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I n t e r a c t i n g  w i t h  A u t o n o m y

Autonomy
and Common Ground 
in Human-Robot
Interaction:
A Field Study

Kristen Stubbs and David Wettergreen, Carnegie Mellon University

Pamela J. Hinds, Stanford University

The use of robots, especially autonomous mobile robots, to support work is expected

to increase over the next few decades.1 However, little empirical research examines

how users form mental models of robots, how they collaborate with them, and what factors

contribute to the success or failure of human-robot collaboration. A few observational 

studies report on people and robots working together

in the unstructured “real world,”2–4 but they remain rel-

atively rare. 

Through a detailed field study, we aimed to better

understand how different levels and types of auton-

omy affect how users make sense of the actions of

remotely located robots. The context for our field

observations was the Life in the Atacama project.

LITA used a robot to investigate microorganisms in

Chile’s Atacama Desert in a way analogous to plan-

etary exploration. The project goals were twofold:

to use the Atacama Desert as a testing ground to

develop technologies and methodologies relevant to

Mars exploration and to generate new scientific

knowledge about the Atacama Desert itself. The

technology development focused on a series of mo-

bile robots and science instrument payloads.

Our observations of users collaborating with the

remote robot showed differences in how the users

reached common ground with the robot in terms of

an accurate, shared understanding of the robot’s con-

text, planning, and actions—a process called ground-

ing. We focus on how the types and levels of robot

autonomy affect grounding. We also examine the

challenges a highly autonomous system presents to

people’s ability to maintain a shared mental model of

the robot.

Related work
Understanding how people work with robots and

how to design robots to better support people is the

focus of the research area known as human-robot

interaction. Jenny Burke and Robin Murphy sum-

marize the open HRI research questions,2 which

include the type of modeling issues we address in

this study. We use behavioral theory from the fields

of communication, organizational behavior, and

human-computer interaction to describe how under-

standing the process of building common ground can

inform the design of human-robot systems and HRI.

Common-ground theory
As two individuals participate in a joint activity,

they accumulate common ground—that is, “the

A two-year

observational study 

of a collaborative

human-robot system

suggests that the

factors disrupting the

creation of common

ground for interactive

communication

change at different

levels of robot

autonomy.



knowledge, beliefs, and suppositions they

believe they share about the activity.”5 For

example, the common ground between two

people playing a tennis match would include

knowledge of tennis rules, who won the last

match, and how to hold the racket. 

Herbert Clark and Deanna Wilkes-Gibbs

propose that successful collaboration re-

quires common ground: it helps collabora-

tors know what information their partners

need, how to present information so that it’s

understood, and whether partners have inter-

preted information correctly.6 At an interac-

tion’s start, collaborators share a certain

amount of common ground. For example, if

they’re members of the same discipline, they

likely have a common language and per-

spective that facilitates communication.7

Common ground can increase over time as

collaborators share common experiences,8

but it also can be disrupted by factors such

as being in and drawing information from

different physical contexts.9 This interactive

process establishes the common ground be-

tween collaborators.

Common ground and
human-robot interaction

Although researchers developed the com-

mon-ground framework to understand con-

versation and collaboration among people, not

between people and machines, recent work has

extended the framework to human-computer

interaction.10,11 This research suggests that we

can improve interfaces by thinking about the

user’s experience as a conversation in which

to develop shared meaning between the user

and the machine interface.

In the HRI field, Hank Jones and Pamela

Hinds observed SWAT (special weapons and

tactics) teams and used their findings to in-

form the design of robot control architectures

for coordinating multiple robots.12 Although

their observations didn’t include robots, their

findings emphasize the importance of com-

mon ground between a robot and its user,

especially when the two aren’t collocated.

More recently, Sara Kiesler described exper-

iments reporting more effective communi-

cation between people and robots when com-

mon ground is greater.13 Other researchers

found that information exchange is more ef-

fective when a robot can adapt its dialogue

to fit a user’s knowledge.14

Situation awareness
Although generally focused more on di-

alogue and communication, the common-

ground framework overlaps with work on sit-

uation awareness, which Mica Endsley de-

fines as “knowing what is going on around

you.”15 Researchers recently examined SA in

HRI, particularly with urban search and rescue

(USAR) robots.16–18 Empirical work indicates

that USAR operators spend significantly more

time trying to gain SA—assessing the state of

the robot and environment—than they do nav-

igating the robot.16,17 This work tends to focus

on “real time” interaction (with teleoperated

robots), so its applicability is less clear for HRI

with autonomous robots that are remotely and

asynchronously commanded.

From their observations in the USAR do-

main, Burke and Murphy propose that shared

mental models contribute to SA and that com-

munication is critical to refining these mod-

els.2 However, they don’t test this relationship

directly. In the work we report here, we aimed

to examine more closely how grounding

occurs or is disrupted between users and a

robot as the robot’s autonomy increases. The

science team we observed had difficulty

knowing what the robot was doing and what

was going on in the robot’s environment, and

the robot—lacking information about the sci-

ence team—was unable to respond appropri-

ately. We aim to better understand how auton-

omy affects the information that both the

science team and the robot need to build com-

mon ground. The common-ground framework

facilitates a focus on the entire “conversation”

between a user and a robot rather than solely

on the user’s information needs as in previous

SA research.

Autonomy and 
the grounding process

We base our analysis of robot autonomy

on the work of Raja Parasuraman, Thomas

Sheridan, and Christopher Wickens,19 who

define automation as “a device or system that

accomplishes (partially or fully) a function

that was previously, or conceivably could be,

carried out (partially or fully) by a human

operator.” They distinguish between auton-

omy types and levels, describing four basic

types: information acquisition, information

analysis, decision selection, and action im-

plementation. In robotics, these autonomy

types are commonly collapsed into three:20

• autonomous sensing (information acqui-

sition and data transformation)—making

observations and refining information,

• autonomous planning (information inter-

pretation and decision selection)—react-

ing to information or deciding actions and

schedule, and

• autonomous acting (action implementa-

tion)—executing a planned task or pro-

ducing reflexive reactions.

These types decompose information analy-

sis into data transformation during sensing

and interpretation during planning.

One robotic system can have a different

autonomy level for each type—that is, sens-

ing, planning, and acting. In the LITA project,

we categorized the levels according to the

extent of external guidance the system required

to function:

• low autonomy—some basic automation

might be present, but both information and

procedures must be provided externally; 

• moderate autonomy—some required in-

formation will come from an external

source, such as intermediate steps or proper

system settings, but all procedures func-

tion independently; and 

• high autonomy—systems can both derive

needed information and proceed indepen-

dently over extended periods. 

Our work’s most significant contribution is a

better understanding of how different auton-

omy types and levels affect grounding be-

tween people and robots, particularly teams

of people and a remote robot.

Study methodology
The LITA project robot, Zoë, is a four-

wheeled, solar-powered robot equipped with

several scientific instruments, including cam-

eras and an underbelly fluorescence imager

(FI) for detecting organic molecules such as

proteins and amino acids (see figure 1).
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For this study, we focused on a particular

part of the LITA field season known as

remote science operations. During these peri-

ods, a team of biologists, geologists, and

instrument specialists (in Pittsburgh) used

the robot to search for signs of life in the

desert. This science team issued daily com-

mands to the robot and received and analyzed

the data products it generated (see figure 2).

An engineering team of roboticists and

instrument specialists (in Chile) monitored

the robot, conducted troubleshooting onsite,

and ensured that the science team could

gather data successfully.

To collect data about both sites, we had one

researcher observe the Pittsburgh science

team while one to two others observed the

Chile engineering team and robot. The obser-

vations involved writing detailed field notes,

drawing diagrams, and taking photographs

and video clips. Communication between

observers across sites was limited so that each

observer could focus completely on the local

situation and better understand the observed

group’s perspective at the time. We told the

scientists and engineers that our research

aimed to better understand how they work

with remote rovers and that the observations

would continue throughout field operations.

During the 2004 field season, the Pittsburgh

observers logged 138 hours of observations

and the Chilean observers logged 241 hours.

In 2005, the observations totaled 254 hours

in Pittsburgh and 239 hours in Chile.

Our data set consisted of the observers’field

notes together with artifact documents, such as

PowerPoint presentations, emails, and robot

plans that the science team generated. An ini-

tial reading of the data revealed many com-

munication and coordination problems be-

tween sites. Next, we identified the specific

errors and miscommunications that occurred

and classified them (for example, “Error in

plan sent to robot” or “Miscommunication re-

garding interpretation of plan”). We refer to

these errors and miscommunications collec-

tively as problems.

We identified those problems related to

common ground according to whether the sci-

ence team and robot lacked mutual knowl-

edge and, if so, what kind (for example,

“Missing contextual information,” “Lack of

transparency into robot’s behavior”). Our

2004 data coding revealed 57 separate com-

mon-ground problems during the two weeks

of remote science operations; the 2005 data

revealed 91 common-ground problems dur-

ing 23 days of remote operations. We then

used the data to trace what caused these prob-

lems, particularly those related to the robot’s

autonomous capabilities.

Operational autonomy levels
Figure 3 depicts the type (sensing, plan-

ning, acting) and level (low, moderate, high)

of Zoë’s autonomous capabilities throughout

this study. During regular operations in 2004

and 2005, the science team sent the robot plans

for executing low to medium autonomous

sensing or planning. In 2005, the engineering

team also introduced a science autonomy sys-

tem that let Zoë collect data on its own with-

out specific commands from the science team

about where to do so. This gave Zoë much

greater autonomy than it had during regular

operations and let us observe autonomy’s im-

pact on grounding.

2004 regular operations:
Low autonomy

Zoë had limited autonomous capabilities

in 2004. It could record data about its inter-

nal state, detect some failure conditions, and

detect obstacles; but it had difficulty accu-

rately estimating its position over the long

term. (The project’s planetary-exploration
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Figure 1. Zoë, the “robotic astrobiologist” created for the Life in the Atacama project.

Figure 2. Science team members discuss data returned from the robot.



goal precluded using GPS.) The robot didn’t

interpret any science data and performed

only basic planning for scheduling science

actions. As figure 3 shows, autonomy with

respect to planning and acting was low, and

engineers often had to drive the robot man-

ually. They also had to command instrument

operations.

Problems. The problems we saw in the 2004

data related predominantly to understanding

references to objects of interest—problems

that emerged from lack of copresence between

the science team and the robot. Herbert Clark

and Susan Brennan argue that grounding be-

comes more difficult when people are not cop-

resent.8 Catherine Cramton’s work on geo-

graphically distributed teams supports this

argument.9

According to Clark and Brennan, missing

contextual information jeopardizes shared

understanding because “the addressee must

imagine appropriate contexts for both the

sender and the message.”8 We observed nu-

merous problems with contextual information

that bear on challenges users face when inter-

acting with a remote robot. Receiving erro-

neous data from a robot is always a possibil-

ity. Without sufficient information about data

and the context of its collection, making sound

scientific judgments is difficult. In one in-

stance, the team received a fluorescence image

in which nearly half the field of view appeared

to be fluorescing, signaling the possible pres-

ence of life. This caused a great deal of excite-

ment, but it was unclear whether the data

indeed represented life, the camera had mal-

functioned, or some other unforeseen event

had occurred. After nearly a day investigating

the image, the team concluded that sunlight

was responsible for the strange glow they had

observed. In this case, the lack of contextual

information about the data resulted in confu-

sion and much time spent trying to deduce

what could have gone wrong.

Effective reference in communication re-

quires perspective-taking—that is, a speaker

must take into account the listener’s perspec-

tive when formulating a referring expression.21

When two people are physically separated,

gaining insight into the other’s perspective is

difficult. In particular, feedback is less imme-

diate, harder to interpret, and sometimes even

nonexistent. Feedback about how well the lis-

tener understands the speaker’s messages is

crucial to conversational grounding.22 In 2004,

the science team lacked enough information

from the robot to effectively take the robot’s

perspective, and the robot had no means to

detect or improve that situation.

Discussion. During the 2004 season, the sci-

ence team relied primarily on data the robot

collected as well as information from engi-

neers collocated with the science team to build

common ground with the robot. At a basic

level, the science team could determine what

data had and hadn’t been collected. However,

they didn’t have easy access to feedback about

errors or instrument failures, so they turned to

the collocated engineers, who could contact

the field engineers and obtain additional con-

textual information about what was happen-

ing in Chile. Had these resources not been

available, the grounding process would have

been further impaired.

The most significant constraint on ground-

ing at these low autonomy levels was in

understanding the robot’s perspective. Had

the science team been able to observe the

robot executing commands in the desert, they

would have had enough contextual informa-

tion to disambiguate problems. However, the

lack of copresence combined with the lack

of feedback from the robot about its actions

inhibited grounding and led to frustration and

errors. This observation is similar to studies

of situation awareness, although we add to

this work by considering the “conversation”

between the science team and the robot,

where the breakdowns occurred, and how the

science team attempted to create common

ground with the robot. In particular, we

noticed that feedback from the robot was

missing, as was robot awareness of and

adjustment to the science team’s confusion.

In common-ground parlance, the conversa-

tion’s acceptance phase was missing. The

robot engaged in the presentation phase by

providing information, but it didn’t seek evi-

dence of the science team’s understanding.

The conversation was therefore incomplete

and led to misunderstandings.9

2005 regular operations: 
Moderate autonomy

In 2005, Zoë’s autonomous navigation

improved substantially during regular oper-

ations. Zoë could sense nearby obstacles,

develop basic plans to avoid them, and act on

those plans with minimal human interven-

tion. It could drive autonomously between

locations that the science team specified. In

addition, as a result of problems in estab-

lishing common ground during the 2004 field

season, the LITA field engineers sent a daily

“robot report” to the science team as a proxy

for the information that the robot should have

provided autonomously. The report included

which actions Zoë executed, which actions

had and hadn’t succeeded, instrument fail-

ures, and other contextual information.

Problems. One technique the LITA science

team used in both 2004 and 2005 to improve

their understanding of the robot’s context
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was to have its stereo panoramic imager cam-

era take a context image of the area it had

examined using the FI. The SPI image gave

scientists additional information about the

larger area in which the FI had taken its

image. However, the robot didn’t always take

these context images correctly, and the sci-

ence team had to detect these errors and de-

termine what had happened. This problem

occurred on days 3, 4, and 10. The left col-

umn of figure 4 gives details on this scenario.

Throughout this scenario, the scientists

relied on the robot’s data and robot report to

establish common ground regarding how the

robot was operating, and they used this infor-

mation to adjust the commands they sent to

the robot. This process mirrors conversational

grounding between people in that the science

team attended to the robot’s feedback and

adjusted their communications in hopes of

being more effective. However, the adjustment

was one-sided. The robot didn’t learn how to

better communicate with the science team; as

a result, the science team wasn’t always suc-

cessful at deducing the robot’s actions.

In a second scenario, the science team

wanted to understand exactly how far the robot

traveled and where it collected data products.

This task was complicated because different

software programs computed distances in dif-

ferent ways. As a result, the distances measured

in the plan-creation tool differed from dis-

tances shown in the human-readable plan, and

these differed from the odometric distances

that Zoë reported to have traveled, the tele-

metric estimates of how far Zoë traveled, and

the actual distances Zoë traveled.

Our data suggest that even though some sci-

ence team members understood Zoë’s odom-

etry and telemetry data, it didn’t help them

plan paths for the robot. The team used the

robot report as a definitive source for how far

the robot traveled between locales. This might

have been because the report was the only eas-

ily accessible source of this information.
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Figure 4. Example common-ground problems from LITA project field notes. Italics indicates exact excerpts from field notes.

2005 regular operations (low to moderate autonomy) 2005 science autonomy system (high autonomy)
Problem: Interpreting context images Problem: Missing fluorescence image follow-ups

On day 3, one scientist (X) mentioned that a stereo panoramic
imager image, which was supposed to include a field-of-view
context for a fluorescence image, wasn’t taken correctly:

X looks at a particular SPI image and says that “this is the
messed up one.” X says that this was supposed to be a context
image. X reads the robot report. X says that the robot moved
before taking the SPI image. X says, “I’m not sure why that
happened.”

Scientists X and Y spent time trying to find the FI field of view in
SPI context images, but when the SPI images haven’t been
taken correctly, this is impossible. The science team used both
the images returned from the robot as well as the robot reports
to figure out what happened. On day 4, the science team talked
about adjusting the commands sent to the robot to account for
its backward movement and plowing (scraping away a shallow
layer of soil to expose the ground beneath) 0.5 meters after an
FI, before the SPI takes the context image. One scientist con-
cluded that the robot should have moved only 1 meter, not 1.5
meters, before taking the context image:

At 2:09 p.m., X tells Y that “we” might have to adjust the drive
precise command for the FI context image. X explains that after
the FI, the rover moves back 0.5 meters for the marker plow. Y
says that they are imaging the marker instead of the FI. X says
that they might get the FI. X says that “we” may need to adjust.
X says s/he thinks that the plow is right after the FI.

At 4:14 p.m., X says that s/he and Y were talking. They talked
about the fact that since the marker plow is done at the end of
the FI, “we” need to adjust how much to move [the robot] back
up. X says “we” should have asked to move 1 meter. 

After this, the science team adjusted their commands to move
the robot 1 meter (days 5, 6, 7, 9, 10) and later commanded the
robot to move 1.5 meters (days 9, 11, 12). On day 11, one sci-
entist explained that the team realized they had to change back
to requesting 1.5 meters instead of 1 meter:

X says that they need the plow as a marker, so they found they
did have to move up to 1.5 meters to get into the initial position.

On day 1, one scientist (X) observed that the science autonomy
system should have taken a full FI sequence in response to a
positive chlorophyll signature (a “follow-up”), but it didn’t. An
engineer (Z) confirms that the system should have taken a fol-
low-up image:

At 10:20 p.m., X is looking at a fluorescence image on the tran-
sect associated with locale 40 and asks, “Why didn’t we have a
follow-up on that?” X turns to Z and asks, “Shouldn’t that have
initiated a follow-up?” Z replies that yes, it should have.

On day 1, engineer Z explained that rounding errors contributed
to the problem and that the system was originally designed for
much longer transects than what the scientists were using:

At 11:45 p.m., Z explains to X about some of the science on-
the-fly problems that [the engineering team] had with the fluo-
rescence imager. Z says the problem had to do with “round off”
and “resource juggling.” Z says that for fractional distances, the
rover will always round up. X says that [the robot] went 180
meters. Z explains that the algorithm was designed for much
longer distances. X explains that [the scientists] want to make
the 180-meter traverse a standard procedure.

On day 15, members of the science team and the engineer
talked about other reasons why the follow-ups might not have
been initiated:

Scientist A says that s/he is going to look at the transect be-
tween 800 and 810 to try and figure out why there were three
full FIs and three chlorophyll only, but it doesn’t look like there
was a chlorophyll follow-up. A says this has happened before.
Y suggests that it could be the result of the delta in the signal
between the pre and post (the difference in the signal). Z says
that the algorithm uses raw signal values. 

This technical discussion continued without resolving why the
robot hadn’t performed follow-ups as expected.



Discussion. Without the benefit of copresence,

the science team used the robot reports and the

data from the robot as their main sources of

information about what had happened in the

field. However, this feedback wasn’t inade-

quate to establish common ground with the

robot. The science team couldn’t understand

the robot, and the robot didn’t verify the sci-

ence team’s understanding through an accep-

tance phase. Nor did the robot learn how to bet-

ter refer to objects, locations, and other

environmental factors so that it and the science

team could expand their common ground.

In our 2004–2005 regular operations data,

the major issues of copresence and inadequate

feedback appear to be most associated with

moderate to high levels of autonomous acting

(see figure 3). The robot was acting autono-

mously (albeit sometimes at low levels) by dri-

ving and deploying instruments with little or

no human interaction. Without contextual

information or adequate feedback, the science

team found it difficult to understand the au-

tonomous actions. The robot had no means to

maintain its end of the conversation by detect-

ing the science team’s difficulty in under-

standing the information it presented to them.

2005 science operations: 
High autonomy

The science autonomy system added to

Zoë during 2005 consisted primarily of soft-

ware to collect and interpret sensor, camera,

and instrument data and software to plan a

response, if any, to these observations. The

engineering team had designed the system to

let the robot collect science data as it trav-

eled between locations of scientific interest.

The science team could use the system to re-

quest autonomous collection of normal cam-

era images and chlorophyll-only fluores-

cence images. If the robot detected that such

a fluorescence image showed evidence of

life, it would follow up by taking a full fluo-

rescence image set. The science autonomy

system gave Zoë much greater autonomy

(see figure 3). It could sense, plan, and deploy

instruments with little to no human inter-

vention. The system also forced the science

team to adopt a different strategy for ground-

ing. In particular, we noticed that issues arose

around why the robot made certain decisions

in addition to recurring questions about ob-

jects of reference as described in regular

operations.

Problems. On days 1, 2, 3, 4, and 15, the sci-

ence team discussed the robot’s failure to per-

form follow-ups when it should have. The sci-

ence team attempted to find out why (see fig-

ure 4, column 2, for details on this scenario).

In contrast to the examples from regular oper-

ations, in this scenario the science team under-

stands what has and hasn’t been done but is

baffled about why the robot made particular

decisions. They attempt to reason among

themselves and with an engineer about what

Zoë might be “thinking,” but they don’t under-

stand the robot’s decision-making algorithms

well enough or have enough feedback from

the robot to communicate and get the data they

want. The robot has no means to represent or

reason about why the science team has cho-

sen particular actions, so it can’t ensure that

the rationale for its actions is understood or

that its decisions are consistent with the sci-

ence team’s larger goals.

In the field, the engineering team was

aware that some problems with the follow-up

mechanism resulted from water on rocks or

sunlight shining under the robot. Because the

science team lacked this information about

the context, they had to try to deduce why the

robot decided not to take follow-up fluores-

cent images. Their grounding strategies in-

cluded examining the chlorophyll fluorescent

images to see how strong the signal was; they

also calculated the time when the FI took the

images to determine whether sunlight might

have been an issue. This example shows evi-

dence of breakdowns in shared perspectives

on what was located where and why actions

were or weren’t taken. 

Discussion. With the high levels of sensing,

planning, and action autonomy that the robot

possessed when using the science autonomy

system, the science team’s problems were

focused less on exactly what the robot was

doing than on why the robot was making par-

ticular decisions.

The lack of copresence continued to be a

constraint and was particularly pronounced

when the science team tried to understand the

robot’s high-level autonomous sensing and

action. In addition, we observed that trans-

parency became a constraint with high-level

autonomous planning. Even if the science

team had been watching the robot while the

science autonomy system was working, they

wouldn’t necessarily have had enough infor-

mation to determine why the robot stopped in

particular locations or failed to perform fol-

low-up fluorescent images. The science team

had to try to understand not only how the robot

would react to positive or negative evidence

of life but also what its analysis process was.

On the basis of the science team’s strate-

gies to understand the science autonomy sys-

tem, we argue that the lack of transparency

into the robot’s decision-making process

became the primary constraint on grounding.

The robot report provided only factual infor-

mation and nothing about why the robot per-

formed measurements or follow-ups. Instead,

the science team used the data to determine

what might have happened and then relied

on engineers to explain the algorithms behind

how the robot made decisions.

Some researchers have defined transparent

interactions as those in which a user can “see

through” the logic behind a machine’s opera-

tion. Some of this research focuses on users’

understanding,23 some on robots’explanations

of their actions,24 and some on transparency

that requires no mental model.25 Consistent

with the common-ground framework, we

approach transparency as a dynamic feature of

the science team’s interaction with the robot.

Transparency therefore refers to the process of

developing common ground between them.

Jakob Bardram and Olav Bertelsen26 similarly

suggest that transparency can’t be understood

as a static feature but must reflect a deliberate

formulation and refinement of understanding

during the course of human-computer interac-

tion. Although people certainly ask questions

and converse about reasons for their thoughts

and actions, this idea of understanding some-

one’s logic isn’t well articulated in current

common-ground research. From our LITA

project observations, we argue that the

dynamic creation of transparency becomes a

more crucial element for creating common

ground as robots acquire higher levels of

autonomy, particularly autonomous planning. 

Figure 5 illustrates this shift from a focus
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on missing contextual information to a lack of

transparency. From 148 total problems related

to common ground that we identified from the

2004 and 2005 data, the figure shows the num-

ber for which missing contextual information

or a lack of transparency was the most signif-

icant cause. As the graph indicates, the nature

of the problems shifted almost entirely away

from problems with missing context to issues

of transparency about the robots’ decisions

and logic in the high-autonomy scenario.

These results are even more dramatic when

you consider that each problem might have

occurred on multiple days and that problems

related to a lack of transparency generally took

more days to resolve than those related to

missing contextual information.

Implications for system design
Our results suggest that for HRI grounding

to occur, particularly with remote robots, the

robots must learn and adjust their behaviors

on the basis of “conversations” with people.

Some researchers have demonstrated a robot

that can automatically adjust its dialogue in

real time by exploiting its ability to create

models of people or teams according to their

backgrounds.14 In addition, software systems

can perfectly recall prior conversations with

users, so robots might use this information to

learn and adapt, just as humans do in conver-

sational grounding. Implementing such adap-

tation might not be easy with current technol-

ogy, but our results suggest this is a promising

direction for future work and might address

the recurring issue we observed with missing

contextual information and confusion about

objects of reference.

For remote-exploration robotics, the cost

of mistakes in data collection is extremely

high. Data that’s not useful to the science team

wastes valuable time and resources. However,

delay costs are extremely low: given that the

plan goes to the robot after it finishes its daily

operations, the science team doesn’t pay a

penalty in terms of data return on the time

spent revising the plan. We therefore recom-

mend creating a software system that can par-

ticipate in grounding during plan creation.

This system would act as a robot proxy, pro-

viding crucial feedback to the science team

and supporting transparency without con-

suming time or resources during plan execu-

tion. Such a system would improve the con-

versational grounding, which requires both

parties’availability. The system could exactly

recreate the robot’s behavior without requiring

the actual robot’s participation. This helps

people interacting with a remote robot under-

stand exactly how it would respond to their

requests, and it provides the immediate feed-

back so critical to grounding.

In addition, the system could promote

transparency by actively detecting errors in a

user’s understanding. When a user provides

inappropriate responses to questions or ex-

presses confusion, the system could detect

these grounding problems and automatically

disclose its logic by providing additional

information, such as the evidence it used to

make a particular decision. Situation aware-

ness research hasn’t generally considered a

robot with capabilities to detect and respond

to grounding opportunities because SA his-

torically hasn’t focused on the conversation

between users and the robot.

Software designers can use the presenta-

tion-acceptance process to drive interactions

at the level of the individual actions and para-

meters to be sent to the robot. In particular,

Herbert Clark and Deanna Wilkes-Gibbs’s

detailed description of the acceptance process

provides specific guidance for interaction

design at this low level.6 In conversation,

when a speaker presents an initial reference

that isn’t acceptable, either the speaker or the

listener can repair, expand, or replace it (or

request such a repair, expansion, or replace-

ment). In the context of exploration robotics,

we can consider an individual action and its

parameters to be analogous to a reference in

conversation. If need be, a scientist could

repair an action by editing its parameters,

expand an action by providing additional

information such as a target’s name, or

replace an action in the plan with a different

action. Presentation-acceptance for one action

could then proceed as follows:

Scientist presents an action ai.

Proxy system checks if ai is adequate 

(free of errors, consistent with other 

actions, and so on).

If ai is adequate:

Proxy system accepts ai.

Proxy system provides positive 

evidence of acceptance.

Else:

Proxy system presents negative 

evidence.

Proxy system requests a repair 

(a revision, expansion, or 

replacement).

While scientist needs information:

Scientist requests an expansion 

(further information about the 

inadequacy).

Scientist presents the requested repair,

ai’.

Let ai+1 = ai’. Repeat.

As Clark and Wilkes-Gibbs observe, the

acceptance process is recursive.6 From a soft-

ware design point of view, it’s potentially

infinite; the system must be appropriately

scaled to strike a balance between support-

ing transparency and ensuring that a plan can

be completed. In addition, we’re investigat-
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ing how the robot can use this information to

reason about higher-level science goals

beyond the execution of individual actions.

Beyond letting the user simulate the robot’s

actions,27 this will allow the robot to build

common ground with the science team

regarding the relationships between differ-

ent actions and the environment. If an action

fails in the field, the robot can then exploit

this information to repair its plan in a manner

consistent with the scientists’ goals.

The human-robot system that we observed

wasn’t a mixed-initiative system, in which

the division of authority between the robot

and the users could be adjusted in real time.28

In the LITA project, only the robot could per-

form certain actions, and the science team

couldn’t exert authority in those situations.

In a mixed-initiative HRI system, the ground-

ing process would likely differ from what we

observed in this study. For example, ground-

ing between the users and robot would need

to include a shared understanding of how and

why authority shifts. The problem of ground-

ing in mixed-initiative systems poses an

interesting research topic.

We spent more than 800 hours ob-

serving the LITA mission and doc-

umenting the grounding process between the

science team and the robot. As autonomy

increased, we saw the science team’s confu-

sion about the robot’s actions move away

questions about the data-collection context

to questions about why the robot was doing

what it was doing. We also observed the

grounding process become more complicated

when the entire team tried to work together

with the science autonomy system. Our data

suggest that a team’s shared mental model of

an autonomous robot is more complex and

variable than it is for simple devices and that

it needs to be more consistent.

Higher autonomy didn’t necessarily lead

to better or more error-free interaction. Com-

mon-ground problems emerged whether au-

tonomy was low or high. Our data suggests

that designers must be aware of how auton-

omy changes the type of information needed

from the robot and the type of “conversation”

HRI requires. For grounding to occur with

low-autonomy robots, contextual informa-

tion and feedback are particularly critical; at

high autonomy levels, particularly for auto-

nomous planning, users need transparency

with respect to the robot’s decision making.

References

1. S. Thrun, “Toward a Framework for Human-

Robot Interaction,” Human-Computer Inter-

action, vol. 19, nos. 1–2, 2004, pp. 9–24.

2. J.L. Burke and R.R. Murphy, Situation

Awareness, Team Communication, and Task

Performance in Robot-Assisted Technical

Search: Bujold Goes to Bridgeport, tech.

report CRASAR-TR2004-23, Dept. of Com-

puter Science and Eng., Univ. of South

Florida, 2004.

3. J.L. Drury, L. Riek, and N. Rackliffe, “A

Decomposition of UAV-Related Situation

Awareness,” Proc. 1st Ann. Conf. Human-Ro-

bot Interaction (HRI 06), ACM Press, 2006,

pp. 89–94.

4. R.M. Siino and P.J. Hinds, “Robots, Gender,

and Sensemaking: Sex Segregation’s Impact

on Workers Making Sense of a Mobile Au-

tonomous Robot,” Proc. 2005 IEEE Int’l

Conf. Robotics and Automation (ICRA 05),

IEEE Press, 2005, pp. 2773–2778.

5. H.H. Clark, Using Language, Cambridge

Univ. Press, 1996, pp. 38.

6. H. Clark and D. Wilkes-Gibbs, “Referring as

a Collaborative Process,” Cognition, vol. 22,

no. 1, 1986, pp. 1–39.

7. S.R. Fussell and R.M. Krauss, "Coordination

of Knowledge in Communication: Effects of

Speakers' Assumptions about What Others

Know," J. Personality and Social Psychology,

vol. 62, no. 3, 1992, pp. 378–-391.

8. H. Clark and S. Brennan, “Grounding in

Communication,” Perspectives on Socially

Shared Cognition, L.B. Resnick, R.M. Le-

vine, and S.D. Teasley, eds., Am. Psycholog-

ical Assoc., 1991, pp. 127–149.

9. C.D. Cramton, “The Mutual Knowledge

Problem and Its Consequences for Dispersed

Collaboration,” Organization Science, vol. 12,

no. 3, 2001, pp. 346–371.

10. S.E. Brennan and E.A. Hulteen, “Interaction

and Feedback in a Spoken Language System:

A Theoretical Framework,” Knowledge-Based

Systems, vol. 8, nos. 2–3, 1995, pp. 143–151.

11. T. Paek and E. Horvitz, “Uncertainty, Utility,

and Misunderstanding: A Decision-Theoretic

Perspective on Grounding in Conversational

Systems,” Psychological Models of Commu-

nication in Collaborative Systems: Articles

from the AAAI Fall Symp., AAAI Press, 1999,

pp. 85–92.

12. H. Jones and P. Hinds, “Extreme Work Teams:

Using SWAT Teams as a Model for Coor-

dinating Distributed Robots,” Proc. 2002

ACM Conf. Computer Supported Coop-

erative Work (CSCW 02), ACM Press, 2002,

pp. 372–380.

13. S. Kiesler, “Fostering Common Ground In

Human-Robot Interaction,” Proc. 14th IEEE

Int’l Workshop Robots and Human Interactive

Communication (ROMAN 05), IEEE Press,

2005, pp. 729–734.

14. C. Torrey et al., “Effects of Adaptive Robot

Dialogue on Information Exchange and

Social Relations,” Proc. 1st ACM SIGCHI/

SIGART Conf. Human-Robot Interaction (HRI

06), ACM Press, 2006, pp. 126–133.

15. M.R. Endsley, “Theoretical Underpinnings of

Situation Awareness: A Critical Review,” Sit-

uation Awareness: Analysis and Measure-

ment, M.R. Endsley and D.J. Garland, eds.

Lawrence Erlbaum, 2000, pp. 1–32.

16. J.L. Burke et al., “Moonlight in Miami: A

Field Study of Human-Robot Interaction in

the Context of an Urban Search and Rescue

Disaster Response Training Exercise,”

Human-Computer Interaction, vol. 19, nos.

1–2, 2004, pp. 85–116.

17. J.L. Drury, J. Scholtz, and H.A. Yanco,

“Awareness in Human-Robot Interactions,”

Proc. 2003 Int’l Conf. Systems, Man and

Cybernetics, vol. 1, 2003, pp. 912–918.

18. H.A. Yanco, J.L. Drury, and J. Scholtz, “Be-

yond Usability Evaluation: Analysis of

Human-Robot Interaction at a Major Ro-

botics Competition,” Human-Computer

Interaction, vol. 19, nos. 1–2, 2004, pp.

117–149.

19. R. Parasuraman, T.B. Sheridan, and C.D.

Wickens, “A Model for Types and Levels of

Juman Interaction with Automation,” IEEE

Trans. Systems, Man, and Cybernetics—Part

A: Systems and Humans, vol. 30, no. 3, 2000,

pp. 286–297.

20. M.M. Veloso, “Entertainment Robotics,”

Comm. ACM, vol. 45, no. 3, 2002, pp. 59–63.

21. R.M. Krauss and S.R. Fussell, “Social Psy-

chological Models of Interpersonal Commu-

nication,” Social Psychology: Handbook of

Basic Principles, E.T. Higgins and A. Kru-

glanski, eds., Guilford Press, 1996, pp.

655–701.

22. M.J. Traxler and M.A. Gernsbacher, “Improv-

ing Written Communication through Mini-

mal Feedback,” Language and Cognitive

Processes, vol. 7, no. 1, 1992, pp. 1–22.

23. R. Sinha and K. Swearingen, “The Role of

Transparency in Recommender Systems,”

CHI 02: Extended Abstracts on Human Fac-

tors in Computing Systems,ACM Press, 2002,

pp. 830–831.

24. J. Herlocker, J.A. Konstan, and J. Riedl,

“Explaining Collaborative Filtering Recom-

mendations,” Proc. 2000 ACM Conf. Com-

puter-Supported Cooperative Work (CSCW

00), ACM Press, 2000, pp. 241–250.

MARCH/APRIL 2007 www.computer.org/intelligent 49



25. M.A. Goodrich and J.D.R. Olsen, “Seven

Principles of Efficient Human-Robot Inter-

action,” Proc. 2003 IEEE Int’l Conf. Systems,

Man, and Cybernetics, vol. 4, IEEE Press,

2003, pp. 3942–3948.

26. J.E. Bardram and O.W. Bertelsen, “Support-
ing the Development of Transparent Interac-
tion,” Human-Computer Interaction, 5th Int’l

Conf., Selected Articles, B. Blumenthal, J.
Gornostaev, and C. Unger, eds., Springer,
1995, pp. 79–90.

27. B. Hine et al., “VEVI: A Virtual Environment
Teleoperation Interface for Planetary Explo-
ration,” Proc. SAE 25th Int’l Conf. Environ-

mental Systems (ICES 95), Soc. Automobile
Engineers, 1995, pp. 615–628.

28. D. Bruemmer et al., “Mixed-Initiative Con-
trol for Remote Characterization of Haz-
ardous Environments,” Proc. 36th Hawaii

Int’l Conf. System Sciences (HICSS 03), vol. 5,
CD ROM, IEEE CS Press, 2003, p. 127a.

For more information on this or any other com-
puting topic, please visit our Digital Library at
www.computer.org/publications/dlib.

I n t e r a c t i n g  w i t h  A u t o n o m y

50 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Kristen Stubbs is a PhD candidate in Carnegie Mellon University’s Robot-
ics Institute. Her research interests include observational studies of human-
robot systems to better understand people’s mental models of them. For her
thesis, she is working to design and implement software systems that will let
robots participate actively in building common ground with their users. She
received her MS in robotics from Carnegie Mellon. Contact her at Carnegie
Mellon Univ., Robotics Inst., 5000 Forbes Ave., Pittsburgh, PA 15213;
kstubbs@cmu.edu.

T h e  A u t h o r s

Pamela J. Hinds is an associate professor and co-director of the Center on
Work, Technology, and Organization in Stanford University’s Department
of Management Science and Engineering. Her research focuses on the effects
of technology on groups, the dynamics of globally distributed work teams,
and professional service robots in the work environment. She received her
PhD in social and decision sciences from Carnegie Mellon University. Con-
tact her at Center for Work, Technology, and Organization, Dept. of Man-
agement Science and Eng., Ternan Bldg. 307, Stanford Univ., Stanford, CA
94305; phinds@stanford.edu.

David Wettergreen is an associate research professor in Carnegie Mellon
University’s Robotics Institute. His research expertise is in field robotics,
where he concentrates on endurance navigation, science understanding,
robust autonomy for robotic explorers, and human interaction with these
explorers. He received his PhD in robotics from Carnegie Mellon. He serves
as an associate editor of the Journal of Field Robotics and is a member of the
IEEE and the International Council on Systems Engineering. Contact him at
Carnegie Mellon Univ., Robotics Inst., 5000 Forbes Ave., Pittsburgh, PA
15213; dsw@ri.cmu.edu.


