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Abstract: Racecar drivers have the ability to operate a vehicle at its
friction limit without losing control. If autonomous vehicles or driver
assistance systems had similar capabilities, many fatal accidents could
be avoided. To advance this goal, an autonomous racing controller
is designed to gain insights into vehicle control at the friction limits.
A bicycle model and a ‘g-g’ diagram are used to mimic racecar drivers’
internal vehicle model. Lanekeeping steering feedback and wheel slip
feedback controllers are used to imitate drivers making steering and
throttle corrections according to the vehicle responses. Experimental
results on a low friction surface demonstrate that the controller can
robustly track a path while operating at the limits of tyre adhesion and
provide insights for the future development of vehicle safety systems.
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1 Introduction

Motorsport has consistently pushed the technology boundary and driven many
developments in the automotive industry. Historically, race cars have provided the
inspiration for many developments in production vehicles. With the emergence of
autonomous vehicles, racecar drivers now provide similar inspiration for the design
of vehicle safety systems. The ability to control an autonomous vehicle in any
extreme condition is crucial for vehicle safety systems, which can greatly impact
the public acceptance of autonomous vehicles and the automotive industry as a
whole. Since racecar drivers have the ability to control a vehicle at its friction limits
without losing control, they are natural models when designing controllers that
mimic this behaviour.

Previous work in vehicle control at the limits of handling has been more
mathematically focused, using methods that couple path generation (the racing
line) and vehicle control into one optimisation problem. Various optimisation
techniques such as optimal control (Gerdts et al., 2009; Velenis et al., 2008),
Model Predictive Control (Timings and Cole, 2010) and genetic and evolutionary
techniques (Muhlmeier and Muller, 2002) have been used to find an optimised
racing line. In these works, since both path and control inputs are coupled,
gaining a physical intuition from the results can be difficult. In addition, since
the optimisation results are generally based on simulations, the robustness of the
resulting controllers is not clear. The robustness of the controller is essential since
friction variation and modeling errors inevitably exist on real vehicles.

The racecar driver’s approach to the problem is somewhat different. Lopez
(2001), Bentley (1998) and Taruffi (1959) explain how racecar drivers separate the
tasks of finding a racing line and driving a vehicle at its limits. To understand
vehicle limits, Rice (1973) introduced the concept of a friction limit circle on a
‘g-g’ diagram. Racecar drivers use trail-braking and throttle-on-exit techniques to
trace this friction limit circle, as described by Lopez (2001), Mitchell et al. (2004),
Bentley (1998) and Velenis et al. (2008). Mimicking racecar drivers, the research
presented in this paper separates the problem of autonomous racing into path
planning and vehicle control. Thus, with any given desired path, the controller can
calculate appropriate inputs that will drive the vehicle to its friction limits while
tracking the path. This is similar to the plant inversion technique used by Mueller-
Bessler et al. (2008) and Mueller-Bessler et al. (2008) in driving a double lane change
manoeuvre. However, unlike their approach where the existing Electronic Stability
Program (ESP) and Anti Lock Brake System (ABS) were used, the controller
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presented in this paper only provides steering, throttle and brake inputs, similar to
the inputs available to humans. It uses various vehicle states for feedback to ensure
stability and tracking ability at the limits. To test the robustness of this controller,
experiments are performed on a varying low friction surface with all the driving
aids (ESP and ABS) switched off.

Moreover, in addition to designing a controller that drives an autonomous
vehicle to its friction limits, the design process also considers the application
of these algorithms to future driver assistance systems. With driver assistance
systems in mind, the controller is constructed from individual control modules
(i.e., feedforward steering controller, feedback steering controller, etc.) that serve
specific tasks. Consequently, the attributes of each controller module and how they
contribute to the robustness of the whole system can be understood. Furthermore,
each control module can be used individually to assist a driver; a steering feedback
module can, for instance, be used in conjunction with a driver to provide assistance
when the driver is on the verge of losing control.

The remainder of this paper is organised as follows. Section 2 describes how the
overall controller structure is divided into path generation and tracking a path at
the limits. A ‘g-g’ diagram is used as a mathematical model to explain how racecar
drivers understand their friction limits. Trail-braking and throttle-on-exit driving
techniques, which make the vehicle’s acceleration trace the friction limit circle on a
‘g-g’ diagram, are then discussed. Section 3 explains how a path is structured from
clothoid curves, which offer a number of advantages due to their linear curvature.
With a path defined, Section 4 describes how drivers’ driving abilities are translated
into feedforward and feedback controllers. To track a path at the limits, a quasi-
static bicycle model and a ‘g-g’ diagram are used to calculate the feedforward
steering, throttle and brake inputs. Imitating a racecar driver responding to tracking
errors, a steering controller based on lanekeeping assistance is used for the steering
feedback while a wheel slip controller is used for modulating brake and throttle.
Section 5 describes the instrumentation of an Audi TTS used as a test vehicle
and explains how feedforward and feedback commands are implemented. The
experimental results are then discussed, explaining how the controller operates
through a corner at the limits. The results also demonstrate how lanekeeping and
wheel slip controllers provide stability and robustness to the system, even when the
friction is over-estimated. Moreover, experimental results highlight the importance
of coordinating steering and longitudinal inputs.

2 Overall architecture of the autonomous racing controller

A racecar driver’s goal is to win a race, which means finishing the race with the
fastest time. To be fast around a track, a racecar driver has to fully utilise tyre
forces while tracking a racing line. To finish a race, a driver has to avoid losing
control of the vehicle while driving at the limits. Furthermore, a great driver has
to perform consistently, regardless of the changes in the environment or in the
vehicle’s characteristics (robustness). Thus, a racing controller has to robustly track
a desired path, utilise tyre forces, and stabilise the vehicle.
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2.1 Understanding racecar drivers’ behaviour

Racecar drivers can achieve the above objectives through their abilities to estimate
friction and utilise friction information to control a vehicle at the limits. During
practice, they formulate a racing line and through their understanding of vehicle
limits, they coordinate their inputs to follow their racing line at the limits of
tyre adhesion.

2.1.1 Cornering sequences

Figure 1(a) depicts how racecar drivers structure their racing line when driving
through a turn (Lopez, 2001; Bentley, 1998; Taruffi, 1959). At the corner apex,
they pick a constant radius arc (which corresponds to a constant steering angle)
that has the largest radius, to maximise vehicle speed. In order to connect between
straight and constant radius sections, a transition curve is needed during corner
entry and corner exit. During these transitions, drivers have to increase or decrease
their steering angle. Thus, in general, each cornering sequence consists of a corner
entry where the curvature transitions from zero (straight) to a constant value, a mid
corner where the turning radius is constant, and a corner exit where the curvature
changes from a constant value back to zero. Once a racing line is established,
racecar drivers have to understand their limits before they can provide correct
inputs to the vehicle.

Figure 1 Driving at the limits: (a) racing line’s structure and (b) introduction to a ‘g-g’
diagram (see online version for colours)

Source: Adapted from Bentley (1998)

2.1.2 Understanding vehicle limits on a ‘g-g’ diagram

Racecar drivers follow their racing line while ensuring that they maximise their tyre
forces governed by the friction between the tyres and the track surface. They use a
concept of a friction circle (or traction circle) to conceptualise these limits (Lopez,
2001; Bentley, 1998). To translate this concept into a mathematical model, a ‘g-g’
diagram (Rice, 1973; Milliken and Milliken, 1995) is used.
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The force an individual tyre can produce is limited by friction. For an isotropic
tyre, these limits can be viewed as a friction circle on axes of lateral and longitudinal
force. The friction forces from the four tyres define the vehicle’s capability. While
driving, the capability of each tyre is continuously changing due to longitudinal and
lateral load transfer and aerodynamic downforce effects. These can be modelled to
give a full sense of the vehicle’s limits in different trim states, but for simplicity,
the resulting diagram is often simplified to the same basic circular shape as the
isotropic tyre. This is known as the friction circle or traction circle for the vehicle.

Force and acceleration are related through Newton’s second law. Since the
acceleration of a vehicle can be measured more easily than the forces, the ability
of a driver to operate a vehicle at its limits is often evaluated using a friction
limit circle on a ‘g-g’ diagram, shown in Figure 1(b). Thus, the acceleration that
the driver achieved at different points along the course can be compared to the
maximum acceleration predicted by a simple ‘g-g’ diagram or a more complicated
representation incorporating load transfer.

In order to maximise tyre forces, racecar drivers try to operate the vehicle on
the friction limit circle in Figure 1(b) at all times. They can maximise their braking
without cornering and vice versa, or they can use a combination of lateral and
longitudinal forces that generates the maximum tyre forces.

2.1.3 Driving at the limits

At this point, a racing line and the vehicle limits have been established. The
remaining task is to modulate brake, throttle and steering inputs to track the
racing line in Figure 1(a) while tracing the friction limit circle in Figure 1(b).
To drive at the limits, racecar drivers apply pure braking during the last straight
section before the corner entry at point A in Figure 1(b). Similarly, during pure
cornering around the apex, they maximise their tyre forces in a lateral direction
without using any longitudinal forces (point B). At point C, the driver applies the
maximum longitudinal acceleration allowed by the engine’s torque (the dashed line
in Figure 1(b)). The challenge arises during the transition phases (corner entry and
exit) where drivers have to coordinate their steering and longitudinal inputs by
using trail-braking and throttle-on-exit techniques.

Trail-braking and throttle-on-exit

During corner entry, racecar drivers have to make a transition from the straight to
constant radius section in Figure 1(a), while tracing the friction limit circle from
point A to point B in Figure 1(b). They have to delicately balance their tyre forces
between braking and steering to trace the fourth quadrant of the friction limit
circle in Figure 1(b). This technique is called trail-braking (Lopez, 2001; Velenis
et al., 2008) where drivers slowly decrease the amount of braking while increasing
the amount of steering. Similarly, during corner exit, drivers use a throttle-on-exit
technique where they slowly increase their throttle input while unwinding the
steering wheel to trace the first quadrant of the friction limit circle (from point B
to point C).

The tradeoff between the available cornering and braking forces during corner
entry highlights the importance of corner entry speed. If drivers approach the
corner entry too fast, tracking the original racing line becomes infeasible. Higher
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vehicle speed requires higher cornering force, which consequently reduces the
available braking force. Thus, as the corner becomes tighter, a vehicle traveling at
an excessive speed will prematurely use all of the friction capability for cornering
and not be able to track the racing line. If drivers choose to stay on the brake, they
no longer have sufficient cornering force to remain on the path. Thus, no matter
what they do, if the vehicle approaches the corner with excessive speed, it will
deviate from the desired path. To avoid this problem, they have to hit the braking
point properly in order to achieve the correct entry speed. If the drivers notice that
they are approaching the corner too fast, they have to modify their path to create
a ‘recovery line’ (Bentley, 1998; Klomp, 2010). Notice that this dilemma does not
exist in the corner exit. Lifting the throttle reduces vehicle speed without sacrificing
any cornering ability, because the curvature is decreasing.

Once the knowledge of driving at the limits is established, a racing controller
can be designed to mimic these behaviors.

2.2 A controller architecture for racing

To achieve path tracking at the limits, the controller separates path generation from
path tracking at the limits (Figure 2). The path is structured to mimic a racecar
driver’s racing line, and a friction limit circle on a ‘g-g’ diagram is used to describe
the vehicle limits. In this paper, the controller uses a priori knowledge of friction
and relies on the controller robustness to handle any variation of the track surface.
This can easily be extended to include realtime friction estimation based on tyre
slip or aligning moment (Hsu et al., 2010).

Figure 2 Overall controller structure (see online version for colours)

Similar to racecar drivers planning ahead, feedforward controllers are designed to
calculate steering and longitudinal inputs that track the path while on the friction
limit circle. While driving, feedback controllers imitate a driver’s vehicle control
ability, making adjustments based on vehicle responses and tracking errors. The
next few sections discuss each of these aspects in detail.
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3 Path description

To mimic racecar drivers’ behaviour, the controller divides the cornering sequence
into a corner entry, a constant radius and a corner exit, see Figure 3. Transition
curves (corner entry and exit) are required in order to connect between straight and
constant radius sections. Any abrupt change during these transitions is undesirable
as it can upset vehicle balance. A clothoid curve, which has linear curvature
(Figure 3(b)), is chosen to approximate this transition as it produces a linear
steering input between straight and constant radius sections.

Figure 3 Clothoid map: showing (a) shape and (b) curvature (see online version for
colours)

A clothoid path (also known as an Euler Spiral) is commonly used in highway road
design (AASHTO, 2004). It is based on a Fresnel Integral (Jeffrey and Dai, 2008)
and contains only one parameter c that describes the shape of the clothoid. This
parameter c controls the rate that the curvature changes along the segment, i.e., the
slope of the curvature in Figure 3(b). A clothoid can be expressed as:

x = C(ś) =
1

c

∫ ś

0

cos(q2) dq

y = S(ś) =
1

c

∫ ś

0

sin(q2) dq

(1)

where ś = cs and s is the distance measured along the clothoid segment.
The curvature k(s) of a track can simply be found from Gray (1997):

k(s) =
1

R(s)
=

ẋÿ − ẏẍ

(ẋ2 + ẏ2)
3

2

(2)

where R(s) is the radius of the clothoid curvature, ẋ = dx
ds
, ẏ = dy

ds
, ẍ = d2x

ds2 and

ÿ = d2y
ds2 . By substituting x and y from equation (1) into equation (2), the clothoid

curvature is found to be:

k(s) =
1

R(s)
= 2c2s. (3)
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This linear relationship between curvature k and the distance traveled s produces
a smooth feedforward steering that will be described in Section 4.1.2. The
linear relationship between distance traveled and curvature greatly simplifies the
feedforward longitudinal calculation in Section 4.1.1. In addition, a clothoid curve
has many established methods for curve fitting within some geometry constraints
(Walton and Meek, 2005; Baran et al., 2010).

4 Path tracking at the vehicle’s limits

Both the steering and longitudinal controllers consist of feedforward and feedback
components, which will be described in this section. First, a quasi-static model
is used to predict feedforward longitudinal and steering inputs. A ‘g-g’ diagram
is utilised in the feedforward longitudinal controller to ensure that the vehicle is
operating at its limits, while a bicycle model is used to predict how much the
controller should steer in order to track a desired path. To add stability and
robustness, a lanekeeping steering feedback system (Rossetter et al., 2004) is used
to minimise any errors caused by modeling errors or disturbances to the system. To
minimise vehicle yaw oscillation when driving at the limits, a small yaw damping
feedback is added into the controller. In addition, a slip circle that monitors
wheel slip is used for the longitudinal feedback. This slip circle feedback minimises
excessive tyre slip, enabling the steering system to work effectively and detecting
if the vehicle is not at its limits. Furthermore, the controller monitors its speed as
mentioned in Section 2.1.3. Thus, a speed feedback is used to ensure that a vehicle
will not approach a corner with an excessive speed.

4.1 Feedforward based on a quasi-static model

4.1.1 Calculating desired longitudinal acceleration from

a predefined path

The friction limit circle in Figure 1(b) is found from a ramp steer manoeuvre.
Once the limits are known, the goal of the longitudinal feedforward algorithm is
to compute throttle and brake inputs that fully utilise the tyre forces. The friction
limit circle in Figure 1(b) can be translated into a simple mathematical relationship
between ax and ay as follows:

(µg)2 = a2
x + a2

y (4)

where ax is vehicle’s longitudinal acceleration, ay is vehicle’s lateral acceleration
and µ is an effective friction coefficient.

To estimate the feedforward longitudinal acceleration along the clothoid
segment s, the calculation starts by substituting curvature k from equation (3) into
ay approximated by steady state cornering:

ay(s) ≈ Ux(s)2

R(s)
= Ux(s)2k(s) = Ux(s)22c2s (5)

where Ux(s) is the desired speed along the traveled distance s and R(s) is the radius
of the curvature along the path s.
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The curve in Figure 3 is divided into three sections and each has different
calculation processes. The calculation starts by estimating the desired vehicle speed
at the corner’s apex and integrates along the path to find the desired speed along
the path Ux(s).

Constant radius: At mid corner, the vehicle is operating at maximum cornering
(point B in Figure 1(b)), where ax = 0 and ay = µg. The speed at this point, can

be found from using equations (4) and (5). As a consequence, Ux(s) =
√

µR(s)g,
where R is the radius of the curvature at the apex.

Clothoid entry: The goal of the feedforward longitudinal control is to calculate the
correct amount of ax(s) at each point along the segment s, so that when combined
with the ay(s) generated from vehicle cornering, the vehicle’s acceleration will trace
counterclockwise along the fourth quadrant of the friction limit circle.

The overall concept of finding feedforward longitudinal acceleration ax(s) relies
on the process of finding Ux(s). Once Ux(s) is known, ay(s) can be estimated from
equation (5). Thus, by knowing the available friction µ and ay(s), ax(s) can be
found from equation (4).

To find Ux(s), the calculation starts from substituting ay(s) from equation (5)
into equation (4), and rearranging to obtain:

ax(s) =
√

(µg)2 − (2c2sUx(s)2)2. (6)

From the differential equation of ax(s):

ax(s) =
dUx(s)

dt
=

dUx(s)

ds

ds

dt
=

dUx(s)

ds
Ux(s) (7)

where t is time. Substituting this definition of ax(s) into equation (6) obtains:

dUx(s)

ds
=

1

Ux(s)

√

(µg)2 − (2c2sUx(s)2)2. (8)

Equation (8) is then solved in realtime by using a backward integration. The
integration starts from the end of the clothoid entry where s = Lcloth (point B
in Figure 1(b)) and ends at the beginning of the clothoid where s = 0 and k = 0
(point A). The speed calculated from the constant radius section is used as the
initial condition.

After Ux(s) along the clothoid entry is found from equation (8), the desired
feedforward longitudinal acceleration ax(s) along s can be found from equation (6).

Straight: Once the vehicle speed along the path Ux(s) is found, a corner entry speed
and the braking point on the preceding straight section can be determined. This
braking point is an important parameter. Braking too early or too much will result
in a slower corner entry speed (not fully utilising the tyre forces). Braking too late
or not sufficiently will result in vehicle sliding or deviation from the intended path
as mentioned in Section 2.1.3.

Thus, in order to achieve the correct corner entry speed, the controller has to
start braking in the section before reaching the corner entry. If the section before
corner entry is a straight section, the braking distance sbraking can be found from:

sbraking =
(Ux)2 − (U entry

x )2

2µg
(9)
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where Ux is the current vehicle speed and U entry
x is the desired corner entry speed.

In practice, the effect of the time delay in the braking system has to be compensated
by the controller. Conservatism can also be added into equation (9), by slightly
scaling µ down, to ensure sufficient braking distance is available to achieve the
correct entry speed.

Clothoid exit: During corner exit, the controller transitions from full cornering
(point B in Figure 1(b)) to full accelerating (point C). A throttle-on-exit technique
is used to trace along the circle by modulating the correct amount of throttle and
steering.

Similar to the clothoid entry, calculating the feedforward longitudinal
acceleration ax(s) starts by estimating Ux(s) at the constant radius section.
Equation (8) has to be integrated from the beginning of the clothoid where s = 0,
to the end of the clothoid where s = Lcloth. Similar to the clothoid entry, the initial
condition at s = 0 is found from the constant radius section.

Note that the estimated vehicle speed Ux(s) could be overestimated as the
powertrain may not have sufficient torque to accelerate the vehicle out from a
corner at its friction limit, see Figure 1(b). From the controller standpoint, this will
simply saturate the throttle command at wide open throttle, which is the desired
behaviour.

Once Ux(s) is known, equation (6) is used to find the desired ax(s) along the
path. Thus, from Newton’s second law, feedforward longitudinal force along
the path F feedforward

x (s) can be found from F feedforward
x (s) = max(s), where m is

the vehicle mass.

4.1.2 Calculating steering angle from lateral acceleration and

path information

Several methods can be used to determine the feedforward steering from the
estimated lateral acceleration ay(s) in equation (5). It can be calculated from
a complex vehicle model with four nonlinear tyres. Alternatively, empirical data
generated from a ramp steer manoeuvre can create a vehicle specific steady-state
feedforward steering lookup table. For simplicity in this initial study, a basic bicycle
model, shown in Figure 4, using a linear tyre assumption is used. The effects of
the tyre modeling errors are then handled by the steering feedback.

By using vehicle kinematics and assuming small angles, the feedforward steering
is found from:

δfeedforward =
Lr

Ux

− αf + αr (10)

where δ is the steering angle, L is the vehicle length in Figure 4, r is the vehicle yaw
rate, αf and αr are the front and rear slip angles respectively. These slip angles can
be found from equations of motion, using a linear tyre model.

The equations of motion are derived from a bicycle model, assuming the vehicle
is cornering at a steady state.

F f
y + F r

y = may = m
Ux

2

R(s)
(11)

aF f
y − bF r

y = 0
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Figure 4 Bicycle model

where a and b are the distances from the front and the rear axle to the vehicle’s
centre of gravity, F f

y and F r
y are the front and the rear lateral forces, and ay is the

vehicle’s lateral acceleration.

To derive the feedforward steering, a linear tyre assumption is used:

Fy = −Cα (12)

where C is the lateral axle cornering stiffness.

The distribution between front axle normal load Wf and rear axle normal load
Wr can be found from:

Wf =
b

L
mg

(13)

Wr =
a

L
mg

substituting equation (12) and (13) into equation (11) yields the following relations:

−Cfαf =
Wf

g

Ux
2

R(s)
(14)

−Crαr =
Wr

g

Ux
2

R(s)
.

The slip angles from the above equations are then used in equation (10), resulting
in the following expression for the feedforward steering:

δfeedforward =

(

L + KUx

2

g

)

1
R(s) (15)
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where K is the vehicle understeer gradient:

K =
Wf

Cf

− Wr

Cr

. (16)

By using a clothoid curve, the curvature along the path (1/R(s)) in equation (15)
can easily be found from equation (3).

With the feedforward steering controller designed above, the system will have
some tracking error to be compensated by the feedback controller due to the linear
tyre assumption. Figure 5 depicts an example of variations in the feedforward
steering between using a linear tyre model and a brush tyre Fiala model (Pacejka,
2002). It is possible to incorporate a nonlinear tyre model into equation (15) to
improve the accuracy of the feedforward steering, if desired.

Figure 5 Example of feedforward steering from a handling diagram, using ramp steer
Ux = 15m/s (see online version for colours)

4.2 Feedback controller based on different elements

The feedback controller imitates a driver trimming the steering, throttle, and brake
inputs according to the responses of the vehicle. The lanekeeping steering feedback
makes adjustments to the steering to minimise tracking error and provide stability
to the system, while the slip circle longitudinal feedback controller modulates the
throttle and brake to regulate wheel slip. In addition, a speed feedback is used to
track a desired speed and ensure that the vehicle will not overshoot the corner entry
speed. To minimise yaw motion of the vehicle at the limits, yaw damping is added
into the system.

4.2.1 Lanekeeping

The controller is built around a potential field lanekeeping system (Rossetter et al.,
2004; Switkes et al., 2006), which provides stability, robustness and path tracking
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up to the limits of tyre adhesion (Talvala et al., 2011). The lanekeeping feedback
mitigates tracking errors due to possible disturbances from the testing environment
or from modeling errors caused by the linear tyre assumption used in Section 4.1.2.

The lanekeeping feedback produces an additional steering angle, which is
proportional to the lookahead error ela, shown in Figure 6(a).

δcontrol = −2Kp

Cf

ela (17)

where Kp is the lanekeeping potential field gain.

Figure 6 Lanekeeping system: (a) definition of heading error (∆ψ) and lookahead error
(ela) and (b) lanekeeping on a curved path

Note that the lookahead error ela in Figure 6(a) is a combination of both lateral
error e and heading error ∆ψ:

ela = e + (a + xla) sin ∆ψ (18)

substituting ela in equation (18) into equation (17) gives:

δcontrol = −2Kp

Cf

(e + (a + xla) sin(∆ψ)). (19)

The lanekeeping potential field gain Kp is chosen to ensure stability as described
in Rossetter et al. (2004) and Talvala et al. (2011), but the lookahead distance
xla is tuned for sustained driving at the handling limits. As xla is increased,
the lanekeeping system becomes more sensitive to the vehicle’s heading error
∆ψ (see equation (19)). This produces a quick response to vehicle yaw motion,
which improves yaw stability. However, if xla is too high, the lanekeeping steering
command will become too sensitive to vehicle yaw motion and could induce yaw
oscillation in the system (Talvala et al., 2011). Thus, choosing xla is a tradeoff
between yaw stability and yaw oscillation during tyre saturation.

It is important to point out that the error signal ela used in this lanekeeping
system is based on the projection to the closest point on the desired path, as
shown in Figure 6(b). As a consequence, the lanekeeping feedback does not depend
on the future path information and does not have any inherent conflict with the
feedforward steering. Such conflicts may occur in lanekeeping systems that use
feedback based on future path information, such as one proposed by Tseng et al.
(2005).
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In addition, the steering controller limits the amount of steering to avoid
exceeding a maximum lateral slip, αlim, on the front axle. Since no additional lateral
tyre force is generated after the lateral slip exceeds the peak slip, αpeak, where the
maximum lateral force is generated, there is no significant benefit from additional
steering when the lateral slip α > αpeak. In practice, αlim is chosen to be slightly
higher than αpeak to ensure that the front axle could generate maximum force and
to enable the longitudinal feedback controller to detect any excessive tyre slip.

4.2.2 Yaw damping

In addition to the lanekeeping system, a small amount of yaw damping is added
into the steering feedback controller to minimise yaw oscillation. At the limits of
handling, the yaw dynamics become more oscillatory since the inherent damping
due to the tyre forces decrease. Yaw oscillation is undesirable, as it creates
unnecessary lateral tyre slip. This reduces the available longitudinal tyre force that
can be used for accelerating the vehicle along the path.

To reduce yaw motion of the vehicle, a steering feedback term δdamping based

on ∆ψ̇ = d∆ψ/dt is added into the lanekeeping equation (19):

δdamping = −k∆ψ̇∆ψ̇ (20)

where k∆ψ̇ is the yaw damping gain.

Rather than differentiate ∆ψ to obtain ∆ψ̇, which could amplify high frequency
noise, ∆ψ̇ is calculated from the measured vehicle states:

∆ψ̇ = ψ̇CG − ψ̇r

= r − Ux

R(s)
(cos ∆ψ − tanβ sin ∆ψ) (21)

where ψCG is the heading angle of the vehicle relative to an earth frame, ψr is the
heading angle of the path relatives to earth frame and β is the vehicle sideslip.

The final steering angle δ is therefore:

δ = δfeedforward + δcontrol + δdamping. (22)

4.2.3 Slip circle

A longitudinal feedback controller based on a slip circle fulfils two purposes.
First, it provides a longitudinal input that controls tyre slip. Controlling rear tyre
slip enhances vehicle stability by avoiding rear axle saturation, while controlling
front axle slip ensures that sufficient control authority is provided to the steering
controller. For instance, when a vehicle is understeering (the front tyre is saturated),
additional steering no longer provides additional lateral tyre force to the vehicle.
Thus, the slip circle controller reduces the amount of longitudinal force to increase
lateral force available to the steering. Secondly, the slip circle controller ensures that
the tyres are operating at their limits. If the slip circle controller detects that none of
the tyres is operating at their limits, it can command additional longitudinal force
to utilise the friction.
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Concept Before introducing the idea of combined slip, individual lateral and
longitudinal tyre curves are shown in Figure 7(a). A lateral tyre curve demonstrates
how lateral tyre slip α generates lateral tyre force. The initial slope of the lateral
tyre curve is the lateral cornering stiffness C used in equation (12). The maximum
lateral tyre force is achieved when the lateral slip α = αpeak, and is equal to the
maximum force that a tyre could generate.

Figure 7 Relationship between tyre curves and a slip circle: (a) lateral and longitudinal
tyre curves and (b) a slip circle (see online version for colours)

Similarly, a longitudinal tyre curve shows the relationship between the longitudinal
tyre force and the longitudinal slip κ, which is defined as:

κ =
Reω − V

V
(23)

where ω is the angular velocity of a wheel, Re is the effective radius of the tyre and
V is the wheel centre’s velocity along the tyre’s longitudinal axis. When only κ is
present, the maximum longitudinal force occurs when κ = κpeak, which corresponds
to the peak braking or accelerating.

A slip circle explains the state of the combined longitudinal and lateral tyre
slip, which can be used for estimating the available longitudinal and lateral tyre
force as described in Schuring et al. (1996). Alternatively, a combined slip can be
used as a feedback state for the longitudinal controller. This slip represents how
force is distributed between lateral and longitudinal force. By normalising lateral
slip by αref = αpeak and longitudinal slip by κref = κpeak, any point on a unit circle
(α2 + κ2 = 1) in Figure 7(b) produces peak tyre force, where normalised quantities
α and κ can be defined as:

α =
α

αref

κ =
κ

κref
.

(24)

For instance, |α| = 1 corresponds to a tyre generating peak cornering force while
κ = −1 represents a tyre generating maximum braking.
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Note that the unit circle in Figure 7(b) can be used to define the tyre force
boundary between increasing and non-increasing tyre force regions. Inside this unit
circle, the tyre force does not reach its limit and increasing slip increases tyre force.
However, outside of this unit circle, increasing slip no longer generates additional
force. In theory, a racecar driver will try to stay on these unit circles defined
for each tyre, to obtain maximum tyre forces. In practice, due to weight transfer,
suspension geometries, etc., it is difficult to be on the unit circle of every tyre at
once. To gain a fundamental understanding of how this slip circle concept works,
this paper simplifies the concept into front and rear slip circles. The left and right
κ of each axle are averaged to create a slip circle of each axle.

In addition, it should be pointed out that there is a fundamental difference
between the ‘g-g’ diagram in Figure 1(b) and the slip circle in Figure 7(b). A ‘g-g’
diagram represents the vehicle’s combined acceleration limits. It is useful to show
how close the vehicle is to the limits but does not show when a tyre passes its limit.
In contrast, a slip circle can detect if a tyre is sliding beyond its peak force (outside
of a slip circle) or ‘gripping’ (inside of a slip circle) based on the state of the slip
relative to the unit circle. Thus, a slip circle is used as a feedback state while a ‘g-g’
diagram is used for calculating desired acceleration and speed profiles.

Implementing the slip circle controller

A racecar driver has the ability to control the amount of tyre slip to ensure
vehicle stability and to operate at the peak tyre force. Similarly, the objective
of the longitudinal slip circle controller is to track the edge of the unit circle
in Figure 7(b). The controller should minimise excessive slip that could cause
understeer or oversteer and ensure that the tyres are operating close to their peak
forces.

To reach the full limits of the vehicle, one must choose αpeak and κpeak to
normalise the unit circle in equation (24). In practice, different reference values may
be used depending upon the desired vehicle behaviour. Since rear axle saturation
could cause vehicle instability, different levels of conservatism can be chosen to
balance between operating at the peak force and minimising the chances of rear
wheel saturation when applying throttle. For instance, αref

f is chosen from the

peak tyre force using a ramp steer manoeuvre while αref
r is detuned from the

αpeak to minimise rear axle sliding. Similarly, κref
f and κref

r in Table 1 are found
experimentally from the peak tyre force in a longitudinal tyre curve.

To explain how the longitudinal slip circle controller operates in various
scenarios, different tyre slip conditions shown in Figure 8 are used.

Front or all tyres are saturated: When the front axle slip is outside of the unit
circle, the slip circle algorithm focuses on controlling the front axle slip. If |ᾱ| ≤ 1
(points A1 and A2 in Figure 8), the feedback longitudinal force is proportional to
the distance between the slip and the edge of the unit circle (along the κ̄-axis). If
|ᾱ| > 1 (points B1 and B2), the feedback longitudinal force is proportional to the
the distance along the ᾱ and κ̄ axes.

F feedback
x =

{

Kκ∆κ̄ + Kα∆ᾱ, κ̄ ≤ 0

−Kκ∆κ̄ − Kα∆ᾱ, κ̄ > 0
(25)
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Table 1 Controller gains and parameters for Bonneville Salt Flats

Steering controller

Lanekeeping Kp 3500 N/m
Lookahead distance xla 20 m
Yaw damping k∆ψ̇ .1 s

Longitudinal controller

Front axle lateral slip αref
f 7 deg

Rear axle lateral slip αref
r 5 deg

Front axle longitudinal slip κref
front .1

Rear axle longitudinal slip κref
rear .1

Kappa slip Kκ 3000 N
Alpha slip Kα 2000 N
Speed Kspeed 2000 N · s/m

Figure 8 Different control scenarios on a slip circle (see online version for colours)

where

∆κ̄ =

{

|κ̄| −
√

1 − ᾱ2, ᾱ ≤ 1

|κ̄|, ᾱ > 1

∆ᾱ =

{

0, ᾱ ≤ 1

|ᾱ| − 1, ᾱ > 1

Kκ and Kα are the gains of the front longitudinal and lateral slip respectively.
Note that when the front axle slip is at point A2 or B2 in Figure 8, the slip

circle commands positive feedback force. This is similar to a racecar driver reducing
the amount of braking when the front axle is locking up. On the contrary, when
the front slip is at point A1 or B1, the feedback controller will reduce the amount
of throttle, mimicking a racecar driver letting off the throttle to reduce wheel spin.

Notice that with this longitudinal controller, there is no direct control over
lateral slip α. Pulling the front slip back into a unit circle becomes a challenge when
|ᾱ| > 1. Changing the longitudinal controller input could only have a secondary
effect on vehicle speed, which then influences the lateral slip α. Only the front
steering input has direct control over front lateral slip αf .
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Only rear tyres are saturated: When only the rear axle is sliding (rear slip is outside
of the unit circle), equation (25) is used with parameters from the rear axle.

None of the tyres are saturated: When none of the tyres is operating at their peak
forces (point C1 or C2 in Figure 8), a racecar driver can adjust the inputs to fully
utilise the tyre forces. This may be emulated by allowing the controller to increase
longitudinal force:

F feedback
x = KnoSlip∆κmin

∆κmin = min

{

√

1 − (ᾱf )2 − |κ̄f |
√

1 − (ᾱr)2 − |κ̄r|

(26)

where KnoSlip is the gain when every axle is in the increasing region. Because this
behaviour can conflict with setting appropriate corner entry speed, the no-slip gain
is inactive during braking on a straight section.

4.2.4 Tracking of desired speed profile

As mentioned in Section 2.1.3, vehicle speed plays an important role in vehicle
control, especially during corner entry. Although the vehicle speed is indirectly
related to the longitudinal acceleration, the lateral acceleration directly relates to
the square of the vehicle speed. By using a steady state assumption to approximate
ay in equation (5), equation (4) also depends on vehicle speed Ux. Thus, in order
to control the vehicle’s lateral acceleration ay , controlling the vehicle speed Ux

becomes critical.
In order to track a desired speed profile, a proportional speed feedback is used:

F speed Feedback
x = Kspeed(Ux(s) − Ux) (27)

where Kspeed is the speed proportional feedback controller gain. Desired vehicle
acceleration ax(s) and desired vehicle speed Ux(s) are calculated from Section 4.1.1.
The speed tracking is active in every segment except during the constant radius
section, where the tyre slip circle controller and feedforward drag compensation
F drag

x govern the longitudinal force. F drag
x is added to compensate for drag from

rolling resistance, aerodynamic force, inclination and the longitudinal component
from the front axle turning.

The total longitudinal force Fx is the combination of the feedforward
longitudinal force calculated from a ‘g-g’ diagram in Section 4.1.1, the drag
compensation, the slip circle feedback in Section 4.2.3 and the speed feedback.
Thus, the longitudinal force command Fx is therefore:

Fx = F feedforward
x + F drag

x

+ F feedback
x + F speed Feedback

x . (28)

If the total longitudinal force is positive, the force is converted to throttle position
via an engine map. On the other hand, if the total longitudinal force is negative, the
force is converted to either throttle position that will produce engine brake using
an engine map or a commanded brake pressure using a lookup table.
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5 Experimental results

This research uses an Audi TTS (four-wheel drive, Figure 9) with production
electronic power steering motor, active brake booster and throttle by-wire that are
modified to receive commands from the controller. A lefthanded oval track at the
Bonneville Salt Flats in Utah is used for testing. This surface has an approximate
friction coefficient of 0.5. The vehicle is equipped with a Differential Global
Positioning System (DGPS) and Inertial Navigation System (INS), from which
vehicle position and other states can be obtained. The map matching algorithm
(Rossetter et al. (2004)) utilises the information from the DGPS/INS system to find
the vehicle’s path tracking errors used in equation (19). The sampling rate of the
controller is 200Hz.

Figure 9 Autonomous Audi TTS at Bonneville Salt Flats (see online version for colours)

5.1 Overall controller performance

Figure 10 provides an overview of how the controller performs on an oval track.

Straight: t = 67.6–71.1 s: In this section, the vehicle transitions from full throttle
to full braking in Figure 10(b), when the distance to the corner entry satisfies
equation (9) at t = 68.5 s. During braking, the longitudinal slip κ in Figure 10(d)
is negative in order to generate braking force and the longitudinal acceleration
(Figure 10(g)) is approximately equal to −0.5 g.

Corner entry: t = 71.1–75.1 s: During this transient phase, the controller trail-brakes
by gradually releasing the brake (see Figure 10(b)) while the feedforward steering
increases the steering angle (see Figure 10(a)). Although the lateral slip α increases
and the longitudinal slip κ decreases in Figure 10(c) and (d), the magnitude of
the combined slip (slip norm |slip| =

√
ᾱ2 + κ̄2) in Figure 10(e) is approximately

constant.

In Figure 10(a), notice that the lanekeeping steering feedback commands additional
steering throughout the corner. This is expected, as a linear tyre model is used in
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Figure 10 Controller commands (a)–(b) and vehicle states (c)–(h), with zero no-slip gain.
Feedback force in Figure (b) only shows slip circle controller command (see
online version for colours)

the feedforward steering calculation. Since the experimental vehicle has an inherent
limit understeer characteristic, additional steering is required when cornering at
high lateral acceleration as in Figure 5.

Constant radius: t = 75.1–84.5 s: At this point in the manoeuvre, all of the
feedforward commands (Figure 10(a) and (b)) are relatively constant. The
lanekeeping steering feedback in Figure 10(a) makes small corrections to minimise
the lookahead error ela in Figure 10(h). Note that the no-slip gain KnoSlip is set to
zero in Figures 10–12 to investigate the effectiveness of the feedforward longitudinal
controller. Since the vehicle is inside a unit slip circle and the no-slip gain is off,
the slip circle feedback commands zero in Figure 10(b). The slight speed increase
in Figure 10(f) is a result of overcompensation for vehicle drag.

Corner exit: t = 84.5–88.5 s: The controller applies throttle-on-exit. It progressively
increases the throttle while unwinding the steering in Figure 10(a). A small
dip in the longitudinal slip κ around t = 86 s in Figure 10(d) indicates clutch
disengagement from the Direct-Shift Gearbox (DSG). This consequently creates a
small drop in the longitudinal acceleration in Figure 10(g).

While the vehicle is driving at its predicted friction limits, it still maintains good
tracking performance. The lookahead error ela in Figure 10(h), which is the state
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that the lanekeeping tries to track, remains within 0.5 m. The lateral error e, which
is a by-product of controlling ela, stays within 0.8 m throughout the corner.

Figure 11 shows the effectiveness of the feedforward longitudinal controller
when the no-slip gain is inactive. The goal of the feedforward longitudinal
controller is to design a longitudinal force command (brake and throttle input) that
will make the vehicle’s acceleration trace the friction limit circle (µg = 0.5 g) on a
‘g-g’ diagram. Figure 11 shows that the vehicle’s acceleration traces the friction
limit circle very well, up to the engine power limit. The dip in the clothoid exit
around ay = 4 and ax = 1 m/s

2
corresponds to the gearshift mentioned previously.

Figure 11 ‘g-g’ diagram from Audi TTS, with zero no-slip gain (see online version for
colours)

5.2 Performance with over-estimated friction

This section shows how the same controller with the same parameters performs
on a different corner of the oval. Figure 12 demonstrates the robustness of the
controller and how it reacts when the actual friction coefficient is lower than the
predicted value (µ = 0.5). Although the vehicle oversteers during 33.8–35.2 s and
understeers during 44–45 s (from |slip| > 1), the vehicle remains stable as described
below.

During the corner entry from 32.2–36.1 s, the vehicle is trail-braking into the
corner. The rear slip starts to grow due to weight transfer, which reduces the normal
force on the rear axle. Since the predicted friction value is too large, the slip norm
of the rear axle in Figure 12(e) grows outside of the slip circle (|slip| > 1). The
longitudinal slip circle feedback controller reduces the amount of braking force (see
Figure 12(b)) to allow the rear axle to regain grip. At the same time, the lanekeeping
steering controller countersteers and ensures stability of the system. The saturation
of the rear tyres causes the lateral error e and lookahead error ela to grow as shown
in Figure 12(h), but the vehicle remains stable.
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Figure 12 Controller commands (a)–(b) and vehicle states (c)–(h) when the actual friction
is less than the predicted value, with zero no-slip gain. Feedback force in
Figure (b) only shows slip circle controller command (see online version for
colours)

During the constant radius turn from 36.1–45.9 s, the vehicle speed slowly
increases as shown in Figure 12(f). This is due to the longitudinal controller
overcompensating for drag force. Although the increase in speed is minimal, the
vehicle is already close to its limits and thus this excessive speed is sufficient to
cause the vehicle to understeer (front slip norm in Figure 12(e) > 1). This results
in increasing tracking error in both e and ela, as demonstrated in Figure 12(h).
Since the front axle is already saturated, any additional steering does not improve
tracking performance. Thus, in this scenario, the controller reduces the amount
of throttle (see Figure 12(b)) to minimise the front slip, and hence reduces the
understeer and improves the tracking performance.

Note that modulating the longitudinal input only has direct control over
longitudinal slip κ, i.e., along the κ̄-axis in Figure 8. When heavy understeer occurs
(ᾱ > 1), controlling longitudinal slip is not sufficient to bring the wheel slip back
into a unit circle. A steering input is required to move the lateral slip α back
into the unit circle. Work is in progress to coordinate steering and throttle inputs
to ensure that wheel slip can be moved back into the unit circle from both the
longitudinal and lateral directions.
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At the corner exit during 45.9–50.2 s, since the vehicle has recovered from
understeering in the constant radius section, the tracking performance improves as
both e and ela reduce to zero in Figure 12(h).

5.3 Effectiveness of yaw damping

Figure 13 shows how the controller performs without steering yaw damping.
Without steering yaw damping, the system dynamics include only the intrinsic
damping of the tyres, which decreases as the tyres approach their limits. This in turn
creates an oscillation in the vehicle states, especially yaw motion. This unnecessary
yaw motion is undesirable since it requires additional lateral tyre force, which is not
necessarily available when the vehicle is operating at its limits. After adding yaw
damping (in Figures 10 and 12), the oscillation in the vehicle states is significantly
reduced, demonstrating the effectiveness of injecting yaw damping to compensate
for tyre saturation.

Figure 13 Oscillation in vehicle states when no yaw damping is added into the system
(see online version for colours)

6 Conclusion

Understanding how racecar drivers control a vehicle at its limits provides many
insights into designing an autonomous racing controller. The desired path is
structured so that it imitates a racecar driver’s cornering sequence while a clothoid
path is used for corner entry and exit sections. The controller consists of individual
controller modules which cover different aspects of driving, yet work concurrently
to control the vehicle at its limits. A linear bicycle model and a ‘g-g’ diagram
are used to imitate racecar drivers’ mental model (pre-planning), while lanekeeping
steering and a slip circle feedback are utilised to mimic drivers making corrections
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to minimise tracking errors. The experimental results demonstrate the controller’s
ability to robustly track a desired path with a lookahead error ela of less than
0.5 m while tracing a friction limit circle on a variable salt surface. Moreover,
the lanekeeping steering provides stability to the vehicle when the controller
overestimates the friction value, by providing countersteering when the vehicle
oversteers. When the vehicle understeers, the slip circle controller regulates the front
slip, allowing the front tyres to regain grip.

The results also highlight several areas that will be addressed in future research.
Realtime friction estimation can further improve controller performance and
minimise tracking error caused by overestimating friction. Furthermore, work is
in progress to coordinate steering and longitudinal inputs to improve wheel slip
control. Tighter path tracking is also possible with more accurate feedforward
steering that takes the tyre nonlinearities into account.

The racing controller’s abilities to track a path at the limits while maintaining
minimal tracking error shows promise for future vehicle safety systems. This
controller can be applied to drive an autonomous vehicle while ensuring stability
and tracking ability even in extreme conditions. Alternatively, each controller
module can be adapted to create driver assistance systems that work in conjunction
with the driver, assisting the driver during emergency manoeuvres.
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