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Abstract

Due to their post-mitotic state, metabolic demands and often large polarised morphology, the function and survival
of neurons is dependent on an efficient cellular waste clearance system both for generation of materials for
metabolic processes and removal of toxic components. It is not surprising therefore that deficits in protein
clearance can tip the balance between neuronal health and death. Here we discuss how autophagy and lysosome-
mediated degradation pathways are disrupted in several neurological disorders. Both genetic and cell biological
evidence show the diversity and complexity of vesicular clearance dysregulation in cells, and together may
ultimately suggest a unified mechanism for neuronal demise in degenerative conditions. Causative and risk-
associated mutations in Alzheimer’s disease, Frontotemporal Dementia, Amyotrophic Lateral Sclerosis, Parkinson’s
disease, Huntington’s disease and others have given the field a unique mechanistic insight into protein clearance
processes in neurons. Through their broad implication in neurodegenerative diseases, molecules involved in these
genetic pathways, in particular those involved in autophagy, are emerging as appealing therapeutic targets for
intervention in neurodegeneration.
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Introduction
Neurodegenerative diseases are defined by the progres-

sive and irreversible destruction of neurons, with age-

associated cell death occurring through heterogeneous,

only partially defined mechanisms. A varied range of be-

havioural, cognitive and physiological symptoms are as-

sociated with neurodegenerative diseases, dependent on

the affected neuronal populations. The most common

neurodegenerative diseases broadly cause two primary

symptoms, cognitive decline such as the profound de-

mentia presented in Alzheimer’s disease (AD), and

motor system dysfunction such as the slowing of move-

ment and eventual paralysis seen in Parkinson’s disease

(PD). Almost without exception, effective preventative

therapeutics are unavailable for neurodegenerative dis-

eases, with only palliative treatments currently in use. As

with most neurological disorders [1] neurodegenerative

diseases are distributed globally with an increasing

incidence correlating with the ageing populations, and

associated with a growing health and socioeconomic

burden.

A paucity of effective treatments for neurodegenerative

diseases has led to an urgent search for candidate cellu-

lar mechanisms for therapeutic intervention. Protein

turnover has long been implicated in many of the most

common neurodegenerative diseases, through the dis-

covery that several proteins genetically linked to familial

forms of disorders form stable aggregates within cells.

Well-described examples include AD associated amyloid

plaques and hyperphosphorylated Tau containing neuro-

fibrillary tangles, PD associated Lewy bodies and neur-

ites, and cytosolic inclusions of Amyotrophic Lateral

Sclerosis (ALS). The accumulation of these mono- and

oligomeric peptides suggests ineffective cellular clear-

ance of macromolecules, in particular via the endo-

lysosomal and autophagic machinery. Emerging genetic

and molecular biological evidence now suggests that

both systems may be dysfunctional across a broad

spectrum of neurodegenerative disorders, their contribu-

tion expanding beyond just the turnover of aggregation

prone proteins in neurons (Table 1). Here we summarily
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Table 1 Neurodegenerative disease associated gene associated with autophagy and endo-lysosomal processes

Gene Process Evidence Key References

Alzheimer’s Disease

APOE Early endosomes GA [2]

BECN1 Macroautophagy BM [3–5]

BIN1 Early endosomes GA [6]

CD2AP Early endosomes GA [7]

CLU Early endosomes GA [8, 9]

EPHA1 Early endosomes GA [10, 11]

PICALM Early endosomes GA [8]

PSEN1 Recycling endosomes / Lysosomes GA [12]

RAB7A Mitophagy / Late endosomes BM [13]

SORCS1 Retromer GA [14]

SORL1 Early endosomes / Retromer GA [14]

Parkinson’s Disease

DNAJC6 Early endosomes / Retromer GA [15, 16]

FBXO7 Mitophagy CM [17, 18]

GAK Late endosomes GA [19]

GBA Mitophagy, Lysosome GA [20]

LRRK2 Mitophagy / Macroautophagy / Chaperone-mediated mitophagy (CMA) CM [21–23]

PINK1 Mitophagy CM [24, 25]

PRKN Mitophagy CM [26, 27]

RAB29/RAB7L1 Late endosomes GA [28]

SNCA Macroautophagy CM/BM [29]

SYNJ Early Endosomes GA [30, 31]

UCH-L1 CMA GA/BM [32, 33]

VPS35 Retromer CM [34, 35]

Huntington’s Disease

ATG7 Macroautophagy GA [36, 37]

BECN1 Macroautophagy BM [38]

HTT Early endosomes / Recycling endosomes CM / BM [39, 40]

Amytrophic Lateral Sclerosis / Frontotemporal Dementia

CHMP2B Early Endosomes GA / CM [41, 42]

OPTN Macroautophagy / Mitophagy GA [43]

p62/SQSTM1 Macroautophagy CM [44, 45]

TBK1 Macroautophagy / Mitophagy CM [46, 47]

Charcot Marie Tooth

RAB7A Mitophagy / Late endosomes CM [48]

SH3TC2 Recycling endosomes CM [49]

Niemann-Pick Disease

NPC1 Lysosomes CM [50, 51]

NPC2 Lysosomes CM [52, 53]

BM Biomarker: genes with histological, molecular or biochemical evidence for contribution of gene in neurodegenerative disease; CM Causative Mutation: Genes

associated with hereditary forms of neurodegenerative disease; GA Genetic Association: Genes where association with neurodegenerative disease has been made

through -omics research
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review the evidence for a role of endo-lysosomal and au-

tophagy dysfunction in progressive neurodegenerative

disorders, using specific examples of their contribution

from common disorders to illustrate key concepts.

Autophagy
Autophagy is a process of ‘self-eating’ through which

unwanted or toxic macromolecules and organelles are

sequestered and delivered to the lysosome to generate

raw materials including proteins, lipids, carbohydrates

and nucleic acids for use in metabolic processes. In

most cell types, autophagy functions primarily in re-

sponse to starvation [54] and some forms of apoptosis

[55]. However, in post-mitotic neurons, where the

programmed death and replacement of unhealthy cells

is not a viable option, autophagy takes on a more

crucial role in maintaining normal cellular homeosta-

sis, in particular the critical turnover of misfolded

proteins and damaged organelles. This is demon-

strated by observations of increased autophagy in re-

sponse to acute brain damage such as strokes and

traumatic brain injuries, however there is still contro-

versy as to whether this response is homeostatic or

pathological (reviewed by [56]). There are three

mechanistically distinct forms of autophagy that func-

tion within neurons; macroautophagy, chaperone-me-

diated autophagy (CMA) and microautophagy, each of

which have been implicated in maintaining normal

neuronal function or in neurodegeneration.

Macroautophagy signalling cascade

During macroautophagy, macromolecules and organelles

such as mitochondria and peroxisomes are sequestered

within specialised vesicles and digested for removal or

generation of raw material (Fig. 1). Macroautophagy is a

complex sequential process composed of multiple steps

which are generally considered consistent between cell

types, predominantly facilitated by a cascade of Autoph-

agy Related Genes (ATG). Sensing is the crucial first

step in autophagy induction, where the cell makes a

choice to induce degradation of toxic or superfluous cel-

lular components. In normal healthy physiological con-

ditions, the serine-threonine kinase mammalian target of

Rapamycin (mTOR), the master sensor for autophagy,

forms the mTOR complex (MTORC1) to promote cell

growth [57]. Depleted levels of cellular cyclic adenosine

monophosphate (cAMP) activate 5′-adenosine mono-

phosphate activated protein kinase (AMPK), which in

turn phosphorylates unc-51 like autophagy activating

kinase 1 (ULK1), promoting it to form a complex with

Focal Adhesion Kinase Family Kinase-Interacting protein

Of 200 KDa (FIP200), ATG13 and ATG101 [58, 59]. Ini-

tiation/nucleation triggers formation of the ‘phagophore’,

a lipid double membrane produced to encapsulate the

target cargo, restricting it to a smaller cytoplasmic re-

gion for further processing. To enable phagophore for-

mation, ULK1 phosphorylates and activates the vacuolar

protein sorting 34 (VPS34) complex, consisting of the

class III phosphatidylinositol-3-kinase VPS34, Beclin1,

VPS14 and VPS15 [60]. The activated VPS34 complex

Fig. 1 Autophagy and endo-lysosomal mechanisms and related genes associated with neurodegenerative diseases. Macroautophagy begins with
formation of an isolation membrane to engulf cargos selected for degradation. Elongation of the isolation membrane results in formation of the
double membrane autophagosome marking the final step before lysosomal fusion and degradation. In parallel the endosomal system sorts
molecules for either recycling or targeting to the lysosome, with chaperone-mediated autophagy (CMA) and microautophagy also delivering
cargos to the lysosomes. Hydrolytic enzymes within the acidic lysosomal lumen digest the target and the constituents resulted from this are
released into the cellular cytoplasm. Neurodegenerative disease causing or associated genes affecting various stages of autophagy are listed
alongside the process in which they are involved. For additional information relating to disease association of listed genes, refer to Table 1
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enriches the isolation membrane with phos-

phatidylinositol 3-phosphate (PI(3)P), recruiting add-

itional autophagy machinery. The phagophore next

undergoes elongation, facilitated by two processes.

Firstly, phosphatidylethanolamine is covalently bound to

cytosolic Microtubule Associated Protein 1 Light Chain

3 and GABARAP family proteins (herein LC3-I), produ-

cing an autophagosome-associated LC3-II [61]. Secondly

a complex of ATG5-ATG12-ATG16 associates with the

isolation membrane, allowing it to entirely enclose the

whole target organelle [62]. Selection of cargos occurs in

parallel to sensing, initiation and elongation, marking

substrates for autophagy. Proteins are targeted for au-

tophagy by ubiquitination and labelling primarily with

p62/Sequestosome-1 (p62), which through an ATG8

interaction motif/LC3 interacting region (AIM/LIR) [63,

64] recruits LC3-II to the isolation membrane [65].

Other cargo recognition proteins including Neighbour

Of BRCA1 Gene 1 (NBR1), Nuclear Domain 10 Protein

52/ Calcium Binding And Coiled-Coil Domain 2

(NDP52), and Optineurin (OPTN), also contribute to

specific targets for autophagy [66]. Once target cargos

are bound by LC3-II, further initiation machinery is re-

cruited. Closure of the membrane leads to formation of

a double membraned vesicle called an ‘autophagosome’,

containing the target cargos. Since their formation can

occur in synapses and neurites significant distances from

the neuronal soma [67], transport of autophagosomes is

often necessary for their delivery to appropriate cellular

compartments for degradation. Autophagosomes finally

undergo fusion with late-endosomes or lysosomes to de-

liver substrates for hydrolytic enzymatic degradation.

Macroautophagy

Macroautophagy is a highly conserved process [68, 69]

and unsurprisingly several key molecules and mecha-

nisms are associated with neuronal dysfunction and de-

generative conditions. The critical importance of

autophagy in neuronal health is best documented in

model organisms deficient for genes required for the ini-

tial steps of autophagy. The ULK1 homologue, serine/

threonine-protein kinase unc-51 was first identified in a

C. elegans screen for genes associated with ‘uncoordin-

ated’ phenotypes, with its dysfunction resulting in in-

complete developmental axon outgrowth and elongation

[70], clearly demonstrating the importance of autophagy

in normal neurodevelopment. Current research however,

also suggests that aberrant autophagy plays a fundamen-

tal role in ageing and neurodegeneration. Conditional

deletion of essential autophagy genes in mice has dem-

onstrated the critical requirement for neuronal autoph-

agy in adult animals. Mice lacking neuronal expression

of the autophagosome membrane elongation genes

ATG5 [71] or ATG7 [72] are viable into adulthood,

however they show significantly reduced autophagy, as-

sociated with progressive motor dysfunction and neuro-

degeneration. A notable observation from both ATG5

and ATG7 deletion models was the formation of intra-

neuronal inclusion bodies composed of ubiquitinated

protein. Large protein aggregates are considered a hall-

mark histopathological feature of many neurodegenera-

tive disorders, though their precise contribution (or even

protection) is poorly defined.

Genetic evidence from several neurodegenerative dis-

eases supports a contribution for protein accumulation

in pathogenesis, with hereditary mutations in many ag-

gregation prone proteins, and also dysfunction of cargo

selection genes required for targeting inclusions to the

autophagy system. Natively unfolded alpha-synuclein

[29] forms Lewy bodies and neurites in PD and associ-

ated Parkinsonisms [73], with hereditary point mutations

increasing aggregation propensity [74]. Hyperphosphory-

lation of Microtubule Associated Protein Tau (Tau) ac-

cumulates in neurofibrillary tangles [75–77] in several

neurodegenerative diseases including AD and familial

forms of Frontotemporal Dementia (FTD) [78]. Extracel-

lular amyloid beta (Aβ) plaques are a hallmark of AD,

composed of fragments of amyloid precursor protein

(APP) [79, 80] generated by presenilin secretases

(PSEN1/2) [81], with APP [82, 83] and PSEN genes [84,

85] mutated in familial AD. Both familial and sporadic

Amyotrophic Lateral Sclerosis (ALS) is associated with

cytosolic aggregation of proteins, most frequently TDP-

43 [86, 87], with FUS [88] and SOD1 [89–91] seen in

some familial cases. Mutations resulting in repeat expan-

sion are also associated with protein aggregation such as

the ALS/FTD linked gene C9ORF72 [92–94], or polyglu-

tamine (polyQ) expansions seen in several disorders,

most prominently Huntingtin (HTT) in Huntington’s

Disease (HD) [39, 95]. Typically intracellular inclusion

bodies are ubiquitinated and labelled with autophagy re-

ceptor proteins, most commonly p62 [96], suggesting

autophagy plays an active role in their clearance. Muta-

tions in p62 [44, 45] and OPTN [43] have been identified

in ALS and FTD, directly implicating effective protein

targeting for clearance in disease pathogenesis.

Mutations in core autophagy genes have not been

identified as directly causative in any common neurode-

generative disorders, though some rare conditions have

been reported [97]. There is however a wealth of data

implicating the mis-regulation of autophagy sensing and

initiation/nucleation in neurodegenerative disorders,

particularly HD. Experiments in cellular [98], Drosophila

and mouse models of polyQ expanded HTT [99] have

demonstrated that promoting autophagy through

pharmacological inhibition of mTOR is sufficient to res-

cue phenotypes associated with HD toxicity. Contrasting

evidence suggests that expression of the mTOR
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activators RAS homolog enriched in brain (Rheb) or

RAS homolog enriched in the striatum (Rhes) can also

alleviate symptoms in HD mouse models [100], while

only transient protection is seen in R6/2 mouse treated

with mTOR inhibitors [101]. The contribution of au-

tophagy to HD is complicated by the fact that mTOR is

found within poly-Q rich protein aggregates [99] and

that polyQ-expanded HTT enhances mTORC1 activity

[102], suggesting a direct interaction of mTOR with

HTT. PolyQ-expanded HTT can disrupt nucleation of

the isolation membrane, by impairing the phosphoryl-

ation of Beclin-1 associated ATG14 and VPS34 complex

activity [103]. Pro-nucleation has also been implicated in

polyQ-repeat associated Machado-Joseph disease/spino-

cerebellar ataxia type 3, with increased expression of the

VPS34 complex component Beclin-1 showing protective

activity in mouse models [104, 105]. Beclin-1 mediated

nucleation may also contribute to the pathology of AD.

In transgenic mouse AD models expressing human APP,

reduction of Beclin-1 expression leads to increased intra-

neuronal Aβ accumulation, extracellular Aβ deposition

and neurodegeneration [3]. Intriguingly, peptide frag-

ments produced through caspase cleavage of Beclin-1

have been detected in the brains of AD patients and

murine models, which exacerbated neurodegenerative

phenotypes when overexpressed [4]. Conversely,

caspase-resistant Beclin-1 was found to be neuroprotec-

tive, suggesting some post-translationally processed spe-

cies of Beclin-1 may themselves be toxic [4].

A direct function of ALS/FTD gene C9ORF72 in the

initiation of autophagy has also been suggested recently.

ALS/FTD can manifest through a 5′ hexanucleotide re-

peat expansion in the C9ORF72 gene, which can contain

several thousand repeats generating both RNAi and pro-

tein products that accumulate over time [92, 94]. In

addition to clear gain-of-function pathologies, mutant

C9ORF72 alleles may also reduce expression of some

isoforms of the gene, suggesting partial loss-of-function

may partially contribute to disease [92]. C9ORF72 has

been found to interact with RAB1A, a RAB GTPase ef-

fector molecule required for the recruitment of ULK1

complex to the phagophore [106]. Decreased levels of

autophagy have been reported in neurons derived from

C9ALS/FTD patients, and reduction of C9ORF72 ex-

pression in cultured neurons was found to attenuate au-

tophagy and accumulation of intracellular p62 puncta,

indicative of protein accumulation [106, 107].

Chaperone-mediated autophagy

Chaperone-mediated autophagy (CMA) is a selective

form of autophagy, whereby peptides carrying a KFERQ-

like motif are recognised by cytoplasmic chaperone pro-

teins, which then deliver the target directly to lysosomes

for degradation [108]. Target peptides are bound by

cytoplasmic chaperones including Heat shock protein 90

(HSP90), delivered to the lysosome-associated mem-

brane protein 2A (LAMP2A) receptor on the lysosomal

membrane and transported into the lysosome lumen for

hydrolytic degradation. Unlike micro- and macroauto-

phagy, CMA is not evolutionarily conserved and has

only been observed in mammalian cells [109, 110].

CMA contributes to the clearance of proteins associ-

ated with several neurodegenerative disorders [111, 112],

with compelling evidence to suggest a role in the dopa-

minergic neuron loss seen in PD. Several genes genetic-

ally associated with familial forms of PD appear to

disrupt CMA. The natively unfolded alpha-synuclein

peptide is a substrate for CMA [113], however both sta-

bilised dopamine-bound peptides, [114] and PD-

associated mutant species [113] are ineffectively de-

graded through this process. Ubiquitin carboxyl-terminal

esterase L1 (UCHL-1), has been shown to interact with

heat shock protein 70 (HSC70), HSP90 and LAMP2A,

with disease associated mutations further increasing

binding and impeding CMA of alpha-synuclein [115].

PD-associated Leucine Rich Repeat Kinase 2 (LRRK2)

also appears to be degraded through CMA, with the PD

associated mutations rendering the protein a poor sub-

strate but also impeding the CMA translocation complex

[116]. Most recently, PD-associated deglycase DJ-1,

which functions in neuronal response to oxidative stress

and mitochondrial turnover, has also been found to

undergo CMA-mediated degradation, with a preference

for non-functional oxidised forms [117]. Reduced CMA

and turnover of non-functional DJ-1 was associated with

increased mitochondrial dysfunction and cell death in

repose to toxin induced oxidative stress [117]. CMA and

PD have also been associated through the degradation of

myocyte enhancer factor 2D (MEF2D), a transcription

factor that contributes to neuronal survival under stress

[118]. Inhibition of CMA through knockdown of HSC70

or LAMP2A results in accumulation of cytoplasmic

non-functional MEF2D in neuronal cultures, with in-

creased cytoplasmic MEF2D also reported in alpha-

synuclein transgenic mice and PD patient tissues [119].

Taken together, these findings suggest processing of PD-

associated peptides through CMA may be a contributing

factor in disease pathogenesis and progression and that

this process may be critical for the maintenance of dopa-

mine neurons in particular.

Microautophagy

Microautophagy is the least well characterised of the

three forms of autophagy, with its role in neurodegener-

ation mostly unexplored. In this process, proteins enter-

ing the endo-lysosomal system through invagination

are engulfed by the late endosome and lysosomal mem-

brane [120]. The synapse appears to be a particularly
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vulnerable neuronal compartment in many neurodegen-

erative disorders, in part due to the constant turnover of

SNARE proteins required for neurotransmitter release,

which can form dysfunctional neurotoxic species [121].

Experiments in Drosophila have demonstrated that an

endosomal form of microautophagy can be perturbed

through knockdown of the synapse enriched chaperone

HSC70–4, required for recognition of the peptide deg-

radation motif, resulting in significantly perturbed

neurotransmitter release [122]. As microautophagy ap-

pears to support normal neuronal function, particularly

at sensitive synaptic terminals, further investigation

should be conducted in the context of neurodegenerative

disorders to define its contribution.

Selective autophagy

Autophagy mechanisms can also be subclassified into

those involving selective degradation of specific organ-

elles, such as peroxisomes (pexophagy), nuclei (nucleo-

phagy) and endoplasmic reticulum (ER-phagy), as well

as those involving degradation of molecular materials

such as lipids (lipophagy), stress granules (granulophagy)

and myelin (myelinophagy) (reviewed by [123]). Autoph-

agy receptors for selective targeting of organelles which,

under specific conditions, link these organelles with the

cellular autophagy machinery leading to their destruc-

tion, are being continuously discovered. Receptors im-

portant for pexophagy include NBR1 [124], Atg30 [125]

and Atg36 [126], whereas FAM134B [127] and Atg40

[128] are required for ER-phagy. Once bound to these

adaptors, cargos enter the autophagy cascade for lyso-

somal degradation.

Whilst the contribution of most cargo selective forms

of autophagy to neuronal health is largely unexplored,

mitophagy, perhaps the most thoroughly characterised,

has been strongly implicated in neurodegenerative dis-

ease. Mitophagy is the process by which dysfunctional

mitochondria are selectively targeted by autophagosomes

and degraded via autophagosome-lysosome fusion, facili-

tating a quality-control mechanism which maintains a

healthy mitochondrial network (Fig. 2). Due to their high

metabolic demand and post-mitotic state, neurons are

particularly sensitive to mitochondrial dysfunction and

thus mitophagy is vitally important in this cell type. Like

other forms of selective autophagy, the targeting of

mitochondria for mitophagy occurs though a mechanism

which parallels that of general macroautophagy cargo

targeting, but with specific adapters that allow for the se-

lective targeting of damaged organelles. The canonical

mitophagy model is that mitochondrial insult results in

the dissipation of mitochondrial membrane potential

(ΔΨm), followed by a block of PTEN-induced kinase 1

(PINK1) import into the intermembrane space, where it

is usually cleaved by Presenilin Associated Rhomboid-

Like (PARL) [129]. PINK1 accumulates on the mito-

chondrial outer membrane (MOM) and phosphorylates

ubiquitin at Ser65 (pS65-Ub), leading to the recruitment

of Parkin E3 Ubiquitin Protein Ligase (PRKN) from the

cytosol [130]. PINK1 also phosphorylates PRKN at Ser65

of its ubiquitin-like domain, stimulating PRKN E3 ubi-

quitin ligase activity [131]. This triggers a positive-

feedback mechanism during which subsequent PRKN re-

cruitment and ubiquitination of MOM proteins [132,

133] results in the recruitment of AIM/LIR autophagy

adapters including p62, OPTN and TAX1 Binding Pro-

tein 1 (TAX1BP1). The kinase domain of PINK1 has

been shown to recruit OPTN and NDP52 independent

of PRKN and recruitment of these two adapters is essen-

tial for mitophagy [134]. Though responsible for recruit-

ing LC3-II to the poly-ubiquitinated MOM [135], p62 is

dispensable [134, 136] but can improve the efficiency of

mitochondrial incorporation into autophagosomes at a

later stage in the process. The ULK1 complex transiently

assembles at depolarised mitochondria [137], in a

PRKN-dependant, LC3-II-independent fashion. ATG9A

vesicles are also recruited / formed de novo at depo-

larised mitochondria, independently of ULK1 recruit-

ment. ULK1 and ATG9A foci only partially co-localise

at mitochondria and neither are required for the recruit-

ment of LC3-II, though both are required for mitophagy

to occur [137].

The most well-established association between defect-

ive mitophagy and neurodegeneration is with PD since

PRKN was discovered as the causation of autosomal-

recessive juvenile parkinsonism (ARJP) in a Japanese

population [26, 27] and PINK1 was subsequently identi-

fied as a second ARJP associated gene [24, 25]. Initial

functional characterisation of both genes was performed

in Drosophila, demonstrating loss of function mutations

in the Drosophila PRKN homologue parkin cause aber-

rant mitochondrial morphology in energy demanding

cell types, such as sperm, flight muscle and, more rele-

vant to PD, dopaminergic neurons [138, 139]. Similar

phenotypes were observed in Pink1 mutant Drosophila

and genetic epistasis experiments showed that overex-

pression of parkin rescued Pink1 mutant phenotypes but

not vice versa, placing PRKN downstream of PINK1 in a

common pathway of mitochondrial quality control

[140–142]. PINK1 and PRKN patients feature the loss of

DA neurons of the substantia nigra pars compacta and

mitochondria are enlarged in induced pluripotent stem

cells (iPSC)-derived DA neurons from these patients

[143]. Taken together, PINK1 and PRKN genetic and ex-

perimental evidence strongly associate loss of normal

mitophagy with ARJP.

Histopathological post-mortem analysis of PD pa-

tient brains also suggests disrupted turnover of mito-

chondria. Mitochondrial complex I defects in the
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post-mortem substantia nigra are a hallmark of PD

pathology [144], indicating that deficient mitochon-

drial quality control is a common feature across fa-

milial and sporadic cases of PD (reviewed [145]). A

signature of damaged mitochondria, polymeric pS65-

Ub, accumulates in cytoplasmic granules, beaded

neurites and granulovacuolar degeneration bodies with

age in healthy individuals [146, 147]. In sporadic PD

and Dementia with Lewy Bodies patients, these struc-

tures have been identified in the proximity of Lewy

bodies. Their abundance positively correlates with

both age and Braak stage, demonstrating age and

disease-associated increases in mitochondrial quality

control [147]. Expectedly, given that PINK1 and

PRKN are responsible for generating pS65-Ub chains

on the MOM, pS65-Ub positive structures are mark-

edly reduced in PINK1 and PRKN post-mortem

brains, inferring that defects in mitophagy are ob-

served in these patients [146, 147].

Mitophagy-related roles can further be attributed to

several other PD-associated genes. Mutations in another

E3 ubiquitin ligase, F-Box Only Protein 7 (FBXO7), were

identified as the cause of parkinsonian pyramidal syn-

drome, a rare form of ARJP which presents with pyram-

idal tract dysfunction [17, 18]. FBXO7 enhances PRKN

recruitment to depolarised mitochondria and also partic-

ipates in the ubiquitination of Mitofusin 1 (MFN1), fa-

cilitating the segregation of damaged mitochondria from

the healthy mitochondrial network [148]. The most fre-

quent cause of autosomal dominant PD is the G2019S

hypermorphic variant of LRRK2. Cold-shock induced

mitophagy is impaired in fibroblasts derived from pa-

tients with either PRKN mutations or the G2019S

LRRK2 variant. This effect is reversed by treatment with

Fig. 2 Mitophagy and related genes associated with neurodegenerative diseases. Dysfunctional mitochondria are targeted for autophagic
clearance by a number of specific adapters which are associated with neurodegenerative disorders. Upon depolarisation, PTEN-induced kinase 1
(PINK1) accumulates on the mitochondrial outer membrane (MOM), where it phosphorylates Ser65 of ubiquitin and the ubiquitin-like domain of
PRKN. pS65-Ub acts as a positive-feedback mechanism for the further recruitment of PRKN to the MOM and activation of its E3 ubiquitin-ligase
activity. PRKN ubiquitinates a number of targets on the MOM, including mitochondrial fusion proteins such as Mitofusin1 (MFN1), decorating the
damaged organelle in poly-ubiquitin chains. F-Box Only Protein 7 (FBXO7) also participates in MFN1 ubiquitination. PINK1, PRKN and pS65-Ub
chains on the MOM facilitates the recruitment of autophagy adapters Phosphotyrosine-Independent Ligand For The Lck SH2 Domain Of 62 KDa
(p62), Nuclear Domain 10 Protein 52 (NDP52) and Optinuerin (OPTN). Parkinson’s disease-associated mutations in β-glucocerebrosidase (GBA) and
Leucine Rich Repeat Kinase 2 (LRRK2) are considered to impair PRKN-mediated mitophagy. Phosphorylation of ALS-associated TBK1 in response to
mitochondrial damage is dependent on NDP52 and OPTN recruitment, but subsequently increases the affinity of OPTN for poly-ubiquitin on the
MOM. TBK1 also phosphorylates RAB7A, which in turn facilitates the recruitment / formation of ATG9 vesicles. The ULK1 complex and ATG9
vesicles are recruited / form de novo at damaged mitochondria and initiate autophagic engulfment. This is enhanced by the recruitment of LC3-
II by p62. Neurodegenerative disease causing or associated genes affecting various stages of mitophagy are listed. For additional information
relating to disease association of listed genes, refer to Table 1
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LRRK2 inhibitor LRRK2-in-1 in G2019S LRRK2 but not

PRKN loss-of-function fibroblasts [149]. LRRK2-in-1

may also protect against oxidative stress by restoring

basal mitophagy levels in a subset of sporadic PD de-

rived fibroblasts [150].

Mitophagy has more recently been implicated in other

neurodegenerative diseases. PINK1 has been identified in

GWAS of genetic modifiers of HD progression, along

with a number of regulators of mitochondrial fission/fu-

sion dynamics [151]. In a Drosophila model of HD,

Pink1 overexpression rescues mitochondrial morph-

ology, conveys neuroprotection and extends lifespan, in-

dicating that defects in mitophagy may also contribute

to aspects of HD pathogenesis [152]. ALS-associated

mutations in OPTN or TANK-binding protein 1 (TBK1)

block efficient clearance of depolarised mitochondria in

PRKN-expressing HeLa cells, indicating that both of

these proteins are important, though not essential, in

mitophagy [153]. TBK1 is rapidly phosphorylated and

activated upon mitochondrial damage and this is

dependent on the mitochondrial recruitment of NDP52

and the ubiquitin binding domain of OPTN. In turn, p-

TBK1 phosphorylates OPTN, enhancing its affinity for

polyubiquitin and thus its retention at depolarised mito-

chondria [154]. p-TBK1 also phosphorylates RAB7A

[155] required for ATG9-vesicle formation and efficient

mitophagy in PRKN-expressing HeLa cells [155–157].

Some ALS-associated missense mutations in TBK1 abol-

ish its phosphorylation, activation and ability to phos-

phorylate OPTN [158], thus defects in mitophagy could

play a role in the pathogenesis of patients with these

mutations.

Changes in mitophagy may also occur in diseases

where genetic evidence does not clearly suggest a mito-

chondrial contribution to pathology. In AD, post-

mortem hippocampal tissues exhibit strikingly lower

levels of mitophagy, assessed by mitochondria-lysosome

co-localisation and visualisation of mitophagy events by

transmission electron microscopy. These deficits correl-

ate with decreased PINK1, p-TBK1 and p-ULK1 in the

same samples and also in iPSCs derived from apolipo-

protein E4 (APOE4) and APP-mutation carrying patients

[159]. Furthermore, there is evidence that upregulation

of mitophagy may protect against AD phenotypes. Uro-

lithin A (UA), a metabolite produced in the gut from the

ellagitannin class of polyphenols found in pomegranate,

raspberries and walnuts, upregulated mitophagy in nem-

atodes and rodents in a manner dependant on PINK1/

PRKN and independent of general macroautophagy

[159, 160]. UA treatment ameliorated learning and

memory defects in both Aß and hyperphosphorylated

Tau in a C. elegans models, and improved cognition in

mouse models of AD [159]. Intriguingly this study found

microglial activation and neuroinflammation were

reduced upon UA treatment in APP-PSEN1 mice, sug-

gesting mitophagy deficits are tied to chronic inflamma-

tion in the brain, a hallmark of many neurodegenerative

diseases. The anti-inflammatory cytokine Interleukin 10

was increased in hippocampal microglia of these mice

upon UA treatment, in a PINK1-dependent fashion, in-

dicating that this anti-inflammatory response is also

likely dependent on mitophagy. Interleukin 10 has previ-

ously been shown to promote mitophagy through inhib-

ition of the mTOR pathway in lipopolysaccharide-

activated macrophages, maintaining a healthy mitochon-

drial network and a metabolic profile based on oxidative

phosphorylation as opposed to glycolysis [161]. Micro-

glial activation is associated with a respiratory switch

from oxidative phosphorylation to glycolysis, facilitated

by the glucose transporter GLUT1. The GLUT1-specific

inhibitor STF31 supresses neuroinflammation and neu-

rodegeneration in a mouse model of light-induced ret-

inal degeneration [162]. These studies thus identify a

promising strategy for combatting both mitochondrial

dysfunction and chronic neuroinflammation in neurode-

generative disease, through upregulation of mitophagy

and rebalancing of metabolic state.

Therapeutic targeting of autophagy in

neurodegeneration

Through their implication in a broad range of neurode-

generative disorders, endo-lysosomal and autophagy

mechanisms have become appealing targets for thera-

peutic intervention [163]. Autophagy targeting com-

pounds fall in two broad categories, acting through

mTOR-dependent or -independent mechanisms. Modu-

lation of mTOR-dependent autophagy via inhibition of

mTORC1 with rapamycin has been widely explored

across a spectrum of human diseases, including various

forms of cancers, auto-immune and neurodegenerative

disorders [164]. Rapamycin possesses strong immuno-

suppressant and anti-proliferation properties which,

though beneficial for treatment of cancer and auto-

immune disorders, are undesirable for chronic treatment

of neurodegenerative disorders. As rapamycin has been

found beneficial in treatment of neurodegeneration in

preclinical models [165], attempts to circumvent its im-

munosuppressant activity have been made through

“Rapalog” derivative molecules, several of which have

been demonstrated to improve phenotypes in models of

neurodegenerative disorders including HD [99], spino-

cerebellar ataxia type-3 [166] and FTD-associated tauo-

pathy [167].

Several mTOR-independent modifiers of autophagy

are gaining interest as therapeutics, with AMPK activat-

ing molecules such as trehalose and metformin proving

effective in reducing neurodegenerative phenotypes in

models of AD [168, 169], ALS [170–172], HD [173, 174]

Malik et al. Molecular Brain          (2019) 12:100 Page 8 of 21



and tauopathies [175]. Cellular targets not directly asso-

ciated with the core autophagy machinery have also been

found to modify neurodegeneration, including Estrogen

Related Receptor α [176] and cAMP [177, 178]. Interest-

ingly, the widely used AD-therapeutic memantine has

emerged from a screen of clinically approved molecules

which enhance autophagy [179], suggesting a potential

mode of action for the drug which may be repurposed in

other neurodegenerative disorders.

Endosomes
Endosomes capture surface molecules through internal-

isation of the plasma membrane, or acquire cargo intra-

cellularly following trans-golgi trafficking. Multiple

checkpoints along the endosomal pathway either desig-

nate cargos for degradation at the lysosome or recycle

them back to the plasma membrane or golgi via the ret-

romer complex [180, 181]. Endosomes exist in three spe-

cific states: early (also called sorting), recycling, or late

depending on their post internalisation stage and associ-

ation with distinct Rab guanosine triphophatases (RAB

GTPases) [182].

Early endosome

The early endosome (EE) serves as the primary sorting

compartment of the endocytic pathway, receiving extra-

cellular material, lipid membranes and membrane-

bound proteins from small endocytic vesicles, formed

from specialised clathrin-coated invaginations of the

plasma membrane. Upon their delivery to the EE, cargos

are separated within minutes and assigned for either

degradation or recycling. Proteins destined for recycling

back to the plasma membrane first cluster within tubular

EE extension membranes, whereas the larger and

rounder EE compartment houses proteins targeted for

degradation. Retrograde transport of cargos from the EE

to the trans-golgi network is facilitated by the Retromer

complex, which consists of VPS26-VPS29-VPS36 cargo

recognition and sorting nexin (SNX) membrane recogni-

tion components [183]. Endosomal cargo separation is

regulated primarily by RAB4 [184] and RAB5 [185], in

addition to some other less well characterised GTPases

including RAB10 [186], RAB14 [187], RAB21 [188] and

RAB22 [189]. These RAB proteins facilitate either the re-

cruitment of additional RABs to enable vesicle matur-

ation or provide a platform for other proteins and

protein complexes to dissociate and re-associate with

the vesicle membrane [190] for trafficking or sorting

purposes. The PI(3)P rich EE membrane itself is also

generated through recruitment of PI 3-kinase VPS34 by

RAB5 [191].

Initial endocytosis is disturbed in several age-

dependent neurological disorders, notably PD where

mutations have been identified in several EE genes. The

synaptic enriched inositol-phosphatase Synaptojanin 1

(SYNJ1) binds clathrin and associated proteins, likely

contributing to the uncoating of clathrin coated vesicles.

Loss of SYNJ1 is associated with dysfunctional endocyto-

sis [192, 193], through disruption of the earliest stages of

EE formation [30, 31]. Indeed, enlarged EEs and altered

trafficking have been seen in fibroblasts derived from

early onset PD patients carrying SYNJ mutations [194].

Endocytosis in PD may further be perturbed by disrup-

tion of DnaJ/Heat Shock Protein Family (HSP40) co-

chaperone (DNAJC) proteins [195], notably DNAJC6/

Auxilin-1 and DNAJC13/RME-8. Neuron-specific

DNAJC6/Auxilin-1 interacts with HSC70, facilitating the

uncoating of clathrin vesicles [15, 196], whilst

DNAJC13/RME-8 decreases retromer-mediated cargo

transport sorting through interaction with SNX1 thereby

preventing the formation of the necessary tubular struc-

ture of the EE membrane [197, 198]. Disruption of retro-

mer activity has also been directly implicated in PD

through mutations in the retromer complex gene VPS35

[34, 35]. PD-associated mutations in LRRK2 have also

recently been found to alter expression of essential

endocytic proteins and also impair endocytosis of

clathrin-associated synaptic vesicles in patient derived

dopaminergic neuron cultures [199]. Lipophilic and ag-

gregation prone alpha-synuclein may itself inhibit retro-

mer recycling of some membrane proteins through

blocking VPS17 and SNX3 from EE association [200].

Beyond PD, several other neurodegenerative disorders

have been linked to the EE system. RAB5 interacts with

Early Endosome Antigen 1 (EEA1), a soluble N-

ethylmaleimide-sensitive fusion protein attachment pro-

tein receptors (SNARE) complex interacting protein, to

enable vesicle fusion [191] and recruitment of HTT via

HTT associated protein 40 (HAP40) to enable endosome

motility [201]. The poly-Q repeat expansion found in

disease associated alleles of the HTT gene has been

found to upregulate HAP40, facilitating a shift of EEs

from microtubules to actin thereby decreasing trafficking

speeds [39, 40]. EE dysfunction may also contribute to

juvenile-onset ALS through mutations to Alsin Rho

Guanine Nucleotide Exchange Factor (ALS2) [202, 203].

ALS2 contains several domains required for guanine-

nucleotide exchange required for RAB activation. Loss-

of-function mutations in the ALS2 gene have been found

to interfere with GDP/GTP exchange required by RAB5

[204], resulting in EE accumulation and trafficking ab-

normalities [205]. EE function has long been of interest

in AD pathogenesis, initially due to enlargement of

RAB5 positive vesicles being one of the earliest patho-

logical events seen in patient tissue [206]. This is not

surprising given that the EE pathway is compromised at

many levels from the endocytosis of secretases residing

on the plasma membrane, intracellular trafficking of key
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enzymes through the internalisation of extracellular

Aβ. More recently, emerging evidence suggests that

genes associated with an increased risk for developing

late-onset sporadic AD may converge on microglia

[207], with several endocytic genes potentially con-

tributing to pathology. Proteins encoded by AD risk

genes, including Bridging Integrator 1 (BIN1) [6],

CD2AP, EPHA1 [10, 11], PICALM [8], Sortilin Related

Receptor 1 (SORL1) [14], amongst others [7, 208, 209]

may all interfere with EE function. SNPs in BIN1 rep-

resent one of the most common AD risk associated

mutations after APOE. RAS and RAB interactor 1

(RIN1), a BIN1 interacting protein, functions as guan-

ine nucleotide exchange factor (GEF) for the RAB5

GTPase family. This interaction was found to pro-

mote epidermal growth factor receptor (EGFR) down-

regulation [210]. SNPs associated with BIN1 are also

likely to affect other critical RAB5 dependent pro-

cesses, which require further investigation.

Retromer-mediated sorting from the EE further con-

trols intracellular shuttling proteins relevant to AD in-

cluding APP and Beta-Secretase 1 (BACE1), which are

required to generate Aβ [211]. Knockout of retromer as-

sociated Vps35 in a mouse model of AD enhanced levels

of amyloidogenic Aβ species [212], suggesting that retro-

mer signalling from the EE is a negative regulator of Aβ

production. This theory is bolstered by genetic evidence

linking SNPs and gene expression of Sortilin Related

VPS10 Domain Containing Receptor 1 (SORCS1) [213], a

membrane homologue of SORL1, to impaired retromer-

associated sorting which may lead to APP processing

deficits [214]. SNPs in APOE [215] and Clusterin may

also accelerate extracellular Aβ-uptake and clearance

[216, 217] decreasing endocytosis capacity later in dis-

ease. Given the role of EE dysfunction in a diverse range

of neurological disorders, this pathway may represent a

common mechanism of either disease manifestation or

disease progression.

Recycling endosome

Portions of neuronal plasma membrane and residing

surface receptors that have been internalised and lost

through EE formation are replenished by recycling

endosomes (REs). At the ultrastructural level, REs

have a tubular formation and form a non-continuous

network [218], identified in tissues through associ-

ation with RAB11 [219]. Lipids to be recycled are

sorted away from those ubiquitylated receptors and li-

gands that are destined for degradation due to the

REs acidic environment (pH ∼ 6.0) [220]. Endosomal

recycling can be rapid, occurring within 2–3 min or

can take around 10 mins from initial endocytosis. Dif-

ferent RAB subtypes appear to be required for either

fast or slow kinetics, with RAB35 associated with fast

moving vesicles and RAB11 slow [221–223], although

why these different mechanisms exist and under what

cellular conditions they occur is not well understood.

Although the RE compartment is relatively understud-

ied compared to EE, several links to neurodegenerative

diseases have been made. The activity of recycling endo-

some associated RAB11 is at least in part controlled

through interaction with HTT. The removal of GDP

from RAB11 is compromised by mutant polyQ expanded

HTT in human cells, leading to deficits in RE size and

receptor recycling [224], impacting dendritic spine com-

plexity in rodent models and patients [225] and electro-

physiology, lifespan and locomotion in Drosophila

models of HD [225, 226]. RAB11 and its role in regulat-

ing recycling endosome activity has been implicated in

disease beyond HD. Charcot-Marie-Tooth peripheral

neuropathy type 4C associated SH3 domain and tetratri-

copeptide repeats 2 (SH3TC2) [49] is considered a

RAB11 effector protein, localising to GTP-bound species

[227]. In CMT4C, mislocalisation of SH3TC2 and lack

of RE trafficking is considered a causative feature of dis-

ease progression [227]. Increasingly targeting RAB11 ac-

tivity is now considered a keen therapeutic target for

HD, with potential benefits for other neurodegenerative

diseases.

Another important molecule bound to the EE/RE

following secretion from the golgi is the gamma-

secretase component PSEN1. Although enhanced

amyloidogenic Aβ production is likely to play a role in

disease manifestation, a recent report also suggests

that it is the accumulation of β C-terminal fragments

which cause RE dysfunction [228]. In this model, mu-

tant forms of PSEN1 and APP decrease RAB11

dependent trafficking from the cell body to the axon

[228]. Hence neurons have a decreased capacity to de-

liver lipoproteins, receptors and transporters back to

the plasma membrane in vulnerable sub-

compartments. Lysosome restricted PSEN2, which also

cleaves APP, may play a more important role in nor-

mal cellular Aβ production, with more toxic species

generated by the mislocalisation of mutant PSEN1

from the EE/RE to the lysosome [229].

Genetic evidence indicates that recycling of specific

proteins confers neurodegenerative disease specificity.

However, general RE disruption may contribute to

neuronal demise indirectly. Several substrates of the

RE pathway suggest why its disruption is so clearly

detrimental to neuronal function. RAB11 vesicles have

been found to carry important neurotrophic factors,

such as BDNF [230] and critical synaptic receptors,

such as AMPA [231]. Although loss of recycling cap-

acity may not initially drive cell death, it may be key

to understanding why synapses are preferentially lost

early in disease.
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Late endosome

Late endosomes (LEs) / multi-vesicular bodies (MVBs)

are generated through the maturation of EEs. Endosomal

Sorting Complex Required for Transport (ESCRT) com-

plexes 0-III and several VPS proteins are also recruited

to ubiquitinated surface molecules on the cytosol facing

endosomal membrane. ESCRT complexes facilitate the

invagination of endosome membrane proteins and lipids,

producing a MVB, an endosome containing smaller

intraluminal vesicles [232]. During this maturation

process RAB5 and RAB4 dissociate from the endocytic

membrane and RAB7 and RAB9 are recruited. Genetic

and cell biological evidence suggest that adequate RAB7

function to initiate clearance through LE-lysosomes fu-

sions may be a critical factor in maintaining normal

neuronal function [233]. RAB7 can also assist the re-

cruitment of the retromer to late endosomes through

interaction with VPS35 [234]. LEs/MVBs acidify to pH

levels of 6.0–4.9 [235] in the final step of the endocytic

pathway before intraluminal cargos are delivered to the

lysosome for degradation (discussed below).

Dysfunction of LE activity in neurodegenerative ap-

pears mostly restricted to PD, spearheaded by genetic as-

sociation. GWAS approaches have identified LRRK2

mutations as common risk factors for the development

of sporadic PD [21, 22], in addition to mutations in Cyc-

lin G Associated Kinase (GAK) and the LE associate

RAB7L1 [19, 236]. Highlighting the importance of the

LE pathway in the maintenance of the large highly

arborised dopamine neurons, a protein complex of

LRRK2, RAB7 and GAK was previous uncovered by an

unbiased protein-protein interaction experiment [237].

Overexpression of these molecules promotes protein

clearance from the trans-Golgi network, suggesting that

trafficking from golgi to LE is compromised in PD.

LRRK2 was also found to impede cargo trafficking by

prohibiting budding of the LE membrane to form

smaller vesicles, via decreased RAB7 activity [238], a

process exacerbated by PD associated mutations. LRRK2

kinase inhibition via small molecules increases lysosome

formation [150], suggesting that LE dysregulation dir-

ectly impacts on clearance. Loss of LRRK2 or RAB7 also

downregulates VSP35 [239] which may further perpetu-

ate the dysregulation of the endosomal pathway up-

stream of the LE. The ESCRT-III complex has also been

implicated in neurodegeneration through its function to

concentrate endosomal cargos into LE intralumenal vesi-

cles. ALS/FTD associated charged multi-vesicular body

protein 2B (CHMP2B) mutations [41, 42] were found to

cause severe lysosome pathologies [240] and metabolic

disturbances in neurons [241]. This evidence shows that

LE perturbations may therefore lead to downstream

lysosome-mediated clearance complications or initiate

dysfunction in earlier in the endocytic pathway.

Lysosomes
Lysosomes are the terminal compartment through which

macromolecules are degraded and recycled to generate

nutrients. Lysosomes are generated through the matur-

ation of LEs, achieved via delivery of hydrolytic enzymes

from the golgi and also active acidification of the lumen

via the lysosomal vATPase hydrogen pump. Once acid-

ified to approximately pH 5, over 50 hydrolytic enzymes,

including a broad range of glycosidases and proteases

degrade the contents. The matured lysosome is able to

fuse with and degrade the contents of other vesicular

compartments including endosomes, autophagosomes,

amphisomes (fused endosome-autophagosome) and pha-

gosomes (phagocytosed material). A wide range of cellu-

lar macromolecules can be processed through the

lysosome, including nucleic acids, proteins, carbohy-

drates and lipids. Several aspects of lysosomal biology in-

cluding enzymatic dysfunction and positioning have

been implicated in neurodegenerative disorders.

Lysosome function

As lysosomal degradation is one of the primary mecha-

nisms of cellular waste removal, it is unsurprising that

genes facilitating this essential process have been linked

to a broad range of diseases. Lysosomal Storage Disor-

ders (LSD) are a family of hereditary conditions in which

substrates of lysosomal degradation accumulate within

the lumen, caused by mutations in a range of lysosome

specific hydrolases, enzymatic regulators, membrane

proteins and transporters. Many of the > 50 genes linked

to LSDs cause juvenile neurodegenerative disorders,

though pathologies of the liver, spleen and bones are

also common (reviewed [242]). Several LSDs which fea-

ture neurodegeneration are associated with mutations in

hydrolytic enzymes responsible for the processing of

specific lipids, resulting in their build up within the lyso-

somal lumen. Examples include the Neuronal ceroid

lipofuscinoses (NCLs), a family of 14 genetically distinct,

autosomal recessive LSDs that present juvenile onset vi-

sion loss, seizures, cognitive decline and motor dysfunc-

tion, unified by the accumulation within neuronal

lysosomes of auto-fluorescent lipofuscin, a heterogenous

mixture of oxidised lipids, proteins and carbohydrates

[243]. Neuroinflammation and neuronal death are seen

in juvenile onset Sandhoff disease and heterogenous on-

set Tay-Sach’s disease, both GM2-gangliosidosis disor-

ders caused by accumulation GM2-gangliosides within

the lysosomal lumen [244].

The sphingolipidosis Gaucher’s disease is of particular

interest due to implications in the pathogenesis of PD.

Autosomal recessive Gaucher’s disease is characterised

by the accumulation of glucosylceramide (GluCer) due

to mutation of the β-glucocerebrosidase (GBA) gene

[245], with progressive neurological dysfunction is seen
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in the severe early-onset type II and milder late-onset

type III forms. In addition to accumulation of lysosomal

GluCer, misfolded mutant GBA accumulates in the ER

[246, 247], with mutant GBA associated with activated

unfolded protein response in model systems [248–250].

There is a wealth of emerging data to suggest a strong

association between impediment of lysosomal enzymatic

function and synucleinopathies, in particular PD [251].

Genetic studies of PD patients have identified a strong

association with heterozygosity for GBA loss-of-function

mutations and increased risk of developing PD [252].

Both wild type alpha-synuclein and PD associated var-

iants interact with lipids [253]. Dysfunction of GBA can

disrupt alpha-synuclein function [254] and exacerbate its

aggregation [255], with GluCer stabilising the peptide in

oligomeric species and promoting its aggregation [256].

Alpha-synuclein is degraded through the lysosome via

chaperone-mediate autophagy (see above) [257, 258].

Further still, accumulation of alpha-synuclein itself is

able to inhibit lysosomal GBA function, suggesting a

feed-forward loop of alpha-synuclein aggregation pro-

moting lysosomal dysfunction and further accumulation

of aggregated protein [256]. Intriguingly, PD-associated

GBA variants GBAL444P and GBAN370S can also impede

normal PRKN ubiquitination of mitochondrial substrates

[259, 260], and heterozygous GBAL444P mutations de-

crease the delivery of the mitochondria to lysosomes

[261]. As mitochondrial dysfunction is not observed in

heterozygous GBA knockout neurons [262] PD-

associated GBA variants may convey specific gain-of-

function effects in neurons, aside from lysosomal func-

tion. Due to the implications of GBA-associated lyso-

somal dysfunction and PD-associated pathologies,

GluCer synthesis and metabolism have become promis-

ing targets for therapeutic intervention [254, 263–265],

as have molecules such as ubiquitin ligase NEDD4,

which target alpha-synuclein for lysosomal destruction

[266].

Lysosomal dysfunction can also contribute to neurode-

generation through mutations that do not directly affect

hydrolytic enzymes. Niemann-Pick disease type C (NPC)

is a juvenile onset neurodegenerative condition with

death occurring in young adulthood, primarily effecting

the cerebellum, associated with accumulation of a range

of lipids within the lysosomal lumen including choles-

terol, sphingomyelin and sphingosine [267–271]. The

disorder has two genetically distinct forms; NPC1 is a

sterol-sensing transmembrane protein acidic compart-

ments [50, 51, 272] and rarer mutations in NPC2 that

disrupt a lysosomal soluble peptide with a cholesterol

binding domain [52, 53, 273]. As NPC1 is expressed in

most cell types, why neurons are particularly vulnerable

to its dysfunction is unclear. Experimental data has sug-

gested defective regulation of lysosomal calcium may

contribute to NPC associated phenotypes, with increased

storage of lysosomal sphingosine causing a reduction in

luminal calcium levels, subsequent accumulation of fur-

ther lipids and defects in endocytic trafficking [274].

Since NPC shares formation of the hyperphosphorylated

Tau neurofibrillary tangles typically seen in AD and PD

[275], understanding the mechanistic role of NPC1/2 in

lysosome function may have broader implications for

other neurodegenerative diseases and their treatment.

Lysosome positioning

The positioning of lysosomes within a cell is intertwined

with the function of these vesicles, particularly with re-

gard to acidification of the lumen. In non-polarised cells,

lysosomes are distributed into two groups; a relatively

stationary perinuclear “cloud” [276] where early endo-

somes mature through to lysosomes, and a highly motile

population in the periphery [277]. Lysosome transporta-

tion to the periphery generally occurs along microtubule

networks, with anterograde transport to the periphery

mediated by kinesin motor proteins [278], and returning

retrograde transport by the dynactin motor complex

[279]. Lysosome distribution differs somewhat in highly

polarised neurons, where the vast length and volume of

many axons requires effective delivery of acidified lyso-

somes. Though lysosomes can be detected throughout

the soma, axon, dendrites and synapses of neurons, their

positioning appears to define their function. Mature,

acidified lysosomes are enriched in the soma, with a de-

creasing gradient of acidity along the distal-proximal

length of the axon, suggesting degradation within lyso-

somes occurs in the cell body [280, 281]. Directionality

of lysosome transport within the axon has not been fully

resolved, in part due to differences in the assays used for

their detection [282]. Further research into the basic

neurobiology of lysosome maintenance and trafficking is

long overdue and would enable us to better understand

neurodegenerative disease.

Abnormal transport and positioning of lysosomes may

contribute towards the pathogenesis of AD, particularly

as disruption of the endo-lysosomal system is one of the

earliest detectable histopathological features [206]. Swol-

len, dystrophic neurites are a common histopathological

feature of AD [283, 284], with lysosomes and related

vesicles found to accumulate within these axonal swel-

lings. Curiously, such lysosome enriched swellings are

often in regions proximal to amyloid plaques in patient

brains [285–287] and rodent models of the disease

[288]. Whether accumulation of lysosomes cause amyl-

oid pathology, or a secondary event downstream of

plaque formation, remains unanswered. It is conceivable

that plaques and the neuroinflammation may alter local

intra-axonal processes such as transportation, however

emerging experimental data suggests that dysregulation
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of lysosome axonal transport may actively drive amyloid

accumulation. Proteins in the c-Jun N-terminal kinase-

interacting proteins (JIP) family of conserved mitogen

activated protein kinases (MAPKs) regulate microtubule

mediated transport of cargos along axons [289, 290].

Mutation of JIP3 causes accumulation of lysosomal vesi-

cles, amyloid processing enzymes and increased produc-

tion of toxic species of Aβ in an AD mouse model [291].

Further links between AD pathology and lysosome func-

tion can be found in the function of PSEN proteins.

Early onset AD patients with PSEN1 or 2 mutations

present elevated lysosomal pathology levels or lysosome

associated pathology [292]. Experimental disruption of

PSEN1 in cell culture models results in reduced assem-

bly of the vacuolar-type H+ ATPase (vATPase) complex

at the lysosomal membrane and subsequent failure of

the lumen to reach correct acidic pH [293]. Consequen-

tially, lysosomal acid-sensitive hydrolytic enzymes have

reduced function and increased efflux of luminal Ca2+.

Taken together, evidence of accumulation of axonal ly-

sosomes, increasing amyloid plaque burden and lyso-

somal dysfunction associated hereditary AD genes are

suggestive that impaired lysosomal positioning may be a

contributing factor in AD that warrants further investi-

gation. Furthermore, as mislocalisation of lysosomes has

also been reported in cellular models of HD [294] and

ALS associated mutant dynactin-p150glued [295], disrup-

tion of their trafficking may be a common pathogenic

event in neurodegeneration.

Conclusions and future perspectives
Changes in autophagy, mitophagy and endo-lysosomal

processes have been implicated in most neurodegenera-

tive diseases, however their contribution is still only par-

tially defined, with several outstanding questions.

Though the regulatory processes underpinning autoph-

agy are well understood with regard to starvation, its

regulation in neurons in health and disease is poorly de-

fined. The initiating signals for upregulation of autoph-

agy in times of neurotoxic stress are not well

understood, particularly how the right balance between

homeostatic autophagy and the clearance of toxic mater-

ial is achieved. More so, it is not entirely clear if autoph-

agy is indeed protective, or is instead contributing to

neuronal stress and destruction. This is in part due to

gaps in our basic understanding of the cellular mechan-

ism driving autophagy. Though a peripheral origin and

retrograde transport of autophagosomes has been dem-

onstrated in tissue culture experiments [67], the source

of the phagophore isolation membrane in neurons is not

clear and requires further description in vivo. Experi-

ments in Drosophila have also suggested an important

role for microautophagy in the maintenance of synapses

[122], a highly vulnerable neuronal compartment, and

this process warrants further investigation in the context

of neurodegenerative disease.

Despite extensive exploration of the function of PINK1

and PRKN in Parkinsonisms, robust evidence for defect-

ive mitophagy as a direct cause of pathology in patient

brains is lacking. It is clear that PINK1 and PRKN have

independent roles outside of mitophagy [296, 297], and

furthermore, there is evidence to suggest that basal

mitophagy can occur independently of PINK1 or PRKN

[298, 299]. The importance of PINK1/PRKN mediated

mitophagy to the viability of dopaminergic neurons in

the substantia nigra thus needs to be clarified. The link

between mitophagy and neuroinflammation is not well

characterised, but new findings indicate that the meta-

bolic state of microglia influence their activation [162]

and this can be regulated by mitochondrial turnover

[159]. The relationship between mitochondrial quality

control in glial cells and neurodegenerative disorders

may reflect the convergence of two key processes in neu-

rodegenerative disorders and therefore requires further

investigation.

It is curious why specific mechanisms within the endo-

somal pathway appear to be dysregulated in different

neurological conditions, suggesting divergent patho-

logical roles in neurodegeneration. While EE dysfunction

appears to be a characteristic feature of multiple neuro-

degenerative diseases, RE is primarily implicated in HD

and AD, whereas LE pathway dysfunction is largely

restricted to PD. Disruption of synaptic receptor recyc-

ling, observed when the RE is compromised [231], may

be of a significant importance to medium spiny neurons

and cortical/hippocampal neurons that underpin learn-

ing and memory through spine remodelling. The LE

pathway may on the other hand play a more prominent

feature in dopaminergic neurons, where the disposal of

mitochondria and alpha-synuclein is prioritised [156,

300]. It is currently unclear why EE dysfunction appears

to be a pathological feature of many different diseases.

Does EE dysfunction always lead to lysosomal problems

downstream or is the LE system adaptable enough to

correct itself despite endocytosis and sorting issues? Cu-

mulative evidence supports the latter, suggesting that

lack of LE-lysosome fusion can to some degree be com-

pensated for by autophagic clearance. The endosomal

pathway is a dynamic continuum and a shift in its bal-

ance may result in neuronal demise, as evidenced by

both causative and enhanced disease risk associated

mutations.

Finally, abundant data suggests that defects in autoph-

agy and the endo-lysosomal system contribute to dis-

ease, supporting the concept that their stimulation is a

feasible target for therapeutic intervention in neurode-

generation. Several pharmacological modifiers of au-

tophagy with blood brain barrier permeable properties
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exist, with some experimental evidence to support their

use [98, 99, 301, 302]. These are generally not consid-

ered appropriate for long-term use due to global alter-

ations of essential cellular processes [303]. Identifying

potent, neuro-specific modulators of autophagy and

endo-lysosomal function will be essential to determine if

these pathways are truly viable targets for therapeutics,

in order to ultimately treat devastating neurodegenera-

tive disorders.
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