilistic model for 

downward facing camera for the detection of an animal. 

Behavioral dynamics of target movement for the design of a 

Kalman filter and Markov model based prediction algorithm 

are used to place the UAV ahead of the user. Geometrical 

concepts and Haversine formula are applied to the maximum 

likelihood case in order to make a prediction regarding a 

future state of the user, thus delivering a new waypoint for 

autonomous navigation. Results show that the system is 

capable of autonomously locating animals from a 

predetermined height and generate a map showing the location 

of the animals ahead of the user.   
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1. INTRODUCTION 

The process of monitoring wildlife and feral animals is a 
complex, laborious and sometimes expensive task which 
require careful planning and execution. Remote sensors 
(thermal camera), advanced path planning  and image 
processing algorithms can be placed on unmanned aerial 
vehicles (UAVs) to provide a low cost approaches to 

determine critical requirements for spatial and spectral 
distribution of wildlife [1-5]. Leira, et al. [6]  for example 
discuss using thermal camera with UAV for detection 
objects in the ocean surface. They used on-board real time 
algorithm to identify and track object at the ocean surface. 
They achieve 99.6% accuracy of detecting objects of 
interest located on the ocean’s surface. Also, the algorithm 
accuracy was 93.3% when detecting the different object 
types the system is trained to classify.  

Han [7] discusses using thermal infrared (TIR) for use in an 
algorithm called random M-least square to discover the 
optimized projective transformation factors between TIR 
frames. The results have shown the recorded TIR frames 
can create a variety of possible real-time applications are in 
the future. 

One of the main challenges is obtaining accurate results 
with the target detection algorithm while also being able to 
process images on the platform in real time [8-10]. To 
achieve this stage a variety of masks can be used, the object 
must fit that target animal mask to be a positive detection.  

In our previous work Cooper, et al [11]  describes a system 
that uses a probabilistic model for autonomous forward 
facing environmental sensing or photography of a target. 
The system is based on low-cost and readily-available 
sensor system in dynamic environments and with the 
general intent of improving the capabilities of dynamic 
waypoint-based navigation systems for a low-cost UAV. 
We tested a Kalman filter and Markov model-based 
prediction algorithm for target movement of the design. The 
results of the application for aerial filming with low-cost 
UAV are presented, achieving the desired goal of 
maintained front on perspective without significant 
constraint to the route or pace of target movement [11]. 

In this paper the predictive navigation work is used but is 
extended to use computer vision algorithms and thermal 
cameras to identify animals from their surroundings [11]. 
The system is capable of identifying heat signatures of a 
target animal from a predetermined altitude, determine what 
that target’s GPS coordinates are and then wirelessly 
transmit those coordinates and display them on a graphical 
user interface (GUI) in real time [6, 12].  
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The rest of this paper is organized as follows. Section 2 
discusses the system architecture and the integration of the 
components. Section 3 discusses the image processing 
algorithm, target detection and estimating the location of an 
object system onboard the UAV. Section 4 discusses the 
predictive navigation algorithm. Section 5 discusses the 
results achieved by applying this system for animal 
detection. Section 6 then discusses the conclusion and future 
work. 

 

2. SYSTEM DESCRIPTION  

2.1 System Architecture 

 

The system architecture is divided into two parts as shown 
in Figure 1. The airborne system consists of a multi-rotor 
UAV type (3DR IRIS), an autopilot (Pixhawk), a thermal 
camera (FLIR Lepton), a microcomputer (Raspberry Pi 2) 
and GPS (3DR brand) module on an airborne platform. The 
radio modem used is the Xbee pro2.  

The image detection algorithm is developed and installed 
on-board the microcomputer (Raspberry Pi 2). The 
microcomputer has the FLIR Lepton camera and the GPS 
directly connected to it. 

 

Figure 1: System Architecture [Airborne Elements & 
Ground station control] 

 
The on-board computer (Raspberry Pi 2) will receive GPS 
coordinates from a separate GPS module to the pixhawks 
GPS, and then the images captured from the camera are then 
scanned for signs of wildlife using the detection algorithm 
on the microcomputer. The coordinates of the detected 
animal are then sent to the Ground Control Station (GCS) to 
be processed. The Xbees are chosen for communication 
because of their low power usage and adequate transfer rates 
to the GCS. 

Figure 2 illustrates the airborne subsystems. A modified 
3DR IRIS is used in this project. The frame is capable of a 
payload capacity of 425 grams [14, 15]. A Pixhawk 
autopilot is utilised in this system [16]. A Raspberry pi 2 is 
used as the UAV on-board microcomputer to process the  
detection algorithm on-board [19]. The Raspberry Pi 2 is 
physically connected to thermal camera, GPS and Xbee 
[18].   

 

Figure 2: System design 
 

2.2 System Integration. 

 

The Xbee receives the GPS coordinates of the UAV.  The 
Xbee connected to the GCS also receives the coordinates for 
the images which have a significant wildlife sign, showing 
the relative position of the animal detected to the frame in 
pixel value. 

Figure 3 and Figure 4 illustrates the integration between the 
Raspberry Pi 2 and the thermal camera (FLIR Lepton). The 
FLIR lepton is connected to a Raspberry Pi 2 
microprocessor using the breakout board. The FLIR Lepton 
camera module is small thermal camera which takes 60 by 
80 pixel footage [18]. This camera allows the testing 
algorithms on a smaller airborne platform like the IRIS 
multirotor which has a limited payload capacity.  

 

Figure 3: Diagram for Raspberry Pi 2 - FLIR Lepton 
Connection 

 
The Raspberry Pi is integrated with both GPS and Xbee as 
shown in Fig 4. The aim of using GPS with the Raspberry 
Pi is to send the location of the UAV and animal to the 
GCS. There is also a Xbee connected to the GCS to receive 
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the coordinates of the multirotor. The pixel location of the 
target animal is also sent once the images are processed on-
board with the Raspberry Pi 2. The serial connection can 
send GPS coordinates from air to ground thus allowing the 
GCS to track the telemetry of the UAV and the display the 
location of the target. (See section 3 Image Processing 
System) 

 

 

Figure 4: Integration diagram for Raspberry pi 2 with GPS 
and Xbee 

A GUI has been developed for the GCS to receive the GPS 
coordinates of the UAV. When the target GPS coordinate is 
received, the program will display a geographical map with 
the target location and the UAV flight path. In addition, 
there are two separate options which allow the code to work 
online or offline in remote areas. The offline mode requires 
an alternate map to be downloaded and selected for use 
through the GUI.  

 

3. IMAGE PROCESSING SYSTEM 

3.1 Frame Work 

The algorithm is designed to automatically detect wildlife 
and is written using Python and a pixel based object 
detection algorithm [15, 16]. This algorithm makes use of 
the thermal camera and OpenCV, an open source computer 
vision library wrapped for Python. The algorithm consists 
of a few steps as shown in the flowchart in Figure 5. 
 
The algorithm consists of several steps. During the first 
step the system uses the prediction algorithm. In step 2 the 
system scans the area using thermal camera takes one 
image every second.  Then the image is loaded into a 
(60x80) with colour intensities representing each pixel. The 
image is then displayed in greyscale in the two dimensional 
matrix with values being between 1 and 255. The fourth 
step, the image is stamped with GPS coordinates in order to 
know the location of each image and blob detection is 
applied. To do this the matrix will be set a threshold which 
all the pixels above a certain value will be 1 and all others 
will be 255. The threshold is set so only the hottest objects 

will be shown in each image frame. 

 

Figure 5: On-board animal’s detection Flowchart 

Step five is a condition that compares if the animal is 
detected or not. If the animal is detected, the image is saved 
as shown in step six else the code will go back to the first 
step. The code will find the correct pixel coordinates of the 
detection in the image and send them to the GCS. Where 
the GUI will then convert the location into GPS 
coordinates. Indicating the location of the detected animal. 
In step 9 the algorithm displays a map for the animal’s 
location in the GCS. During step 10 the switch of the 
operation is checked to see if whether it will continue to 
run the algorithm. If the switch is off it will no longer take 
pictures and the mission will terminate. 

3.2 Target Detection 

 

The target detection algorithms (steps 4 and 5) use 
OpenCV and Python [14]. The method used is to micro 
calcify clusters according to specific features [16]. The 
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code detects a ‘blobs’ when numerous pixels of the same 
value are all next to each other.  

3.2 Estimating the Location of an Object 

 

Trigonometry (Figure 6) is applied to find the correct GPS 
location for the animal (step 7).  The camera field of view 
(FOV) is an angle of 220 is used in the calculations to 
estimate the distance per pixel. The image detection 
algorithm discussed earlier sends the pixel values back to 
the GCS where the GPS location is corrected.   

 
Figure 6: Pythagoras theorem applied in this system 

 
Since the GPS location of the image frame is referenced 
from the center of the image, the GPS must be corrected so 
that animals on the edges of the frame can be located more 
accurately. The pixel values are given to the software in x 
and y Cartesian coordinates, then multiplied by the distance 
per pixel in their respective directions. The x and y 
directions are then rotated depending on the heading of the 
UAV using the rotation matrix: 
                                      
Where   is the UAV heading. This has to be corrected as a 
heading value is referenced from the y-axis whereas the 
rotation matrix is referenced form the x-axis. Simple If 
statements are used to correct these so both are on the same 
reference frame. The heading is determined from the last 
two GPS coordinates and multiplied by the rotation matrix. 
The corrected x, y coordinates can then converted to 
longitude and latitude values respectively. 

 

4. PREDICTION ALGORITHM 

The predictive model (Figure 7) uses an iPhone application 
(Figure 8) which is connected to the Pixhawk via a 

Bluetooth module. The Bluetooth module is connected into 
the telemetry 2 port of the Pixhawk autopilot. The app itself 
uses a Kalman filter and a Markov model-based prediction 
algorithm to determine the direction of the user. 
Geometrical concepts such as the Haversine formula are 
applied to the maximum likelihood case in order to make a 
prediction regarding a future state of the user, thus 
delivering a new waypoint for autonomous navigation. 
Figure (8) depicts a screenshot of the applied application 
that is used to fly ahead of the vehicles position. The 
software is easy to use and easy to integrate with the IRIS 
multirotor. This predictive capability was integrated with 
our system for extra functionality.  

 

Figure 7: Block diagram of the prediction model [7] 

 

Figure 8: iPhone application. 

Figure 7 depicts the block diagram of the predictive 
navigation model. The user’s current GPS data is 
downloaded into the Kalman filter to give a better 
representation of human movement. Markov Logic is then 
applied to determine if the user is turning, walking in a 
straight line or standing still by analysing the previous data 
points. Once a state is assigned to the motion of the user, a 
least-squares regression algorithm is implemented to 
extrapolate the data for a probable prediction solution. The 
Harversine formula is then implemented to the predicted 
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GPS location based on the users expected relative 
displacement. The data is then validated by performing a 
vector magnitude calculation to ensure user is following the 
same path so that the UAV does not stray off course. Once 
the data is validated it is then uploaded to the autopilots 
navigation system via Bluetooth. 

 

5. TEST RESULTS  

During testing, the UAV is commanded to fly at a height of 
10 meters and 10 meters in front of the user. In this test the 
target animal is a single dog. The results are shown in the 
Figure 9. The figure is divided into three parts. Figure 9 (A) 
shows the UAV with thermal camera flight above and 
behind the dog. Figure 9 (B) shows the original thermal 
capture image by the on-board thermal camera. Figure 9 (C) 
shows the processes images by the Raspberry pi on-board 
the UAV. 

 

 

Figure 9: Animal detection, (A): UAV above and ahead of 
the target (B): Thermal image is taken by the UAV, (C): 
Thermal image after being processes by the algorithm 

The dog is shown to be detected and located both of the 
times it flew over. Figure 10 shows both the location of the 
dog and the path the UAV took. The red dots represent the 
flight path of the UAV, the triangles represent the dog’s 
location determined by using GPS on a mobile phone, and 
the blue crosses represent the predicted location of the 
animal using the detection algorithm.  

 

Figure 10: Flight Data showing Detection and GPS 

The location of the dog in both cases is shown to be found. 
The accuracy of the GPS location was determined to be 
within 2m radius of the detection. 

 
6. CONCLUSION AND FUTURE WORK 

This paper describes a system to autonomously detect 
wildlife using a low cost UAV, a prediction model, 
computer vision and thermal imaging. The results show that 
this system is an effective low cost, standalone system 
capable of detecting animals using thermal sensors. This 
system makes use of a microcomputer to run a detection 
algorithm using a low cost thermal sensor and GPS module.  
The system proved that it is possible to detect wildlife using 
a thermal sensor and GPS on an airborne platform, and send 
the detected data (images, GPS location) wirelessly to a 
GCS to be analyzed. The predictive iPhone application has 
been integrated to this system to show potential uses for the 
system in agricultural environments or search and rescue 
remote sensing. In future a higher resolution thermal camera 
can be utilized to improve upon the thermal imaging and 
make it possible to distinguish between different animals. 

  
The algorithms are open-source. Please contact one of the 

authors for more information.     
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