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Abstract

Phosphoinositides (PIs) control fundamental cell processes, and inherited defects of PI kinases or 

phosphatases cause severe human diseases including Lowe syndrome due to mutations in OCRL 

that encodes a PI(4,5)P2 5-phosphatase. Here we unveil a lysosomal response to the arrival of 

autophagosomal cargo where OCRL plays a key role. We identify mitochondrial DNA and TLR9 
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as the cargo and the receptor that triggers and mediates, respectively, this response. This lysosome-

cargo response is required to sustain the autophagic flux and involves a local increase in PI(4,5)P2 

that is confined in space and time by OCRL. Depleting or inhibiting OCRL leads to an 

accumulation of lysosomal PI(4,5)P2, an inhibitor of the calcium channel mucolipin-1 that 

controls autophagosome-lysosome fusion. Hence, autophagosomes accumulate in OCRL-depleted 

cells and in the kidneys of Lowe syndrome patients. Importantly, boosting the activity of 

mucolipin-1 with selective agonists restores the autophagic flux in cells from Lowe syndrome 

patients.

Introduction

Mutations in the OCRL gene, which encodes a PI(4,5)P2 5-phosphatase, cause Oculo 

Cerebro Renal Lowe syndrome, a rare X-linked syndrome characterized by congenital 

cataracts, psychomotor disability, and renal Fanconi syndrome due to the inability of 

proximal tubule kidney cells (PTCs) to reabsorb low molecular proteins and solutes from the 

ultrafiltrate1, 2. The progression of kidney damage towards end-stage renal failure is a 

leading cause of death in patients affected by Lowe syndrome, a disease for which no 

therapy is currently available.

OCRL is a multidomain cytosolic protein that associates with diverse subcellular 

compartments including clathrin-coated vesicles, early endosomes, the Trans Golgi Network 

(TGN), and the primary cilium3. The association of OCRL with membranes involves several 

interactors such as AP2, clathrin, Rab GTPases, APPL1 and Ses proteins3. OCRL has been 

shown to control endocytic recycling, endosome-to-Golgi transport, early endocytic and 

phagocytic steps, cytokinesis, and cilium formation3, 4.

The loss of OCRL function leads to an accumulation of PI(4,5)P2 and to uncontrolled actin 

polymerization on clathrin coated vesicles and early endosomes4, 5. This imbalance in 

PI(4,5)P2 and actin dynamics impairs the endocytic trafficking of different classes of 

receptors, including the multiligand receptor megalin that is responsible for low molecular 

protein reabsorption at the proximal tubule5. While impaired megalin trafficking may 

explain some signs of the disease, such as low-molecular-weight proteinuria5, many gaps 

remain in our understanding of the mechanisms linking OCRL mutations to the impairment 

of proximal tubular cell function, to the progressive deterioration of kidney function, and to 

the neuropathological signs in Lowe syndrome6, 7. Here, by combining unbiased and 

targeted approaches, we describe an unanticipated role of OCRL at lysosomes where it is 

recruited in the course of a response that we find to occur at lysosomes upon arrival of 

autophagic cargo.

Results

OCRL depletion induces the upregulation of lysosomal genes and morphological 
alterations of lysosomes

We initially undertook an unbiased approach to uncover how cells respond to the loss of 

OCRL by analyzing the changes in gene expression caused by the depletion of OCRL in 
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human PTCs, the cells that are primarily compromised in Lowe syndrome (Supplementary 

Fig. 1a-c and Supplementary Table 1).

We found that one of the gene classes most significantly upregulated after OCRL depletion 

coded for lysosomal proteins (Fig. 1a, b and Supplementary Fig. 2a). This upregulation was 

accompanied by the nuclear translocation of the transcription factor TFEB (Supplementary 

Fig. 2b-d), a master regulator of lysosomal biogenesis that is activated under conditions that 

require increased degradation efficiency or induce lysosomal dysfunction8. The activation of 

TFEB and the presence of morphologically abnormal lysosomes in OCRL-depleted cells, in 

PTCs from Lowe syndrome patients, as well as in a recently described zebrafish model of 

Lowe syndrome9, 10 (Fig. 1c-e) led us to investigate the role of OCRL at lysosomes.

OCRL is recruited to lysosomes in response to autophagosome-lysosome fusion in an 
AP2- and clathrin-dependent manner

As mentioned above OCRL has been reported to associate with clathrin-coated pits, clathrin-

coated vesicles, early endosomes, the TGN, and the primary cilium3. However, this 

distribution pattern apparently contrasts with the first reported localization of OCRL, which 

indicated that OCRL associates with lysosomes that were however loaded with sucrose11. 

We reasoned that this apparent discrepancy might be due to the different loading state of 

lysosomes and therefore analysed the distribution of OCRL under a condition that induces a 

lysosomal cargo load such as starvation, during which lysosomes receive autophagosomal 

cargoes. We confirmed that OCRL associates mainly with early endosomes and the TGN 

(Supplementary Fig. 1b) and only occasionally colocalizes with the lysosomal marker 

LAMP1 under steady state conditions (Fig. 2a, b). However, it massively translocates to 

lysosomes upon induction of autophagy (Fig. 2a, b). The observation that this translocation 

was diminished when the fusion of autophagosomes with lysosomes was inhibited by 

depleting key components of the tethering (VPS16) and fusion (STX17) machinery or 

interfering with microtubule dynamics (vinblastine treatment)12–14 (Fig. 2a, b) indicated 

that the fusion of autophagosomes with lysosomes triggers the recruitment of OCRL to 

lysosomes and prompted us to look for other components and for the signalling pathways 

mediating this response.

We first explored the involvement of clathrin and AP2, two main recruiters of OCRL to 

cellular membranes15, 16, and found that mutations in the AP2- and/or clathrin-binding 

sites of OCRL impaired the translocation of OCRL to lysosomes16 (Fig. 2c). Confirming 

the importance of these two binding sites, INPP5B, a PI(4,5)P2 5-phosphatase that is highly 

similar to OCRL but lacks both the AP2- and clathrin-interacting motifs16, is not recruited 

to lysosomes in response to the delivery of autophagic cargo (Fig. 2c).

Autophagosome-lysosome fusion triggers an increase in lysosome PI(4,5)P2 and the 
recruitment of AP2 and clathrin to lysosomes

Prompted by the observation that AP2 and clathrin were required for the association of 

OCRL with lysosomes in response to autophagosome-lysosome fusion, we followed their 

localization during the course of the autophagy process. AP2 and clathrin have been reported 

to associate with lysosomes17 and to be required for lysosome reformation at the end of 
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autophagy upon mTOR signalling reactivation17–19. We found that AP2 and clathrin are in 

fact recruited to lysosomes early during the autophagy process at a stage when mTOR is still 

inactive, and in a manner that is concomitant with and dependent on the fusion of 

autophagosomes with lysosomes and a local increase in PI(4,5)P2 produced by PI4KIIIβ, a 

kinase that preserves lysosomal identity20, and the kinases PIP5K1α and β (Fig. 3a-c, 

Supplementary Fig. 3a, b). To search for signalling pathways mediating the lysosomal 

response to autophagosome fusion, we first considered the lysosome-based mTOR 

signalling21. However, multiple lines of evidence indicated that the local increase in 

lysosomal PI(4,5)P2 and the recruitment of OCRL are not dependent on mTOR activation or 

inactivation: first, OCRL is more associated with lysosomes (as compared to steady state) 

under conditions in which mTOR is either silent or fully active (Fig. 3b and Supplementary 

Fig. 3c); second, the overall time course of OCRL translocation to lysosomes does not 

parallel that of mTOR inactivation-reactivation during nutrient deprivation-induced 

autophagy followed by nutrient re-addition (Fig. 3b); third, it is not starvation (and thus 

mTOR inactivation) per se but the arrival of autophagosomal cargo to lysosomes that 

induces this response (Fig. 3c); fourth, OCRL translocation can be seen using agents that 

induce autophagy and inactivate mTOR (torin 1) or induce autophagy without affecting 

mTOR activity (Tat-Beclin-1)22 (Supplementary Fig. 3d, e).

TLR9 mediates the lysosomal response to autophagosome fusion

We therefore considered the involvement of other endolysosome-based signalling pathways, 

such as members of the family of toll like receptors (TLRs) that are present in immune as 

well as in non-immune cells (including kidney proximal tubule cells23–25) and recognize 

both exogenous and endogenous macromolecules26–28. We depleted TLR family members 

that can signal from endolysosomes (i.e. TLR3, TLR4, TLR7, TLR9) and found that the 

response to autophagosome-lysosome fusion was blunted – in terms of PI(4,5)P2 generation, 

AP2, clathrin and OCRL recruitment – by selectively depleting or pharmacologically 

inhibiting TLR9 (Fig. 4a-c). TLR9 resides mainly in the ER at steady state (with only a 

small fraction of receptors present in the endolysosomal compartment) but upon arrival of 

TLR9 ligands into lysosomes it translocates to lysosomes via mechanisms that are only 

partially understood and that involve COPII-dependent ER export, the chaperone UNC93B1, 

and the small GTPase ARF329, 30. In line with the notion that TLR9 activation is 

accompanied by its translocation to lysosomes, we found that TLR9 translocates from the 

ER to lysosomes upon autophagy induction (Fig. 4d and Supplementary Fig. 4a) in a fashion 

that is dependent on autophagosome-lysosome fusion and on the presence of the TLR9 

chaperone UNC93B1 (Fig. 4d).

TLR9 is activated by mitochondrial DNA released into lysosomes by autophagosomes

The ligands for TLR9 are unmethylated CpG motifs that are found in bacterial DNA and in 

mitochondrial DNA (mtDNA)31. Indeed, the activation of TLR9 in response to 

mitochondrial damage and increased autophagy has been reported recently in non-immune 

cells such as cardiomyocytes32 and hepatocytes33. We thus hypothesized that the 

autophagic cargo that triggers the TLR9-mediated lysosomal response might be mtDNA 

released into lysosomes by autophagosomes. In support of our hypothesis, depleting 

mitochondrial DNA (by two independent means, Supplementary Fig. 4b, c) or depleting 
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DNaseII (the lysosomal DNase required for TLR9 activation34) inhibited the lysosomal 

response (Fig. 4e, Supplementary Fig. 4d), while inducing mitophagy with FCCP (a 

mitochondrial uncoupler that induces mitochondrial damage35–37) or activating TLR9 with 

synthetic agonists mimicking unmethylated CpG motifs elicited the lysosomal response in 

terms of an increase in lysosomal PI(4,5)P2 and the recruitment of AP2, clathrin and OCRL 

(Fig. 4f).

We investigated the signalling cascade triggered by the activation of TLR9 in response to 

mtDNA and found that known components of the TLR9 signalling and trafficking pathway – 

such as TIRAP, which also translocated to lysosomes (Supplementary Fig. 4e), MyD88, 

IRAK4 and UNC93B1 – were involved (Supplementary Fig. 4f). We next asked how the 

activation of TLR9 could lead to the local increase in PI(4,5)P2. Although a link between the 

activation of TLR and PI(4,5)P2 generation has been previously reported, the underlying 

mechanisms have remained unexplored so far38. We found that the activation of TLR9 is 

accompanied by and required for the translocation of PIP5Kα and β to lysosomes (Fig. 4g, 

h) and that TLR9 belongs to a molecular complex containing also PIP5Kα, since the two 

proteins can be co-immunoprecipitated (Fig. 4i).

The TLR9-mediated lysosomal cargo response sustains the autophagic flux

Altogether, the above data unmasked a regulatory circuit in lysosomes that is activated by 

autophagic cargo and prompted us to ask what might be the purpose(s) of this circuit and 

what is the specific role of OCRL in it. We found that this circuit controls local (i.e. 

lysosomal) and transcriptional responses. Locally, it is required for lysosomal homeostasis 

since lysosomes enlarge and accumulate internal membranes upon depletion or inhibition of 

TLR9 (Fig. 5a, b) and for efficient autophagic flux (Fig. 5c, d) since the depletion or 

pharmacological inhibition of TLR9 led to the accumulation of autophagosomes (Fig. 5d). 

This accumulation is accompanied by impaired autophagosome-lysosome fusion (as 

assessed by following the yellow-to-red conversion of the mRFP-GFP tandem-LC3 

reporter39 Fig. 5e) possibly induced by defective recycling of the autophagic SNARE 

syntaxin1714 from autolysosomes (Supplementary Fig. 4g). Concomitantly with this local 

lysosomal response, TLR9 stimulation by mtDNA triggers the canonical TLR9-dependent 

signalling cascade involving the activation and nuclear translocation of the transcription 

factor NF-kB and an increase in the transcription of proinflammatory cytokine and 

Interferon beta genes (Fig. 5f, g). This indicates that the mtDNA released into lysosomes 

during autophagy has the potential to trigger an inflammatory response. We envisage that 

this response is usually self-limiting due to the complete degradation of oligonucleotides 

containing unmethylated CpG motifs by lysosomal exonucleases, nucelotidases and 

phosphatases but might become sustained under conditions of prolonged stress and/or 

impaired degradative capacity, such as during lysosomal storage disorders, which, in fact, 

are often accompanied by chronic inflammation40.

OCRL controls the autophagy flux through its 5-phosphatase activity

We then explored the role of OCRL in the lysosomal cargo response and its relevance for the 

manifestations of Lowe syndrome. We found that OCRL-depleted cells have a higher 

number of mature autophagosomes under normal growth conditions41 (Fig. 6a-c, 
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Supplementary Fig. 5a). This elevated number of autophagosomes is due to delayed basal 

autophagic flux through lysosomes as assessed by the increase in the autophagy substrate 

p6242 (Supplementary Fig. 5b). Although TFEB activation might in part contribute to the 

increase in basal p62 levels in OCRL-depleted cells, the inability of Bafilomycin to induce a 

further increase in p62 levels indicates that this increase is mainly due to impaired 

autophagic flux to lysosomes, as also testified by the increase in LC3II protein levels 

(Supplementary Fig. 5b). The impaired autophagic flux is caused by an impairment of 

autophagosome-lysosome fusion as assessed by the lower colocalization of autophagosomal 

and lysosomal markers and the impaired yellow-to-red conversion of the tandem fluorescent 

LC3 probe (Fig. 6d, e and Supplementary Fig. 5c, d). Importantly, a striking accumulation of 

autophagosomes was also observed in proximal tubules from kidney biopsies of Lowe 

syndrome patients (Fig. 6f, Supplementary Fig. 6a, b) highlighting the physiopathological 

relevance of the lysosomal role of OCRL, prompting us to clarify the molecular mechanisms 

underlying this role. These involve the catalytic activity of OCRL since YU142670, an 

OCRL inhibitor43, also induced an accumulation of autophagosomes (Fig. 6a, b) while the 

autophagic flux could be restored by expressing wt but not catalytically-inactive OCRL in 

OCRL-defective PTCs or in PTCs from Lowe syndrome patients (Fig. 6a, b, g). Of note, we 

detected an excess of lysosomal PI(4,5)P2 in OCRL-depleted cells (Fig. 7a, b and 

Supplementary Fig. 5e, f) which could be rescued by re-expressing wt, but not catalytically 

inactive, OCRL (Supplementary Fig. 5f) or by lowering PI(4,5)P2 production through the 

depletion of PIP5K α or β (Fig. 7b). Notably, these two independent PI(4,5)P2-reducing 

approaches were both effective in rescuing the autophagy flux in OCRL-depleted cells (Fig. 

6a, b and Fig. 7c) indicating that the excess lysosomal PI(4,5)P2 had a causative role in 

impairing autophagosome-lysosome fusion in OCRL-depleted cells.

OCRL is required to preserve the activity of MCOLN1

We searched for the target(s) of the inhibitory effect of PI(4,5)P2 on autophagosome-

lysosome fusion. One interesting candidate was mucolipin-1 (MCOLN1, also referred as 

TRPML1), a lysosomal calcium channel required for lysosome fusion with autophagosomes 

whose activity is stimulated by PI(3,5)P2 but inhibited by PI(4,5)P244–46. Indeed, we found 

that MCOLN1-dependent calcium release was compromised – i.e. no response at low 

concentrations and slower response at high concentrations of MCOLN1 agonist – in OCRL-

KD cells47 as compared to control cells (Fig. 7d). We also obtained independent lines of 

evidence indicating that MCOLN1 and OCRL interact: firstly, the overexpression of 

MCOLN1 recruits wt but not the AP2-defective binding mutant of OCRL to lysosomes (Fig. 

7e); secondly, MCOLN1 is required for OCRL translocation to lysosomes (Fig. 7f); thirdly, 

the two proteins can be co-immunoprecipitated (Fig. 7g). Thus, our results indicate that both 

MCOLN1 (Fig. 7f) and AP2 (Fig. 2c) are required for the lysosomal recruitment of OCRL, 

but that neither of them on its own is sufficient since AP2-defective OCRL mutants are no 

longer recruited to lysosomes even in cells overexpressing MCOLN1 (Fig. 7e) and AP2-

competent OCRL cannot be recruited to lysosomes in the absence of MCOLN1 (Fig. 7f). 

This combined requirement indicates that a mechanism of coincidence detection drives and 

calibrates in time and space the recruitment of OCRL to lysosomes ensuring that OCRL is 

recruited to lysosomal regions/domains containing both MCOLN1 and AP2.
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Boosting MCOLN1 activity rescues the autophagic flux in Lowe syndrome patient PTCs

Since OCRL depletion did not have an impact on MCOLN1 localization (Supplementary 

Fig. 7a), we concluded that the MCOLN1 dysfunction in OCRL-depleted cells was due to 

reduced activity caused by an excess of PI(4,5)P2. Hence, we reasoned that boosting the 

activity of MCOLN1 in OCRL-depleted cells might rescue lysosomal function. To this end 

we used two independent approaches: the overexpression of MCOLN1 (the wt form and 

MCOLN1-3A, a mutant MCOLN1 unable to bind PI(4,5)P244) or the use of a MCOLN1 

activator at a concentration that is effective in inducing lysosomal calcium release in OCRL-

depleted cells (Fig. 7d). We observed that both the overexpression of MCOLN1, more 

potently in its PI(4,5)P2-insensitive form (MCOLN1-3A), and treatment with the MCOLN1 

activator SF-51 (which we further characterized for its specificity, Supplementary Fig. 7b) 

rescued the defects in autophagic flux in OCRL-depleted cells (Fig. 8a, b). Importantly, the 

MCOLN1 activator also rescued the impaired autophagic flux in PTCs from Lowe syndrome 

patients (Fig. 8c, d), thus indicating MCOLN1 as a possible drug target for the treatment of 

Lowe syndrome.

Discussion

Here we have unveiled a heretofore unknown ability of lysosomes to sense the arrival of 

autophagic cargo and at the same time a pathophysiological pathway in Lowe syndrome 

(Supplementary Fig. 8). The mtDNA released by autophagosomes into lysosomes stimulates 

TLR9 which activates its known downstream effectors, such as the transcription factor NF-

kB (Supplementary Fig. 8), but also induces a local increase in PI(4,5)P2. The observation 

that OCRL, a 5-phosphatase, is recruited almost simultaneously with PIP5Ks demonstrates 

the need for a strict spatial and temporal restriction of PI(4,5)P2 levels in lysosomes. The 

local increase in PI(4,5)P2 is needed for the recruitment of AP2 and clathrin. We envisage 

that AP2-mediated clathrin recruitment controls distinct budding events in lysosomes in 

distinct stages of autophagy. During ongoing autophagy (this report) it may mediate the 

recycling of components, such as syntaxin 17, needed to sustain an efficient autophagic flux, 

while at the end of autophagy, as shown by Rong et al.19, it mediates autophagic lysosome 

reformation to regenerate primary lysosomes that have been consumed through their fusion 

with autophagosomes. PI(4,5)P2, which is required for these budding events, has to be 

nevertheless restricted to limited domains in the lysosome since it can act as an endogenous 

inhibitor of the calcium channel MCOLN144, 48. This is the task of OCRL, which interacts 

with MCOLN1 and which ensures PI(4,5)P2-free microdomains around MCOLN1 

(Supplementary Fig. 8) . Indeed, the uncontrolled increase in lysosomal PI(4,5)P2 that 

results from the loss of function of OCRL inhibits MCOLN1 activity and, consequently, the 

autophagic flux, inducing the accumulation of autophagosomes that is observed in cells and, 

notably, in the kidney of Lowe syndrome patients. The lysosome dysfunction and the 

impaired autophagic flux are bound to play a pivotal role in the progression of renal damage, 

a so far poorly understood process, and, possibly, also in the generation of central nervous 

system-related symptoms and of neuropathological signs in Lowe syndrome patients6, 7, 49. 

Finally, and most importantly, MCOLN1 emerges as an interesting drug target since 

MCOLN1 agonists are able to restore the autophagosomal flux in cells from Lowe syndrome 

patients.
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Methods

Antibodies, cDNAs, and reagents

All chemical reagents were of analytical grade or higher and purchased from Sigma-Aldrich 

unless otherwise specified. The anti-OCRL, -PI4KIIIβ and -GST polyclonal antibodies have 

been described in5. The other primary and secondary antibodies used in this study are listed 

in Supplementary Table 3. Other reagents: Quant-iT™PicoGreen®, FuraRed, Hanks’ 

Balanced Salt Solution with Calcium and Magnesium (HBSS) 1X, OPTI-MEM (Life 

Technologies); SF-51, YU14267043 (STK001646 and STK883823, respectively) (Vitas-M 

Laboratory); agarose-linked anti-GFP antibody (Vector Laboratories); Bafilomycin, 

vinblastine, FCCP, ethidium bromide, uridine, Protein A/G Sepharose (Sigma-Aldrich). 

Sodium pyruvate (Euroclone); ODN 2216, ODN 2395, ODN TTAGGG (InvivoGen); 

Torin-1 (Tocris Bioscience); Tat-beclin 1 peptide, digitonin (Merck-Millipore). The GST-

tagged PH domain of PLCδ was prepared as described in Vicinanza et al.5. Tandem 

fluorescent mRFP-eGFP-LC3 was kindly provided by A. Fraldi (TIGEM, Pozzuoli, Italy). 

TLR9-YFP (plasmid #13642) and TIRAP-GFP (plasmid #52739) (Addgene). The full-

length WT and mutant form (V527D) of OCRL were described previously5.

Mutations in the clathrin-binding domains (LIDIA, I74N and LIDLE, deltaLIDLE) and in 

the AP-2 binding motif (FxDxF, F151S) of OCRL were generated using the QuikChange 

mutagenesis system (Agilent Technologies) following the manufacturer’s protocol using the 

primers listed in Supplementary Table 4. The GFP-OCRL-X316 triple mutant was generated 

by sequential mutagenesis of LIDIA, LIDLE and FxDxF domains.

Full-length INPP5B (NM_005540) was obtained from HeLa cell cDNA using the primers 

reported in Supplementary Table 4 and cloned using the restriction sites SalI/SmaI into the 

pEGFP-C1 expression vector (Clontech).

Myc-DDK-MCOLN1 (NM_020533) was purchased from Origene Technologies. The 

MCOLN1[R42A;R43A;R44A] mutant (reported in the main text and figures as 

MCOLN1-3A) was generated using the primers reported in Supplementary Table 4.

Cell culture, transfection and treatments

HK-2 cells were grown as previously described5. HK-2 cells were transiently transfected 

using TransIT-LT1 (Mirus Bio LLC), unless otherwise specified, according to the 

manufacturer’s instructions, and incubated for 18-24 hours before fixation. The HK-2 cell 

line was checked for mycoplasma contamination by a PCR-based method. The HK-2 cell 

line was not found in the database of cell lines that are currently known to be cross-

contaminated or misidentified by ICLAC and NCBI Biosample. The cell lines used in this 

study were not authenticated. All cell-based experiments were repeated at least three times.

Proximal tubular cells from Lowe syndrome patients

The procedure for Proximal Tubular Cell (PTC) isolation and immortalization from the urine 

of control healthy subjects and from Lowe syndrome patients is reported in5. PTCs were 
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transfected using JetPEI (Polyplus transfection) according to the manufacturer’s 

instructions.

siRNA treatment

siRNA sequences used in this study are listed in Supplementary Table 1. siRNAs against 

TFEB, described in8, were kindly provided by C. Settembre (TIGEM, Pozzuoli, Italy).

HK-2 cells were transfected with siRNAs for 96 hours using DharmaFECT 4 (Dharmacon) 

according to the manufacturer’s instructions. The siRNA duplexes were used at 50 pmol for 

OCRL, TLRs, TIRAP, IRAK4, MyD88, DNaseII, UNC93B1 and TFAM and at 25 pmol for 

PIP5Ks, MCOLN1, VPS16, STX17, RAB7 and TFEB. Mock-treated or non-targeting 

siRNA-treated HK-2 cells are referred to as controls (CTRL). OCRL KD was performed 

using a pool of two OCRL siRNAs from Sigma (N1, N5, used for all experiments unless 

otherwise stated) and a pool of three OCRL siRNAs from Ambion, described in the text as 

OCRL KD (A).

Quantitative real-time PCR

Real-time quantitative PCR (qRT-PCR) was carried out with the LightCycler 480 SYBR 

Green I mix (Roche) using the Light Cycler 480 II detection system (Roche) with the 

following conditions: 95ºC, 10 min; (95ºC, 10 s; 60ºC, 10 s; 72ºC, 15 s) x 45 cycles. For 

expression studies the qRT-PCR results were normalized against an internal control (β-actin 

and HPRT1).

For mitochondrial gene expression analysis and for the evaluation of mtDNA depletion, 

qRT-PCR was performed as previously described51. The sequences of primers used in this 

study are listed in Supplementary Table 4.

Microarray Experiments

The Affymetrix Gene-Chip (HG-U113A) hybridization experiments were performed in 

triplicate at the Coriell Genotyping and Microarray Center, Coriell Institute for Medical 

Research, Camden, NJ, USA, on total RNA extracted from control and OCRL-depleted 

cells. To identify downstream transcriptional effects of OCRL-siRNA treatment, microarray 

data were pre-processed using the Bioconductor package Affy52 and normalized with the 

RMA method53. Differentially expressed genes between conditions (KD vs. control) were 

identified using a Bayesian T-test54. For each p-value, the Benjamini-Hochberg procedure 

was used to calculate the False Discovery Rate (FDR) to avoid the problem of multiple 

testing.

Gene Set Enrichment Analysis was performed using the freely available software GSEA 

v2.0 from the Broad Institute55. The goal of GSEA is to determine whether members of a 

given gene set tend to occur toward the top (or bottom) of a ranked gene list. In order to run 

the GSEA algorithm, RMA-normalized microarray data were used. The GSEA algorithm 

collapsed the probe sets into gene symbols (~13,300 genes) and ranked the genes in the 

OCRL-KD expression dataset based on the fold change after OCRL KD. GSEA analysis for 

subcellular distribution was conducted using Human Protein Atlas for all but lysosomal 
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genes which were defined according to Lysoplex50 and excluded from the other categories. 

To evaluate the significance of the enrichment score the hypergeometric distribution was 

calculated that describes the probability of k successes in n draws (up- and down-regulated 

genes for each enriched category).

CLEAR analysis

We selected the genes corresponding to the top 250 upregulated probes in the OCRL-KD 

expression profile. The proximal promoter sequences (1000 bp upstream and 200 

downstream of the transcriptional start site) for each gene were obtained from the UCSC 

genome browser55 and searched with the matchPWM function in the Bioconductor package 

Biostrings56 for matches with the CLEAR motif57.

Mitochondrial DNA (mtDNA) depletion and visualization

Mitochondrial DNA depletion was achieved by siRNA knock down of TFAM or by 

incubating HK-2 cells in complete medium with Ethidium Bromide (100ng/mL), uridine 

(50mg/mL) and sodium pyruvate (110mg/mL) for 4 days to reduce mtDNA levels. 

Evaluation of depletion was performed using Quant-iT™PicoGreen® and qRT-PCR as 

previously described51, 58.

Immunoprecipitation and Western blot

HK-2 cells were plated in 150 mm plates until they reached 95% confluency. Cells were 

then washed 3 times with ice-cold 1X PBS, scraped, and proteins were extracted in ice-cold 

lysis buffer (25 mM TRIS-HCl, pH 7.4, 100 mM NaCl, 5 mM EDTA and 1% NP-40 

supplemented with phosphatase and protease inhibitor cocktails, Roche), centrifuged for 15 

min at 16,000 x g at 4°C, and the supernatants were collected. Cell supernatants (1 mg) were 

incubated for 16 hours at 4°C with 1 µg of the appropriate antibody or with 15 µL of 

agarose-linked anti-GFP antibody (for TLR9-YFP immunoprecipitation). Samples were then 

incubated with Protein A/G Sepharose for 2 hours at 4°C (except for TLR9-YFP 

immunoprecipitation). Immunoprecipitates were collected by centrifugation at 5,000 x g at 

4°C, washed five times in lysis buffer and twice in lysis buffer without NP-40 and the 

proteins were eluted with Laemmli sample buffer (60 mM TRIS-HCl pH 6.8, 2% SDS, 10% 

glycerol, 5% β-mercaptoethanol, 0.01% bromophenol blue) and denatured at 95°C for 5 

min. Samples were analysed by SDS-PAGE (8%) under reducing conditions and transferred 

to nitrocellulose. The membranes were then incubated with the appropriate antibodies. 

Enhanced chemiluminescence reagent (Euroclone) was used for protein detection. Western 

blot quantitative analysis (p62/β-actin and LC3/β-actin ratio and p-S6K/S6K ratio) was 

performed using ImageJ band analysis59.

Confocal fluorescence microscopy, super-resolution microscopy, image processing, and 
colocalization analysis

HK-2 cells and PTCs were grown to subconfluence on glass coverslips and 

immunofluorescence microscopy and quantitative image analysis were performed as 

described5, except for OCRL-LAMP1 co-labelling where a different permeabilization step 

was used [i.e. 5 min with 20 µM digitonin in Buffer A (20 mM PIPES pH 6.8, 137 mM 
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NaCl, 2.7 mM KCl)]. The experiments were repeated at least three times and representative 

images are shown. The level of colocalization (i.e. LAMP1-OCRL, LAMP1-TLR9, 

LAMP1-TIRAP, LAMP1-LC3, LAMP1-AP2, LAMP1-Clathrin, LAMP1-TLR9-YFP, 

LAMP1-TIRAP, LAMP1-PI4KIIIβ, LAMP1-PIP5K1α, LAMP1-PIP5K1β, LAMP1-

PI(4,5)P2, MCOLN1-OCRL, MCOLN1-LAMP1) was calculated by acquiring confocal 

serial sections from about 50-100 cells per experimental condition per experiment, exported 

in TIFF format, and processed as previously described5. Briefly confocal images of at least 

50-100 cells per condition were acquired at the same laser power and photomultiplier gain. 

Images were then processed using Image J software. Single channels from each image were 

converted into 8-bit grayscale images and thresholded in order to subtract background. The 

Image J “Analyze Particles” plugin was then used to identify and count the total number of 

the structures (with an area above 0.10 µm2) in channel 1 (i.e. LAMP1). The structures in 

channel 2 (i.e. OCRL) were used to build a mask that was then overlapped with the LAMP1 

structures to subtract the structures containing both markers. The remaining structures, 

positive only for LAMP1, were counted and by difference the number of structures 

containing both LAMP1 and OCRL was calculated and expressed as % of the total number 

of LAMP1-positive structures. Note that this quantitative analysis procedure does not use 

merged images and is not affected by the fluorescence intensity.

For conventional confocal microscopy a confocal laser microscope (Zeiss LSM 700 confocal 

microscope systems; Carl Zeiss, Gottingen, Germany) with a 63 x 1.4 NA oil immersion 

objective was used. Super-resolution microscopy was performed with a Zeiss LSM 880 

(Carl Zeiss, Gottingen, Germany), Airyscan-equipped confocal microscope with a 63X 1.4 

NA oil immersion objective. After acquisition images were processed with the Airyscan 

processing tool available on the Zen software provided by Zeiss, with a processing threshold 

set at 3.9.

PI(4,5)P2 detection

Control (mock) and OCRL siRNA-treated HK-2 cells were grown to 70-80% density on 

glass coverslips and PI(4,5)P2 staining was performed according to60. Briefly cells were 

fixed for 15 min at room temperature by addition of 1 volume of pre-warmed 4% PFA 

(paraformaldehyde in PBS) to the growth medium (2% PFA final concentration). Cells were 

then permeabilized for 5 min with 20 µM digitonin in Buffer A. Cells were then blocked for 

45-60 min with buffer A containing 5% FBS (Fetal Bovine Serum) and 50 mM NH4Cl. 

Recombinant GST-PH-PLCδ (0.2 mg/ml) or anti-PI(4,5)P2 antibody were added at this 

stage in buffer A for 90 min at room temperature. After three washes with buffer A, anti-

GST (in the case of GST-PH-PLCδ) and anti-LAMP1 antibodies were applied for 1h at rt. 

After three washes secondary fluorophore-labelled antibodies were added. Cells were post-

fixed for 5 min with 2% PFA, washed twice in 1X PBS containing 50 mM NH4Cl, washed 

once in milliQ water and analysed using a confocal laser microscope (Zeiss LSM 700 

confocal microscope systems; Carl Zeiss, Gottingen, Germany) with a 63 x 1.4 NA oil 

immersion objective. Quantitative analysis of PI(4,5)P2-LAMP1 colocalization was 

performed as previously reported5.
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Autophagy induction by Torin 1 and Tat-beclin 1 peptide

HK-2 cells were treated for 2 hours with 250 nM of the specific mTOR inhibitor Torin 1 

(Tocris bioscience) added to complete growth medium. HK-2 cells were washed twice with 

PBS and once with Optimem and then incubated for two hours with 20 µM of the Tat-beclin 

1 peptide22 dissolved in acidified OPTI-MEM (9 mM HCl).

Quantitative analysis of LC3 structures

CellProfiler™, a free, open-source image analysis software (www.cellprofiler.org), was used 

for quantitative analysis of confocal microscopy images by applying specific pipelines 

described in61. The pipeline “Speckle Counting” was used to identify smaller objects (LC3-

positive structures) surrounding larger objects (nuclei) and to perform per-object aggregate 

measurements (such as the number of LC3-positive structures per nucleus). Briefly, the 

images were converted in grayscale using the module “ColorToGray”. Then the 

“ObjectIdentification” module was used to identify nuclei (called primary objects) based on 

Hoechst staining. Secondary objects (LC3-positive structures) were detected and counted 

using the module “IdentifySecondaryObjects” by expanding the area surrounding the 

primary object by 20 pixels.

Human kidney biopsies

Human kidney biopsies were obtained from archived samples of three patients with clinical 

diagnosis of Lowe syndrome, corroborated in one case (shown in Fig. 6f) with the genetic 

diagnosis of mutation in OCRL, two patients affected by glomerular (and not tubular) 

disease, and two controls (non-transplanted, normal human kidney). Informed consent was 

obtained and the use of the human biopsy samples was approved by the Ethical Review 

Board of Saint-Luc Academic Hospital (Brussels, Belgium) and the EURenOmics 

consortium (FP7, 2007-2013, ga# 305608).

Immunofluorescence on human kidney samples

Paraffin blocks of human kidney samples were sectioned into consecutive slices with a 

thickness of 6 µm using a Leica RM2255 rotary microtome (Thermo-Fisher Scientific) on 

Superfrost Plus glass slides (12-550-15, Thermo-Fisher Scientific). Before staining, slides 

were deparaffinized in changes of CitriSolv (22-143-975, Thermo-Fisher Scientific,) and 

70% isopropanol. Antigen retrieval was accomplished by incubating in sodium citrate buffer 

(1.8% 0.1M citric acid, 8.2% 0.1M sodium citrate, in distilled water, pH 6.0) in a rice cooker 

for 30 minutes. The slides were blocked with PBS blocking buffer (1% BSA, 0.2% non-fat 

dry milk in PBS) for 30 min and stained with primary antibodies specific for LC3B 

(Nanotools) or LAMP1 (Abcam) and AQP1 (Merck-Millipore) diluted in blocking buffer 

overnight at 4°C. The anti-LC3B antibody recognizes both the soluble (LC3-I) and the 

membrane-bound form (LC3-II) of LC3B62. After two washes in 0.1% Tween 20 (v/v in 

PBS), the slides were incubated with the corresponding fluorophore-conjugated secondary 

antibodies (Life Technologies) diluted in blocking buffer at room temperature for 1 hour and 

counterstained with 10 µM Hoechst 33342 (Life Technologies,). The slides were 

subsequently mounted in Prolong Gold Anti-fade reagent (Life Technologies) and images 

were acquired on a Leica SP5 confocal laser scanning microscope (Center for Microscopy 
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and Image Analysis, University of Zurich) equipped with a Leica APO 63x NA 1.4 oil 

immersion objective and then processed with Adobe Photoshop (Adobe System) software.

Quantitative image analysis was performed by random selection of ~10 visual fields that 

included 5-6 proximal tubules that were scanned for each slide, using the same setting 

parameters (i.e. pinhole, laser power, and offset gain and detector amplification below pixel 

saturation). The number of LC3- or LAMP1-positive structures per proximal tubule (AQP1-

positive) was quantified by means of Quantitation Module of Volocity software 

(PerkinElmer Life Science, I40250).

Zebrafish strains and husbandry

Zebrafish were maintained at The University of Manchester Biological Services Unit in 

accordance with the policies of UK Animal Act 1986. Wild Type adults and larvae were of 

the AB strain. The ocrl1-/- mutant line (ZDB-GENO-120531-1) was previously described9, 

10.

The only procedure involving animals was the breeding of transgenics, which is subject to 

local ethical review and performed under a Home Office license. No statistical method was 

used to predetermine sample size; the experiments were not randomized, and the 

Investigators were not blinded to allocation during experiments and outcome assessment. 

Experiments were performed on larvae at 3 days post-fertilisation, at which point they are 

not classified as animal experiments.

Electron Microscopy

Cells for pre-embedding immunoelectron microscopy were fixed, permeabilized, and 

labelled as described previously63. From each sample, thin 65 nm sections were cut using a 

Leica EM UC7 ultramicrotome. EM images were acquired from thin sections using a FEI 

Tecnai-12 electron microscope (FEI) equipped with a VELETTA CCD digital camera (Soft 

Imaging Systems GmbH, Munster, Germany). We used the following criteria for 

morphological identification: Lysosomes (Ly): LAMP1-positive single-membrane-bound 

bodies containing electron dense material; Multivesicular bodies (MVB): LAMP1-positive 

single-membrane-bound bodies containing more than 9 intralumenal vesicles; Multilamellar 

bodies (MLB): LAMP1-positive single-membrane-bound bodies containing myelin-like 

figures; Autophagic vacuoles (AV): double-membrane-bound vacuoles containing 

sequestered material (only cytoplasm, cytoplasm and/or ER, cytoplasm and/or mitochondria, 

ER and/or mitochondria); Autolysosomes (AL): LAMP1-positive single-membrane-bound 

bodies containing electron dense cytoplasmic material and/or organelles. The number of 

autophagosomes was then calculated using iTEM software (Olympus SYS, Germany). 

Zebrafish samples were processed for EM as described9.

Dissection of autophagosome-lysosome fusion by tandem fluorescent-LC3

Control (mock), OCRL- and TLR9- siRNA-treated HK-2 cells were grown to 70% 

confluency and transiently transfected with a plasmid encoding an mRFP-GFP-tagged 

LC339. After transfection, cells were kept in growth medium for 16 hours and then 

incubation was continued in normal growth medium or the cells were treated with HBSS for 
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3 hours. CTRL cells were also treated for 3 hours with 25 µM of OCRL inhibitor 

(YU142670) or 0.5 µM of TLR9 antagonist (ODN TTAGGG). Where reported, cells were 

also treated with protease inhibitors cocktail39 (PI: Leupeptin, E64D and Pepstatin, Sigma-

Aldrich) for the indicated time points. After fixation with 4% PFA, cells were washed three 

times with 1X PBS containing 50 mM NH4Cl, mounted and imaged using a Zeiss LSM 710 

confocal microscope (equipped with a 63 X 1.4 NA oil immersion objective).

Calcium Measurements by Confocal Imaging using FuraRed

FuraRed-loaded cells were analysed according to the previously described protocol64. 

Briefly, mock HK-2 cells or OCRL-silenced HK-2 cells were loaded with 5 µM FuraRed-

AM for 1 hour at 37°C in calcium imaging buffer. Pseudocolor ratiometric images (458 and 

488 nm excitation, 610 nm emission) were collected using a Carl Zeiss microscope (LSM 

710) equipped with a variable filter wheel. FuraRed ratios (emission at F458/F488) were 

used to represent changes in cytosolic Ca2+ levels in basal conditions or after specific 

treatments. The number of cells that mobilized calcium was quantified in a minimum of 

three wells and compared with control cells transfected with scramble siRNAs. More than 

20 cells in triplicate were used in the different experiments.

Statistics and Reproducibility

For experiments involving living animals no statistical method was used to predetermine 

sample size. The experiments were not randomized. The investigators were not blinded to 

allocation during experiments and outcome assessment.

Immunofluorescence experiments were repeated independently three times and at least 50 

cells were analysed from a single experiment. Representative images are shown in Fig.1c, 

1d, 1e, 2a, 2c, 3a, 4b, 4d, 4g, 5a, 5d, 5e, 6a, 6d, 6e, 6f, 6g, 7a, 7e, 7f; and in Supplementary 

Fig. 2b, 3b, 3d, 4b, 4d, 4e, 4g, 5a, 5c, 5e, 5f, 6a, 6b and 7a.

Western blotting and immunoprecipitation experiments were repeated at least three times 

and representative blots are shown in Fig. 4i, 5c, 7g and in Supplementary Fig 1a, 3a, 5b and 

7c. Uncropped scans of the blots are shown in Supplementary Fig. 8.

Most data are presented as the means ± standard deviation (s.d.) unless otherwise specified. 

Statistical comparisons were made using Student's t-test when comparing two groups. One-

way ANOVA with Tukey’s post-hoc tests were performed for comparisons among more than 

two groups relative to a single factor (treatment or siRNA-induced knock down). Two-way 

ANOVA and Tukey’s post-hoc tests were performed for comparisons among more than two 

groups relative to two factors (treatment and siRNA-induced knock down). These analyses 

were performed in R65 [http://www.R-project.org/] environment. For all analyses a p-value 

< 0.05 was considered to be statistically significant. For the quantification of LC3- and 

LAMP1-positive structures in kidney biopsies, the analysis of variance (ANOVA) was also 

used. A P value < 0.05 was considered to be statistically significant. The results of the 

statistical analysis, comprising the p values of the whole experimental data sets and the p 

values deriving from post hoc tests are reported in Supplementary Table 2.
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Data availability

Microarray data that support the findings of this study have been deposited in the Gene 

Expression Omnibus (GEO) under accession code GSE54284. Source data for Fig. 2b, 2c, 

3a, 3c, 4a, 4c, 4e, 4f, 4h, 5b, 5c, 5d, 5e, 5f, 5g, 6b, 6c, 6d, 6e, 6g, 7b, 7c, 7e, 7f, 8b, 8c and 

8d and for Supplementary Fig. 2b, 3a, 3b, 3e, 4e, 4f, 4g, 5a, 5f, 7b are available in 

Supplementary Table 2: Statistic source data. All other data supporting the findings of this 

study are available from the corresponding author on reasonable request.

Supplementary legends

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. OCRL depletion/mutation induces upregulation of lysosomal genes and morphological 
changes in lysosomes.

(a) Volcano plot of OCRL-KD gene expression data. Horizontal black line: -log10 of FDR 

(False Discovery Rate, significance threshold 0.05); vertical black lines: log2 fold change 

(1.3-fold threshold). 910 genes up-regulated above (red) and 630 genes down-regulated 

below (green) the threshold are shown. Black dots indicate 24 upregulated (35 probe sets) 

out of the 194 lysosomal genes annotated in the Lysoplex list50. (b) Gene set enrichment 

analysis of the data in a. Subcellular compartments, except lysosomes, were defined 
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according to the Human Protein Atlas. Lysosomal genes were defined according to 

Lysoplex50 and excluded from the other categories. p-values calculated as described in 

Methods. (c-e) Lysosomal enlargement in OCRL-depleted HK-2 cells, in PTCs of Lowe 

syndrome patients, and in the proximal pronephric tubule of ocrl-/- zebrafish embryos. (c) 

Representative images of Control and OCRL-KD cells immunostained with an anti-LAMP1 

antibody (upper panels, scale bars, 10 µm) or immunoelectron-microscopy with an anti-

LAMP1 antibody (lower panels, scale bars, 250 nm). (d) PTCs obtained from the urine of 

healthy control subjects (CTRL) and Lowe Syndrome patients were processed as in a. Black 

arrows indicate LAMP1-positive structures. (e) Confocal transverse sections of zebrafish 

proximal pronephric tubules from 72 hpf GFP-LAMP1-expressing wild-type (wt) and ocrl-/- 

mutant embryos9 labelled with an anti-GFP antibody. White dashed lines indicate the 

outline of pronephric tubules (upper panels). Scale bars, 5 µm. Block face scanning electron 

microscopy images of transverse sections through proximal pronephric tubules from 72 hpf 

wild-type (wt) or ocrl-/- embryos (lower panels). Scale bar, 5 µm. Graphs show the 

morphometric analysis of LAMP1-positive structures in c [n=81 (CTRL) and n=126 (OCRL 

KD) structures pooled from 3 independent experiments] and d [n=102 (CTRL), n=84 

(Lowe) structures pooled from 3 independent experiments]. In e the external circumference 

of each lysosomal compartment (electron dense oval or spherical membrane-enclosed 

organelle) was manually traced in each section and the average calculated. n=30 sections 

(wt); n=30 sections (ocrl-/-) (10 sections analyzed for three kidneys per category). Data are 

presented as means ± s.d. ***p < 0.001, calculated by two-tailed Student's t-test.
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Figure 2. Autophagosome-lysosome fusion induces an AP2 and clathrin-dependent recruitment 
of OCRL to lysosomes.

(a) Fusion of autophagosomes with lysosomes recruits OCRL to lysosomes. HK-2 cells 

were incubated in growth medium, or in HBSS for 3 hours (-), or in HBSS for 3 hours after 

impairment of autophagosome-lysosome fusion by siRNA-mediated KD of the HOPS 

component VPS1612 or of the autophagosomal SNARE STX1714. Cells were stained for 

OCRL and LAMP1 (a lysosomal marker). The lower panels are enlargements of the boxed 

areas and fluorescence intensity profiles in the green and red channels of the regions 
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underneath the white lines. Scale bars, 10 µm. (b) Quantification of OCRL association with 

lysosomes under conditions described in a, or after the addition of vinblastine (20 µM) that 

also inhibits autophagosome-lysosome fusion13. The percentage of LAMP1 structures that 

are positive for OCRL, the percentage of LC3 structures that are positive for LAMP1 (as a 

measure of the arrival of autophagosomal cargo to lysosomes), and the average number of 

LC3 structures per cell are reported. Values are means ± s.d. of n=450 cells pooled from 3 

independent experiments. NS (not significant). (c) Representative images and quantification 

of the colocalization of wt OCRL, the AP2 (OCRL-F151S), clathrin(OCRL-I74N) or AP2-

clathrin triple (OCRL-X3) binding mutants, and INPP5B with LAMP1. Insets, enlargements 

of the boxed areas; lower panels, fluorescence intensity profiles in the green and red 

channels of the regions underneath the white lines. Scale bars, 10 µm. Data represent the 

percentage of total LAMP1 structures positive for each OCRL form or for INPP5B. Means ± 

s.d. n=200 cells pooled from 3 independent experiments; n=100 OCRL-X3 transfected cells 

pooled from 3 independent experiments. p-values calculated by One-way ANOVA with 

Tukey's post hoc test.

De Leo et al. Page 22

Nat Cell Biol. Author manuscript; available in PMC 2017 January 11.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



Figure 3. Autophagosome-lysosome fusion induces a local increase in PI(4,5)P2 and AP2 and 
clathrin recruitment to lysosomes.

(a) Representative images and quantification of the recruitment of the indicated proteins and 

of lysosomal PI(4,5)P2 levels during starvation-induced autophagy in HK-2 cells. Cells were 

incubated in growth medium or in HBSS for 3 hours, fixed and stained with an anti-LAMP1 

antibody together with an anti-AP2, anti-clathrin or anti-PI(4,5)P2 antibody. Scale bars, 10 

µm. Insets, enlargements of the boxed areas. Means ± s.d., n=450 cells per condition pooled 

from 6 independent experiments. (b) Quantification of the arrival of autophagic cargo to 

lysosomes (LC3-LAMP1), of the level of lysosomal PI(4,5)P2 (assessed by anti-PI(4,5)P2 

antibody staining, LAMP1-PI(4,5)P2), and of the recruitment of AP2 (LAMP1-AP2), 

clathrin (LAMP1-clathrin), and OCRL (LAMP1-OCRL) to lysosomes at 30, 60 and 180 min 

of HBSS treatment and 30 min and 180 min after complete medium re-addition (Refeeding). 

At the same time points mTOR activity status was analyzed (black dotted line) as the ratio of 
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phospho-S6 kinase to total S6 kinase (a representative blot is reported in Supplementary Fig. 

3c and an unprocessed scan of the blot is shown in Supplementary Fig. 9). Data are 

expressed as percentage of the maximum value. Mean values ± s.d. n=450 cells per 

condition pooled from 3 independent experiments. (c) CTRL (mock-treated) cells and 

VPS16-KD cells (to impair autophagosome-lysosome fusion) were incubated in growth 

medium or in HBSS for 3 hours, fixed and stained as above. The graph reports the 

percentage of total LAMP1 structures that were positive for PI(4,5)P2, AP2, and clathrin. 

Means ± s.d. of n=450 cells per condition pooled from 3 independent experiments. p-values 

calculated by one-way ANOVA with Tukey's post-hoc test. Statistic source data can be 

found in Supplementary Table 2.
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Figure 4. TLR9 stimulated by mitochondrial DNA released into lysosomes by autophagosomes 
mediates the lysosome cargo response.

(a) Colocalization of LAMP1 and OCRL in control cells, cells KD for the indicated TLRs or 

treated with the TLR9 antagonist ODN TTAGGG (0.5 µM). Mean values ± s.d. n=100 cells 

per condition pooled from 3 independent experiments. (b) OCRL association with 

lysosomes in CTRL, TLR9-KD and ODN TTAGGG-treated starved cells. Insets, 

enlargements of the boxed areas. (c) Effects of TLR9 depletion/inhibition on the lysosomal 

cargo response Mean values ± s.d. n=200 cells per condition pooled from 3 independent 
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experiments. (d) Colocalization of TLR9-YFP with LAMP1 under the indicated conditions. 

Insets, enlargements of the boxed areas. Mean values ± s.d. n=100 cells per condition pooled 

from 3 independent experiments. p < 0.01 for starved vs. fed CTRL cells and starved CTRL 

cells vs. starved VPS16KD and UNC93B1KD cells. (e) Colocalization of PI(4,5)P2 and the 

indicated proteins with LAMP1 in starved CTRL cells (-), or after DNAseII KD, or after 

mtDNA depletion (RhoZero) obtained as specified in Supplementary Fig. 4b. Mean values ± 

s.d. n=200 cells per condition pooled from 3 independent experiments. (f) HK-2 cells 

untreated or treated with FCCP (10 µM) alone or with TLR9 antagonist (ODNTTAGGG), or 

treated with TLR9 agonists (ODN2216 and ODN2395) and stained for PI(4,5)P2 and the 

indicated proteins. Mean values ± s.d. n=450 cells per condition pooled from 3 independent 

experiments. (g) CTRL and TLR9-KD starved cells stained for LAMP1 and for PIP5K1α or 

PIP5K1β. Insets, fluorescence intensity profiles in the green and red channels of the regions 

underneath the white lines. (h) Quantification of PIP5K1α or PIP5K1β colocalization with 

LAMP1. Mean values ± s.d. n=100 cells per condition pooled from 3 independent 

experiments. (i) Cell lysates from non-transfected or TLR9-YFP transfected cells were 

immunoprecipitated with anti-GFP antibody and analyzed by Western blot. Results 

representative of five independent experiments. An unprocessed scan of the blot is in 

Supplementary Fig. 9. p-values are indicated, calculated by One-way ANOVA with Tukey's 

post-hoc test. Scale bars, 10 µm. Statistic source data in Supplementary Table 2.
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Figure 5. TLR9 is required for lysosomal homeostasis and for efficient autophagic flux.

(a) Control, TLR9-KD and TLR9 antagonist-treated cells were stained for LAMP1. (b) 

Representative image of autophagosomes (black asterisk) and lysosomes (labelled with anti-

LAMP1 antibodies, black arrows) in TLR9-KD cells. The graph shows the size distribution 

of LAMP1-positive structures, n=85 (CTRL) and n=80 (TLR9-KD) structures pooled from 3 

independent experiments. The table reports the morphometric analysis: Autophagosomes 

(AV), Autolysosomes (AL); Multivesicular bodies and electron-dense lysosomes (MVB

+Ly); Multilamellar bodies (MLB). p ≤ 0.01 for AV and MLB in TLR9-KD relative to 

De Leo et al. Page 27

Nat Cell Biol. Author manuscript; available in PMC 2017 January 11.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



CTRL cells. Mean values ± s.e.m. (c) Cell lysates were probed with the indicated antibodies. 

BafA1 (Bafilomycin A1). β-actin was used as a loading control. Graphs show p62/actin and 

LC3II/actin ratios. Mean values ± s.d. n=3 lysates per condition pooled from 3 independent 

experiments. Unprocessed scans of the blots are shown in Supplementary Fig. 9. (d) Control 

(CTRL), TLR9-KD, and TLR9-antagonist treated cells were fixed and immunostained with 

an anti-LC3 antibody. The number of LC3-positive structures per cell is reported in the 

graph. Mean values ± s.d. n=450 cells per condition pooled from 3 independent experiments. 

(e) Cells expressing mRFP-GFP tandem-tagged LC3 were incubated in growth medium, in 

HBSS for 3 hours with or without a protease inhibitor cocktail (PI) or the TLR9 antagonist 

ODN TTAGGG (0.5 µM) as indicated.. Insets are enlargements of the boxed areas. The table 

reports the means (± s.d.) of AV and AL. n=60 cells per condition pooled from 3 

independent experiments. p < 0.001 for TLR9-KD and ODNTTAGGG-treated cells vs. 

CTRL cells. (f) NF-kB nuclear localization. Mean values ± s.d. n=400 cells per condition 

pooled from 3 independent experiments. (g) qPCR analysis of IL-6 and IFN-β mRNA levels 

in the indicated conditions. Mean values ± s.d. n=3 RNAs per condition pooled from 3 

independent experiments. p-values are indicated, calculated by One-way ANOVA with 

Tukey's post hoc test except in b where Student's t-test was used. Statistic source data can be 

found in Supplementary Table 2. Scale bars, 10 µm in a, d, e and 500 nm in b.
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Figure 6. Autophagosomes accumulate in OCRL-depleted cells and PTCs and kidneys from 
Lowe syndrome patients.

(a) LC3 in cells with or without the OCRL inhibitor YU14267043 and OCRL-KD cells with 

or without siRNA-resistant wild-type or catalytically inactive (V527D) OCRL. Insets, 

transfected cells. (b) Quantification of LC3-structures in cells described in a. Red line, mean 

± s.d. n=200 cells per condition pooled from 4 independent experiments. NS (not 

significant). (c) Ultrastructure and quantification of AV (black arrow), AL (white arrows), 

MVB+Ly (white arrowheads), MLB in Control and OCRL-KD cells labelled for LAMP1. 

De Leo et al. Page 29

Nat Cell Biol. Author manuscript; available in PMC 2017 January 11.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



p≤0.05 for AV and MLB in OCRL-KD vs. CTRL cells. Mean ± s.e.m. n=14 (CTRL), n=18 

(OCRL-KD) fields pooled from 3 independent experiments. (d) LC3 and LAMP1 in CTRL, 

OCRL-KD and YU142670-treated cells. Lower panels, enlargements of the boxed areas. 

Means ± s.d. of LC3 and LAMP1 colocalization (mean ±s.d). n=120 cells per condition 

pooled from 3 independent experiments. p<0.001 for LC3 structures in OCRL-KD and 

YU142670-treated vs. fed CTRL and for LC3-LAMP1 colocalization in starved CTRL vs 

fed CTRL. p<0.05 for LC3-LAMP1 colocalization in starved CTRL vs. starved OCRL-KD. 

(e) mRFP-GFP-LC3 in control, OCRL-KD and YU142670-treated cells. Arrows, AL. 

Quantification of AV and AL. Mean ± s.d. n=150 cells per condition pooled from 3 

independent experiments. p<0.001 for AV and AL in OCRL-KD and YU142670-treated 

cells vs. CTRL cells. (f) Autophagosomes accumulate in aquaporin (AQP1)-positive 

proximal tubules. DAPI (blue), nuclei. Means ± s.e.m., n=50 proximal tubules pooled from 

10 fields per biopsy from three Lowe syndrome patients and four control subjects. (g) LC3 

in PTCs from healthy subjects or Lowe Syndrome patients transfected or not with wt-OCRL 

or V527D-OCRL. Insets, transfected cells outlined in the main image. Mean ± s.d. of LC3-

positive structures per cell, n=150 cells per condition pooled from 3 independent 

experiments. p<0.001 for Lowe vs. CTRL and for Lowe+OCRL wt vs. Lowe. p<0.01 for 

Lowe+OCRL V527D vs. Lowe. p values in b, d-g calculated by One-way ANOVA with 

Tukey's post-hoc test, and by Student's t-test in c. Statistic source data in Supplementary 

Table 2. Scale bars, 10µm in a, d, g: 250nm in c: 50µm in f.
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Figure 7. Autophagy flux is impaired due to PI(4,5)P2-mediated inhibition of MCOLN1 activity 
in OCRL-depleted cells.

(a) Mock (CTRL), YU142670-treated and OCRL-KD (Sigma (S) or Ambion (A) siRNA 

pools) cells were incubated in HBSS for 3 hours and labeled with anti-LAMP1 (green) and 

anti-PI(4,5)P2 (red) antibodies. White arrows indicate structures positive for both markers. 

(b) Quantification of PI(4,5)P2-LAMP1 colocalizing structures in control, YU142670-

treated, OCRL-KD (-), OCRL-KD plus PIP5K1ß-KD, and OCRL-KD plus PIP5K1α-KD 

cells. Mean values ± s.d. n=200 cells per condition pooled from 4 independent experiments. 
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(c) Quantification of LC3-positive structures in the cells described in b. Red line, mean 

values. (d) OCRL depletion impairs MCOLN1-dependent calcium release. Control or 

OCRL-KD cells loaded with the Ca2+-sensitive dye FuraRed were treated with 50 or 200 

µM of the MCOLN1 agonist SF-5147. The ratio of fluorescence excited at 457 and 488 nm 

was measured and normalized against F0 (time-point before drug addition, black arrow). 

Plots correspond to the average of the response of n=20 cells from a single experiment, that 

was independently repeated 3 times. (e) Representative images and quantification of 

MCOLN1 and OCRL colocalization in cells transfected with wild type OCRL or the AP2-

defective binding mutant (OCRL-F151S) along with MCOLN1-Myc. Right, colocalization 

of OCRL with MCOLN1. Mean values ± s.d. n=100 cells per condition pooled from 3 

independent experiments. (f) MCOLN1-KD cells transfected with GFP-OCRL were treated 

with HBSS for 3 hours and stained for LAMP1 (red). Right, quantification of OCRL 

colocalization with LAMP1. Mean values ± s.d. n=100 cells per condition pooled from 3 

independent experiments. (g) Cell lysates from HK-2 cells were immunoprecipitated using 

an anti-MCOLN1 antibody and analyzed by Western blot (WB) with anti-MCOLN1 or anti-

OCRL antibodies. The results are representative of five independent experiments. An 

unprocessed scan of the blot is shown in Supplementary Fig. 9. Parallel samples were 

analyzed by LC-MS/MS and peptides significantly matching human OCRL (Q01968-2) 

were found in anti-MCOLN1 immunoprecipitates but not in control-IgG 

immunoprecipitates. p-values calculated by One-way ANOVA with Tukey's post hoc test. 

Statistic source data can be found in Supplementary Table 2. Scale bars, 10 µm.
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Figure 8. Autophagy flux is rescued by boosting MCOLN1 activity in OCRL-depleted cells and 
in Lowe syndrome patient PTCs.

(a) Quantification of LC3-positive structures in control, OCRL KD cells (-), OCRL-KD 

cells incubated in serum-free medium with 200 µM of the MCOLN1 agonist SF-51, or 

transfected with wt or a mutant form (MCOLN1-3A) of MCOLN1 that is PI(4,5)P2-

insensitive44. Red line indicates mean values ± s.d. n=200 cells per condition pooled from 4 

independent experiments. (b) Quantification of LC3-positive structures in control, OCRL 

KD (-), or OCRL-KD cells expressing different levels (low, medium and high) of wt 

MCOLN1 or MCOLN1-3A. Values are means ± s.d., n=75 cells per condition pooled from 5 

independent experiments. (c) Quantification of the number of LC3-positive structures in 

CTRL PTCs, Lowe Syndrome PTCs, and Lowe Syndrome PTCs treated with 200 µM of the 

MCOLN1 agonist SF-51 for 2 hours. Means ± s.d. n=102 (CTRL), n=84 (Lowe), n=106 

(Lowe + SF-51) cells pooled from 3 independent experiments. p-values calculated by One-

way ANOVA with Tukey's post hoc test. Statistic source data can be found in Supplementary 

Table 2. (d) Cell lysates (50 µg/sample) from CTRL and Lowe syndrome PTCs incubated in 

growth medium or treated with 100 nM Bafilomycin A1 (Baf A1) or with 200 µM of the 

MCOLN1 agonist SF-51 for 2 hours were analyzed by SDS-PAGE and immunodetected 

with the indicated antibodies. β-actin was used as a loading control. A representative blot is 

shown and an unprocessed scan of the blot is shown in Supplementary Fig. 9. The data in 
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both graphs on the right are mean values ± s.d., n=6 lysates per condition pooled from 6 

independent experiments. P-values calculated by Student's t-test. Statistic source data can be 

found in Supplementary Table 2.
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