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Abstract: The intensity and frequency of bushfires have increased significantly, destroying prop-
erty and living species in recent years. Presently, unmanned aerial vehicle (UAV) technology ad-
vancements are becoming increasingly popular in bushfire management systems because of their
fundamental characteristics, such as manoeuvrability, autonomy, ease of deployment, and low cost.
UAVs with remote-sensing capabilities are used with artificial intelligence, machine learning, and
deep-learning algorithms to detect fire regions, make predictions, make decisions, and optimize
fire-monitoring tasks. Moreover, UAVs equipped with various advanced sensors, including LIDAR,
visual, infrared (IR), and monocular cameras, have been used to monitor bushfires due to their
potential to provide new approaches and research opportunities. This review focuses on the use of
UAVs in bushfire management for fire detection, fire prediction, autonomous navigation, obstacle
avoidance, and search and rescue to improve the accuracy of fire prediction and minimize their
impacts on people and nature. The objective of this paper is to provide valuable information on
various UAV-based bushfire management systems and machine-learning approaches to predict and
effectively respond to bushfires in inaccessible areas using intelligent autonomous UAVs. This paper
aims to assemble information about the use of UAVs in bushfire management and to examine the
benefits and limitations of existing techniques of UAVs related to bushfire handling. However, we
conclude that, despite the potential benefits of UAVs for bushfire management, there are shortcomings
in accuracy, and solutions need to be optimized for effective bushfire management.

Keywords: unmanned aerial vehicle; sensor; machine learning; deep learning; bushfire management

1. Introduction

Forests are essential global resources that provide a wide range of social, economic,
and environmental benefits. They offer significant ecological support to all species, provide
vital ecosystem services, and protect cultural and social aspects. However, the intensity and
frequency of bushfires have been increasing significantly in recent years, and giant forest
areas are destroyed every year because of human activities [1] as well as natural causes.
Bushfire affects almost three hundred thousand people worldwide, burning millions of
hectares of land and costing billions of dollars [2] every year, and controlling widespread
bushfires remains a challenge for humanity.

Research in 2012 estimated that 15 civilians died due to a bushfire, close to the average
of 13 people per year [3] thus far. Australian Parliament media reported that 75 people died,
including 13 Victorian firefighters, 1 casual firefighter, and 3 South Australian firefighters [4].
Forest Fire Management Victoria recorded that 47 people in Victoria and 28 people in South
Australia died. Experts estimate that, in the coming years, the spread of forest fires will
dramatically increase due to climate change [5]. Effective control of bushfires is considered
one of the essential roles in protecting and preserving natural resources [6,7].
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Several traditional methods and tools, such as satellite images, wireless sensor net-
works (WSNs), smoke detectors, watchtowers, human monitors, and remotely piloted
vehicles, have been used to monitor and detect bushfires [8]. For instance, the Australian
CSIRO [9] long-running project has a computational system named Spark for bushfire
spread predictions. Users can design their fire propagation models by building on Spark’s
computational fire propagation solver with manually entered information into a tool
that uses an algorithm to predict the fire behaviour. However, traditional methods and
other models are deemed inefficient and have different practical problems, such as less
reliability, high cost, and inadequate capability; moreover, they rely on manual human
decision-making and input.

Recent technological advancements can overcome the limitations of traditional fire
detection methods’ limitations and significantly contribute to the early detection and
suppression of bushfires to inspect the affected area and help people overcome impacts,
including human death, economic losses, and environmental damage. As a result, UAVs
have been proposed as an appropriate technology to handle bushfires due to their vast
capabilities [10]. In addition, UAVs can access high-risk zones without human interaction,
confirm fire, and provide real-time updates with complete accuracy for strategic and
tactical planning, with no risk to human lives [11]. UAVs with vision-based remote-sensing
techniques have become a most popular tool for effective bushfire monitoring, detection
systems [12], and even fighting fires with low cost and more accuracy.

In recent years, worldwide attention and research related to UAV forest fire appli-
cations have increased considerably because of their ability to capture clear images from
low altitudes and challenging locations, such as areas covered by smoke, impaired vision,
polluted air, and hazardous conditions. UAV-based forest fire management systems can
cover functions, such as detecting fires in progress and predicting the future expansion and
direction of a fire based on real-time data [13].

Figure 1 illustrates the challenges and effects of bushfires and suggestions for UAV-
based solutions for overcoming bushfire-related impacts. This paper reviews existing
literature on bushfire management and examines future uses for prediction in fire monitor-
ing. We primarily aim to collect information about UAVs used in bushfire management
systems and to evaluate their benefits and limitations for various applications in UAV-based
bushfire management, such as bushfire detection and prediction. A further objective of
this paper is to highlight the potential limitations of Intelligent Autonomous UAVs as
fire detection technology and to highlight the need for them to navigate and predict fire
behaviour in uncertain conditions.

Furthermore, we note that UAV-based bushfire management can contribute to in-
creased accuracy and positively impact social, economic, and environmental factors. Recog-
nition techniques are used in fire detection and monitoring, a field where significant
advances have been made over the past few decades. Data must be fed into complex math-
ematical models (which are difficult to gather in real-time and in unfamiliar conditions) to
use prediction methods. There are other obstacles, as well as hardware failures, adverse
weather, communication breakdowns, and regulation issues.

Figure 1. Solutions to reduce impacts of bushfires and the challenges they pose.

In recent years, machine-learning and remote-sensing technologies have enabled the
monitoring and detection of forest fires more efficiently. Research has shown the possibility
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of using UAVs to identify and even extinguish forest fires; however, further development of
this technology still needs to be improved. Further, using UAVs in combination with other
remote-sensing techniques will require additional investigation.

Our main objective was to conduct a thorough bibliographic review of the use of UAVs
in bushfire management and describe the advantages and limitations of using UAVs to
manage fire in a variety of applications, including fire detection, fire prediction, autonomous
navigation, obstacle avoidance, and search and rescue. The paper reviews the existing
literature on bushfire management approaches and the potential uses of UAVs. This paper
also explores how UAV-based bushfire management can improve prediction accuracy and
boost the social, economic, and environmental benefits of better management.

By identifying limitations of using UAVs in bushfire management, this paper seeks to
motivate further research and development to accelerate the research and development in this
crucial field. This paper is motivated by the lack of a survey focusing comprehensively on
these issues. Table 1 demonstrates most of the shortcomings of existing surveys that this paper
will cover on UAV applications in bushfire management. In particular, this paper contributes
to the following:

• Review of the existing literature on the understanding of bushfire management and
investigating the role of UAVs in bushfire management applications and their benefits
and limitations.

• Specifying and exploring different technologies adapted to UAVs to increase perfor-
mance accuracy.

• Studying and analysing UAV-based applications on bushfire management, research
trends, and the challenges facing UAVs in each application domain.

• Identifying and examining UAV technical and environmental challenges across differ-
ent application domains.

Table 1. Comparison of existing surveys on UAV-based tasks in bushfire management applications
with the findings of this paper.

References
UAV-Based Tasks in Bushfire Management UAV-Based Technologies

Detection Prediction Search and
Rescue Navigation Obstacle Detection

and Avoidance Swarm ML Sensors

[14] X X X

[15] X X

[10] X X X

[16] X X

[17] X X X

[1] X X X

[18] X X X X

Our work X X X X X X X

The rest of this paper is organised as follows: Section 2 outlines the methodology for
the paper. Section 3 reviews the existing surveys related to bushfire management systems.
Section 4 discusses the literature related to bushfire applications and the key technologies
used in such scenarios. The last section reviews the challenges and development issues
related to this research area before concluding the paper.

2. Methodology

This paper summarizes the existing research and demonstrates the UAV-based ap-
proach, sensors utilized by the UAV, and machine-learning approaches as well as their asso-
ciated advantages and downsides in bushfire management tasks. The following questions
are investigated through a comprehensive literature review consisting of the following:

1. How are UAV technologies utilized in bushfire management?
2. What benefits and limitations do using UAVs impose in bushfire management?
3. How efficiently is UAV technology used to manage bushfires?
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As a result, the literature review assessed many research studies from journals, con-
ferences, and other electronic databases to integrate and synthesize the information. A
variety of keywords were used to locate relevant study papers, including wildfire, forest
fire, bushfire, sensors, swarms, autonomous UAVs, machine learning, prediction, detection,
obstacle detection and avoidance, search and rescue, and navigation, in databases, such as
Elsevier, IEEE, Scopus, MDPI, Google Scholar, Springer, and Science Direct.

A total of 1026 papers were identified by our search (Figure 2), of which we selected
the most relevant for further evaluation and excluded others. A higher number of studies
have been performed on the applications of Fire detection compared with other UAV-based
bushfire applications. Comparatively, a few studies have been found in obstacle detection
and avoidance based on UAV-based bushfire management. The visual representation of
the structure of the reviewed works illustrates in Figure 3.

Figure 2. Statistical analysis of experiments on different types of UAV-based operations in bushfire
management systems.

Figure 3. Structure of the reviewed work.
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3. Related Work

A preliminary literature review shows that previous studies related to UAVs are widely
being researched on understanding and modelling a predicting system in disaster man-
agement. UAVs with various types of technology are being used or tested to monitor and
detect bushfires. A few literature surveys have been conducted to summarize the research
work performed around the world regarding UAV-based bushfire management systems.

Hossain et al. [1] discussed and summarized the research conducted worldwide
until 2019 in the domain of UAV-based bushfire monitoring and detection. The author
initially covered some of the research work performed at various universities and research
centres, such as the University of South Florida, University of Alaska Fairbanks, Concordia
University, United States Forest Service (USFS), and NASA Arms Research Centre (NASA-
ARC), since 1961. The authors also mentioned the operations and infrastructure, such as
sensors, aircraft type, and communication of UAVs used as forest fire monitoring systems.

They noted several positive points of using UAVs while highlighting the constraints of
using such technology. Similarly, Yuan et al. [18] followed the same concept as Hossain by
conducting a literature survey of the applications of UAVs for bushfire management. The
relevant research undertaken during this period is also systematically arranged as per the
approach employed in the previous analysis of Hossain. The author discussed UAVs with
vision-based systems that focus on the drawbacks of image capture failure and improve
the quality of the acquired data.

Some researchers proposed an outline for robotic technology-based UAVs for forest
firefighting. Roldán-Gómez et al. [14] enlisted and discussed the different types of robots
in the context of firefighting missions. Mainly, the focus is on the operation of the compre-
hensive application of drone swarms in firefighting. In addition to this, it addresses some
of the problems of current operations, challenges that have to be overcome, and the current
limitations in the autonomy and communications of UAVs.

On the other hand, Akhloufi et al. [10] reviewed the previous works related to UAVs,
specifically for wildland fires. The authors considered onboard sensor instruments, fire
perception algorithms, and coordination strategies based on an application-specific outline.
In addition, they proposed recent frameworks of both aerial vehicles and Unmanned
Ground Vehicles (UGV) for a more efficient wildland firefighting strategy at a larger scale
are presented. However, the author expressed the limitations in autonomy, reliability, fault
tolerance, and the future scope of deep learning in developing autonomous operational
systems with or without human intervention.

4. Literature Analysis and Discussion
4.1. Requirements of UAV-Based Bushfire Management Systems

Fire incidents are becoming more dangerous, more complicated, and more extensive
in scale [8]. These incidents result in increasingly more work for the first responders
to respond. A possible technical solution is using unmanned firefighting equipment,
which would prevent further damage and protect the firefighters. The use of UAVs in
this context is increasingly considered promising [19]. As a matter of fact, UAVs can be
applied for several purposes within firefighting practices, such as risk assessment, detection,
and extinguishment.

Each UAV observes the terrain with onboard sensors during the fire detection process
to identify fire automatically. Generally, the flight plan is strictly bounded due to the
limitations of UAV capabilities, such as duration, range, altitude, and sensor resolution [20].
Multiple UAVs can work simultaneously along their predetermined paths, depending on
the size and characteristics of the surveillance region, to detect a target. Once the fire has
been confirmed, the ground station and decision support system should deliver estimations
of the fire features so that firefighters can effectively guide their efforts. For these types
of operations to be effective, different types of UAVs equipped with sensors must work
together with a single ground control centre. Figure 4 shows the components of UAVs
involved in detection and monitoring tasks.
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In addition, all UAVs engaged in bushfire missions should function at night and
during the day—even in the most challenging weather conditions—to ensure a successful
detection process. A GPS receiver and an inertial measurement unit (IMU) should be
equipped with these aircraft for automatic flying along paths and automatic geolocalization
of their positions. Furthermore, they must be able to communicate effectively with each
other so they can solve their tasks as efficiently as possible. Consequently, every UAV
should be equipped with all sensors necessary to detect fires and onboard communication
devices that enable the UAV to receive commands from a ground control centre, relay
information back to it, and exchange information with other UAVs.

Figure 4. Components of a UAV-based bushfire management system.

4.2. Role and Benefits of UAVs in Bushfire Management Systems

Effective time management is crucial in bushfire situations. UAVs are gaining popular-
ity due to their flexibility and low cost in comparison with traditional methods of disaster
management. UAVs are primarily used to gather situational awareness in fire incidents,
which can be used to direct the efforts of firefighters in locating and controlling hot spots.
For that purpose, UAVs have been used for initial detection and rescue operations.
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These missions may be performed using UAVs capable of flying rapidly, flying to a
location, mapping the area affected by the fire, and sharing the information with all relevant
authorities within a few minutes [21]. During search and rescue operations, UAVs provide
rescuers with critical information about the route that must be followed to reduce the time
required to locate victims and intervene. Furthermore, this helps to reduce the time it takes
to find victims and intervene [22].

Additionally, a UAV can carry a variety of sensors, including a thermal imaging camera
with multiple colour options. Together, all these sensors give a better picture of the fire’s
spread and speed, which allows authorities to develop a better plan for fire relief. Further,
this reduces the risk for humans and alleviates life-threatening situations by enabling them
to operate UAVs cite Akhloufi. 2020 remotely. Hence, UAVs have had a significant impact
on providing information for decision making.

Drones are generally less expensive and make it easier to collect high-quality geospatial
data after a disaster compared with manned aircraft and satellite images. Many countries,
such as Australia, the United States, Canada, and Europe, have been using UAVs as an
integral part of firefighting in the modern era. Changing climate has led to longer bushfire
seasons and this has increased the cost of firefighting in the case of the USA [23]. Thus, the
use of UAVs in firefighting has increased in the USA [24].

For instance, the Los Angeles Fire Department used UAVs in 2017 to tackle fires [25].
According to the Department of Interior statistics, federal firefighters used UAVs for
340 bushfires in Oregon and used them in 12 states total in the same period [26]. Similarly,
in Canada, the Alberta government hired Elevated Robotic Services, which deploys UAVs
to mines to help firefighters locate the fire [27]. Further, researchers at the University of
British Columbia used UAVs in December 2017 to inspect the wreckage caused by the
bushfires that ravaged the province [28].

Songsheng Li, a computer engineering researcher at Guangdong College of Business
and Technology in Zhaoqing, China, is developing an early warning system for bushfires
that uses UAVs to assess forest fire risks, gather environmental data, and patrol forests [29].
Furthermore, China’s Aviation Industry Corporation (AVIC) developed an amphibious
aircraft, the AG600, designed to be used in forest firefighting and maritime rescue opera-
tions [30]. Bushfire activity in the past few years has been significantly higher in Australia
than in other countries in the region. More than 85% of Australia’s firefighting air services
are owned or leased by the Australian government, with the remainder sourced from other
countries. Therefore, the country has now set its sights on expanding its aerial firefighting.

4.3. Advancement of UAV Technologies in Bushfire Management

This section addresses the most relevant technologies adopted in UAVs in bushfire
management. UAV structure, working methodology, navigation, and flying features have
seen tremendous progress in recent decades. Several factors have contributed to the
performance of UAVs, including their geometric structure; the mechanisms used for flying,
sensing, path planning, and intelligent behaviour; and the adoption of UAVs [31].

4.3.1. Types of UAV

UAVs can be categorized into fixed-wing, rotary-wing, and hybrid fixed/rotary wing
(Figure 5) based on their designs, autonomy, size, weight, flying mechanisms, and power
source [32,33]. A fixed-wing UAV can be flown at high altitudes and can rapidly survey a
wide area, while the rotary UAVs can hover at low altitudes and collect high-resolution
data [11,34]. A fixed-wing UAV, also known as a vertical takeoff/landing UAV (VTOL),
is used for the initial recognition of a coalition within an airspace coalition through its
superior flight capabilities and computation capabilities. Rotary-wing UAVs (HTOL-
horizontal takeoff/landing UAVs) are also called observer UAVs because they contribute
to the sensing and recording capabilities of the coalition.

The structures of fixed-winged UAVs are generally simpler than those of rotary-winged
UAVs, so they require less complicated maintenance and repair processes and, therefore,
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can operate for longer periods and at higher speeds [35]. Furthermore, they can carry
larger payloads over longer distances while using less power, as they have natural gliding
capabilities with no power requirement. In contrast, rotary-winged UAVs are capable of
vertical takeoffs and landings, while fixed-winged UAVs require a runway or launcher [35].
A hybrid drone is a UAV that combines the advantages of fixed-wing, and rotary-wing
UAVs [36].

Clearly, all three types: fixed-wing [37,38], rotary wing [39,40], and hybrid [36] UAVs
are effectively used in different bushfire management operations. The latest UAVs used in
bushfire management and their specifications are given in Table 2.

Early detection of forest fires has been used with both fixed-wing and rotary drones,
both equipped with cameras, either optical or thermal [36]. UAVs can be deployed in different
numbers and scenarios based on the frequency and severity of bushfires in a region. For instance,
the European Union funded a project called COMET, which explored unmanned systems for
monitoring forest fires [41]. The researchers developed their system based on three UAVs: two
fixed wings and one rotary wing, which worked together to conduct a variety of prescribed fire
experiments to test its detection and monitoring capabilities.

Comparatively, many authors suggested rotary-wing UAVs for the detection task. For
instance, the authors [42] used a six rotor UAV (DJI S900) with a Sony A7 camera for the
bushfire detection model. Furthermore, another researcher [43] used Crazyfile 2.0; this
is an open-source nano aerial vehicle at only 27 g in weight and is equipped with a mini
ArduCAM 320*240 resolution camera. The author proved that the open-source quadrotor
navigated autonomously toward the fire with the help of IMU and imitated its behaviour
in the real environment. Considering accurate image matching with 80% overlap and
60% side lap, Bilgilioglu et al. [44] used a DJI Phantom 4 type UAV. These flights captured
images using a 1/2.3′′ CMOS sensor to ensure the coverage ratio.

Figure 5. Different categories of frequently used UAV models in bushfire management.
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Table 2. Specifications of UAVs in bushfire management systems.

UAV Mission Camera Payload Height Airtime Battery Remark

YUNEEC TYPHOON H object detection and
collision avoidance

YUNCGOETUS
thermal

camera/CGO3 and
4K UHD

10.4 kg 1 km (3000 feet) 25 min 4S 5400 mAh LiPo battery excellent 4K video camera, more stable and faster,
folding rotor arms for compact storage

Aerones firefighting − 200 kg (440 pounds) 900 feet (274.3 m) 30 min − powered by 28 motors, fitted with water hose from a
fire truck, controlled by a pilot remotely

FREEFLY ALTA 8 obstacle detection
FPV cameras,

thermal cameras,
and standard HD

CMOS
9.1 kg (20 pounds) - 35 min 6S LiPo

8 motors, the landing gear is inverted, plenty of
space available for recording videos and collecting
various data, do not fly in temperatures exceeding

45 ºC (113 ºF) or below −20 ºC (−4 ºF).

DJI INSPIRE 1 search and rescue,
surveillance XT or X3 FC350 10.5 kg 120 m 18 min LiPo 6S

camera is removable, have option for two-controller:
piloting and camera control, provides

high-sensitivity infrared scaning

DJI INSPIRE 2 object sense X7 or X5S or X4S 4.250 kg (9.37 pounds) 32.8 feet (10 m) 25 min LiPo 6S can capture images while in motion, navigate in
extremely cold areas

FLYBYCOPTERS
THERMAL SURVEYING

X8
surveying/mapping Sony A6000, Flir

Vue Pro 640 R 100 kg 30 m (98 feet) 20 min -
RTK Multi GNSS GPS, Autopilot Flight Controller,

specialise in heavy-duty, have 36 propellers, fly
almost 1000 feet under 6 min

DJI Mavic 2 Enterprise search and rescue

Uncooled VOx
Microbolometer

thermal camera and
1/2′′ CMOS,

Effective Pixels:
48 M visual camera

1.1 kg 30 m 31 min LiPo
dual camera system, stabilised by a 3-axis gimbal,

autonomous flight mode, include obstacle detection
system

DJI Matrice 210 detection FPV camera 6.14 kg 10 m 24 min LiPo 6S TB50 multi payload configurations, dual battery, ADS-B
receiver, IP43 weatherproofing
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4.3.2. Sensors

Advances in aircraft bushfire detection will depend on developing new or more
powerful sensors and on the small size, increased power efficiency, lower prices, and
enhanced performance of existing sensors that will enable their use in a broader range
of platforms. Various sensors, including LiDAR, visual, IR, and monocular, have proven
helpful in detection operations [45,46]. However, how sensors are used is quite diverse,
depending on their purpose and nature.

For instance, thermal cameras are useless in daylight during hot summer days, fixed
cameras are ineffective in dark weather (such as clouds, evening, and night), and infrared
sensors cannot detect smoke [47]. A sensor can be classified as active or passive based
on its principal functionality. The passive sensor reads only the energy emitted by an
object from another source, such as the sun reflected on the object or the scenery under
observation. In contrast, active sensors radiate light or emit waves that are detected when
they bounce back.

A camera must do a great deal of image processing to obtain useful information
from the chunks of raw data it obtains from the sensor. Thermal or IR cameras, optical
or visual cameras, and spectrometers are commonly used as passive sensors in sensing
applications [45,48,49]. Apart from the additional algorithm required for calculating the
range and other parameters of the bushfire and obstacles, extracting points of interest is a
separate process that requires additional processing power [50].

Sensors that work in visible light are optical or visual cameras, such as monocular and
stereo cameras [51]. They capture images of the surrounding environment and objects to
provide valuable information. The advantages of cameras are their small size, weight, low
power consumption, flexibility, and ease of mounting. Contrary to this, the disadvantages of
using such sensors include their high sensitivity to weather conditions, lack of picture clarity,
sensitivity to lighting levels, and the background’s colour contrast. When any of these factors
are involved in the process, the quality of the captured image drops dramatically.

Thermal or infrared (IR) cameras, which have a longer wavelength than visible light,
are used in low-light conditions as infrared light is used [51]. Since thermal cameras output
distorted, blurry, and low-resolution images compared to RGB cameras, it is possible to analyse
the data of a thermal camera by generating artificial control points and analysing them to
determine inclination and orientation [52]. However, their performance can also be improved
by combining them with a visual camera during the night or in poor lighting conditions.

There are various types of active sensors, such as LiDARs [53], sonars [54], and
radars [55]. A sensor of this type has a fast response, is resistant to weather and lighting
conditions, can scan a more extensive area, requires little processing power, and can return
accurate data about obstacles, such as their distance and angle. Sensors for light detection
and ranging (LiDAR) use two mechanisms: laser pulses to illuminate surfaces, while the
other measures the time it takes for the vibrations to bounce back to determine the distance.
Data collection using LiDAR is fast and extremely accurate. It can detect small objects
due to their short wavelength and reconstruct images of the surrounding environment in
monochrome and colour. However, transparent objects, such as clear glass, can never be
detected by LiDAR.

Ultrasonic or sonar sensors emit sound waves and listen for their reflections to calculate
the distance between an object and the sensor [45,56]. The object’s transparency does not
affect sonar sensors, in contrast to LiDARs. For example, LiDARs cannot discern clear
glass, while sonar sensors are not impacted by colour. However, objects that reflect sound
in a different direction than the receiver or whose materials absorb sound will degrade the
performance of the sonar sensor. A radio detection and ranging (Radar) sensor transmits
a radio signal, which is reflected back to the radar when it encounters an object. The
radar calculates the distance between an object and the radar based on the time it takes to
bounce back the signal. Unlike other sensors, radars can function in any weather condition,
regardless of lighting conditions or cloud cover.
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They also provide wide coverage, making them perfect for outdoor use. Despite this,
radars cannot provide accurate dimensions of objects due to their low output resolution,
which makes only detection possible [57]. As outlined in Table 3, different types of sensors
and cameras have been summarised with their positive and negative features, which are
most commonly used in UAV-based forest fire detection systems.

Table 3. Different types of sensors/cameras used in firefighting UAVs and their positive/negative features.

Sensors/Camera Features

Infrared sensor Capture the thermal radiation of fire
Sensitive to varying atmosphere: may lead false alarm

LIDAR Detect smoke by examining the backscattered laser light
Sensitive to varying atmosphere: may lead false alarm

Semiconductor gas sensors High immunity against disturbances
Heat and smoke detectors Work properly in indoor environments

Environmental factors affect the performance in outdoor
Satellite imagery Difficult for early fire detection: long scan period, low flexibility
Visible spectrum CCD/CMOS imaging sensors Less sensitive to heat flux

Capable of recording high resolution image
Much cheaper
Performance less influenced by environmental changes

Infrared thermographic camera Detect less environmental information
Lower spatial resolution than visible spectrum cameras
Expensive with high maintenance cost

Visual imaging detector Do not depend on emissions from carbon dioxide and other products
Influenced by fire’s radiant intensity

Surveillance cameras Locate the smoke plump’s locations
Good in day time detection

Wireless Sensor Network (WSN) Monitor in specific environmental conditions(fire)
Short communication range
Low bandwidth
Inexpensive
Doesn’t need much maintenance
Limited battery life

Barometer Measure air pressure
Temperature sensor Measure the temperature
Global Positioning Sensor (GPS) Navigation
Compass sensor Navigation
Internal Measurement Unit (IMU) Estimate the vehicle position

4.3.3. Machine-Learning Algorithms

Machine learning (ML) uses data and algorithms to automatically learn without
human assistance and to adjust actions to improve decision-making accuracy. Machine
learning is a vital component of artificial intelligence (AI) and can be used in data and
algorithms to make classifications and predictions related to the problem. ML algorithms
learn directly from data and develop their internal model without external influences.

Furthermore, ML approaches have been widely used in many disaster management
systems, importantly, bushfire management. In particular, ML approaches have been used
in bushfire applications, such as fire detection [18,58–64], fire mapping [65–67], fire weather
and climate change prediction [68], fire occurrence, fire behaviour prediction [69], fire
effects [70,71], and fire management [62,72,73]. Many types of research have been conducted
in recent decades with UAV and machine-learning algorithms in bushfire management.

Generally, ML algorithms fall into the categories of supervised, unsupervised, and
semi-supervised learning. Supervised ML uses an algorithm to learn the parameters of that
function using the available data to classify the data or predict outcomes accurately. Unsu-
pervised learning uses algorithms to analyse and cluster unlabelled datasets to discover
hidden patterns or data groupings without the need for human intervention. The third
category, semi-supervised learning, falls in the middle of supervised and unsupervised
learning. It uses a small quantity of labelled data and a large quantity of unlabelled data
for prediction. The following items provide the most commonly used ML methods from
these learning paradigms based on their similarity.

Instance-Based Algorithm: Instance-based learning models involve decision problems
using examples of training data considered necessary or necessary [74]. By comparing new
data to the database using a similarity measure, such methods establish a database of sample
data and make predictions based on the best match [74]. Regarding their functionality,
several bushfire management operations employ instance-based algorithms (Table 4). An
example is a k-nearest neighbour (KNN) algorithm, a simple but very effective instanced-
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based algorithm that uses the Euclidean distance to calculate data points’ similarity to one
another [17].

Another popular instance-based algorithm type is support vector machines (SVMs).
SVM determines the boundary separating the boundaries of each class in an n-dimensional
space based on n dimensions of data. The distance between the nearest points of each class
determines the optimal hyperplane in which the decision boundary is maximized. For
classification and regression problems, recently developed DL algorithms have proved more
efficient than SVMs [17]. However, for limited training samples, SVMs may offer better
performances. A Self-Organizing Map (SOM) is an instance-based algorithm for detecting
features or reducing dimensional. Unlike error correction, SOM uses competitive learning
and preserves the input space’s topological properties using a neighbourhood function. It
performs topologically ordered mappings to produce two-dimensional representations of
training samples from an input space.

Bayesian Algorithm: Bayesian algorithms use Bayes’ Theorem explicitly to solve problems,
such as classification and regression, where every pair of features is independent. The
Bayesian network (BN), also known as the Bayes Net/Belief Network, is a popular Bayesian
algorithm in many applied domains (Table 5). It specifies probabilistic relationships be-
tween variables in an intuitive graphical language, along with tools for calculating the
probability resulting from those relationships [17]. Another form of BN is Naive Bayes,
which multiplies each input variable’s conditional probability by the likelihood function as
the output. The fast and straightforward implementation of NB makes it a good solution
for problems that do not presume conditional independence. However, the prediction
accuracy can be low when this assumption is violated [17].

Ensemble Algorithm: The ensemble method incorporates several weaker models that
are independently trained to make an overall prediction that is based on combining their
predictions. The results of these methods are usually more accurate than those of a single
model. The random forest (RF) is an ensemble model consisting of many decision trees that
are individually trained. As part of an RF model, each component decision tree makes a
classification decision based on the maximum number of votes. The class that received the
most votes is chosen as the final classification. An RF can also perform regressions, and
the final output is determined by averaging the individual tree outputs. By minimizing
the correlation between trees and reducing the model variance, this algorithm achieves a
high degree of performance but at the expense of increasing bias and loss of interpretability.
Despite the increased performance, the increased bias and loss of interpretability come
with the improved performance [17] (Table 6).

Deep-Learning Algorithm and Artificial Neural Networks: Artificial neural networks
have evolved into deep-learning algorithms in the modern era. These methods design
more extensive neural networks and handle large datasets of labelled analogue data, such
as images, text, audio, and video. Artificial neural networks (ANNs) are built from a set of
inputs multiplied linearly, each with a weight associated with it. The final weighted sum
is converted into the output signal using a nonlinear activation function. A deep neural
network (DNN) uses many layers of hidden information. This includes convolutional
neural networks (CNNs), widely used in image analysis, and recurrent neural networks
(RNNs), which are useful for modelling dynamic temporal phenomena.

Many different types of hyperparameters can be used when designing DNNs, in-
cluding the connectivity between nodes, the number of layers, and the types of activation
functions [17]. An ANN is typically trained by processing input data that feeds through
network layers and activation functions to create an output, regardless of its architecture.
An error measurement is used to gauge the performance of models in the supervised
setting, which compares the result with labelled training data. Table 7 shows the summary
of bushfire management studies based on deep learning and artificial neural networks.
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Table 4. Instance-based algorithms used in different bushfire management studies.

Author Algorithm Other Algorithms Application Imagery Purpose Study Area Result Limitations

[75]
One class Support

Vector Machine
(OC-SVM)

AQM-PROBA
Algorithm Burn area mapping

PROBA-V reflectance
imagery, Landsat-8

OLI data, VIIRS
active fire data

Developing an automated
methodology for producing global

fire data products with the accuracy
Brazilian Savanna -

uncertainty in
detection dates, hard

to detect smaller
burned areas about 4

to 10 pixels in size

[66] Support Vector
Machine (SVM)

Fuzzy
Complementary

Criterion (FuzCoC)
Burn area mapping

VHR IKONOS
imagery (Parnitha

and Rhodes datasets)

Assess the influence of higher-order
spectral and spatial features on the

mapping
Greece

very high
classification

accuracy

implementation
challenges

[76] Support Vector
Machine (SVM)

Artificial Neural
Networks (ANN) Wildfire prediction satellite images, own

dataset predict the occurrence of wildfires Canada
ANN : 98.32%

prediction accuracy,
SVM : 97.48%

prediction accuracy
-

Table 5. Bayesian algorithms used in different bushfire management studies.

Author Algorithm Other Algorithms Application Imagery Purpose Study Area Limitations

[69] Dynamic Bayesian
network (DBN)

wildfire behaviour
prediction

fire behaviour prediction
models (BEHAVE,

FARSITE)
-

simulate the spread of wildfires,
predict the fire behaviour and

characteristics
Canada assumptions on constant weather

and fuel conditions

[77]
Bayesian Updating of
Land Cover (BULC)

algorithm
- Wildfire mapping Landsat-8, Sentinel-2,

MODIS

Mapping the active phase of
burned areas using multiple

sources of information
British Columbia

relying exclusively on Landsat-8
input classifications, the fire time
series would be limited to burn
detection primarily early in the
active fire phase. Sentinel-2, the

fire time step would be limited to
burn detection in late July

[78] Bayesian network - prediction and analysis
of forest fire

Perform an analysis of
the multilateral relations
that may influence forest

fire causes

General Directorate of Forestry
data southwest of Turkey -
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Table 6. Ensemble algorithms used in different bushfire management studies.

Author Algorithm Other Algorithms Application Imagery Purpose Study Area Result Limitations

[68] Gradient Boosting
Decision Tree

Deep Neural
Networks wildfire prediction dataset from kaggle predict wildfire size based

on climate features US 32% accuracy

Inconsistent human
activities, low correlation
between monthly climate
data, and a lack of
geographic features
including elevation and
slope

[67] Random Forest - wildfire severity
mapping Landsat imagery

assess the performance of
RF for classifying fire
severity, assess the relative
importance of different
indices in improving fire
severity classification,
examine how additional
sampling effort from new
fires can improve the RF
classification accuracy.

south-eastern
Australia

> 95% accuracy for
unburnt vegetation

challenging of Radiative
Transfer Models (RTMs)
parameterization

[79] Random Forest Multiple Linear
Regression Fire Occurrence European Fire Database identify the factors that

influence fire occurrence
European
Mediterranean region

96.3% variance of RF, 44%
variance of LR

Lack of comparable data
and complexity of factors
affecting fire risk and
occurrence

[80] boosted regression tree
(BRT)

general linear
model (GLM),
mixture
discriminant
analysis (MDA)

forest-fire
susceptibility map

Map the forest-fire
susceptibility zones in the
province, and evaluate the
relative importance of the
influencing factors

Landsat-8 OLI and
MODIS satellite images southern Iran 0.89 area under the curve

(AUC) value -

[81] Random Forest k-fold cross
validation

Wildfire susceptibility
map

dataset of the mapped fire
perimeters

Visualize the spatial
probability of future area
burning

Liguria region in Italy

neighbouring vegetation
model performed better
than the standard model
in winter and summer
seasons, the model
performed 83.4% into
91.7% in the winter season

-
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Table 7. Artificial neural networks and deep-learning algorithms used in different bushfire management studies.

Author Algorithm Other Algorithms Application Imagery Purpose Result Limitations

[62] YOLOv3 CNN, RCNN, k-means
clustering Fire detection aerial imagery

find an effective approach for
forest fire prevention with
UAVs, improve the efficiency of
fire detection

83% recognition rate, >3.2 fps
frame rate

not sensitive to
small-scale area

[82] Deep Convolutional Neural
Network (DCNN)

Logistic Regression (LR),
Computational Vision
(CV) techniques

Fire detection fire image dataset estimating the flame area
94.1% accuracy in daytime
scenarios and 94.8% in
nighttime scenarios

Finding small fire spots
in an image is a
challenging task

[63] Deep Convolutional Neural
Network (DCNN)

transfer learning from
MobileNet-V2, Fourier
analysis

Fire detection dataset from the internet
increase the fire detection rate,
reduce the storage for edge
devices

- -

[83] Faster R-CNN network CNN, Region Proposal
Network (RPN) fire detection

PASCAL VOC dataset,
Corsican Fire Database
(CFDB)

improve the performance of fire
detection and significantly
decreases the detection errors

95% accuracy of Faster
R-CNN/AlexNet model, 99.6%
accuracy of Faster
R-CNN/VGG16 model, 99.7%
accuracy of Faster
RCNN/ResNet101 model

-

[84]
Faster Region-based
Convolutional Neural
Network (R-CNN)

Long Short-Term
Memory (LSTM) Fire detection Flickr-fire dataset Identify suspected fire regions

and non-fire regions reduced false detection -
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Regression Algorithm: The regression algorithm is one of the supervised learning algo-
rithms in machine learning that helps identify predictors between data points and labels.
The regression model uses the measure of the error to refine the predictions made by the
model over time according to the relationship between variables. In machine learning,
regression algorithms are used to predict future values. Through regression analysis, future
values are predicted using the input data/historical data. An ML label is defined as the
target predicted variable, while regression helps determine whether a label is related to
data points. Table 8 shows the summary of bushfire management studies based on a
regression algorithm.

Table 8. Regression algorithms used in different bushfire management studies.

Author Algorithm Other Algorithms Application Imagery Purpose Study Area Result Limitations

[58] Regression
linear regression,
ridge regression,
lasso regression

fire detection
UCI machine
learning
repository

predict forest
fire-prone
areas

Montesinos
park in
Portugal

- -

[85]
Logistic
Regression
(LR)

Random Forest (RF),
Boosting Regression
Trees (BRT), and
Support Vector
Machines (SVM)

wildfire
occurrence

improve the
prediction
accuracy of
regression
methods

Spanish EGIF
(General
Statistics of
Wildfires)
database

Spain

AUC values:
LR—0.686,
RF—0.746,
BRT—0.730,
SVM—0.709

calibration is
extremely
time-
consuming in
SVM

4.3.4. Simulation Models

A bushfire model predicts and understands bushfire behaviour through numerical
simulation. As a result of the simulation system, bushfire suppression can be improved in
terms of safety, risk reduction, and damage reduction. The objective of such a system is to
recreate fire behaviour, such as the speed at which a fire spreads, the direction in which it
spreads, and the amount of heat it generates [86] in addition to estimating fire effects, fire
simulation attempts to measure fuel consumption, tree mortality, smoke production, and
the ecological impacts of fire [87]. Additionally, a simulation system can provide bushfire
managers with predictions of fire propagation, thereby, increasing the effectiveness of
suppression efforts and potentially reducing costs.

Several fire-spreading simulators have been developed in the past (Table 9). Spark is
one of the toolkits for processing, simulating, and analysing bushfires from start to finish.
Spark’s GPU-based computational fire propagation solver enables users to design custom
fire propagation models by including input, processing, and visualization components
tailored to bushfire modelling [88]. Meteorological forecasts can be read directly into
Spark models to provide weather information [89]. The Spark platform easily incorporates
environmental data, such as land slope, vegetation, and un-burnable areas into the fire
spread rate calculation and leverages this information.

However, an extended period can introduce a large amount of uncertainty into results
due to changes in the environmental components. WFDS (Wildland-Urban Interface Fire
Dynamics Simulator) is based on the FDS (Fire Dynamics Simulator) developed at the
U.S. National Institute of Standards and Technology (NIST) [90]. An approximation to the
fluid dynamics, combustion, and thermal degradation of solid fuels is used in this fully
three-dimensional, physics-based, semi-coupled fire atmosphere model [91]. In WFDS,
data assimilation is limited to nudging weather data with only limited capabilities [90].
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Table 9. Simulation model and their specifications used in different studies.

Simulator Task Programming Language Cost Mathematical Model Input Data Output Data Graphical Interface
Output

FLEAT (Fire and
Landscape Ecology
Assessment Tool) [92]

Fire severity mapping C++ -

fire severity maps, fire
behaviour and effects
models,
state-and-transition
models, landscape fire
succession model

standardized spatial
data, GIS software,
LANDFIRE data layers,
LANDFIRE canopy fuels
layers, 3 digital map
layers

Low severity, moderate severity,
high severity 2D & 3D

Web-based Wildfire
Simulator (WWS) [93] wildfire predictions C -

wind downscaling,
bilinear interpolation
process, digital terrain
model (DTM),
mass-consistent model

fire ignition location and
time, fire duration,
simulation domain size,
and frequency of wind
field forecast updates,
GrADS(Grid Analysis
and Display System)
software, NCO (NetCDF
Operator) software

maximum reaction velocity, net fuel
loading, rate of spread, wind factor,
propagating flux ratio, slope factor,
optimum reaction velocity

2D

FIRETEC [94] fire behaviour prediction - open source

gas transport
formulation,
hydrodynamics model
HYGRAD, Anderson
fuel model

fuel height, fuel density,
surface area, the heat of
combustion,

spread rate, intensity, fuel depletion,
fuel moisture fraction, 2D & 3D

FARSITE [95,96] wildfire predictions C++ open source

Huygens’ principle,
BEHAVE fire behaviour
prediction system,
Rothermel model

spread rate, intensity,
fuel depletion, eight data
layers, GIS layers

fire size, location, timing, surface
fire, crown fire spread, fire
acceleration, fuel moisture

2D & 3D

HexFire [97] wildfire prediction C open source
Cellular automata (CA)
model, HexSim
individuals, Rate Of
Spread (ROS) map

available fuels, wind
speed and direction,
Burn Iterations per Time
Step, Iterates to Burn
Completely,
Flammability Exponent,
Proximity Exponent,
Ember Creation Rate,
Ember Max Distance,
Ember Step
Length—Wind, Ember
Step Length—Random

patterns of fuels, moisture levels,
wind, ignition sites, management
interventions

-
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Another popular simulator is the Fire Area Simulator ( FARSITE ) [98,99], which
simulates fire spread and behaviour in diverse terrain, fuel, and weather conditions. This
simulator uses the fire behaviour prediction system BEHAVE, which was developed by
Rothermel [86]. The FARSITE model has been selected as the best fire growth prediction
model by many federal land management agencies [87] due to its flexibility and free
availability to anyone. However, this requires fuel layers that are expensive and difficult
to construct.

Although most existing vegetation layers and databases do not quantify fuel infor-
mation to the level of detail and resolution needed for running the FARSITE model, most
fire and land managers need more fuel maps to run FARSITE. Due to inexperience with
modelling and mapping vegetation and fuels under fire conditions, some efforts to cre-
ate FARSITE layers from existing maps have failed [87]. In addition, Prometheus is the
Canadian wildland fire growth simulation model based on Fire Weather Index and Fire
Behaviour Prediction subsystems of the Fire Danger Rating System [100]. The model com-
putes fire behaviour and spread depending on conditions, such as fuel, topography, and
weather. It is a user-friendly software; users can modify fuel and weather data as ASCII
files [87].

The Phoenix [101] fire characterization model was developed in Australia to help
manage bushfire risk. This simulation tool directly relates the impacts of various manage-
ment strategies to changes in fire characteristics across the landscape and the nature of the
impact on various values and assets in the landscape [87]. In contrast to many standard
fire behaviour models, Phoenix can adapt to changes in fire conditions, fuel, weather, and
topographic conditions as the fire moves and grows.

Apart from this, there are many fire simulation tools, such as FIRE! [102], EXTENDED
SWARM [103], FireMaster [104], FireStation [105], EMBYR [105], WildFire Analyst [106],
FSim [107], NEXUS [108], FlamMap [109], BehavePlus [110], FOFEM [111], and FIRETEC [94]
are available for bushfire prediction. Simulators mainly concentrate on mathematical
principles, inputs and outputs, and programming languages for defining the parameters.
Modelling bushfires primarily intends to develop procedures that can be incorporated into
calculation tools for forest fire management and research.

It is important to identify, before an event occurs, the likely occurrence place and the
progress and possible damage a bushfire could cause, particularly in the event that multiple
ignitions occur simultaneously. In addition to developing different bushfire management
systems, computer science and numerical weather prediction have played a vital role in the
evolution of bushfire spread models. The development of more powerful, versatile, and
sophisticated coupled systems has facilitated the management of bushfires in response to
advancements in modelling, numerical methods, and remote sensing.

4.4. Applications of UAVs in Bushfire Management Systems

This section will review different strategies for using UAVs in bushfire management
systems. As with any bushfire management system, they should sense or perceive their
surroundings through sensors while flying over the affected area. Since the accuracy of de-
tection operations depends on the quality and intensity of data provided by a camera. Most
researchers have used infrared and visual cameras for monitoring operations; however,
intelligent use of the combined multiple environmental sensors is yet to be seen.

Moreover, the system should utilise appropriate decision-making technology to in-
crease prediction accuracy. Based on the literature studied, fire behaviour prediction,
pre-mission path planning, and adaptation to environments are highly important aspects.
Appropriate algorithms and, in some cases, combinations of algorithms could be utilised to
achieve more efficient responses to uncertain conditions.

4.4.1. Fire Detection

One of the primary objectives of the bushfire monitoring system is fire detection.
The detection of bushfires can be assessed onboard or by the ground station to detect the
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presence of fire using gathered information UAVs while patrolling over the high-risk zones.
Data processed by sensors detect fires and then extract fire-related measures, which are
then passed on to subsystems for action in such a scenario.

Early fire detection will enable the authorities to respond quickly and with as much
force as possible when fighting forest fires. The traditional methods, such as smoke
detectors and thermal sensors, need to provide exact information about where, what size,
and how fast the fire is spreading. Onboard sensors used in UAVs can overcome these
limitations by detecting fires early, being flexible, having a wide field of view, measuring
their size, propagation direction, and rate of spread, and locating them precisely.

Bushfire detection may be difficult if the flames are hidden under a heavy forest
canopy or smoke, as the flames may only become visible once they reach the forest crown.
Many fire factors, such as heat, light, smoke, motion, and chemical by-products have been
used in detection algorithms and computer vision techniques with the detection process to
overcome this limitation [8]. Furthermore, high-sensitivity infrared cameras or sensors are
required for effective flame detection during nighttime operations and when dealing with
natural phenomena, such as fog, steam, and clouds [1]. Reliable early detection systems
should consider multiple fire factors in both day and night operations to obtain reliable
bushfire detection.

The advancement of UAVs featuring sensors has been widely used for bushfire detec-
tion over the last few decades using computer vision techniques. The detection of bushfires
can be assessed onboard or by the ground station to detect the presence of fire using gath-
ered information UAVs while patrolling over the high-risk zones. In such a scenario, data
processed by sensors detect fires and then extract fire-related measures, which are then
passed on to subsystems for action.

Researchers used image processing techniques with features, such as motion, colour,
and coordinates to detect smoke produced by the fire [40,112–114] to onboard visual and
infrared sensors data for fire detection [18]. For instance, infrared cameras and automatic
image processing techniques have relied on the BOSQUE system for fire detection, including
the rejection of false alarms [115]. Table 10 summarizes the applications of UAVs in bushfire
detection operations.

Table 10. Applications of UAVs in bushfire detection.

Author Mission Sensor ML Methods Remarks

Jiao et al. [62] Fire detection Infrared camera
Convolutional Neural
Network (CNN) and
YOLOv3

Only sensitive to large-area bushfires.

Krüll et al. [60] Fire detection and
verification

Gas sensors (H2 and CXHX)
and thermal camera -

High immunity against disturbances,
Reduce false alarm, Detect fire spot
under insufficient vision.

Merino
et al. [116] Fire Monitoring On-board infrared or visual

cameras -
Applicable for small scale, An
evolution on the fire-front is difficult to
estimate.

Goyal et al. [59] Early Forest Fire Detection

Barometer, Humidity
sensor, Global Positioning
Sensor (GPS), IMU,
Compass

Deep Learning YOLO
algorithm

Minimum no-of false positives, Good
accuracy in real-time data, Lower cost,
quickly reported to the authority, Fire
detected within 12 h of its initiation

Sun et al. [61] Forest fire detection and
monitoring Optical flow sensor Bilateral aerial

teleoperation

Dealing time-varying delays in motion
tracking, enforced the velocity
synchronization

Yuan et al. [113] Forest fire detection and
monitoring On-board visual camera -

Reduced false alarm, Enhanced
reliability, Non-fire regions wrongly
extracted

Wardihani
et al. [117]

Real-time forest fire
monitoring

Temperature sensor,
Barometer, Global
Positioning Sensor (GPS),
Inertial Measurement Unit
(IMU), Compass sensor

-
Deviation error obtained, Data loss in
the transmission process, Wind speed
shifted drones from the flight path

Pan et al. [63] Block-based Forest fire
detection Surveillance camera Deep Convolutional

Network

Good in daytime wildfire detection,
Works well on some nighttime wildfire
video clips, Low false alarm rate,
Reliable in long-term surveillance task

Yadav [64] Fire detection Infrared camera, GPS Deep Learning, YOLOv3
Reliable and accurate fire detection,
Real-time fire detection, Drone cannot
perform more intricate movement
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Ref. [114] used conventional cameras on towers to provide a continuous sequence
of video frames of an alerting area. The author suggested an image processing technique
with a thresholding process for fire detection that distinguished fire from non-fire in select
regions of interest (ROIs) to save computational costs. Pastor et al. [118], and Dios et al. [119]
used statistical data fusion techniques to merge individually processed data from each
visual and infrared camera of a rotary-wing UAV.

Another study performed by Israeli Aircraft Industries equipped both forward-looking
infrared (FLIR) and visible spectrum cameras to develop a UAV. They used both sensors
to process data and produce information, such as fire characteristics (GLOBAL FIRE
MONITORING CENTER, 2001). Furthermore, a fire segmentation algorithm for forest fire
detection and monitoring using a small UAV was developed based on Vipin et al. [12],
consisting of a rule-based colour model [120]. Then, the effectiveness of fire detection and
monitoring was assessed using the DJI F550.

Severe fire conditions can cause hardware failure in a UAV. Therefore, multiple UAVs
working in collaboration can provide more reliable continuous monitoring. A simulation
was proposed for fire monitoring tasks, allowing obtaining a complete view of fire propa-
gation by using multiple UAVs [121]. The information gathered from several UAVs from
different points of view was used to estimate the evolution of the fire. Another study has
been proposed in a bushfire front monitoring task with up to nine UAVs that incorporate
wind [122]. Moreover, two different UAV models: a multi-copter and a fixed-wing model,
were analysed. In addition, the researchers analysed both the advantages and disadvan-
tages of MSTA and VDN algorithms in terms of the task complexity and scalability with
the number of UAVs.

Similarly, an experiment with Qball X-4 quadrotors was explored with a group of
six UAVs patrolling around the fire perimeter to provide information with minimum
latency [123]. Initially, they started by forming a leader–follower model for detecting fire,
and later on, the model was expanded by adding fault-tolerant cooperative control (FTCC).
Furthermore, an effective path planning algorithm for UAVs tasked to monitor a forest fire
was implemented to evaluate the time evolution of a bush fire [124]. As a result of using
multiple UAVs, the effectiveness of the mission, when and which UAV should be taken
down for refuelling, the coordination of UAV paths to cover the most critical areas, and
how to measure the performance of the entire fleet of UAVs have been addressed.

4.4.2. Fire Behaviour Prediction

Predicting fire propagation and using autonomous intelligence is essential for devel-
oping quick, effective, and advanced firefighting strategies. Therefore, the evolution of the
fire front and other properties of the fire are very important, such as the fire front location,
the spread rate, the flame height, the angle at which the flames incline, and the size of the
burning area. By analysing the gathered information, an appropriate machine-learning
algorithm can be developed to predict fire behaviour, navigate in the optimal path, and
avoid obstacles while flying over the fire zone.

Fire-behaviour prediction is an essential task of fire-monitoring operations to provide
continuous information about the fire to firefighters and to help develop effective firefight-
ing strategies. This task involves predicting the propagation, estimating the rate of fire
spread, fire intensity, post-fire damage evaluation, and fire descriptions, such as the fire
front location, flame height, and so on. Many fire prediction methodologies have been
developed with the aid of visual and infrared cameras and machine-learning algorithms in
recent decades.

Sherstjuk et al. [20] used a combination of the multi-UAV-based automatic monitoring
system and remote-sensing techniques that estimate necessary fire parameters and predict fire
spreading. The authors reported achieving, under different terrain and weather conditions,
96% accuracy in predicting fire behaviour. A grid-based probability model [121] estimated
the propagation direction using the probability of fire spreading to the surrounding grids.
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In addition, many other intelligent algorithms have also been investigated [65,66,125,126],
including random forest, SVM, ANN, DNN, and MDP.

These approaches are widely applied in bushfire behaviour predictions due to their
adequate high performance in different surroundings. Toujani et al. [127] proposed an
approach based on the Markov process for the burned area prediction in northern Tunisia.
Spatiotemporal factors influencing fire behaviour are classified using a self-organising map
(SOM). Liang et al. [128] estimated the scale of a bushfire using the size of the burned area
and the fire’s duration. The prediction models were established as a back propagation
neural network (BPNN), a recurrent neural network (RNN), and long short-term memory
(LSTM). As a result, they found the highest accuracy achieved when using LSTM among
the other classification methods. Table 11 shows research-based ML methods and different
types of sensors and cameras used in UAV-based bushfire prediction applications.

Table 11. Applications of UAVs in bushfire prediction.

Author Mission Sensor ML Methods Remarks

Hultquist
et al. [70] Post-fire burn severity

MASTER [MODIS
(Moderate Resolution
Imaging
Spectroradiometer)/ASTER
(Advanced Spaceborne
Thermal Emission and
Reflection Radiometer)]
airborne sensor

Gaussian process regression
(GPR), Random Forests
(RF), Support Vector
Regression (SVR)

Signals received were biased to the
higher canopy levels, Inconsistency
between field plot size and image
resolution.

Langford and
Hoffman [71]

Tracking and Quantification
of wildfire

Moderate- Resolution
Imaging Spectroradiometer
(MODIS), Landsat

Deep Neural Networks
(DNN)

Effective for large-scale mapping of
wildfire and imbalanced data

Mithal et al. [65] Burned area mapping
Moderate-resolution
Imaging Spectroradiometer
(MODIS), Landsat

Rare Class Prediction in the
absence of True labels
(RAPT), Artificial Neural
Network (ANN)

Balanced omission and commission
errors, Improved precision of the
detected area while maintaining
higher coverage

Collins [67] Bushfire severity mapping Satellite, Landsat Random Forest classifiers
Enables timely and cost-effective
recovery, Enables rehabilitation and
restoration efforts

Dragozi
et al. [66] Burned area mapping VHR IKONOS imagery

Fuzzy Complementary
Criterion (FuzCoC),
Support Vector Machine
(SVM) classifier

Resulted in high classification
accuracy, Dimensionality reduction
method should be regarded when
additional is added in the
classification, Not implemented in
single software interface

4.4.3. Autonomous Navigation

UAVs have been proposed as an adequate technology for bushfire management be-
cause of their capabilities and attributes. However, UAVs must be fully aware of their state,
location, direction, navigation speed, starting point, and target location to complete the
mission [129]. Sometimes, due to internal and external constraints, it is not easy to proceed
with the task by UAVs. In some disaster relief situations, it would not be easier to obtain a
map of the target area in advance. Building maps simultaneously as the flight would be
essential for efficient management under such circumstances.

Literature related to navigation problems, the Markov decision problem (MDP), and
the partially observable Markov decision problem (POMDP) has been recommended while
making navigation decisions under uncertain conditions [72,73,121,130]. Similarly, the
navigation problem under an uncertain environment in a cluttered and GPS-denied envi-
ronment using onboard autonomous UAVs was proposed by Vanegas, and Gonzalez [131].
The authors compared and integrated two online POMDP solvers, partially observable
Monte Carlo planning (POMCP) [132] and an adaptive belief tree (ABT), to form a modular
system architecture along with a motion control module and perception module.

Accuracy in uncertain conditions plays an essential role in any autonomous navigation
system since it can detect, provide crucial information about obstacles in the way, and
reduce collision risks. Obstacle detection and avoidance are the essential characteristics of
autonomous navigation since these characteristics can detect and provide the necessary
information (such as distances between the UAV and obstacles) of nearby obstacles, which
will help reduce the risks of collision and operation errors.
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If an obstacle is becoming closer to UAVs, the UAV should be able to avoid or change
direction under the instructions given by the obstacle avoidance module. In addition, the
UAV navigation process needs to find an optimal path between the target position and
starting position based on the shortest flying time, minimum cost of work, and the shortest
flying route. The UAV needs to avoid obstacles.

UAVs with consumer-based digital cameras and fire-detection algorithms are used
for inspection purposes. The study [43] used monocular cameras for collecting videos,
and simultaneous localization and mapping (SLAM) systems were used for navigation.
The simulation results showed that both methods allowed the aircraft to track bushfires
accurately, scale with different numbers of aircraft, and generalize to different bushfire
shapes [133]. A novel algorithm was implemented with block-based texture features, colour
features, and artificial neural networks (ANN) to detect smoke and flame from a single
image [1]. The proposed algorithm for existing UAV-based fire monitoring systems can
provide rapid, reliable, and continuous detection under any situation.

Despite their positive results, many issues related to UAV-based forest fire monitoring
systems, including their architecture, sensors, suitable platforms, and remote sensing, still
need to be further investigated. However, localized environmental and terrain conditions
combined with natural disturbances, such as wind, atmospheric pressure, and temperature,
cause losses in UAV sensory information, such as fire factor prediction and navigation near
the fire. A proper mechanism and path-planning strategy must be developed to improve
the prediction accuracy and resolve the above-mentioned issues.

4.4.4. Obstacle Detection

UAVs have become integral to a wide range of public activities today due to their
intelligence and autonomy. Thus, intelligent collision avoidance systems enable UAVs to
be safer by preventing accidents with other objects and reducing risk. The first stage of
any collision avoidance system is detecting obstacles with high accuracy and efficiency.
While flying over high-risk zones, UAVs should be able to sense their surroundings and
the environment to locate obstacles. Therefore, UAVs require sensitive sensors, and thus
lightweight sensors may be the best choice due to their size, weight, and power constraints.
Additionally, authors suggested that UAVs equipped with more than one sensor can be
more effective in detecting threats than those equipped with only one sensor [45].

Various factors may influence obstacle detection, including size, direction, and wind speed.
Several approaches were presented for obstacle detection in vision-based navigation. Various
approaches [134–136] have used a 3D model, while other approaches [134,137,138] calculated
the distance of the obstacles. Methods based on optical flow [139–141] or perspective
cues [142] can also estimate the presence of an obstacle without considering a 3D model.

However, optical flow approaches do not deal with forwarding movement because
of the opening problem. Therefore, frontal obstacles would only provide a movement
component normal to the perceived edges, not actual frontal movement information. SIFT
descriptors, and multi-scale oriented-patches (MOPS) are combined in [143] to provide 3D
information about objects by extracting their edges and corners. The presented approach,
nonetheless, requires a long computational time.

4.4.5. Obstacle Avoidance

Collision avoidance systems are vital for both non-autonomous and autonomous
vehicles since they can detect, provide crucial information about obstacles, and reduce
collision risks. A number of factors are involved in collisions, including operator negligence,
equipment failure, and bad weather conditions. Intelligent collision avoidance methods
can significantly reduce the risk of collisions between planes and save lives in this way.
A UAV collision avoidance system ensures that no collision occurs with stationary or
moving obstacles.

The obstacle avoidance operation concludes by finding obstacles and calculating the
distances between the UAV and obstacles when an obstacle is nearby. For that purpose,
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the collision avoidance system can detect obstacle characteristics (such as the velocity, size,
and position), calculate the risk of collision if the object is approaching, and make collision
avoidance decisions as a result of the calculations [45].

Visual sensors are used to obtain visual information for obstacle avoidance based on
optical flow-based and SLAM-based methods. Based on optical flow, Gosiewski et al. [144]
used image processing techniques to avoid obstacles by obtaining the depth of the image
and formulating local information flow. Yasin et al. [45] reviewed the strategies and
mechanisms in UAVs for obstacle detection and collision avoidance.

They discussed the different types of sensors, such as passive sensors: camera, infrared,
and active sensors: RADAR, LiDAR, and SONAR for collision avoidance in the context
of UAVs. The survey categorised collision avoidance techniques into geometric, force-
field, optimisation-based, sense, and avoid methods and explained different scenarios and
technical aspects.

Al-Kaff et al. [134] presented a bio-inspired approach to detect the change of obstacle
size during flight and to mimic human eyes for obstacle detection and avoidance in UAVs.
The system concluded with vision-based navigation, and an obstacle-detection algorithm
was performed based on the input images captured from the front camera. This could
identify the obstacle by comparing the sequential images and finding the nearest obstacles.
However, the vision-based method in some specific operations needs to acquire an accurate
distance. In contrast, the SLAM algorithm in UAVs can navigate and avoid obstacles with
environmental information [145].

4.4.6. Search and Rescue

A search and rescue operation’s primary objectives are to save lives, protect civilians,
and manage disasters. Using onboard cameras and navigation sensors, UAVs could help
disaster responders identify potential victims in large disaster areas scouted in the skies
by UAVs. SAR missions can be drastically reduced by using UAVs, resulting in significant
financial savings, time savings, and the ability to save lives [146]. Several fundamental fac-
tors must be considered when designing a UAV-based search and rescue system, including
the restrictions on energy consumption, the hazards of the environment, the data quality,
and communication between UAVs [147,148]. Furthermore, the authors in [148] analysed
how these parameters affect search performance and studied different search algorithms.

Recent research has shown that UAVs can be highly useful for SAR operations [146,147,149].
As part of a search and rescue mission, a UAV may be deployed in heavy snow and woods
at night and during the day to identify victims. The use of unmanned aerial vehicles
with electro-optical sensors, real-time processing modules, and advanced communication
systems can improve the ability of government authorities and rescue agencies to identify
and locate wounded and missing people during disasters and afterwards [146]. Moreover,
this multipurpose UAV can carry emergency kits or life-support devices that can be dropped
on victims in an emergency [147].

An innovative UAV-routing framework that maximizes mobility and transmission
power for emergency message delivery and gathering is introduced in [150]. An article
published in [151] presented a way to obtain information about a disaster-affected region.
This method is accomplished by taking photos in real-time, marking their positions and
altitudes, and sending those images and flight characteristics to a ground control station,
creating a three-dimensional danger map based solely on local information. Researchers
showed how UAVs equipped with vision cameras [152] and ML techniques [153,154] can
assist in avalanche SAR operations. According to [155], data from onboard sensors provide
colour and depth information for detecting a human body. Furthermore, the authors
presented a computational model that rotates the point of view around the target and is
size-invariant. Table 12 outlined the UAV-based other applications in bushfire management.
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Table 12. Other applications of UAVs in bushfire management.

Author Mission Sensor ML Methods Remarks

Al-Kaff
et al. [134]

Obstacle detection and
avoidance Monocular camera Size Expansion Algorithm High sensitivity to lightening condition

Sandino
et al. [72]

Target detection uncertainty,
UAV navigation Vision-based camera

Partially Observable
Markov Decision Process
(POMDP), Adaptive Belief
Tree (ABT)

Capability to deal with the high-level
environment, Incorporates target detection
uncertainty

Ragi et al. [72] UAV navigation Vision-based camera
Partially Observable
Markov Decision Process
(POMDP))

better tracking performance, target location
error is strongly influenced by the UAV

Vanegas and
Gonzalez [131]

UAV navigation in
GPS-denied environment On-board sensor

Partially Observable
Markov Decision
Process(POMDP)

Explored and detected target without
collision, Robust in uncertainties in a
GPS-denied and cluttered environment, Path
found to navigate without collision

Seraj and
Gombolay [156]

Human-centred active
sensing of wildfire Visual Camera

Deep Reinforcement
Learning (RL),
Model-based distributed
control algorithm

Inferred the wildfire dynamics and
parameters, Tracked and monitored the fire
transitions, and Provided high-quality online
information, Outperformed prior work for
distributed control of UAVs for wildfire
tracking

Zhao et al. [73] Forest fire localization and
recognition GPS Deep Convolutional Neural

Network (DCNN)
Feature lost due to direct resizing, avoided
Forest mist images wrongly classified

Jiao et al. [157]
Improve the forest fire
detection accuracy and
efficiency

SLR camera Deep Learning, YOLOv3
network

High precision with low time cost,
Transmission ability needs to be enhanced

5. Challenges of UAV-Based Bushfire Management

The application of UAVs to bushfire operations has received sufficient attention due to
their significant impact on remote sensing. However, some challenges prevent firefighters
from adapting UAV applications and affect the accuracy and performance of operations
with UAVs. As a result, this section highlights the challenges of UAVs in bushfire operations,
which may be used to improve processes in the future.

5.1. Technical Challenges

New challenges arise in the design of the systems, the performance of networks, the
optimization of communication channels, remote sensing, and the exploration of energy
constraints in light of the technical requirements of aerial applications. For example,
UAVs operating cooperatively on disaster rescue must meet tight timing synchronization
requirements, whereas considerable communication delays may be tolerated in disaster
area scanning applications [147]. In some disaster areas, transmission rates are low, while in
others, high rates are required for applications, such as identifying trapped people [147]. We
examine the existing technical challenges associated with UAV-based bushfire management
in this section.

UAV energy limitations: One of the greatest challenges is battery power consumption since
UAVs depend on their onboard battery to power their operations. The power consumption
is particularly an issue for smaller-sized UAVs that cannot carry larger batteries due to
their payload capacity limitations [158]. In some instances, UAVs must be operated over
disaster-stricken regions for extended periods. This is not always possible due to limited
onboard power sources for UAV hovering, data processing, wireless communications, and
image analysis. Researchers are investigating ways to extend UAV power supplies while
on a mission to avoid disruptions. For example, energy harvesting using far-field wireless
power transfer from dedicated power sources has been proposed [159,160]. Ubiquitous
solutions for implementing in situ and contactless power supply for commodity UAVs,
particularly small-sized ones, are yet to be available in the market.

Camera limitation: There is a need to address the limitations of current lightweight digital
cameras based on their radiometric and geometrical properties. UAV digital cameras are
not designed for remote-sensing applications and are designed for the general market. In
addition, the camera’s detectors may also become saturated in areas with high contrasts,
such as when the affected area includes a dark forest and a snow-covered field. Additionally,
many cameras suffer from vignetting, where the central part of the image appears brighter
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than the edges [161]. Several techniques can be used to improve the quality of the image,
such as using micro four-thirds cameras with fixed interchangeable lenses instead of
retractable lenses. This results in significantly enhanced calibrations; removing blurry,
under or overexposed, and saturated images can make a large difference in the processing
stage [162].

Absence or inaccuracy of GPS signals: In addition to allowing autonomous UAVs to
navigate in indoor environments without GPS signals, another challenge is to enable them
to make a safe landing [163]. A UAV uses GPS sensors to pinpoint its location before taking
off so that it can plan a flight path to its destination [164]. A GPS may not function properly
due to obstructions or inadequate satellite signals, and the accuracy of such a system may
be decreased for low-cost UAVs. It is challenging to fly in settings without GPS and to only
rely on onboard sensors for localization. This is particularly true when obstacles must be
avoided in the airspace or when the target’s location is unclear, so that the UAV has to fly
and explore until it reaches the target.

Multi-UAV collaboration: Enhancing efficiency requires collaboration and coordination
among UAVs. Moreover, the UAVs have been integrated with cooperative wireless net-
works to provide communication facilities between them in managing bushfires. During
such situations, tight timing synchronization between multiple UAVs is required when
they work together on bushfire monitoring. At the same time, extensive communication
delays can be tolerated when the application scans the disaster area. There is a limit to
the payload capacity of mini-UAVs due to their small size [147]. To effectively manage
disasters, they must cooperate among the team, and with the ground network, such as a
cloud, with many available options, such as radars, infrared cameras, thermal cameras,
and image sensors [165].

Path planning: For autonomous operations of UAVs to cover the area of interest as per dy-
namic situations, intelligent trajectory planning and optimization are necessary [166]. While
the trajectories need to be optimized for addressing the situation’s needs (e.g., fire spot loca-
tions), optimizations are also required for a trajectory to be energy efficient [167,168]. This
optimization raises the need for multi-criteria optimizations, which becomes a multi-agent
optimization problem when applied to multi-UAV scenarios.

This would lead to more complexity in the optimization model, and convergence time
could be an issue in real-time systems involving UAV onboard computers. In addition, dy-
namic changes may occur during bushfire monitoring, such as the joining or disconnection
of UAVs, the removal of physical obstacles, and the threat of dynamic changes. The UAV’s
previous path must be changed, and new directions must be calculated dynamically [169]
in these situations. Therefore, high-performance techniques in dynamic path planning are
needed to monitor a system efficiently.

5.2. Environmental Challenges

Weather conditions challenge UAVs because they often lead to deviations from their
predetermined paths. Weather challenges become particularly difficult and cardinal when
natural or human-made disasters occur, including rain, snow, bush clouds, hurricanes,
lightning, or air pollution. UAVs risk failing to accomplish their missions due to adverse
weather conditions in such scenarios. There is considerable evidence [170] that power
consumption is more sensitive to environmental factors, such as side winds than to altitude
or payload.

During clear and well-defined shadows on a sunny day, the automated image-matching
algorithms used in the triangulation process and digital elevation model generation may
have critical problems [162]. If the clouds are moving quickly, shaded areas can appear
differently on different images acquired during the same mission, thus, causing the aerial
triangulation process to fail for some images and also causing errors in digital elevation
models that are generated automatically. A mosaic with poor visual quality can also result
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from the automated colour-balancing algorithms when they are affected by patterns of
light and shade across images [162].

Safe and controlled UAV landings under dynamic conditions, such as a moving plat-
form or oscillating platforms, are affected by this environmental disturbance. Different
methodologies or algorithms should be implemented to minimise the effects of such uncer-
tainties and disturbances. As part of [171], the authors proposed a method of triangular
mesh generation that considers the wind field and performs online adjustments that min-
imise the losses due to the identified wind field to optimise the coverage in urban areas.
The authors [166,172] proposed the collision avoidance of UAVs to deal with the instability
caused by winds, sensor noise, and unknown obstacle acceleration.

The system’s accuracy is based on the characteristics of UAVs, such as obstacle detec-
tion and avoidance as well as finding the optimal path and shortest flying path, in uncertain
environmental conditions. The collision avoidance methods considered approach is robust
with low data overheads and low response times, which would be a better choice in all
kinds of environments for avoiding obstacles to ensure the safety of the UAVs. Moreover, a
more efficient path planning algorithm is necessary to integrate and make sure to reach the
destination after avoiding collisions without becoming stuck.

6. Conclusions

UAVs can be utilized in bushfire management systems to detect fire faster, provide
imagery from difficult-to-reach locations, make operations safer, and save lives. However,
research shows that modern technologies in bushfire management systems need to be more
efficient, which is evident in large-scale bushfires due to poor management systems [173]. In
this paper, we examined the efficiency of using UAVs for bushfire management, including
fire detection, fire prediction, search and rescue, navigation, and other technologies used to
maximize the accuracy of results.

Furthermore, this paper discussed the benefits and drawbacks of using UAVs in
bushfire management by compiling relevant data about the use of UAVs in bushfire man-
agement. This paper demonstrated that localized environmental and terrain impediments
make it difficult for UAVs to predict fire factors accurately and to navigate. A review of
a significant amount of recent research showed the difficulty of locating bushfires using
environmental sensors and GPS data.

This paper highlighted the significance of the architecture, sensors, suitable platforms,
and remote-sensing capabilities of UAV-based bushfire management. Infrared cameras
mounted on UAVs most often form part of a multisensor payload, usually in combination
with RGB and thermal sensors. This is convenient since operators can capture visual and
thermal data simultaneously. It is more effective to aggregate knowledge from different
sources rather than only from one sensor.

Despite adverse weather conditions, UAVs must be capable of battling fires as they
increase in size, frequency, and intensity. UAVs need to have high energy efficiency when
dealing with large fires or operations that last a long time. Moreover, when working
with firefighters, the UAVs must be reliable and equipped with advanced thermal sensors,
longer flight times, heat resistance, obstacle avoidance, and waterproofing to operate in
all temperatures and conditions. Hence, there is high urgency for more development
in the aforementioned areas using robust and global optimization algorithms for bush-
fire management.

Furthermore, device vibration, poor camera quality, fast movement, and UAV rotation
often disturb images and cause low-quality imaging. UAVs with machine-learning and
deep-learning technology can address numerous operational and management challenges
in bushfire management. In some cases, the sensors equipped on the UAVs are inadequate
to sense the information for a large-scale affected region. Furthermore, UAVs may fail to
detect fire in smoke or cloudy situations and may make false or missed detections due to
uncertainty; this reduces the potential acceptable level of the firefighting industries and
government authorities.
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Moreover, UAV-based bushfire management still has several drawbacks, such as high
initial costs, the loss of UAVs due to uncertainty or hardware failure, sensor capabilities,
technical issues, the absence of established procedures for processing massive amounts of
data, and the requirement of experts. Ultimately, robust UAV-based bushfire management
can result in significant social, economic, and environmental benefits associated with
bushfire management as well as enhancing decision-making and firefighting.
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ASTER Advanced Space-borne Thermal Emission Reflection Radiator
MODIS Moderate Resolution Imaging Spectroradiometer
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BPNN Back-propagation Neural Network
NASA National Aeronautics and Space Administration
CSIRO Commonwealth Scientific and Industrial Research Organisation
NIST National Institute of Standards and Technology
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FiRE Fire Response Experiment
SIFT Scale-Invariant Feature Transform
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SLAM Simultaneous Localization and Mapping
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SLR Single-Lens Reflex
FSim Feature-Similarity
SONAR Sound Navigation and Ranging
FTCC Fault-Tolerant Cooperative Control
SOM Self-Organizing Map
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GPR Gaussian Process Regression
UAV Unmanned Aerial Vehicle
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IEEE Institute of Electrical and Electronics Engineers
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