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Chapter 2

Basic Properties

2.1 Introductory Examples

The examples presented in this chapter are artificial in the sense that
they were not proposed to model real-life problems, but to analyse and
demonstrate the basic properties of autoparametric systems with exam-
ples as simple as possible. Note that for these systems we need at least 2
degrees of freedom and a nonlinear, resonant interaction. The examples
can be viewed as realistic when we consider them as modeling single-
mass systems with 2 degrees of freedom. We return to this point of view
in some elementary examples discussed in Chapter 3.

We consider three examples, each consisting of two subsystems that
have 1 degree of freedom. Each example contains a different kind of
primary system, characterised subsequently by external excitation, para-
metric excitation, and self-excitation. The first system is characterised
by an externally excited primary system. The governing equations, trans-
formed into dimensionless form, are

X" + ik1X’ 4+ X + y1y? = an? cosyr,
Yy’ + Kk2y + 0%y + y2xy =0, (2.1.1)

wherex; > 0 andk, > 0 are the damping coefficients, andy, are the
nonlinear coupling coefficientq,= w»/w; is the tuning coefficient that
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expresses the ratio of natural frequencies of the undamped linearised
secondary system and the primary systant,expresses the amplitude
of the external excitation, angd= w/w; is the forcing frequency. Here,
w is the dimensional frequency of the excitation andandw, are the
natural frequencies of the primary system and the secondary system,
respectively.

The second system is an example of a parametrically excited primary
system that is governed by the following equations of motion:

X" 4+ k1X + (1 + acos H7)x + y1(x? + y?)x =0,
y' + 2y + 0%y + y2xy=0, (2.1.2)

wherek, k2, y1, y2, andq are coefficients similar to those for the first
system,n is the excitation frequency, aral is the coefficient of the
parametric-excitation term.

The third system contains a self-excited primary system. This system
is governed by the following equations of motion:

X! — (ﬂ _ 5X/2)X/ + X+ V1y2= 0,
Yy’ + &y + 0%y + y2xy=0, (2.1.3)

wherexk, y1, y2, andg have meanings similar to those of the preceding
cases ang > 0 ands > O are the coefficients of the terms representing
the self-excitation of Rayleigh type.

In the first and the third examples we have chosen the jgghas
the nonlinear coupling term in the equation for the primary system. This
choice was made becaugg/? is the lowest-order term that produces a
resonant interaction whem: wp = 2:1. It is precisely this resonance
that is studied.

In the second example, however, restricting the coupling term to
y1y? would not lead to a bounded semitrivial solution. We have there-
fore chosens (x? + y?)x as the coupling term in this example. Such a
term might arise, for instance, when the underlying system is symmetric
underx — —x. This situation occurs in the single-mass system studied
in Chapter 3.

The coupling termy,xy in the secondary system is the same for
the three alternatives, again for the sake of simplicity. In each system
we obtain the semitrivial solution by putting=0, y'=0. The choice
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of the coupling terms affects the type of autoparametric resonance that
occurs in the system. We discuss this problem in Section 2.5.

2.2 A System with External Excitation
2.2.1 The Semitrivial Solution and lts Stability

To find the semitrivial solution of Eq. (2.1.1) we put

x(t) = Rcos@t + v¥1), Yy(r)=0. (2.2.1)
This yields the solution foR:

2
R=Ry= %, A= (1— 122+ 2. 2.2.2)

Note that when; = O(¢) andn = 1+ O(g), the amplitude of the
semitrivial solution iRy = O(a/¢). This situation is related to the main
resonance for the primary system, and it will be one of the cases under
consideration.

The stability investigation of the semitrivial solution will show the
intervals of the excitation frequency where this semitrivial solution is
unstable and a nontrivial solution will arise. Inserting the expressions

X = Rgcosfpt + 1) +u, y=0+v,
into Egs. (2.1.1) then yields, in linear approximation,
U 4+t +u=0,
V" + kv’ + [q% + 2Ry cosfr + y¥1)]v =0. (2.2.3)

The solutioru = 0 of the first equation of Egs. (2.2.3) is asymptot-
ically stable. Thus the second equation of Egs. (2.2.3) fully determines
the stability of the semitrivial solution. This equation is of Mathieu type,
and its main instability domain is found for valuesghear3n. The
Mathieu equation is discussed in fuller detail in Chapter 9.

We assume, andy» to be small, and we write

- ~ 2 2
K2 = €ka, Yy2=¢€V2, Q°=3n°+e¢on.

Puttingv, = v, v = v' and translating the time variable so thigt= 0
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gives the equations

v) = V2,
U/Z = —%11721)1 — 8(K2U2 + oov1 + 2 Ro COSU‘L’Ul), (224)
where it is assumed th&y, = O(1) ase — 0 and the hats have been
dropped. We subsequently leave out the limit> 0, as it is assumed
thate is always a small parameter.

As in Section 9.5, the boundary of the main instability domain can
be found by use of the averaging method. We find to first ordetliat

02+ c2n? — 1yZR5 = 0. (2.2.5)

Two different approaches on how to use condition (2.2.5) can be
applied. The first one of these can be called the excitation-oriented ap-
proach and the second the response-oriented approach. We describe
these two methods in Subsections 2.2.2 and 2.2.3, respectively.

2.2.2 Excitation-Oriented Approach

In the first approach, the expressions Ry from Egs. (2.2.2) are in-
serted into Eq. (2.2.5). This yields the critical vahgdor the excitation
amplitude:

A2 2 2. 2\1/2
.= ——5 (05 + k57 .
)/2772(2 )

(2.2.6)
For values ofa above this critical value the semitrivial solution is un-
stable. In particular, from Eqg. (2.2.6) it follows that whea= 1+ O(e)
thenAY? = O(¢) and so als@; = O(e).

As an example, in Figure 2.1 the instability threshhpid, of the
semitrivial solution is shown. Note that we have multiplied the amplitude
of excitationa by the coefficient of nonlinearity,. Also, to obtain a
more convenient representation, the direction ofyifgaxis has been
changed so that minima appear as maxima and the instability domain
now lies below the surface. The system parameateasidk, are givenin
the diagrams directly. Moreover, in the, @) plane the lineg = 1 and
n = 2q are marked. The figure shows that close te 1 andn = 2q
the instability threshhold exhibits local minima.
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Figure 2.1: Axonometric representation of the instability threshhold y,a. of the semitrivial

solution. The instability region is below the surface. The values of the parameters are
K1 =kp =0.05.

2.2.3 Response-Oriented Approach

Inthis approach, we use the amplitude of the response rather than the am-
plitude of the excitation to characterise the stability of the semitrivial so-
lution. In many applications this is the preferred method. The amplitude
of the response iRy, so from Eq. (2.2.5) it follows that the critical value

of Ry (i.e., where the semitrivial solution loses stability) is given by

1
vz (2.2.7)
2

Ro = Re(n) = y—(o% + 51%)

Plotting R:(n) together with the amplitudBy(n) of the semitrivial solu-
tion in an amplitude-frequency diagram gives the values of the frequency
n for which the semitrivial solution is unstable.

This is demonstrated in Figure 2.2 by an example with the following
parameter values¢; =0.10, k2 =0.05, y» =0.10, andq=0.75. The
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(b)

Figure 2.2: Vibration amplitude curve Rg corresponding to the semitrivial solution (stable

solution, heavy solid curves; unstable solution, dotted curves) and the stability boundary curve
R (light solid curves) as functions of the excitation frequency ;. The following values have
been used: k7 =0.10, 2 =0.05, , =0.10, g=0.75.

figure shows the frequency response cuRgé€n) as well asR:(n), the

latter marked by a solid light curve. Parts of the curve to which unstable
solutions correspond are indicated by dotted curves. As we can see, there
exist unstable parts in the response, and these are locateg-adaand

n =24, in accordance with the preceding analysis.
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2.2.4 Nontrivial Solution

We now look for a nontrivial periodic solution in the case in which
g ~ 3n. As was noted in Subsection 2.2.3, we must then sakeO(¢).
Rescaling Egs. (2.1.1) through

a=ed, Kk1=éek1, y1=¢eh,

nz =1-¢oq, q2 = %772 + g0y,
gives the following equations (with the hats dropped):
X" + X = —e(k1X’ + 01X + y1y? — an? cosnt),
Y’ + 3n’y = —elcay’ + o2y + y2xy). (2.2.8)
Fore = 0, the solutions to Egs. (2.2.8) can be written as
X = Ricosgt + ¥1), Y= Racos(int + ).

A 45 /n-periodic solution can be found with the Poineakindstedt
method (see Chapter 9). This method leads to the following system of
conditions, up ta)(e):

o1R1 + 1y1R5 cosyy — 2yr2) — acosyy =0,
k1Ry — 3y REsin@y — 2y2) + asinyy =0,
02R> + 312RiRo cosyy — 2¢2) =0,
—k2Ry — y2R1R Sin(w1 — 2l//2) =0. (229)
Note thatp = 1 4+ O(e); therefore we have replaced expressions such
asan? andi1n with a andx.

The vibration amplitude of th& coordinate follows from the last
two equations of system (2.2.9), and the result is

2 2
Ri= (o2 + 13)"? (2.2.10)

From the firsttwo equations of system (2.2.9) the following quadratic
equation for the amplitude of thecoordinate is obtained:

Z+Bz+A=0, z=1ymRs, (2.2.11)
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with

A= 4(012 + Kf) (022 + K22) — yfa?,

B = 4(k1k2 — 0102). (2.2.12)

Let D = B2—4A = 16[3y2a? — (o1x2 + 02x1)?]; then Eq. (2.2.11)
has no solutionsiA > 0 andD < 0, two solutions ifA > O andD > 0,
and one solution ifA < 0, irrespective of the value db. Note that the
conditionA < 0 is equivalent to

a> %(012 + Kf)l/z(ozz + K22)1/2 = ac. (2.2.13)

In otherwordsA < 0is equivalentto the condition that the semitrivial so-
lutionis unstable. So in this case system (2.1.1) has an unstable semitriv-
ial solution and a stable periodic solution Af> 0 the situation is more
complicated.

In this system we see the so-called saturation phenomenon occur-
ring. Assume that all the parameters exa@epte constant and such that
B > 0. Lettinga increase from O ta;, we see that the stable response of
the system will be the semitrivial solution. From Egs. (2.2.2) it follows
that the amplitude of this solution, which is given by

2
(of +x)"*

grows linearily witha. At a = a; the semitrivial solution loses stabil-
ity in a supercritical period-doubling bifurcation. The amplitude of the
(semitrivial) response is then

ac 2,5 a2
Ca

Whena > a, it follows from Eg. (2.2.10) that the component of
the response remains constant wheis increased. Thg component,
which can be calculated by the solution of Eg. (2.2.11), grows with in-
creasinga. Thus, when the excitation amplitude is increased, the portion
of the energy supplied by the external source to the primary system re-
mains constant and the whole increment of energy flows to the excited
subsystem.

Roz

21
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k=01 K, =0.05
%=0.01
Yz=0.1

40
Ffz
20- 15
1 v
os 7
0 2 4 6
—N—
(a)
100

oy
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50+ 2 /xé/ 1.5
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Figure 2.3: Vibration amplitude curves R} and R, corresponding to the nontrivial solution

as functions of the excitation frequency 7 and tuning ratio q. Stable solutions are marked by

solid curves and unstable solutions by dotted curves. The following values have been used:

k1 =0.1,x,=0.05, 4 =0.01, y,=0.10.
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In Figures 2.3 we have plotted the valuesRyf and R, as func-
tions of g andn for specific values of the parameters «», y1, and
2. These curves are arranged in axonometric view, and the values are
marked directly in the diagrams. Parts of the curves corresponding to
stable solutions are marked by heavy solid curves. The unstable solu-
tions are marked by dashed lines. In theq) plane bias, the scale lines
for certain constant values gfare marked by light solid straight lines
interrupted in those intervals af where, for certain values of the ex-
citation frequency, only one solution &, for the nontrivial solution
exists. This area in they(q) plane is dotted and its boundary is marked
by a dashed curve. These diagrams show that the domain of existence
of the stable nontrivial solution is broader than that of the semitrivial
solution instability. It follows that there exist frequency intervals where
two locally stable periodic solutions exist: both the semitrivial solution
and a nontrivial solution (autoparametric resonance), and consequently
two domains of attraction as well.

Tolllustrate the transient behaviour of the system when the excitation
frequencyy is slowly increased and subsequently decreased, the values
of Ri(n) andRx(n) are shown in Figure 2.4 far = 0.25 and 075 and
for the following parameter values; = 0.10,x, = 0.05, 7 = 0.01,
andy, = 0.10. It can be seen that there exists one interval ahere
two locally stable solutions exist. At the boundary of this interval the
character of the solution changes by a jump.

2.3 A Parametrically Excited System
2.3.1 The Semitrivial Solution and lis Stability

After the equations of motion are rescaled and the hats are dropped, the
semitrivial solution of Egs. (2.1.2) is given lyy= 0 andx a solution of

X" + ek1X + (0% + acosS )X + eo1X + ey1x° = 0. (2.3.1)

Assuming thak = Rpcosft + ), we can find equations fdRy and
Yo. After averaging ovet and a time scaling, these become

Ry=—«1nRo + 2aRysin 21,
Yo =01+ Jacos Ay + 3y RS (2.3.2)

23
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75 75

q=0.25 g=0.75
501 50
R1 R1
25 25
/ T
0 2 4 0 4
n
30 30
204 20
RZ / E RZ
101 ‘ ; 10
! :
L
0 2 4 0 4
n

Figure 2.4: Vibration amplitude curves Ry = R;(n) and Ry = R2(n) corresponding to the non-
trivial solution when the excitation frequency 1 is increased and subsequently decreased. The
arrows mark the sense of changes and jumps. The following values have been used: «; =0.10,

k2 =0.05, 1 =0.01, y, =0.10, g=0.25 and 0.75.

Equilibrium solutions of Egs. (2.3.2) correspond to/2-periodic solu-
tions. We find that the amplitude of these periodic solutions is given by

1 1/2
2 2 2.2
Ry =3—[—o1£ (32" —xkgn) " |
V1
From the averaged equations it follows that the plus sign corresponds to
a stable solution of Eg. (2.3.1) and the minus sign to an unstable solution.

The stability of the semitrivial solution is determined by

(2.3.3)

Y’ + exoy + %nzy + go2y + eyargcosnty = 0, (2.3.4)

whererg is the solution of Eq. (2.3.3) corresponding to the plus sign. The
boundary of the main instability domain is, to first ordeejrgiven by

2

Ly2ré = o2 + Lidn?. (2.3.5)

Note that this result is very similar to Eq. (2.2.5) in the preceding
example.
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Figure 2.5: Vibration amplitude curves Rg, Ry, and R, corresponding to the semitrivial and
the nontrivial solution as functions of the excitation frequency 7. Stable solutions are marked
by solid curves and unstable solutions by dashed and dotted curves. The following values have

been used: k7 =k =0.075, y; =0.02, y,=0.10, £ =0.20, q=0.60.

2.3.2 Nontrivial Solution

Nontrivial solutions can be found as in Subsection 2.3.1 by the intro-
duction of

X = Rycosgt + ¥1), Y= Rocosint + ).

Applying the Poincag=Lindstedt method then yields the following set
of conditions:

—k1nR1 + 3aRysin 2y, =0,
o1+ lacos 2y + 3 R2 + 1 R =0,
—3konRo — LyoRiRy sin(yra — 2y2) =0,
o2 + 3y2Ry cosfy1 — 2¢2) =0. (2.3.6)
This yields
13RE = of + bk,
iR = —3nkE —o1 + (Ja° — Kfnz)l/z- (2.3.7)

As in the preceding example, we have a saturation phenomenon.
The following parameter values are taken for explicit examples=
k2 = 0.075,51 = 0.02,y», = 0.10, ande = 0.20. In Figure 2.5, we

25
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Figure 2.6: Axonometric representation of the stable vibration amplitudes Ry and R corre-
sponding to the nontrivial solution as functions of the excitation frequency 1 and tuning ratio

q. The following values have been used: k1 =« =0.075, y; =0.02, ¥, =0.10, £ =0.20.
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show the amplitudeRy, R;, Ry as functions of; for the case = 0.60;

the solid curves represent stable solutions and the dashed or dotted ones
represent unstable solutions. Again there is an intervalvere both
semitrivial and nontrivial solutions exist, their realisation depending on
initial conditions. This instability interval lies between the points on the

n axis marked by circles.

To illustrate the influence of the tuning coefficient Figure 2.6
shows in axonometric view the amplitud&s (both semitrivial and
nontrivial solutions) and=, as functions ofy andq (only stable so-
lutions). We can see that there exists only one interva where au-
toparametric resonance is initiated, i.e., in the neighbourhoqd-o .

The domain of autoparametric resonance occurrence is relatively nar-
rower compared with the system that has an externally excited primary
system.

2.4 A Self-Excited System
2.4.1 The Semitrivial Solution and lis Stability

In contrast with the preceding two examples, system (2.1.3) is au-
tonomous, so the periodic solutions will not have a definite phase as-
sociated with them. After the equations of motion are rescaled and the
carets are dropped, the semitrivial solution of system (2.1.3) is given by
y =0,y = 0, andx a solution of

X" —e(B — 8x"?)x' +x = 0. (2.4.1)

Writing X = Rgcos@ + o) and averaging over yields the equa-
tions

Ro = 3¢ (BRo — 8R5).
Yy = 0. (2.4.2)
From the averaged equations, we find a stable periodic orbit with am-
plitude
B\ 12
Ry = (gg) . (2.4.3)

Using the same method as in the two preceding examples, we find that
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