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Chapter 2

Basic Properties

2.1 Introductory Examples

The examples presented in this chapter are artificial in the sense that
they were not proposed to model real-life problems, but to analyse and
demonstrate the basic properties of autoparametric systems with exam-
ples as simple as possible. Note that for these systems we need at least 2
degrees of freedom and a nonlinear, resonant interaction. The examples
can be viewed as realistic when we consider them as modeling single-
mass systems with 2 degrees of freedom. We return to this point of view
in some elementary examples discussed in Chapter 3.

We consider three examples, each consisting of two subsystems that
have 1 degree of freedom. Each example contains a different kind of
primary system, characterised subsequently by external excitation, para-
metric excitation, and self-excitation. The first system is characterised
by an externally excited primary system. The governing equations, trans-
formed into dimensionless form, are

x′′ + κ1x′ + x + γ1y2= aη2 cosητ,

y′′ + κ2y′ + q2y+ γ2xy= 0, (2.1.1)

whereκ1 > 0 andκ2 > 0 are the damping coefficients,γ1 andγ2 are the
nonlinear coupling coefficients,q = ω2/ω1 is the tuning coefficient that
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Introductory Examples

expresses the ratio of natural frequencies of the undamped linearised
secondary system and the primary system,aη2 expresses the amplitude
of the external excitation, andη = ω/ω1 is the forcing frequency. Here,
ω is the dimensional frequency of the excitation andω1 andω2 are the
natural frequencies of the primary system and the secondary system,
respectively.

The second system is an example of a parametrically excited primary
system that is governed by the following equations of motion:

x′′ + κ1x′ + (1+ a cos 2ητ )x + γ1(x2+ y2)x= 0,

y′′ + κ2y′ + q2y+ γ2xy= 0, (2.1.2)

whereκ1, κ2, γ1, γ2, andq are coefficients similar to those for the first
system,η is the excitation frequency, anda is the coefficient of the
parametric-excitation term.

The third system contains a self-excited primary system. This system
is governed by the following equations of motion:

x′′ − (β − δx′2)x′ + x + γ1y2= 0,

y′′ + κy′ + q2y+ γ2xy= 0, (2.1.3)

whereκ, γ1, γ2, andq have meanings similar to those of the preceding
cases andβ > 0 andδ > 0 are the coefficients of the terms representing
the self-excitation of Rayleigh type.

In the first and the third examples we have chosen the termγ1y2 as
the nonlinear coupling term in the equation for the primary system. This
choice was made becauseγ1y2 is the lowest-order term that produces a
resonant interaction whenω1:ω2 = 2 :1. It is precisely this resonance
that is studied.

In the second example, however, restricting the coupling term to
γ1y2 would not lead to a bounded semitrivial solution. We have there-
fore chosenγ1(x2 + y2)x as the coupling term in this example. Such a
term might arise, for instance, when the underlying system is symmetric
underx→−x. This situation occurs in the single-mass system studied
in Chapter 3.

The coupling termγ2xy in the secondary system is the same for
the three alternatives, again for the sake of simplicity. In each system
we obtain the semitrivial solution by puttingy= 0, y′ = 0. The choice

15
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of the coupling terms affects the type of autoparametric resonance that
occurs in the system. We discuss this problem in Section 2.5.

2.2 A System with External Excitation

2.2.1 The Semitrivial Solution and Its Stability

To find the semitrivial solution of Eq. (2.1.1) we put

x(τ ) = Rcos(ητ + ψ1), y(τ ) = 0. (2.2.1)

This yields the solution forR:

R= R0 = aη2

11/2
, 1 = (1− η2)2+ κ2

1η
2. (2.2.2)

Note that whenκ1 = O(ε) andη = 1+O(ε), the amplitude of the
semitrivial solution isR0 = O(a/ε). This situation is related to the main
resonance for the primary system, and it will be one of the cases under
consideration.

The stability investigation of the semitrivial solution will show the
intervals of the excitation frequency where this semitrivial solution is
unstable and a nontrivial solution will arise. Inserting the expressions

x = R0 cos(ητ + ψ1)+ u, y = 0+ v,
into Eqs. (2.1.1) then yields, in linear approximation,

u′′ + κ1u′ + u= 0,

v′′ + κ2v
′ + [q2+ γ2R0 cos(ητ + ψ1)]v= 0. (2.2.3)

The solutionu = 0 of the first equation of Eqs. (2.2.3) is asymptot-
ically stable. Thus the second equation of Eqs. (2.2.3) fully determines
the stability of the semitrivial solution. This equation is of Mathieu type,
and its main instability domain is found for values ofq near 1

2η. The
Mathieu equation is discussed in fuller detail in Chapter 9.

We assumeκ2 andγ2 to be small, and we write

κ2 = εκ̂2, γ2 = εγ̂2, q2 = 1
4η

2+ εσ2.

Puttingv1 = v, v2 = v′ and translating the time variable so thatψ1 = 0

16
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A System with External Excitation

gives the equations

v′1= v2,

v′2=− 1
4η

2v1− ε(κ2v2+ σ2v1+ γ2R0 cosητv1), (2.2.4)

where it is assumed thatR0 = O(1) asε → 0 and the hats have been
dropped. We subsequently leave out the limitε → 0, as it is assumed
thatε is always a small parameter.

As in Section 9.5, the boundary of the main instability domain can
be found by use of the averaging method. We find to first order inε that

σ 2
2 + 1

4κ
2
2η

2− 1
4γ

2
2 R2

0 = 0. (2.2.5)

Two different approaches on how to use condition (2.2.5) can be
applied. The first one of these can be called the excitation-oriented ap-
proach and the second the response-oriented approach. We describe
these two methods in Subsections 2.2.2 and 2.2.3, respectively.

2.2.2 Excitation-Oriented Approach

In the first approach, the expressions forR0 from Eqs. (2.2.2) are in-
serted into Eq. (2.2.5). This yields the critical valueac for the excitation
amplitude:

ac = 11/2

γ2η2

(
σ 2

2 + κ2
2η

2)1/2. (2.2.6)

For values ofa above this critical value the semitrivial solution is un-
stable. In particular, from Eq. (2.2.6) it follows that whenη = 1+O(ε)
then11/2 = O(ε) and so alsoac = O(ε).

As an example, in Figure 2.1 the instability threshholdγ2ac of the
semitrivial solution is shown. Note that we have multiplied the amplitude
of excitationa by the coefficient of nonlinearityγ2. Also, to obtain a
more convenient representation, the direction of theγ2a axis has been
changed so that minima appear as maxima and the instability domain
now lies below the surface. The system parametersκ1 andκ2 are given in
the diagrams directly. Moreover, in the (η,q) plane the linesη = 1 and
η = 2q are marked. The figure shows that close toη = 1 andη = 2q
the instability threshhold exhibits local minima.

17
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Figure 2.1: Axonometric representation of the instability threshhold γ2ac of the semitrivial

solution. The instability region is below the surface. The values of the parameters are

κ1= κ2=0.05.

2.2.3 Response-Oriented Approach

In this approach, we use the amplitude of the response rather than the am-
plitude of the excitation to characterise the stability of the semitrivial so-
lution. In many applications this is the preferred method. The amplitude
of the response isR0, so from Eq. (2.2.5) it follows that the critical value
of R0 (i.e., where the semitrivial solution loses stability) is given by

R0 = Rc(η) = 1

γ2

(
σ 2

2 + κ2
2η

2)1/2. (2.2.7)

PlottingRc(η) together with the amplitudeR0(η) of the semitrivial solu-
tion in an amplitude-frequency diagram gives the values of the frequency
η for which the semitrivial solution is unstable.

This is demonstrated in Figure 2.2 by an example with the following
parameter values:κ1= 0.10, κ2= 0.05, γ2= 0.10, andq= 0.75. The

18
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A System with External Excitation

(a)

(b)

Figure 2.2: Vibration amplitude curve R 0 corresponding to the semitrivial solution (stable

solution, heavy solid curves; unstable solution, dotted curves) and the stability boundary curve

Rc (light solid curves) as functions of the excitation frequency η. The following values have

been used: κ1=0.10, κ2=0.05, γ2=0.10, q=0.75.

figure shows the frequency response curveR0(η) as well asRc(η), the
latter marked by a solid light curve. Parts of the curve to which unstable
solutions correspond are indicated by dotted curves. As we can see, there
exist unstable parts in the response, and these are located nearη= 1 and
η= 2q, in accordance with the preceding analysis.
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2.2.4 Nontrivial Solution

We now look for a nontrivial periodic solution in the case in which
q ≈ 1

2η. As was noted in Subsection 2.2.3, we must then takea = O(ε).
Rescaling Eqs. (2.1.1) through

a= εâ, κ1 = εκ̂1, γ1 = εγ̂1,

η2= 1− εσ1, q2 = 1
4η

2+ εσ2,

gives the following equations (with the hats dropped):

x′′ + η2x=−ε(κ1x′ + σ1x + γ1y2− aη2 cosητ ),

y′′ + 1
4η

2y=−ε(κ2y′ + σ2y+ γ2xy). (2.2.8)

For ε = 0, the solutions to Eqs. (2.2.8) can be written as

x = R1 cos(ητ + ψ1), y = R2 cos
(

1
2ητ + ψ2

)
.

A 4π/η-periodic solution can be found with the Poincar´e–Lindstedt
method (see Chapter 9). This method leads to the following system of
conditions, up toO(ε):

σ1R1+ 1
2γ1R2

2 cos(ψ1− 2ψ2)− a cosψ1= 0,

κ1R1− 1
2γ1R2

2 sin(ψ1− 2ψ2)+ a sinψ1= 0,

σ2R2+ 1
2γ2R1R2 cos(ψ1− 2ψ2)= 0,

−κ2R2− γ2R1R2 sin(ψ1− 2ψ2)= 0. (2.2.9)

Note thatη = 1+ O(ε); therefore we have replaced expressions such
asaη2 andκ1η with a andκ1.

The vibration amplitude of thex coordinate follows from the last
two equations of system (2.2.9), and the result is

R1 = 2

γ2

(
σ 2

2 + 1
4κ

2
2

)1/2
. (2.2.10)

From the first two equations of system (2.2.9) the following quadratic
equation for the amplitude of they coordinate is obtained:

z2+ Bz+ A = 0, z= 1
2γ1γ2R2

2, (2.2.11)

20
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with

A = 4
(
σ 2

1 + κ2
1

)(
σ 2

2 + κ2
2

)− γ 2
2 a2,

B = 4(κ1κ2− σ1σ2). (2.2.12)

Let D= B2− 4A = 16[1
4γ

2
2 a2− (σ1κ2+ σ2κ1)2]; then Eq. (2.2.11)

has no solutions ifA > 0 andD < 0, two solutions ifA > 0 andD > 0,
and one solution ifA < 0, irrespective of the value ofD. Note that the
conditionA < 0 is equivalent to

a >
2

γ2

(
σ 2

1 + κ2
1

)1/2(
σ 2

2 + κ2
2

)1/2 = ac. (2.2.13)

In other words,A< 0 is equivalent to the condition that the semitrivial so-
lution is unstable. So in this case system (2.1.1) has an unstable semitriv-
ial solution and a stable periodic solution. IfA > 0 the situation is more
complicated.

In this system we see the so-called saturation phenomenon occur-
ring. Assume that all the parameters excepta are constant and such that
B > 0. Lettinga increase from 0 toac, we see that the stable response of
the system will be the semitrivial solution. From Eqs. (2.2.2) it follows
that the amplitude of this solution, which is given by

R0 = a(
σ 2

1 + κ2
1

)1/2 ,
grows linearily witha. At a = ac the semitrivial solution loses stabil-
ity in a supercritical period-doubling bifurcation. The amplitude of the
(semitrivial) response is then

R0 = ac(
σ 2

1 + κ2
1

)1/2 = 2

γ2

(
σ 2

1 + κ2
1

)1/2
.

Whena > ac, it follows from Eq. (2.2.10) that thex component of
the response remains constant whena is increased. They component,
which can be calculated by the solution of Eq. (2.2.11), grows with in-
creasinga. Thus, when the excitation amplitude is increased, the portion
of the energy supplied by the external source to the primary system re-
mains constant and the whole increment of energy flows to the excited
subsystem.
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(a)

(b)

Figure 2.3: Vibration amplitude curves R1 and R2 corresponding to the nontrivial solution

as functions of the excitation frequency η and tuning ratio q. Stable solutions are marked by

solid curves and unstable solutions by dotted curves. The following values have been used:

κ1=0.1, κ2=0.05, γ1=0.01, γ2=0.10.

22
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In Figures 2.3 we have plotted the values ofR1 and R2 as func-
tions of q andη for specific values of the parametersκ1, κ2, γ1, and
γ2. These curves are arranged in axonometric view, and the values are
marked directly in the diagrams. Parts of the curves corresponding to
stable solutions are marked by heavy solid curves. The unstable solu-
tions are marked by dashed lines. In the (η,q) plane bias, the scale lines
for certain constant values ofq are marked by light solid straight lines
interrupted in those intervals ofη where, for certain values of the ex-
citation frequency, only one solution ofR2 for the nontrivial solution
exists. This area in the (η,q) plane is dotted and its boundary is marked
by a dashed curve. These diagrams show that the domain of existence
of the stable nontrivial solution is broader than that of the semitrivial
solution instability. It follows that there exist frequency intervals where
two locally stable periodic solutions exist: both the semitrivial solution
and a nontrivial solution (autoparametric resonance), and consequently
two domains of attraction as well.

To illustrate the transient behaviour of the system when the excitation
frequencyη is slowly increased and subsequently decreased, the values
of R1(η) andR2(η) are shown in Figure 2.4 forq = 0.25 and 0.75 and
for the following parameter values:κ1 = 0.10, κ2 = 0.05, γ1 = 0.01,
andγ2 = 0.10. It can be seen that there exists one interval ofη where
two locally stable solutions exist. At the boundary of this interval the
character of the solution changes by a jump.

2.3 A Parametrically Excited System

2.3.1 The Semitrivial Solution and Its Stability

After the equations of motion are rescaled and the hats are dropped, the
semitrivial solution of Eqs. (2.1.2) is given byy = 0 andx a solution of

x′′ + εκ1x′ + (η2+ εa cos 2ητ )x + εσ1x + εγ1x3 = 0. (2.3.1)

Assuming thatx = R0 cos(ητ + ψ0), we can find equations forR0 and
ψ0. After averaging overτ and a time scaling, these become

R′0=−κ1ηR0+ 1
2aR0 sin 2ψ1,

ψ ′0= σ1+ 1
2a cos 2ψ1+ 3

4γ1R2
0. (2.3.2)

23
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Figure 2.4: Vibration amplitude curves R1= R1(η) and R2= R2(η) corresponding to the non-

trivial solution when the excitation frequency η is increased and subsequently decreased. The

arrows mark the sense of changes and jumps. The following values have been used: κ1=0.10,

κ2=0.05, γ1=0.01, γ2=0.10, q=0.25 and 0.75.

Equilibrium solutions of Eqs. (2.3.2) correspond to 2π/η-periodic solu-
tions. We find that the amplitude of these periodic solutions is given by

R2
0 = 4

3

1

γ1

[−σ1±
(

1
4a2− κ2

1η
2)1/2 ]. (2.3.3)

From the averaged equations it follows that the plus sign corresponds to
a stable solution of Eq. (2.3.1) and the minus sign to an unstable solution.
The stability of the semitrivial solution is determined by

y′′ + εκ2y′ + 1
4η

2y+ εσ2y+ εγ2r0 cosητy = 0, (2.3.4)

wherer0 is the solution of Eq. (2.3.3) corresponding to the plus sign. The
boundary of the main instability domain is, to first order inε, given by

1
4γ

2
2 r 2

0 = σ 2
2 + 1

4κ
2
2η

2. (2.3.5)

Note that this result is very similar to Eq. (2.2.5) in the preceding
example.
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Figure 2.5: Vibration amplitude curves R0, R1, and R2 corresponding to the semitrivial and

the nontrivial solution as functions of the excitation frequency η. Stable solutions are marked

by solid curves and unstable solutions by dashed and dotted curves. The following values have

been used: κ1= κ2=0.075, γ1=0.02, γ2=0.10, ε=0.20, q=0.60.

2.3.2 Nontrivial Solution

Nontrivial solutions can be found as in Subsection 2.3.1 by the intro-
duction of

x = R1 cos(ητ + ψ1), y = R2 cos
(

1
2ητ + ψ2

)
.

Applying the Poincar´e–Lindstedt method then yields the following set
of conditions:

−κ1ηR1+ 1
2aR1 sin 2ψ1= 0,

σ1+ 1
2a cos 2ψ1+ 3

4γ1R2
1 + 1

2γ1R2
2= 0,

− 1
2κ2ηR2− 1

2γ2R1R2 sin(ψ1− 2ψ2)= 0,

σ2+ 1
2γ2R1 cos(ψ1− 2ψ2)= 0. (2.3.6)

This yields

1
4γ

2
2 R2

1 = σ 2
2 + 1

4κ
2
2η

2,

1
2γ1R2

2 = − 3
4γ1R2

1 − σ1±
(

1
4a2− κ2

1η
2)1/2. (2.3.7)

As in the preceding example, we have a saturation phenomenon.
The following parameter values are taken for explicit examples:κ1 =
κ2 = 0.075,γ1 = 0.02, γ2 = 0.10, andε = 0.20. In Figure 2.5, we
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Figure 2.6: Axonometric representation of the stable vibration amplitudes R1 and R2 corre-

sponding to the nontrivial solution as functions of the excitation frequency η and tuning ratio

q. The following values have been used: κ1= κ2=0.075, γ1=0.02, γ2=0.10, ε=0.20.
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show the amplitudesR0, R1, R2 as functions ofη for the caseq = 0.60;
the solid curves represent stable solutions and the dashed or dotted ones
represent unstable solutions. Again there is an interval ofη where both
semitrivial and nontrivial solutions exist, their realisation depending on
initial conditions. This instability interval lies between the points on the
η axis marked by circles.

To illustrate the influence of the tuning coefficientq, Figure 2.6
shows in axonometric view the amplitudesR1 (both semitrivial and
nontrivial solutions) andR2 as functions ofη andq (only stable so-
lutions). We can see that there exists only one interval ofq where au-
toparametric resonance is initiated, i.e., in the neighbourhood ofq = 1

2η.
The domain of autoparametric resonance occurrence is relatively nar-
rower compared with the system that has an externally excited primary
system.

2.4 A Self-Excited System

2.4.1 The Semitrivial Solution and Its Stability

In contrast with the preceding two examples, system (2.1.3) is au-
tonomous, so the periodic solutions will not have a definite phase as-
sociated with them. After the equations of motion are rescaled and the
carets are dropped, the semitrivial solution of system (2.1.3) is given by
y = 0, y′ = 0, andx a solution of

x′′ − ε(β − δx′2)x′ + x = 0. (2.4.1)

Writing x = R0 cos(τ + ψ0) and averaging overτ yields the equa-
tions

R′0 = 1
2ε
(
βR0− 3

4δR3
0

)
,

ψ ′0 = 0. (2.4.2)

From the averaged equations, we find a stable periodic orbit with am-
plitude

R0 =
(

4
3

β

δ

)1/2

. (2.4.3)

Using the same method as in the two preceding examples, we find that
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