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1. Introduction

Autonomous driving technologies are expected to significantly 

improve driving safety and convenience by alleviating the burden of 

a driver. Currently, they are implemented as a form of an advanced 

driver assistance system to partially aid drivers. It is also anticipated 

that, in the near future, fully autonomous cars will emerge as the 

key component of intelligent transportation systems, replacing 

human drivers. The announcement of Google’s self-driving cars 

in May 2014 was an encouraging step towards commercializing 

autonomous vehicles in the near future (1). Major automotive 

manufacturers have also announced plans to market autonomous 

vehicles in the next decade(2), (3). 

Autonomous driving technology made an obvious progress, owing 

to the Defense Advanced Research Project Agency (DARPA) Grand 

Challenge held in 2007, which evaluated autonomous navigation 

technologies for urban environments. Most of the successful 

competitors, concentrated on environment perception, precision 

localization, and navigation, in order to execute various urban driving 

skills including, lane changes, U-turns, parking, and merging into 

moving traffic (4)～ (7). Fig. 1 shows the Stanford’s autonomous research 

vehicle used in DARPA 2007, which was equipped with multiple 
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Fig. 1 Stanford’s autonomous research vehicle and 

the demonstration of sensing and localization of 

the vehicle.　　(a)	Junior:	Stanford’s	autonomous	
research	vehicle(8).	 (b)	A	2-dimensional	color	
histogram	showing	the	posterior	belief	about	our	
vehicle’s	location;	the	current	Velodyne	scan	is	also	
shown	by	gray	color	texture(8).

 

(b)

(a)



132 IEICE Fundamentals Review  Vol.9 No.2

active sensors to conduct sensing and localization. Obviously, the 

environment perception is an essential function in autonomous driving, 

which can avoid the occurrence of collision. The precision localization 

is also significant, especially for the urban environment. Because the 

vehicle will be operated on the constructed urban road, the action of 

autonomous vehicle has to obey the traffic rules like human driver. For 
example, in the turning case, which is demonstrated in Fig. 2, the vehicle 

has to change to the right lane to achieve the right turning action. This 

decision is made based on the knowledge about the positioning, which is 

supposed to be lane-level. Moreover, this decision of the lane changing 

also needs the information from the digital map, including the semantic 

description of traffic rules.
Based on the type of sensors used, the localization methods can 

be categorized into: active sensor based and passive sensor based. 

The passive sensor collects data, including light, radiation, heat or 

signals in the surrounding environment, such as camera and GNSS 

receiver. While, the active sensor includes transmitters that send 

out a signal, a light wavelength or electrons to be bounced off the 

target, with data gathered by the sensor upon their reflection. The 
most popular active sensor for localization is Light Detection and 

Ranging (LIDAR) sensor. When we take a look into the intelligent 

vehicle literatures, it is easy to find many successful approaches 

that make use of active sensors, such as 2D LIDAR and Velodyne. 

Good examples of these are (4) to (7), which described practical 

approaches used in DARPA, performed the first tests of these 

ideas in real conditions. Then the application of active sensor, 

especially Velodyne, became a popular research topic, which was 

intensively published in the annual flag international conference, 

IEEE International Conference on Intelligent Transportation 

Systems (ITSC) and IEEE Intelligent Vehicles Symposium (IV) 

(8) ～ (15). The reason for the favor of the active sensor is that this 

sensor can simplify the underlying distance estimation and while 

producing remarkably good results. Such simplification is achieved 
by acquiring dense clouds of 3D points with a laser.

However, developing localization approaches based on active 

sensors might be an important drawback with a view to their 

future introduction in driverless cars. This kind of sensors are 

very expensive nowadays, reaching in some cases a cost higher 

than the vehicle. Even assuming a drastic decrease of the cost 

of these sensors, they still present a critical problem regarding 

their excessively high energy consumption. These facts indicate 

the necessity of considering lower-cost alternatives, as the ones 

provided by passive sensor, such as camera(16). This paper will 

discuss about the possibility of using passive sensor for vehicle self-

localization in urban environment.

But it does means the totally negative opinion about the active 

sensor. The collision avoidance function definitely needs the active 
sensor. Moreover, the more accurate drivability map we have, the 

less error is introduced into localization and motion planning. The 

application of active sensors for map generation is also preferable.

This paper analyzes the different roles of active sensors and 

passive sensors for vehicle localization in section 2 and section 

3, respectively. Moreover, the section 2 also introduces the map 

construction from the data acquired from active sensors. Section 

4 demonstrates an example of passive sensor based vehicle self-

localization system. Finally, this paper concludes with the inspired 

discussion about the vehicle self-localization.

2. Localization and Mapping with 
Active Sensor

Simultaneous Localization and Mapping (SLAM) techniques 

are able to construct or update a map of an unknown environment 

while simultaneously keep track of an agent's location within it. 

SLAM has become a key component in robotic navigation, which 

has seen significant progress in the last two decades. Following the 
achievements, SLAM appears in autonomous driving as a technique 

of vehicle self-localization and mapping. Most applications of active 

sensors are bound with SLAM techniques. Therefore, this section 

mainly focuses on the active sensor based SLAM, and explains the 

application of active sensor from, localization and mapping, two 

aspects.

2.1 Localization in SLAM

2.1.1 SLAM algorithm

The intensive survey of the SLAM algorithm could be found in 

(17) to (19). A large variety of different estimation techniques have 

been proposed to address the SLAM problem. The first milestone 
of SLAM was presented by Smith and Cheeseman (20), (21), which 

proposed to use the Extended Kalman filter (EKF) for solving 

the problem of SLAM. As shown in Fig. 3, a mobile robot moves 

through an unknown environment and takes relative observations 

of landmarks, the estimates of these landmarks mj are all necessarily 

correlated with each other because of the common error in estimated 

vehicle location xk. A consistent full solution to the combined 

localization and mapping problem would require a joint state of 

EKF. The joint state is composed of the vehicle pose and every 

landmark position {xk mj}, to be updated following each landmark 

observation zk, j. 

Unfortunately, EKF covariance matrices are quadratic in the 

Fig. 2 Motion planning for the right turning case.
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number of the landmarks, and updating them requires time 

quadratic in the number of landmarks. FastSLAM, introduced by 

Montemerlo et al.(22), (23), with its basis in recursive Monte Carlo 

sampling, or particle filtering. Here, the probability distribution 

is on the trajectory x0:k rather than the single pose xk because, 

when conditioned on the trajectory, the map landmarks become 

independent(17). This is a key property of FastSLAM, and the reason 

for its speed. Thus, the map is represented as a set of independent 

landmarks, with linear complexity, rather than a joint map 

covariance with quadratic complexity. 

2.1.2 Curb based Localization

Curb detection is an important capability for autonomous ground 

vehicles in urban environments. It is particularly useful for path 

planning and safe navigation. Another important task that can 

benefit from curb detection is localization.
There are several approaches for identifying curbs using 2D 

LIDARs in literatures(24), (25). Qin et al. mounted a single tilted 2D 

LIDAR in the front of vehicle to detect the curb (25). Because of 

the height difference between road shoulder and road surface, the 

jump can be observed in the ranging data of LIDAR. Based on this 

idea, the direction and distance of curb relative to the vehicle can be 

decided, and then the curb is used as a static reference for vehicle 

localization in next come time. This research group conducted an 

autonomous system demonstration in July 2011 using curb-only 

road features based localization, which is shown in Fig. 4. The 

experiment results showed that the lateral position of vehicle was 

accurate. However, the longitudinal variance changed remarkably 

along the drive. It is very interesting to note that when the vehicle 

was approaching the intersections and turnings, the longitudinal 

positioning error are decreased significantly by the longitudinal 

information of the curb features at intersection. 

As 2D LIDARs do not obtain dense point clouds at once, a 

limited number of points can be detected as curbs in each frame. 

On the other hand, 3D LIDAR sensor (e.g. multilayer LIDAR) can 

suppress the lack of data. In (4) and (14), curb like obstacles can be 

detected by analyzing the ring compression of a multilayer LIDAR 

as shown in Fig 5. However, when obstacles as pedestrians and 

cars are present in the street, the object will possibly be detected 

as curbs. The regression filter was introduced to estimate the curb 
shape and to remove points that do not follow the road model (14). 

The experiment showed that the longitudinal error was the major 

responsible for the localization error (mean 1.49 meters), despite of 

a relatively low lateral error of approximately 0.52 meter (14).

2.1.3 Road Mark based Localization

Some LIDAR sensors return infrared reflective intensity 

information. Hata et al. extended the curb detection based 

localization, and proposed to extract all road marks on road 

surface based on the LIDAR intensity for localization (15). The road 

mark detector was developed based on the intensity histogram 

thresholding. The thresholding result is shown in Fig. 6. The 

localization results showed that both lateral error and longitudinal 

error are reduced by the integration of road marks and curb 

compared to curb only. But the mean of longitudinal error is still 

 

Fig. 3 Demonstration of SLAM problem(17).

 
Fig. 4 Autonomous system demonstration.　　(a)	Vehicle	
in	operation,	(b)	Pickup-Dropoff	points,	(c)	Snapshot	of	curb	
localization	estimate,	(d)	curb	map	augmented	by	planar	patches	（25）.

 

Fig. 5 Laser ring compression level is related to the 

surface slope.　　In	 this	 frame	obstacles	can	be	roughly	
distinguished	as	walls	(yellow	field),	grass	(green	field),	road	
(blue	field)	and	curbs	(red	field).	They	are	estimated	using	
the	ring	compression	data	(14).
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larger than 1 meter (15). 

2.1.4 Land marks and building based Localization

Besides the designed traffic features on road area, the objects 

along the road side were also adopted for localization. Choi et al. 

proposed a hybrid map-based SLAM (11). This paper described the 

environment by using a grid map and a feature map together. The 

feature model selected thin and tall objects like street lamps or trees 

as landmarks. The grid map included the geometric information of 

surrounding buildings, as shown in Fig. 7. The feature-based SLAM 

approach showed generally the worst performance. It produced huge 

errors especially where no landmark measurement was found. The 

grid-based SLAM approach showed better results than the previous 

one. The hybrid map-based SLAM achieved the best performance. 

Moreover, the error accumulation was observed in the experiment 

result, which can be consider as the inherent weakness of SLAM.

2.2 Map Construction using SLAM

EKF-SLAM and particle filter based SLAM are more popular 

for the online localization. The graph-based formulation of the 

SLAM problem has been proposed by Lu and Milios in 1997 (26). 

Consequently, graph-based SLAM methods have undergone a 

renaissance and currently belong to the state-of-the-art techniques 

with respect to speed and accuracy (27). GraphSLAM extracts a set 

of soft constraints from the data, which are represented by a sparse 

graph. Motion constraints link any two consecutive robot poses, and 

measurement constraints link poses to land marks. GraphSLAM 

obtains the map and the robot path by resolving these constraints 

into a globally consistent estimate. The solution of the GraphSLAM 

can be considered as a least squares problem (28). In the large-scale 

mapping problems, it was found that GraphSLAM can handle large 

number of features, and even incorporate GPS information into the 

mapping process (28). 

Levinson et al. integrated GPS, IMU, wheel odometry, and 

LIDAR data acquired by an instrumented vehicle, to generate high-

resolution 2D road surface maps using GraphSLAM method (29). In 

order to generate pure road surface map, dynamic objects should be 

excluded and cause the hole effect. Thus, data collection should be 

conducted at multiple times. However, if the location of multiple 

measurements are set by GPS alone, ghosting occurs. After using 

GraphSLAM, the hole is filled and the ghost image is removed. In 
(29), the online-localization was conducted by using the learned map. 

In a variety of urban roads, the vehicle was able to localize in real-

time relative to the previously created maps with errors of less than 

0.1 meter, far exceeding the accuracy with GPS alone. Moreover, 

the proposed map based localization succeeded in GPS-denied 

environments, such as in tunnels and bridge (29).

Besides the 2D road surface map, the 3D environment models 

beyond the road surface was proposed as well, which could improve 

the reliability and accuracy, especially on unusually featureless 

roads. Stanford group built a 3D point cloud map for real urban 

environment (30). With this 3D map, vehicle were able to drive 

autonomously in several urban environments that were previously 

too challenging. As one example, the vehicle participated in an 

autonomous vehicle demonstration in downtown Manhattan in 

which several blocks of 11th Avenue were closed to regular traffic. 
The vehicle operated fully autonomously and successfully stayed in 

the center of its lane, never hitting a curb or other obstacle.

Obviously, the localization with pre-prepared map is preferable 

recently, because of the accurate pre-prepared map can reduce the 

error accumulation in SLAM. Following this trend, many groups 

already developed their own 3D map for the research of autonomous 

driving. The Fig. 8 shows several examples, including Stanford, the 

University of Freiburg and Toyota Technological Institute.

 
Fig. 6 Road marking detection through histogram thresholding. 

Blue	lines	are	the	road	bounds	estimated	by	curb	detector	and	
yellow	points	correspond	to	the	detected	road	marking	(Top:	
crosswalk;	Bottom:	double	line)(15).

Fig. 7 A valid area of the local map (red square: 

a grid map area, green contours: feature map 

areas) (11)
.
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3. Localization with 
Passive Sensors

3.1 Global Navigation Satellite System 
(GNSS)

The Global Navigation Satellite System (GNSS) is a space-based 

satellite navigation system that freely provides location and time 

information to users. GPS, operated by the United States, was the 

representative positioning system. In the open sky field, the accuracy 
of GPS positioning is less than 0.1 meter (31). But the land vehicle 

navigation system typically has to operate in the areas where GNSS 

signal is either blocked or reflected, such as the urban canyon. 

Currently, other satellite navigation systems such as GLObal 

NAvigation Satellite System (GLONASS) of Russia, Quasi-Zenith 

Satellite System (QZSS) of Japan, Galileo of Europe, BeiDou of 

China are now in operation or are about to start operation. The 

multiple GNSSs reduce the probability of outage happens and also 

improve the positioning accuracy for urban environment (32). 

Currently, the most challenging problem in urban environment is 

that GNSS suffers from Non-Line-of-Sight (NLOS) and multipath 

effect. The various technologies of GNSS were developed to 

mitigate the multipath and NLOS effects, which are mainly 

cataloged by three: antenna-based (33), (34), receiver-based (35), (36), 

and navigation-processor-based (37) ～ (39) techniques. Most of the 

multipath mitigation algorithms do not consider the effect of signal 

reflection as an aid to the position estimation. With the development 
of ranging technologies, the 3D building information became 

available to estimate the multipath and NLOS effects. Meguro et al. 

used an omnidirectional infrared (IR) camera, which was installed 

on the roof of vehicle, for estimating the area of sky and identifying 

NLOS signals (40). As an extended idea of NLOS exclusion, Bauer 

et al. built a shadow map, which can represent the satellite reception 

conditions real time (41). The NLOS measurement can be detected 

and excluded from the positioning solution (41). Moreover, Obst et 

al. utilized a dynamic 3D map to exclude the potential multipath 

signal from the observation set for a vehicle-based loosely coupled 

GNSS/INS integration system (42).

3.2 Inertial Navigation System (INS)

Inertial Navigation System (INS) is a navigation aid that uses 

multiple on-board sensors, such as speedometer and gyro sensor, to 

continuously calculate via dead reckoning the position, orientation, 

and velocity of a moving object. The INS system can provide 

accurately relative vehicle position in short time, but its accuracy 

degrades with time (43). To overcome the disadvantages associated 

with the standalone operation of GNSS and INS, the two systems 

are often integrated together so that their drawbacks are minimized. 

In the early studies of this integration field, the researches focused 
on evaluating the integration system performance under open sky 

fields (44), (45). Recently, the qualification of the integration system 

was discussed and performed in more different environment. 

In order to overcome the multipath interference when the GPS 

signal is reflected by external agent, Milanes et al. proposed a 

dynamic integration system using a decision unit, which can choose 

the correct one from GPS and INS (46). Godha et al. employed 

constraints to describe the behavior of a typical land vehicle in the 

GPS/INS integrated system, when a GPS outage occurred in urban 

areas (47). Noureldin et al. improved the Micro-Electro-Mechanical 

Systems (MEMS)-based inertial sensor errors to enhance the 

positioning accuracy during GPS outage (48).

3.3 Vision based object detection

Besides the GNSS sensor and INS sensor, another passive sensor, 

camera, is widely used for autonomous driving. Most vision based 

technologies are aiming to detect the objects in front of the vehicle. 

Here we just focus on the technologies for static object detection, 

which can potentially be used for localization. 

The most important information on road surface is lane marks. 

Vision based lane detection technology has received considerable 

attention since the mid-1980s (49)～ (51). Techniques used varied from 

monocular (52) ～ (54) to stereo vision (55). The general lane detection 

firstly performs the Inverse Perspective Mapping (IPM), and then 
conducts Hough Transformation or Random Sample Consensus 

(RANSAC) based line detection (53). Actually, the lane detection 

already achieved quite high accuracy under good light condition. 

But those developments mainly focused on keeping the vehicle on 

Fig. 8 (a) A 3D map of the Stanford parking garage acquired with an instrumented car. This map has been subsequently 

used to realize an autonomous parking behavior(27). (b) Point cloud map acquired at the University of Freiburg (dataset is 

available at http://ais.informatik.uni-freiburg.de/projects/datasets/fr360/). (c) Mobile Mapping System (MMS) point cloud map 

at Toyota Technological Institute(12).

(a) (b) (c)
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the lane and avoiding collisions.

In addition, the distance from the ego-vehicle to stop line or 

crossing road is important for autonomous driving, because the 

vehicle needs to make a smooth deceleration and stop before 

stop line. Seo et al. proposed to detect the stop line based on the 

assumption that the stop line is perpendicular to the lane, and track 

the stop line using Kalman filter to reduce the false alarm detection 
(56). Marita et al. detected the stop line and cross road from stereo 

camera, and using the depth information to do the localization at 

the intersection scenarios (57). Moreover, the arrow mark recognition 

was also proposed for localization at intersection (58), (59).

Curb detection is usually conducted in stereo camera. Because of 

the height difference between the road surface and road shoulder, 

the curb is represented as an edge in the depth image. The most 

direct way of curb detection is to find the curb line from the depth 
map (60). More sophisticated algorithm for curb detection was 

developed based on the texture and depth information together, 

which is shown in Fig. 9 (61). Moreover, the traffic light detection 
and traffic sign detection (62), (63) could be an aid of localization, 

because these objects are static, and their positions are possible to 

be added into map. 

Even though the technologies of the vision based detection are 

quite mature, there are some points need to be discussed when we 

applied those technologies for localization. For example, the lane 

detection could not determine absolute position of the vehicle. In 

addition, using the multiple lane detection method for absolute 

positioning is also difficult, because of the occlusion of other 

surrounding vehicles in urban environment. But stop line, curb 

and traffic sign can provide absolute positioning information for 

localization. Moreover, we need distance information from camera 

to the interested object for localization, therefore, the stereo camera 

is preferable for localization.

4. Proposed Passive Sensor 
Integration for Localization in 

Urban Environment

Our research team developed a passive sensor based integration 

system, includes GNSS, inertial sensors and on-board camera, in 

order to realize the precise localization in urban environment. This 

section presents this system to show the feasibility of the passive 

sensor based localization system.

4.1 3D map aided GNSS positioning 

GNSS positioning result is supposed to be the main source in the 

integration algorithm. Therefore, the reduction of the error of the 

GNSS positioning result needs to be considered before integration. 

In order to reduce the effect of the multipath and NLOS while 

avoiding the distortion of Horizontal Dilution of Precision (HDOP), 

our research team developed a candidate distribution based 

positioning method using 3D building map and ray-tracing (64)～ (66). 

In this method, the 3D building map is constructed by using the 2- 

dimension building outline data and the height information of the 

building. 

Firstly, this positioning method distributes a number of positioning 

candidates. Secondly, the ray tracing is employed to calculate the 

simulated pseudorange from each candidate point. In the case of 

the NLOS, the calculation of the reflection delay is straightforward, 
which is the signal reflection path minus the NLOS path. In 

comparison to the NLOS case, the multipath effect on pseudorange 

is more ambiguous, which is shown in the right image of Fig. 10. 

This research assumes the multipath effect is about 6dB weaker 

than the LOS signal, and the commercial receiver applies the strobe 

correlator (67) with 0.2 chip spacing based on the experience. This 

principle is used to simulate the pseudorange delay caused by 

multiple path.

After satellite condition validation, the satellites that satisfied 

Fig. 9 Example output of the integrated urban 

curb recognition system.　　(a)	 Input	 image	and	
corresponding	Semi-Global	Matching	disparity	image.	
(b)	Stixel	World	and	 freespace	 (green	 line),	 curb	
classifier	search	area	(red	horizontal	 line),	 the	curb	
classifier	Region	of	 Interest	(ROI)	with	the	highest	
posterior	probability	 (green	box),	 recovered	curb	
location	(yellow	line)(61).
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Reflection 

Reflection 
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Fig. 10 Visualization of NLOS and multipath effect.
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consistency requirements are selected to calculate the pseudorange 

similari ty between received pseudorange and simulated 

pseudorange. One example of the probability of the particles is 

shown in Fig. 11. The particles, which are near to the ground truth 

position, have high weighting, and others have low weighting. 

Finally, the weighted average of the positions of all the valid 

candidates is the final rectified position.
The developed 3D map based GPS positioning method was 

firstly applied for the pedestrian localization (64) ～ (66). After that, 

the GLONASS and QZSS were introduced to the 3D building 

map based positioning method for pedestrian application (68) ～

(70). Moreover, we successfully defined a positioning accuracy 

based on the distribution of the candidates and their pseudorange 

similarity. Table 1 summarizes the performance of the developed 

3D building model based GNSS positioning method with difference 

configurations for pedestrian test. 
In over all, the proposed 3D map based GPS positioning 

method drastically reduces the positioning error compared to the 

conventional method. In additional, with the help of GLONASS 

and QZSS the proposed positioning method are improved in terms 

of positioning accuracy and availability. The error mean of the 

proposed 3D map method is 4.42 meters. In addition, authors 

proposed to denote the confidence level of the positioning result by 
the percentage of the valid candidate of all candidates outside the 

building. This idea is similar to the User Range Accuracy (URA) of 

the conventional GPS is to indicate its level of positioning service. 

Thus, the confidence level is named as URA3Dmap in the paper. The 

proposed positioning accuracy URA3Dmap further improves the 

positioning results. The error mean of selected points is 3.78 meters. 

Although the availability of the selected points of the proposed 3D 

map method is about only 70 %, it should be enough if a filtering or 
smoothing technique is applied.

4.2 Integration of 3D map aided GNSS 
positioning and INS

Even though the proposed 3D map GNSS method can reduce 

the positioning error dramatically, it is difficult to satisfy the 

requirement of vehicle self-localization. INS has an advantage in 

short time for the description of vehicle motion. Therefore, we 

proposed to integrate on-board inertial sensors with the 3D map 

based GNSS positioning method to achieve higher accuracy (71), 

(72). In this research, the GPS based positioning result and local 

movement of vehicle were integrated in a Kalman filter framework. 
The vehicle speed measurement was obtained from the Controller 

Area Network (CAN) bus of car. The heading direction of the ego 

vehicle was derived from Inertial Measure Unit (IMU) was placed 

close to the center of the vehicle. If the outage of GPS occurred, 

the integration system relied on the prediction by means of inertial 

Likelihood of valid candidate: 

High               Low 

Fig. 11 The demonstration of the probability of 

the particles.

RTKLIB SPP 3D map method 3D map method

(URA3Dmap ≤ 3)

Mean Std Avail. Mean Std Avail. Mean Std Avail.

(m) (m) (m) (m) (m) (m)

GPS only 27.20 36.35 69.24% 5.26 5.71 75.88% 3.30 2.40 49.52%

GPS+GLONASS 25.46 32.60 80.05% 4.81 4.21 87.65% 3.91 3.04 60.06%

GPS+GLONASS+QZSS 20.48 29.68 82.16% 4.42 3.63 92.36% 3.78 2.85 69.38%

Table 1: The performance of the proposed 3D method using multiple data.

 

Fig. 12 Visualization of positioning results, the ground truth 

is represented by the cyan line.　　(a)	Results	of	the	LS	GPS	
method	(red	point)	and	proposed	3D	map	based	GPS	method	
(yellow	point).	 (b)	Results	of	 the	LS	GPS	based	 integration	
(purple	point)	and	the	3D	map	GPS	based	integration	(green	
point).

(a)

(b)
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sensors. Moreover, if the vehicle stop, the vehicle position was 

maintained as the position at last sampling time.

In order to demonstrate the effectiveness of the proposed 

integration method, we performed right turning and left turning 

experiments in urban canyon. The Least Square (LS) method was 

chosen as baseline method for comparison. The positioning results 

are visualized in Fig. 12. The results indicate our proposed 3D map 

based GPS method (yellow point in Fig. 12 (a)) is more reliable 

than the LS GPS method (red point in Fig. 12 (a)). Moreover, the 

integration with inertial sensors (green point in Fig. 12 (b)) can 

reduce positioning error compared to 3D map based GPS only. The 

quantitative analysis denotes that the integration of 3D map based 

GPS and INS achieved 1.8 meters error mean for vehicle self-

localization. Moreover, we found about 50 % of the positioning 

results have the error less than half lane width.

4.3 Integration of 3D map aided GNSS 
positioning, INS and Vision based lane 
detection

Besides the GNSS and INS, passive sensor based sensing were 

also employed for localization, as we discussed in section 3. We 

proposed to integrate 2D map and vision-based lane detection with 

GNSS/INS positioning system, which is expected to determine the 

occupied lane of the host vehicle (73). The lane detection algorithm 

used in this research was developed based on Aly’s work (53). 

The first step in the lane detection was to generate a top view of 
the road image based on the inverse perspective projection (IPM). 

Then Hough Transform and RANSAC were used to find two 

lines in the area of two lane width. After the lines were detected, 

the particle filter was employed for line tracking. Finally, the 

distances from the vehicle center to the two detected lines were the 

output of the lane detection. Thus, there are three main sources for 

positioning, GNSS, INS and lane detection. We proposes to use the 

particle filtering for multiple cues integration. INS describes motion 
of vehicle via the velocity and the heading direction. The motion 

of the vehicle is used for particle propagation in the integration 

algorithm. GNSS gives global localization measurement, which can 

estimate probability of particles. Lane detection function percepts 

the relative distance from the center of vehicle to left white line and 

right white line. This distance is additional measurement to refine 
the probability of particles.

The Fig. 13 (a) shows the GNSS result and the probability of the 

particles calculated by only using GNSS measurement. The Fig. 13 

(b) shows the probability of the particles calculated by only using 

the lane detection measurement. Because the vehicle drives along 

the center of lane, so the particles near to the lane center have higher 

probability. However, the lane detection just provides the relatively 

lateral position. It cannot reflect the probability difference along the 
longitudinal direction. Joint probability of GNSS and lane detection 

for all particles are denoted in Fig. 13 (c). Compared to Fig. 13 (a), 

the high weighting particles appear around of the center of lane, but 

not around of GNSS positioning result.

Fig. 13. Demonstration of probability evaluation for particles.

 

(a)

(b)
Fig. 14 Visualization of results: GNSS result (yellow dot), GNSS/

INS integration result (purple dot), and GNSS/INS/lane detection 

integration result (green dot).　　(a)	First	right	turning	experiment.	
(b)	Second	right	turning	experiment.

Ex. Evaluation Way GNSS
GNSS/

INS

GNSS/INS/

Lane detection

1st
Positioning Error mean (meter) 3.44 1.79 0.73

Correct lane rate 43.2% 59.1% 93.2%

2nd
Positioning Error mean (meter) 2.41 1.29 0.71

Correct lane rate 55.0% 82.5% 95.0%

Table 2 The performance of the proposed vehicle self-localization system with different 
configurations: GNSS, GNSS/INS integration, GNSS/INS/Lane detection integration.
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Fig. 14 shows the positioning results of two experiments. The 

light blue line is the ground truth route. Yellow dot indicates the 

3D map based GNSS positioning result, the purple dot and green 

dot denote the GNSS/INS integration result and GNSS/INS/

lane detection integration result, respectively. Table 2 shows the 

quantitative comparison of these three methods. The employed the 

3D map based GNSS methods shows extremely good performance 

in the urban positioning result is about 3 meters. About 50% epochs 

are located at correct lane. Even though this technique cannot be 

applied for vehicle localization directly, its good performance 

provides a basis for the integration. After the integration with 

INS, the positioning error mean is reduced to about 1.5 meters and 

correct lane rate is increased. The fifth column of Table 2 indicates 
the integration of GNSS/INS/lane detection can achieve sub-meter 

accuracy and more than 93% correct lane rate.

5. Conclusions

This paper investigates two kinds of methods for vehicle self-

localization: active sensor based and passive sensor based. Active 

sensor based simultaneous localization and mapping (SLAM) 

techniques was firstly proposed for robot localization, and was 

introduced into vehicle self-localization. The recent progress of 

SLAM indicated that the road marks, curbs, land marks, even 

building structures could be helpful for vehicle localization in urban 

environment. Moreover, because localization with pre-prepared 

map was preferable, the off-line SLAM started to be studied for 

the generation of road map. The passive sensors are categorized 

into, GNSS, inertial sensor and camera. The paper survey shows 

it is difficult to achieve acceptable performance using only one 

type of passive sensor. Therefore, we were aiming to improve 

the GNSS positioning method, proposed a 3D map based GNSS 

method and further integrated GNSS, INS and vision based lane 

detection together to pursue high accuracy. The performance of the 

integration system showed the potential of the passive sensor for the 

precise localization in urban environment.
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