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Few questions in condensed matter science have proven as difficult to unravel as the

interplay between structure and dynamics in supercooled liquids. To explore this link, much

research has been devoted to pinpointing local structures and order parameters that correlate

strongly with dynamics. Here we use an unsupervised machine learning algorithm to identify

structural heterogeneities in three archetypical glass formers—without using any dynamical

information. In each system, the unsupervised machine learning approach autonomously

designs a purely structural order parameter within a single snapshot. Comparing the struc-

tural order parameter with the dynamics, we find strong correlations with the dynamical

heterogeneities. Moreover, the structural characteristics linked to slow particles disappear

further away from the glass transition. Our results demonstrate the power of machine

learning techniques to detect structural patterns even in disordered systems, and provide a

new way forward for unraveling the structural origins of the slow dynamics of glassy

materials.
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The connection between structure and dynamics in super-
cooled liquids and glasses is one of the most intriguing
puzzles in condensed matter physics. The conundrum:

close to the glass transition, the dynamics slow down dramatically
and become heterogeneous1,2 while the structure appears largely
unperturbed. Largely unperturbed, however, is not the same as
unperturbed, and many studies have attempted to identify slow
local structures by exploiting dynamical information3,4. Unsu-
pervised machine learning (UML) techniques may provide a
novel way forward for shedding light on this problem.

Machine learning (ML) techniques are rapidly becoming a
game-changer in the study of materials. Examples include
speeding up computationally expensive calculations5, accurately
distinguishing different crystal phases6,7, and even developing
design rules for structural and material properties8. An exciting
development is the design of UML algorithms that can autono-
mously classify particles based on patterns in their local envir-
onment9–11, even in disordered systems12. A key strength of these
UML approaches is that they can find variations in local structure
without any a priori knowledge of what might appear, opening
the door to finding new, unanticipated structures.

The idea of an autonomous algorithm that picks out structural
heterogeneities is a particularly appealing one in the context of
supercooled liquids. In this field, the last few years have seen a
frantic hunt for local structural features that can be interpreted as
the underlying cause for dynamical heterogeneities. To this end, a
number of studies have examined the prevalence and lifetimes of
a large variety of locally favored structures13,14, correlated
dynamics with local order parameters based on, e.g., tetra-
hedrality or packing efficiency15–17, and have looked at the
dynamical effects of promoting specific local features18–20.

A major advance in correlating structure and dynamics was
made through the use of supervised ML techniques. In particular,
a number of studies have demonstrated that support-vector
machines could be taught to recognize more mobile particles in
several glass formers21–24. More recently, it was shown that even
better dynamical predictions could be made using both con-
volutional neural networks and graph neural networks25. How-
ever, in order to train these algorithms, data linking structure to
future dynamics had to be used. Methods that can autonomously
detect purely structural heterogeneities offer an unbiased fresh
look at the problem.

Here we show that a simple, efficient UML algorithm that we
recently developed10 for detecting crystalline structure can be
harnessed to detect structural heterogeneities in glasses. Our
algorithm—which requires only a single snapshot as input—uses
bond-order parameters (BOPs) to encode the local environments
of the particles. Combining a neural network-based autoencoder
with Gaussian mixture models, it then autonomously designs a
structural order parameter capable of detecting the largest
structural variation in the system.

We test the performance of the algorithm on three archetypical
glass forming systems: binary hard spheres, Wahnström, and

Kob–Andersen. These three model systems have been extensively
studied in the context of fundamental glass formers, and have
proven extremely valuable in unraveling many aspects of the glass
transition (see e.g. refs. 3,26,27). Additionally, extensive past
research has indicated that both binary hard spheres and the
Wahnström model display a strong correlation between local
structure and dynamical slowdown3,28, while these correlations
are more nebulous for the Kob–Andersen model28. Collectively,
these models provide an ideal playground for testing the ability of
our UML technique to find local structural features in super-
cooled liquids.

Results
Setting up the UML algorithm. We construct configurations for
our UML analysis by running molecular dynamics simulations of
three glass formers inside the glassy regime. The glass formers we
consider are all three-dimensional models and include binary
hard spheres, Wahnström, and Kob–Andersen (see “Methods”
for more details). We then select one equilibrated configuration in
the glassy regime for each glass former to start our UML analysis.

The UML method we explore here is based on an algorithm we
recently developed10 for detecting crystalline structures. As
shown in Fig. 1, this analysis consists of three steps. First, the
local environment of each particle is encoded into a vector of
eight BOPs (see “Methods”). This local environment includes
information regarding (approximately) the first two shells of
neighbors. Secondly, an autoencoder is used to lower the
dimensionality of this vector. The autoencoder is a neural
network trained to reproduce its input as its output. This neural
network is especially designed to contain a “bottleneck” with a
lower dimensionality than the input vector, such that the network
is forced to compress the information, and subsequently
decompress it again. After training the autoencoder, we only
retain the compression part of the network, and use it as our
dimensionality reducer. Note that this algorithm allows for non-
linear transformations to a lower dimension. Third, the particles
are then grouped in this lower-dimensional space using Gaussian
mixture models. A full description of this algorithm is given in
the Supplementary Methods.

This UML algorithm has two main parameters that need to be
chosen: (i) the dimensionality of the bottleneck of the
autoencoder c and (ii) the number of Gaussian components NG

used to fit the distribution in the lower-dimensional space. To
choose the dimensionality of the bottleneck, we require that the
autoencoder reproduces at least 75% of the variance of the input
data. In Fig. 2a–c we show the fraction of variance explained
(FVE, see “Methods”) by the autoencoder as a function of c for
the chosen snapshots from all three models. Based on this
analysis, we choose c= 2 for both the binary hard spheres and the
Wahnström models, and c= 4 for the Kob–Andersen model. To
determine the number of Gaussians NG, we measure the Bayesian
Information Criterion (BIC, see Supplementary Methods) as a
function of NG, and plot it for each snapshot in Fig. 2d–f. The

Qrij =

q1

q2

q8

Fig. 1 Schematic representation of the unsupervised machine learning method. In this method, the local environment of a particle is encoded in a vector
(Q) of bond-order parameters, which is used as the input for an artificial neural network trained to reduce its dimensionality. The resulting distribution of
particle environments in the lower dimension is clustered using a Gaussian mixture model. Finally, particles are assigned a probability of belonging to one of
the two clusters, and colored accordingly.
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optimum number of Gaussians corresponds to the minimum in
the BIC analysis, which for all models is found at NG= 2. As each
Gaussian can be seen as generating a cluster in the data, this
means that the UML identifies two clusters of particles for all
three models.

In addition to these two parameters, the depth and width of the
neural network forming the autoencoder can be varied. In this
paper we always use a network geometry of one hidden layer of
dimension 40 for both the encoder and the decoder parts of the
network. In the Supplementary Note 1, we explore the behavior
of our UML algorithm, with respect to, e.g., the dimensionality
of the input vector, repeated network trainings, network
structure, and the dimensionality of the bottleneck c. We find
the algorithm to be largely robust with respect to changes in these
parameters.

Extracting a scalar order parameter Pred. To encode the UML
clustering into a single scalar order parameter, each particle is
assigned a probability to belong to one of the two clusters. To this
end, we label the two clusters with different colors—white and
red, see Fig. 1. For each particle i, we then define Pred(i) as the
probability that the particle belongs to the red cluster based on
the Gaussian mixture model (see “Methods”). This results in a
single scalar order parameter between 0 and 1, with values near 0
indicating particles whose environment more closely matches the
white cluster, and values near 1 indicating particles whose
environment more closely matches the red cluster. Note that by
definition this order parameter captures the largest structural
heterogeneities in the system, as found by the UML approach. We
would like to stress that in contrast with supervised ML studies of
glasses21,22, our approach uses no dynamical information, and is
trained on a single static snapshot for each system.

Using this scalar order parameter, we analyze the three glassy
configurations, and color each particle based on Pred. The results
are shown in Fig. 3a–c. In all three systems, the system shows
clear structural heterogeneity, consisting of regions of both
environments.

Correlating Pred with dynamics. The question now is whether
the structural variations detected by Pred are correlated with the
dynamics. To probe this, we measure the dynamic propensity
Di(δt) of particle i: a measure for how mobile particle i will be
over the next time interval δt (see “Methods”), which has proven
useful in supercooled liquids15,16,29,30. In Fig. 3j–l, we plot the
Spearman’s correlation coefficient between Pred and Di(δt), as a
function of the time interval δt. As one might expect, this cor-
relation is weak both for very short time scales, where particles
are simply rattling within their cages, and for long time scales
where the system loses memory of its initial configuration. It
peaks slightly below the structural relaxation time τα, indicating
that we have indeed identified structures connected to the
structural relaxation.

To further investigate the correlation between the UML order
parameter and the dynamics, in Fig. 3d–f, we color the particles
according to their dynamic propensity, with δt chosen to
correspond to the maximum in the correlation. Comparing to
Fig. 3a–c, it is clear that regions of high dynamic propensity
correspond to high values of Pred, indicating that the particles
identified as part of the red cluster also largely correspond to the
faster particles in the system. The correlation can be further
improved by averaging Pred over particles within a small local
region, similar to what was found in previous studies15,16,31. This
is shown in the snapshots in Fig. 3g–i and the solid lines in
Fig. 3j–l, where we show the results for a local averaging radius rc
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Fig. 2 Determining UML parameters. a–c Fraction of variance explained (FVE) as a function of the dimension of the bottleneck, c, for large and small
particles in the three glass formers. The dashed blue line corresponds to a threshold of FVE= 0.75. d–f Bayesian information criterion (BIC) as a function of
the number of Gaussian components, NG, for large and small particles in the three systems. Note that for illustration purposes the BIC has been shifted to
have a minimum value of BIC= 0. The three systems are, from left to right: hard spheres with packing fraction η= 0.58, size ratio q= 0.85, and
composition xL= 0.3, Wahnström at density ρ*= 0.81 and temperature T*= 0.7, and Kob–Andersen at density ρ*= 1.2 and temperature T*= 0.5.
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= 2σ. In all cases, the correlation between the averaged �Pred and Di

peaks very close to τα. This is slightly later than the unaveraged
version, likely because we are now looking at larger regions, which
will take more time to rearrange. Note that here we resolved the
inherent symmetry between red and white clusters, by always
labeling as red the cluster that on average turns out to be faster.

As also found in previous work28, Kob–Andersen seems to be
the model whose behavior is less well captured by our analysis.
This might be related to the attraction that could induce
heterogeneities over large length scales due to the proximity of
a gas–liquid phase coexistence32,33. This kind of effect would not
be fully captured by our (highly local) observables.

To summarize, in all cases the structural heterogeneities
identified by our UML order parameter correlate significantly
with the local dynamics. This leads to two intriguing questions: (i)
are these structural correlations to the dynamics strong or weak
in comparison to literature? and (ii) how does the method
perform when compared to supervised learning algorithms
specifically designed to predict dynamics?

With respect to the first question (i), in the case of binary hard
spheres, previous literature has shown a strong correlation
between local tetrahedrality and both global and local dynamics.
At the same state point shown in Fig. 3 for binary hard spheres,
the correlation between local tetrahedrality and local dynamics
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Fig. 3 Structural analysis and correlations with dynamics in three archetypical glass formers. a–c Snapshots of different glassy models. From left to right:
hard spheres, Wahnström, and Kob–Andersen at the same state points as Fig. 2. Particles are colored according to their membership probability Pred of
belonging to a specific cluster identified by the machine learning approach. In particular, particles whose Pred is two or more standard deviations σ above
the mean value are dark red, while particles with Pred more than two σ below the mean are colored white. d–f Same snapshots as a–c, but colored according
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dynamic propensity Di and either their membership probability Pred(i) (dashed lines) or its local average, �PredðiÞ (solid lines).
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was shown to reach ≈0.63 for small particles15. Our UML order
parameter significantly exceeds this with a value of ≈0.72. For
Wahnström, and Kob–Andersen, Hocky et al.28 examined the
correlation between locally favored structures and dynamic
propensity. Although the state points are not exactly the same
as ours, they found a slightly stronger correlation for Wahnström,
and a slightly weaker one for Kob–Andersen.

With respect to the second question (ii), we will focus on the
Kob–Andersen system where the most extensive data exist. In a
recent article, Bapst et al.25 examined both a variety of physics-
based methods for predicting propensity (based on soft modes34,
the Debye–Waller factor30, or potential energy29,35), as well as
state of the art supervised ML algorithms21,25. As shown in
Supplementary Fig. 7, at the strongest supercooling �Pred (with a
correlation of 0.4) correlates better than any of the physics-based
methods (best correlation: 0.35), but worse than the supervised
ML algorithms (range of correlations: 0.4–0.6). The higher
correlations in the supervised algorithms were expected as these
algorithms explicitly fit dynamic propensity as a function of
structural features. However, in contrast to the UML algorithm,
such fitting requires a large amount of data and computational
effort.

Variation of Pred with supercooling. Thus far, we have shown
that Pred is capable of predicting local variations in the dynamics
in each of our systems. A natural next question is whether the
same order parameter can be used globally, i.e. to capture the
onset of dynamical arrest as the glass former is supercooled. This
can be done by checking whether the “slow” structural group
becomes more dominant as we move closer to the glass transition,
similar to what was seen in, e.g., refs. 15,23,36. To confirm that the
UML-designed order parameters are able to capture the onset of
dynamical arrest without the need for retraining, we use the exact
same UML order parameter trained on the snapshots of Fig. 3 on
systems equilibrated at lower degrees of supercooling: lower
packing fractions η for hard spheres, and higher temperatures T*

for the other two models. In Fig. 4, we plot 〈Pred〉, defined as the
globally averaged value of Pred, as a function of the degree of
supercooling for each glass former. In all cases, 〈Pred〉 increases
monotonically as the system moves out of the glassy regime.
Hence, the structures we identify as white (slow) at strong
supercooling disappear as we move away from the glass transition
—clearly showing that the UML order parameter identifies local
structures that are important for the dynamical slowdown.
Interestingly, as shown in the insets in Fig. 4, the relationship
between 〈Pred〉 and the structural relaxation time is exponential
for both the hard sphere and the Wahnström system.

Predictive power as a function of supercooling. It is well known
that the dynamical heterogeneities of supercooled liquids become
weaker and shift to shorter time scales as we move away from the
glass transition. As a result, the correlation between structure and
dynamics should also become weaker3,15,16. To test how the
predictive power of our UML analysis depends on the degree of
supercooling, we perform a new UML analysis on each of the
glass formers at different packing fractions and temperatures.
Specifically, for each state point we find a new projection and
classification, and determine the correlation between �Pred and Di.
Note that this is different from our analysis for Fig. 4 as there we
used only a single-order parameter for each system. By retraining
the order parameter, we correlate the dynamical heterogeneity
with the largest structural variation that we can find at each
individual state point. In Fig. 5 we show that indeed the corre-
lations become weaker and shift to shorter times (along with τα)
as we move away from the glassy regime.

In Fig. 5 we have kept the local averaging radius rc fixed at 2σA
for the calculation of �Pred. However, in practice, the maximum in
the correlation depends on the choice of rc, as shown in the
Supplementary Note 4. Specifically, the optimal value of rc tends
to increase with the degree of supercooling. It might be tempting
to interpret this growth as a growing static length scale, a topic of
significant debate in the glass community (see, e.g., refs. 3,37–40).
However, it is important to realize that this optimum value is
determined by using dynamical data (i.e. the correlation with the
dynamic propensity). As such, the optimum in rc should be seen
as a dynamic length scale. In contrast, one can straightforwardly
extract a static correlation length from our order parameter Pred,
by determining its autocorrelation function as a function of
distance. As shown in the Supplementary Note 5, this method
gives an essentially constant correlation length for each of our
three systems, with little to no growth with increasing super-
cooling. Hence, our method does not yield a clearly growing,
purely static length scale.

Characterizing the local structure of the different clusters. As
the UML is based on a description of local environments in terms
of BOPs41, a natural question to ask is how the two identified
clusters differ in terms of their BOPs. In Fig. 6, we plot the mean
value of all BOPs q1, … , q8 for both red (more mobile, Pred > 0.5)
and white clusters (Pred < 0.5) for the three snapshots depicted in
Fig. 3. Perhaps surprisingly, we do not observe dramatic differ-
ences in the average BOPs of the two clusters. The small varia-
tions that are seen, however, exhibit a few notable trends.
Specifically for all three models, q2, q3, q4, q5, and q8 are higher in
the red, more mobile cluster. Additionally, for both hard spheres
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and Wahnström, q6 is the highest in the slow cluster; note that q6
is often connected to close packed crystal structures like face-
centered cubic and hexagonal-close packed.

As a second avenue for differentiating the local structure in
each group we use topological cluster classification (TCC)42. This
algorithm detects a set of pre-defined clusters corresponding to
low-energy (or high-packing) structures in a few model systems.
As shown in Fig. 7, we find that for the hard sphere and
Wahnström systems, Pred negatively correlates strongly with local
structures built up out of one or more tetrahedra, while it
positively correlates with TCC clusters built from square
pyramids. For the Kob–Andersen mixture, Pred still negatively
correlates best with tetrahedral environments, but correlations are
significantly weaker. Interestingly, TCC detects essentially no
clusters that correlate positively with Pred, suggesting that these
particles have local environments not detected by TCC—
indicating that our UML is picking up on structures not included
in the low-energy (or high-packing) structures built into TCC.
This is one area where the UML approach shines: it is not
restricted by a priori assumptions about the features that are
considered in the clustering.

Discussion
Overall, our results are consistent with the idea that at least part
of the dynamical slowdown is driven by the emergence of a set of
locally favored structures, in agreement with earlier observations
on these models (see, e.g., refs. 19,43,44). As the system is pushed
closer to the glass transition, these structures become more stable,
due to a more favorable local packing or potential energy, with a
profound impact on both local and global dynamics3. What is

intriguing is the observation that this variation in local structure
can be effectively captured by a one-dimensional machine-
learned order parameter, and that this structural order parameter
strongly correlates with the dynamics.

Interestingly, our Gaussian clustering approach indicates that
the structural features of all of our systems, once projected onto
the lower-dimensional space, are best described by two Gaussians.
This is consistent with a previously proposed picture where
supercooled liquids can be interpreted as a mixture of two
competing structural populations20. Note that a similar two-state
picture has been extremely successful in understanding the glassy
behavior of supercooled water31,45, where the competing local
structures are ostensibly linked to different thermodynamic
phases at extreme supercooling.

The UML analysis used here is both extremely simple to
implement as well as very efficient to run. The input is a single
snapshot, and the analysis involves standard BOP calculations,
fitting a small neural network-based autoencoder, and Gaussian
mixture models; all of which are fast, standard methods that are
commonly available in open-source libraries. The total analysis
costs only a few minutes of computational time. While the sim-
plicity of this algorithm is one of its main strengths, this also
implies that there are many potential routes towards expanding
this method—for instance, adding information about the local
density to the local descriptors, and/or projecting the information
onto higher dimensional order parameters. Such additions might
increase the accuracy, although likely at the cost of the simplicity
and speed. Already, a number of UML techniques exist that
classify particles based on local structure9–12, using different
definitions of local structures, and different approaches for
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classification. It will be interesting to see which of these performs
best in purely heterogeneous environments like glasses.

In conclusion, we have demonstrated that a simple and fast
autoencoder-based UML approach is a powerful tool in the
development of new structural order parameters in supercooled
liquids. We demonstrated that the structural heterogeneities
captured by this order parameter are strongly correlated with the
dynamical heterogeneities in all three glass formers studied here,
creating a new way forward for unraveling the microscopic ori-
gins of dynamical slowdown in supercooled liquids.

Methods
Models. We consider three model glass formers in three dimensions: binary hard
spheres, Wahnström26, and Kob–Andersen27. Both Wahnström and
Kob–Andersen are binary mixtures of Lennard–Jones (LJ) particles.

The binary hard-sphere model we consider is a mixtures of 30% large A
particles and 70% small B particles, with size ratio σB/σA= 0.85. The mode
coupling theory (MCT) packing fraction for this model is ηMCT= 0.584 (see
Supplementary Note 7).

The Wahnström model26 is an equimolar (50–50%) mixture of A and B
particles. The LJ interaction strength between all pairs of particles is identical (ϵAA
= ϵAB= ϵBB), but the B particles are slightly larger than the A particles (σBB=
1.2σAA and σAB= 1.1σAA). The LJ potential is truncated and shifted at the
minimum in the potential, such that the interactions are purely repulsive. The
MCT temperature is kBTMCT/ϵAA= 0.652 (see Supplementary Note 7).

The Kob–Andersen model27 is a non-additive mixture of 80% (large) A
particles and 20% (small) B particles. The interaction parameters are σBB=
0.88σAA, σAB = 0.8σAA, ϵBB= 0.5ϵAA, and ϵAB= 1.5ϵAA. The LJ potential is
truncated and shifted at a cutoff distance rc,ij= 2.5σij (where i, j ∈ {A, B}), such that
the attractive part of the potential is retained. The MCT temperature for this model
is kBTMCT/ϵAA= 0.42 (see Supplementary Note 7).

For both Wahnström and Kob–Andersen, we define the reduced number
density ρ� ¼ ρσ3AA and reduced temperature T*= kBT/ϵAA, with kB Boltzmann’s
constant.

Simulations. For all models, we use molecular dynamics simulations in the
canonical ensemble. In the case of hard spheres, the simulations are performed
using an event-driven approach. For Wahnström and Kob–Andersen, we use the
simulation package LAMMPS46.

Dynamic propensities are calculated as an isoconfigurational ensemble average
of the absolute displacement of each particle. In other words, we perform at least 32
independent simulations starting from the same initial configuration, but with
randomly chosen velocities for all particles. The dynamic propensity of particle i
after a time interval δt is then defined as

DiðδtÞ ¼ h riðδtÞ � rið0Þj jic; ð1Þ

where ri(t) is the position of particle i at time t, and the average is taken over the
independent runs.

In order to obtain the relaxation time τα, we calculate the self-intermediate
scattering function (ISF) for the Wahnström and the Kob–Andersen systems, and
the total intermediate scattering function for the hard spheres:

Fðq; tÞ ¼
P

j;k exp iq rjðtÞ � rkð0Þ
h in oD E

P
j;k exp iq rjð0Þ � rkð0Þ

h in oD E ; ð2Þ

where ri is the position of particle i and q is a wave vector. We calculate the ISF at
an inverse wavelength q= ∣q∣ corresponding to the first peak of the structure
factor. After that, we fit the long-time decay of the ISF with a stretched exponential

function γ exp �ðt=ταÞβ
h i

, where γ, β, and the relaxation time τα are fit parameters.

Local environment description. To characterize the local environment of each
particle, we use an averaged version of the local BOPs introduced by Steinhardt
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Fig. 7 Correlation between Pred and TCC clusters. Correlation between the membership probability Pred of a particle and the number of TCC clusters of a
given type the particle is involved in, for the three investigated systems. From left to right: a hard spheres, b Wahnström, and c Kob–Andersen, at the same
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et al.41. First, we define for any given particle i the complex quantities

qlmðiÞ ¼
1

NbðiÞ
X

j2N bðiÞ
Ym
l ðrijÞ; ð3Þ

where Ym
l ðrijÞ are the spherical harmonics of order l, with m an integer that runs

from m=−l to m=+l. Additionally, rij is the vector from particle i to particle j,
and N bðiÞ is the set of nearest neighbors of particle i, which we will define later.
Note that N bðiÞ contains Nb(i) particles. Then, the rotationally invariant BOPs, ql,
are defined as41

qlðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2l þ 1

Xl

m¼�l

jqlmðiÞj2
vuut : ð4Þ

Finally, we define an average �qlðiÞ as

�qlðiÞ ¼
1

NbðiÞ þ 1
qlðiÞ þ

X
k2N bðiÞ

qlðkÞ
2
4

3
5: ð5Þ

Note that by taking this average, �qlðiÞ depends on the positions of not only the
nearest neighbor shell of particles but also the second neighbor shell. Additionally,
the quantities in Eq. (5) differ from the averaged BOPs introduced by Lechner and
Dellago47 where first the averaging is performed on the non-rotational-invariant
qlm, and then rotational-invariant quantities are built.

Our description of the local environment of particle i consists of an eight-
dimensional vector,

QðiÞ ¼ ðf�qlðiÞgÞ; ð6Þ
with l ∈ [1, 8].

The set of nearest neighbors of each particle is identified with a parameter-free
criterion called SANN (solid angle nearest neighbor)48 for the hard spheres and
Wahnström models. In this approach, an effective individual cutoff radius, rc(i), is
found for every particle i in the system based on its local environment. This
method is not inherently symmetric, i.e., j might be a neighbor of i while i is not a
neighbor of j. However, symmetry can be enforced by either adding j to the
neighbors of i or removing i from the neighbors of j. In this study, we applied the
latter solution. For the Kob–Andersen mixture, we obtained better results with a
fixed cutoff radius (see Supplementary Note 8 for a comparison).

Unsupervised ML. The UML approach used here follows the method outlined in
ref. 10. A detailed description is provided in the Supplementary Methods.

Fraction of variance explained. The optimal number of nodes in the bottleneck
layer of the autoencoder, c, is determined by computing the FVE by the recon-
struction,

FVE ¼ 1�
PN

i¼1 QðiÞ � Q̂ðiÞ�� ��2
PN

i¼1 QðiÞ � �Qk k2
; ð7Þ

where �Q is the mean input vector and N is the number of particles. To choose c we
require that this fraction is at least 75%.

Definition of Pred. As described in the main text, for all three models, after using
the UML method to reduce the dimensionality of the data, we then cluster the data
using Gaussian mixture models. In all cases, the optimum number of clusters was
found to be two, which we label red and white. We then used this clustering to
create a scalar order parameter Pred which quantifies the local structure around the
particles as follows:

Pred ¼ gred
gwhite þ gred

; ð8Þ

where gwhite(red) is the value of the fitted Gaussian peak associated with the white
(red) cluster. Note that by definition Pwhite+ Pred= 1. Hence, as we go from the
white peak to the red peak and beyond (where gwhite is very small), Pred mono-
tonically increases. Note that even though dynamics are not used in this analysis, a
posteriori we always assigned the label red to the cluster with the most mobile
particles.

TCC analysis. To correlate Pred with locally favored structures in the three model
systems, we use the TCC algorithm42. Specifically, we count for each particle the
number of clusters it is involved in of each type detected by the algorithm. We then
calculate the correlation between the number of clusters of a given type a particle is
a part of, and Pred. Note that in its original form, TCC does not accurately count
simple clusters (specifically tetrahedra, square pyramids, and pentagonal pyramids)
which are subsumed into larger combinations of such clusters. Here we have
adapted the algorithm to correct for this choice.

Data availability
The data associated with this research is available upon request.

Code availability
The simulation and analysis codes associated with this research are available upon
request.
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