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Abstract 

Autophagy is an important cellular catabolic process conserved from yeast to man. Double 

membrane vesicles deliver their cargo to the lysosome for degradation. Hence, autophagy is one of 

the key mechanisms mammalian cells deploy to rid themselves of intracellular pathogens including 

viruses. However, autophagy serves many more functions during viral infection. First, it regulates the 

immune response through selective degradation of immune components, thus preventing possibly 

harmful over-activation and inflammation. Additionally, it delivers virus-derived antigens to antigen 

loading compartments for presentation to T lymphocytes. Second, it might take an active part in the 

viral lifecycle by e.g. facilitating its release from cells. Lastly, in the constant arms race between host 

and virus, autophagy is often hijacked by viruses and manipulated to their own advantage. In this 

review, we will highlight key steps during viral infection in which autophagy plays a role. We have 

selected some exemplary viruses and will describe the molecular mechanisms behind their intricate 

relationship with the autophagic machinery, a result of host-pathogen co-evolution.  
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viral evasion, herpes viruses, influenza virus, LC3 associated phagocytosis 

 

 



2 

 

1. The autophagic machinery in mammalian cells 

1.1 General introduction to autophagy 

Mammalian cells degrade biomolecules in a proteolytic vesicular compartment called the lysosome. 

Materials to be degraded include extracellular components taken up by endocytosis/phagocytosis as 

well as intracellular protein aggregates, damaged organelles or bulk cytoplasmic material. One of the 

mechanisms by which the latter constituents can reach the lysosome is called autophagy. Three 

types of autophagy can be distinguished. Microautophagy results from direct invaginations of the 

lysosome membrane which engulf cytoplasmic material (Kunz, Schwarz and Mayer, 2004). Secondly, 

during chaperone mediated autophagy, chaperone molecules act as molecular shuttles delivering 

specific cargo to the lysosome. Cargo is thought to translocate into the lysosome with the aid of a yet 

unknown transporter (reviewed in (Cuervo and Wong, 2014)). In this review, we will focus on the 

third type of autophagy termed macroautophagy. We will refer to it simply as autophagy from now 

on.  

Characteristically, autophagic cargo becomes engulfed in a double membrane vesicle in the cytosol. 

The uptake of cargo into the autophagosome may either happen in bulk or in a very specific manner 

orchestrated by a variety of cargo receptors. The latter is referred to as selective autophagy. Further 

down the line the outer membrane of the autophagosome fuses with the lysosome and both inner 

autophagosomal membrane and cargo are degraded in the lysosome’s proteolytic environment.   

After degradation of the cargo its molecular building blocks are shuttled out into the cytoplasm to 

serve biosynthesis. Providing building blocks for new biomolecules is also the reason why autophagy 

gets strongly upregulated during starvation. In general, autophagy regulation is highly responsive to 

environmental stress but also plays a protective role by disposing of protein aggregates, damaged 

organelles as well as intracellular pathogens. Hence, viruses are direct targets for degradation by 

autophagy. Should a viral infection manifest despite this early defense mechanism, autophagy again 

comes into play during antiviral immune responses. However, many viruses have evolved to evade 

these cellular defense mechanisms. More and more molecular details come to light with more than 
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200 articles published on ‘autophagy and virus’ in 2015 alone. Nevertheless, many lessons remain to 

be learned as the relationship between virus lifecycle and autophagy is a very complex one. Some 

viruses stimulate autophagy while others inhibit it. Additionally, viruses have learned to adapt to the 

degradative role of autophagy. Increasing knowledge on this intricate host/pathogen relationship 

might be exploited for novel therapy approaches in the future. 

 

1.2 The autophagic machinery 

The components of the autophagic machinery were first described in yeast (Thumm et al., 

1994;Tsukada and Ohsumi, 1993), but many homologues exist in mammals. The core machinery that 

drives autophagy is comprised of more than 30 of the so called autophagy-related gene (ATG) 

products. One can distinguish the following key steps in the life cycle of an autophagosome: 

initiation, elongation, cargo uptake, closure/maturation and fusion with vesicles (including the 

lysosome) followed by destruction of the cargo (Figure 1). Distinct protein complexes coordinate 

these individual steps. 

At the heart of autophagy initiation lays the ULK complex which sets off the formation of an 

autophagosomal membrane, called the phagophore or isolation membrane. The ULK complex is 

comprised of the Unc-51-like autophagy-activating kinases ULK1/2, FAK family kinase-interacting 

protein of 200 kDa (FIP200), ATG13 and ATG101 (Hara et al., 2008;Hosokawa et al., 2009a;Hosokawa 

et al., 2009b;Mercer, Kaliappan and Dennis, 2009). The phagophore may form at various sites in the 

cell often at or in vicinity of the ER (Carlsson and Simonsen, 2015). The ER-resident multi-membrane-

spanning protein vacuole membrane protein (VMP) 1 was shown to be required and was suggested 

to mark the platform where phagophore formation initiates (Koyama-Honda et al., 2013). 

Autophagosome formation sites are characterized by enrichment in phosphatidylinositol phosphates, 

namely PI(3)P, which result from the action of another crucial protein complex, phosphoinositide-3-

kinase (PI3K) complex III. This complex consists of the catalytic subunit of PI3K, vacuolar protein 

sorting (VPS) 34, VPS15, ATG14 and Beclin 1 (BECN1) (Itakura et al., 2008;Matsunaga et al., 2009;Sun 
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et al., 2008;Zhong et al., 2009). PI(3)P formation by the PI3K complex serves as a crucial binding 

platform for downstream effectors, which bind via their FYVE motifs. One such effector is double-

FYVE-containing protein 1 (DFCP1), which can be used as a marker for autophagosome formation 

sites (Axe et al., 2008). Adjacent to DFCP1 the mammalian homologues of yeast ATG18 are recruited 

to PI(3)P, namely WD-repeat protein interacting with phosphoinositides (WIPI) 1-4 (Jeffries et al., 

2004;Polson et al., 2010;Proikas-Cezanne et al., 2004). These will in turn recruit downstream 

members of the autophagic machinery (Dooley et al., 2014). 

A growing phagophore requires membrane. Where this membrane comes from is still a matter of 

debate (Carlsson and Simonsen, 2015). A lot of evidence has been gathered showing that isolation 

membranes form in close proximity to the ER, which surrounds the phagophore in a structure called 

the omegasome (Axeet al., 2008;Hayashi-Nishino et al., 2009;Yla-Anttila et al., 2009). However, this 

structure might be the starting point of some special form of autophagy aimed at degrading parts of 

the ER itself (Khaminets et al., 2015;Mochida et al., 2015). Also mitochondria (Hailey et al., 

2010;Hamasaki et al., 2013), the nuclear membrane (English et al., 2009) and recycling endosomes 

(Puri et al., 2013) among others have been proposed as possible sources of autophagosomal 

lipids/proteins/membrane. The only trans-membrane protein in the autophagic machinery is ATG9. 

In mammalian cells it is found at the omegasome, in the Golgi and on endosomes (Young et al., 

2006). Upon autophagy induction ATG9 colocalises with ATG16L1 in recycling endosomes (Puriet al., 

2013). Trafficking from there to the phagophore might provide membrane to the growing 

autophagosome (Lamb et al., 2016). Furthermore, regulated traffic of ATG9 vesicles from Golgi to the 

growing phagophore has been described (He et al., 2013). Retrieving ATG9 from the early 

autophagosome seems to be dependent on WIPI2 (Orsi et al., 2012), potentially through binding of 

WIPI2 to ATG2 as demonstrated in yeast (Reggiori et al., 2004). 

In order for the phagophore to elongate, the lipidated form of the mammalian homologues of yeast 

ATG8 needs to be embedded in both inner and outer autophagosomal membrane (Xie, Nair and 

Klionsky, 2008). Mammalian homologues of ATG8 are divided into two clades: microtubule-
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associated protein 1 light chain 3 (LC3) A/B/C and γ-aminobutyric acid receptor-associated protein 

(GABARAP), GABARAPL1/L2 (Shpilka et al., 2011), LC3B being the most extensively studied member. 

These ubiquitin-like proteins are conjugated to phosphatidylethanolamine (PE) in a fashion similar to 

the E1/E2/E3 ubiquitin ligase conjugation scheme. We will refer to all mammalian ATG8s as LC3 from 

now on unless specific roles are discussed.  

LC3 is synthetized in pro-form and is freely available in the cytosol. Cleavage of the C-terminus of LC3 

by ATG4B exposes a glycine residue needed for the conjugation reaction (Kirisako et al., 2000). ATG7 

serves as the E1 enzyme activating both LC3 and ATG12. In the next step, LC3 and ATG12 are 

transferred to E2-like ATG3 and ATG10, respectively. Finally, ATG12 becomes isopeptide bonded to 

its substrate ATG5. This ATG12-ATG5 conjugate acts as an E3-like enzyme transferring LC3 to PE in 

the autophagosomal membrane (Ichimura et al., 2000;Mizushima et al., 1998). This last step is 

further promoted by ATG16L1 bound non-covalently to ATG5 in the ATG12-5 conjugate (Fujita et al., 

2008). LC3-PE is important for the maturation of the autophagosome because it promotes tethering 

to other vesicles, hemifusion, trafficking and sealing of the autophagosome (Nakatogawa, Ichimura 

and Ohsumi, 2007;Pankiv et al., 2010;Weidberg et al., 2010). While LC3-PE on the inner membrane 

will be degraded together with the autophagic cargo in the lysosome, LC3-PE on the outer membrane 

can be recycled through the action of ATG4B (Kirisakoet al., 2000).  

WIPIs seem to act as coordinators of these events. They are recruited early on to PI(3)P at the 

autophagosome formation site.  WIPI1/2/4 are essential for autophagy (Lu et al., 2011;Polsonet al., 

2010). All three are found at the autophagosome formation site, but only WIPI1 and 2 are 

incorporated into inner and outer autophagosomal membrane (Proikas-Cezanne and Robenek, 

2011). WIPI2 binds ATG16L1 and hence recruits the ATG5/12/16L1 complex to the phagophore 

(Dooleyet al., 2014). In turn, LC3 bound to E2-like ATG3 is recruited to the E3-like ATG5/12/16L1 

complex via interaction of ATG12 with ATG3 (Fujitaet al., 2008). 

Recently, more and more findings suggest that the conventional route of autophagy initiation might 

differ from cell type to cell type and during development. These open questions are summarized in 



6 

 

(Lindqvist, Simon and Baehrecke, 2015), while some of the unconventional functions of ATG proteins 

are highlighted in point 5 of this review. 

Movement of autophagosomes through the cell is mediated by FYVE and coiled-coil domain-

containing FYCO1, which binds LC3 via a so-called LC3 interacting region (LIR) (Pankivet al., 2010). 

Furthermore, it can bind to PI(3)P and RAB7, a small GTPase enriched on late endosomes and 

autophagosomes. FYCO1 drives transport of vesicles along microtubules with the help of kinesin 

motors. Transport of autophagosomes in the opposite direction is most likely mediated by the 

adaptor protein RAB7 interacting lysosomal protein (RILP) and dynein motors (Kimura, Noda and 

Yoshimori, 2008;Liang et al., 2008;van der Kant et al., 2013).  

The event of fusion between autophagosome and lysosome needs to be tightly regulated to avoid 

damage to the cell. The concerted action of various factors is required for tethering and fusion. 

Lipidated LC3 seems to be the key for these events to happen. Mature autophagosomes are 

decorated with RAB7 and a soluble N-ethylmaleimide-sensitive factor attachment protein receptor 

(SNARE) called Syntaxin 17 (STX17) (Itakura, Kishi-Itakura and Mizushima, 2012). An adaptor called 

Pleckstrin homology domain containing protein family member (PLEKHM) 1 is able to bind to LC3, 

RAB7 and STX17. PLEKHM1 recruits the tethering complex homotypic fusion and protein sorting 

(HOPS) complex which brings autophagosomes and lysosomes together (McEwan et al., 2015). STX17 

interacts with an adaptor called synaptosomal-associated protein (SNAP) 29, which in turn links the 

entire machinery to the lysosomal SNARE vesicle-associated membrane protein (VAMP) 8 (Itakura, 

Kishi-Itakura and Mizushima, 2012;Jiang et al., 2014). Lately, it was shown that ATG14L alone is 

sufficient to bring STX17 and SNAP-29 in close proximity to mediate fusion (Diao et al., 2015). 

Thus, autophagy provides an excellent example of de novo vesicle formation in the cell and its 

molecular machinery has developed to coordinate the required membrane trafficking events 

 

1.3 Autophagic Cargo 
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Autophagy can engulf cargo in either an unspecific or a very selective manner. At basal level, bulk 

autophagy serves a kind of quality control function ensuring e.g. organelle homeostasis. In contrast, 

when a cell is deprived of nutrients, building blocks for biosynthesis need to be provided quickly and 

hence more phagophores are formed and autophagy flux is increased. Both bulk as well as selective 

degradation of cargo have been shown to link to nutrient deprivation. Alternatively, autophagy can 

degrade specific cargo in a highly selective manner in response to certain types of stress, e.g. damage 

to an organelle. Individual terms have been coined for this selective autophagy processes depending 

on the type of structure targeted: mitochondria (mitophagy), peroxisomes (pexophagy), pathogens 

(xenophagy), aggregated proteins (aggrephagy), to just name a few. 

Selective autophagy is mediated by so called autophagy receptors (Table 1) which link cargo to LC3 

on the phagophore. These receptors utilize LIR motifs to interact with LC3 while binding cargo 

through other moieties. LIR motifs are defined as Trp/Phe/Tyr-x-x-Leu/Ile/Val (reviewed in (Rogov et 

al., 2014)). The signal that is recognized on the cargo is ubiquitin in many cases. The best studied 

autophagy receptor that binds ubiquitin is p62, also called Sequestosome-1 (SQMST1) (Bjorkoy et al., 

2005). However, recent reports have proposed other recognition signals such as lipids (Chu et al., 

2013), lectins (Thurston et al., 2012) and methylated arginine (Li et al., 2013). Autophagic receptors 

tend to oligomerize which aids the clustering of cargo for uptake into the growing autophagosome. 

Mitophagy is a well-studied example of selective autophagy in which different recognition motifs 

play a role. When mitochondria lose their functionality, their membrane potential drops. This 

depolarization causes an accumulation of PTEN-induced putative kinase (PINK) 1 at the outer 

mitochondrial membrane (OMM) (Narendra et al., 2008). PINK1 phosphorylates ubiquitin, which in 

turn activates the E3 ligase parkin (encoded by PARK2 in humans) (Kane et al., 2014;Kazlauskaite et 

al., 2014;Koyano et al., 2014) to conjugate more ubiquitin to substrates in the OMM, which will be 

again phosphorylated by PINK1, amplifying the signal. Phosphorylated ubiquitin is recognized by the 

autophagy receptors optineurin (OPTN) and NDP52. These two receptors act redundantly and recruit 

members of the autophagy machinery, namely ULK1, DFCP1, WIPI1 and LC3 (Lazarou et al., 2015). 
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Most mitophagy related studies have triggered mitochondrial damage artificially. Whether the 

described mechanisms play a role in a physiological context remains to be proven. Not surprisingly, 

alternative mechanisms have been described involving the autophagy receptors NIX, BNIP3 and 

FUNDC1 (Liu et al., 2012;Novak et al., 2010;Quinsay et al., 2010). NIX and BNIP3 are related proteins 

that require serine phosphorylation adjacent to the LIR for their activity in promoting selective 

autophagy (Hamacher-Brady and Brady, 2016). In addition, mitochondria seem to be targets for 

autophagic degradation during nutrient deprivation (Kim and Lemasters, 2011), even so other 

organelles and cytoplasmic protein complexes might be degraded first (Dengjel et al., 2012). Failure 

of mitophagy can have a great impact on the cell, e.g. by altering immune regulation in the course of 

viral infections and compromising survival of terminally differentiated lymphocytes as discussed 

under point 2 and 3 of this review, respectively. The details of selective autophagy are beyond the 

scope of this review, but have recently been reviewed (Khaminets, Behl and Dikic, 2016;Sica et al., 

2015). 

The identification of more and more specific autophagy substrate recruitment mechanisms raises the 

question whether under any physiological circumstances at all, autophagy engulfs cytoplasmic 

material in a non-specific manner. 

 

1.4 The regulation of autophagy 

Autophagy has to be tightly regulated at many levels, foremost at the stage of phagophore 

formation. From a systemic point of view, autophagy is triggered when key metabolic molecules are 

low in abundance (reviewed by (Galluzzi et al., 2014). Various G protein-coupled receptors (GPCRs) at 

the plasma membrane are involved in sensing a drop in nutrient levels (e.g. amino acids or fatty 

acids) in the extracellular milieu (Wauson et al., 2014). Molecules in circulation can also affect 

autophagy. Insulin suppresses autophagy, while glucagon can trigger it (Kimball, Siegfried and 

Jefferson, 2004). Not surprisingly, starvation will cause a decrease in serum levels of insulin and 
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insulin-like growth factor 1, whereas levels of insulin-like growth factor binding protein 1 and 

glucagon increase (Cheng et al., 2014).  

At the cellular level various cues can trigger autophagy, e.g. a drop in iron levels, depletion of amino 

acids, accumulation of NAD
+
, and a decrease in overall energy balance leading to the accumulation of 

AMP. The latter is sensed by one of the key mediators of autophagy initiation, AMP-activated protein 

kinase (AMPK). AMPK activates the autophagy machinery by phosphorylating ULK1 (Egan et al., 2011) 

and BECN1 (Kim et al., 2013). In turn, ULK1 promotes autophagy initiation by phosphorylating BECN1 

(Russell et al., 2013). Furthermore, AMPK plays a role in inactivating another central sensor of the 

energy state of the cell, namely mammalian target of rapamycin complex 1 (mTORC1) (Inoki et al., 

2002). mTORC1 is composed of MTOR, RAPTOR, PRAS40, DEPTOR and mLST8. Under nutrient-rich 

conditions mTORC1 inactivates the ULK1 complex through direct interaction of RAPTOR and ULK1 

leading to an inactivating phosphorylation of ULK1 and ATG13 (Ganley et al., 2009;Hosokawaet al., 

2009a;Jung et al., 2009). At the same time mTORC1 stimulates cell growth through activation of 

transcription, protein and lipid synthesis. 

One protein complex, on which autophagy regulation hinges, is the PI3K complex. As mentioned 

earlier, the core complex consists of the catalytic PI3K subunit VPS34, the regulatory PI3K subunit 

VPS15, ATG14 and BECN1 (Itakuraet al., 2008;Sunet al., 2008). This ATG14-containing complex acts 

early on in phagophore formation. BECN1 binding partners serve as regulators of this complex. 

Factors that positively regulate it are:  e.g. VMP1 (the ER protein that marks the autophagosome 

formation site), or autophagy/beclin-1 regulator (AMBRA) 1 (Fimia et al., 2007). Binding partners that 

negatively regulate the ATG14 complex are: e.g. anti-apoptotic B cell CLL/lymphoma 2 (BCL2) and 

BCL-XL (Pattingre et al., 2005), GAPR1 (Shoji-Kawata et al., 2013) or 14-3-3ε (Wang et al., 2012).  

At later stages of autophagosome maturation, the PI3K complex comes into action again, but in a 

different conformation, replacing ATG14 with UV radiation resistance associated gene (UVRAG) 

(Itakuraet al., 2008). This UVRAG-containing complex is positively regulated by BECN1 binding to BIF-

1 (Takahashi et al., 2007), while negative regulation involves BCL-2 and BCL-XL (Pattingreet al., 2005). 
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The step of autophagosome maturation is inhibited by the third form of the PI3K complex which 

contains UVRAG and a negative regulator RUBICON at the same time (Matsunagaet al., 2009;Zhonget 

al., 2009). Given BECN1’s central role in regulation of autophagy, it is not surprising that many viruses 

manipulate autophagy by attacking this protein in particular. More on this subject will be discussed 

under point 4 of this review. Recent work also suggests modes of autophagy regulation at the 

transcriptional level (Lee et al., 2014;Seok et al., 2014). 

In this review, we will outline roles of autophagy during the immune response against viruses. 

Furthermore, we will highlight the many ways viruses manipulate the autophagic machinery during 

the constant arms race between pathogen and host and the role that autophagy plays during the 

release of viral particles from infected cells. Lastly, we will discuss some unconventional ways in 

which autophagic proteins are utilized in infected cells.  

  

2. Autophagy in innate immune control of virus infections 

Innate immune mechanisms serve as a first line of defense against invading viruses. On one hand, 

they consist of physical barriers that prevent the infection of host cells. On the other hand, germline 

encoded receptors recognize virus intrinsic features, so called pathogen-associated molecular 

patterns (PAMPs), and set off a cascade of transcriptional events that will lead to the production of 

anti-viral substances and immune modulating cytokines (Figure 2A). In turn, these cues will recruit 

immune cells, like natural killer (NK) cells, neutrophils and monocytes to the site of infection. These 

cells either directly kill infected cells or help to clear the site of dead cells. Ultimately, the triggering 

of an innate immune response will also aid the instruction of a more specialized adaptive immune 

response at later stages of infection (Figure 2B+C). The latter will be discussed under point 3 of this 

review. 

With autophagy being one of the major degradative pathways in mammalian cells it is only natural to 

assume that it also plays an important role in disposing of intracellular pathogens. The selective 

removal of intruding pathogens is called xenophagy. Indeed, for many viral infections it was shown 
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that functional autophagy keeps viral titers at bay in vivo (Lee et al., 2010;Orvedahl et al., 2010;Shelly 

et al., 2009). Since viruses harbor PAMPs, a multitude of pattern recognition receptors (PRRs) is able 

to detect the commencing viral infection. Signaling through different classes of PRRs, namely toll-like 

receptors (TLRs), RIG-I-like receptors (RLRs), and nucleotide oligomerization domain (NOD)-like 

receptors (NLRs), was shown to converge with the autophagy pathway. An autophagy stimulating 

role of PRRs was first described for TLR4 following infection with mycobacteria (Xu et al., 2007). To 

date many observations support the notion that PRRs trigger autophagy to initiate the degradation 

of viral particles. On the contrary, autophagy was also shown to play a role in keeping inflammation 

at bay via degradation of components of the innate immune systems or mitochondria, hence 

reducing the release of pro-inflammatory signals like mitochondrial DNA or reactive oxygen species 

(ROS) (Kimura et al., 2015;Tal et al., 2009). This concept is supported by the fact that a lack of 

autophagy in certain myeloid immune cells can lead to lung inflammation even in the absence of 

infection (Abdel Fattah et al., 2015;Kanayama, He and Shinohara, 2015;Lu et al., 2016). Examples 

displaying the dual role of autophagy in antiviral innate immune responses are given below and are 

summarized in Figure 2A. 

 

2.1 Autophagy and pattern recognition receptors 

Toll-like receptors are the best characterized group of PRRs. These membrane-bound receptors can 

be found on the plasma membrane (TLR1/2/4/5/6) or inside endosomal compartments (TLR3/7/8/9). 

The endosomal TLRs are mostly responsible for recognition of viral PAMPs, such as dsRNA (TLR3), 

ssRNA (TLR7/8) and DNA with unmethylated CpG (TLR9). They are mostly expressed by macrophages, 

conventional and plasmacytoid dendritic cells (pDC). TLRs act as homodimers. Signaling is mediated 

by adaptor molecules like myeloid differentiation primary response gene 88 (MyD88) and TIR-

domain-containing adapter-inducing interferon-β (TRIF), which activate the transcription factors NF-

κB, AP-1, and IRF3/7 leading to the expression of type I interferons (IFN) α and β and pro-

inflammatory cytokines (reviewed in (Lee and Kim, 2007). Downstream so called IFN-regulated genes 
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(IRG) are transcriptionally activated or repressed leading to modulation of the immune response.  

Autophagy seems to play a role in TLR-mediated activation of type I IFN production. ATG5-deficient 

pDCs fail to upregulate type I IFNs following vesicular stomatitis virus (VSV) or Sendai virus infection 

(Lee et al., 2007). Autophagosomes seem to be required for delivery of cytosolic viral RNA to the 

lysosome where TLR7 triggering can take place. Similarily, autophagic proteins seem to facilitate the 

delivery of DNA to TLR9 containing compartments (Henault et al., 2012). However, this mechanism 

does not resemble conventional autophagy and will be further discussed under point 5 of this review.  

The group of RLRs consists of three members, retinoic acid-inducible gene I (RIG-I), melanoma 

differentiation-associated gene 5 (MDA5) and LGP2. The latter is thought to play a rather regulatory 

role. RIG-I and MDA5 recognize different forms of viral RNA in the cytosol (Schlee, 2013). Both 

receptors interact with their common adaptor mitochondrial antiviral signaling (MAVS) via their 

caspase-recruiting domain (CARD) (Lee and Kim, 2007). MAVS is membrane bound and mostly found 

on mitochondria and peroxisomes. Downstream signaling leads to the activation of the transcription 

factors IRF3/7, NF-κB and ATF-2/c-Jun. In turn, these will switch on the transcription of type I IFNs 

and pro-inflammatory cytokines (Chiang, Davis and Gack, 2014). Two mechanisms have been 

proposed by which autophagy might influence RLR signaling. The ATG5/12/16L1 complex seems to 

interact with the CARDs of RIG-I and MAVS disrupting the signaling cascade and preventing the 

production of type I IFNs (Jounai et al., 2007). Alternatively, the role of basal autophagy in 

mitochondria homeostasis might prevent damaged mitochondria from accumulating and hence, 

keeps the level of MAVS signaling in check (Talet al., 2009). The latter finding is supported by the 

observation that measles virus hampers RLR signaling by actively triggering mitophagy which reduces 

the availability of MAVS (Xia et al., 2014). 

A sensor of cytosolic dsDNA and cyclic nucleotides is stimulator of IFN genes (STING). STING activates 

the transcription factor IRF3 in endosomal compartments. IRF3 initiates the transcription of type I 

IFNs (Ishikawa and Barber, 2008). The activity of STING can be further enhanced when dsDNA is 

recognized by the sensor cGAMP synthase (cGAS). This enzyme synthetizes cyclic GMP-AMP (cGAMP) 
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upon detection of cytosolic DNA. The cyclic nucleotides further activate STING. The cytosolic DNA 

sensing pathway intersects with autophagy in different ways. STING has been implicated in 

upregulation of xenophagy in response to HSV-1 infection in bone marrow-derived dendritic cells 

(BM-DCs) (Rasmussen et al., 2011). In order to prevent excessive cGAS activity, a negative feedback 

loop exists. cGAS directly interacts with BECN1 leading to impairment of its nucleotidyl transferase 

activity. Less cGAMP available will dampen STING activity. Additionally, cGAS competes with 

RUBICON for BECN1 binding, thus releasing the PI3K complex from its inhibition and actively 

triggering autophagy. This is believed to aid in the degradation of cytosolic DNA and invading viruses 

(Liang et al., 2014). In a second negative feedback loop, cyclic nucleotides trigger the inactivation of 

AMPK, which therefore no longer represses ULK1. Active ULK1 phosphorylates STING leading to its 

degradation (Konno, Konno and Barber, 2013). Furthermore, STING was shown to rely on autophagic 

molecules like ATG9 for its trafficking (Saitoh et al., 2009). However, this process does not resemble 

conventional autophagy, but rather implies an unconventional usage of autophagy proteins (see 

point 5 of this review for more details).   

Nod-like receptors comprise another class of cytosolic PRRs. This large group of proteins is 

characterized by their leucine-rich repeat (LRR) and NACHT domains. The NLRP subfamily contains a 

pyrin domain (PYD) in addition. The best studied member of this subfamily is NLRP3 which recognizes 

various ligands among which microbial PAMPs like viral RNA but also endogenous danger associated 

molecular patterns (DAMPs) like ROS. Similar to other NLRPs, NLRP3 can form inflammasomes, large 

protein complexes which contain an adaptor protein called ASC (apoptosis-associated speck-like 

protein containing a CARD). NLRP3 and ASC interact via their PYDs, while ASC interacts with pro-

caspase 1 via their CARDs. The activation of the inflammasome requires two signals. Signal 1 is 

mediated by TLR, IL-1R or TNFR signaling and is thought to be provided constantly by commensal 

bacteria in the gut. Signal 1 triggers the expression of e.g. pro-IL1β and pro-IL18 as well as NLRP3 

itself. Signal 2 is sensed by the NLRs and leads to autocatalysis of pro-caspase-1 cleavage into its 

active form followed by cleavage of pro-IL-1β and pro-IL-18 by active caspase-1. Mature IL-1β and IL-



14 

 

18 are secreted and perform immune modulatory functions. Inflammasomes have been extensively 

reviewed by (Martinon, Mayor and Tschopp, 2009).   

Autophagy regulates inflammasome activity to prevent possibly harmful overproduction of IL-1β or 

IL-18. A loss of autophagy leads to increased release of IL-1β in macrophages in response to the 

bacterial cell wall component LPS (Saitoh et al., 2008). ROS released from damaged mitochondria are 

another potent trigger of NLRP3 inflammasomes. Since autophagy plays an important role in 

mitochondria homeostasis, impairment of mitophagy was shown to be accompanied with increased 

IL-1β release (Nakahira et al., 2011;Zhou et al., 2011). Infection with influenza A virus (IAV) is a 

potent inducer of NLRP3 inflammasomes through sensing of viral ssRNA (Thomas et al., 2009), 

through proton channel function of matrix protein 2 (M2) in the trans-Golgi network (Ichinohe, Pang 

and Iwasaki, 2010) and through changes in mitochondrial membrane potential (Ichinohe et al., 2013). 

In addition, IAV is sensed by another member of the NLR family, NOD2. NOD2 activates receptor-

interacting serine/threonine-protein kinase (RIPK) 2 which phosphorylates ULK1. Active ULK1 

enhances the rate of mitophagy, thus preventing excessive inflammasome activation (Lupfer et al., 

2013). 

Another means by which autophagy regulates inflammasome activity is direct degradation. ASC 

becomes ubiquitinated after activation of NLRP3 and selective autophagy via p62 binding is initiated 

(Shi et al., 2012). Pro-IL-1β itself might also be subjected to autophagic degradation (Harris et al., 

2011).  

How IL-1β an IL-18 are secreted is still a matter of debate as they lack the leader peptide required for 

conventional secretion. Autophagy may play a role in their unconventional secretion (Dupont et al., 

2011). This somehow contradicts the findings described above that propose a role of autophagy in 

restricting the amount of IL-1β released. One possible explanation is that under basal conditions 

autophagy limits IL-1β secretion, whereas induction of autophagy by e.g. starvation augments IL-1β 

secretion (Dupontet al., 2011). In a reconstituted system it was shown that IL-1β can be incorporated 

into the intermembrane space between inner and outer autophagosomal membrane (Zhang et al., 
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2015). Hence, IL-1β might use the autophagosome as a shuttle for its secretion, the exact mechanism 

of which remains to be elucidated.   

Taken together PRRs play a potent role in a first line of defense against viral infection by production 

of antiviral factors and immune modulating cytokines. Autophagy plays a strong regulatory role in 

these innate immune responses preventing excessive activation. Not surprisingly, some viruses have 

developed means to manipulate the autophagic machinery to prevent innate immune activation via 

PRR signaling and initiation of xenophagy. This aspect of host/virus crosstalk will be discussed under 

point 4 of this review. 

 

2.2 Xenophagy – selective degradation of pathogens 

Virus components can also be directly recognized and subjected to autophagic degradation (Table 1). 

One large family of genes with more than 100 members in humans is the tripartite motif (TRIM) 

protein family. One member, TRIM5α, acts as an anti-retroviral factor. It has been proposed that it 

restricts retroviral replication by recognizing capsids directly through its SPRY domain. Furthermore, 

TRIM5α binds BECN1 competing with negative regulators of BECN1 and hence, activates autophagy 

(Mandell et al., 2014). Recently, this view has been challenged, solely proposing a role for autophagy 

in turnover of basal TRIM5α levels, whereas autophagy deficiency did not impair retroviral restriction 

(Imam et al., 2016). The anti-retroviral activity of TRIM5α might also be proteasome mediated (Wu et 

al., 2006) or associated with its ability to increase innate immune signaling (Lascano et al., 2015).  

Recently, TRIM20 and 21 were shown to be involved in the autophagic degradation of inflammasome 

components and IRF3, respectively. This might represent yet another immune modulatory role for 

autophagy in response to viral and other infections (Kimuraet al., 2015).  

Autophagy was also shown to limit the spread of Sindbis virus (Liang et al., 1998). A genome wide 

study has revealed a role for the E3 ligase SMURF1 in survival after Sindbis virus infection (Orvedahl 

et al., 2011). SMURF1 possibly ubiquitinates the capsid of Sindbis virus leading to recognition by p62, 
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as p62 was shown to recruit capsids to autophagosomes (Orvedahlet al., 2010). However, the exact 

mechanism remains unknown.  

Lastly, in murine cells autophagic degradation of Chikungunya virus is mediated by p62 (Joubert et 

al., 2012), whereas autophagy seems to play a pro-viral role in human cells infected by Chikungunya 

possible due to some adaptation of the virus to its human host (Judith et al., 2013;Krejbich-Trotot et 

al., 2011). Xenophagy not only rids the cell of invading virus particles it may also deliver peptides for 

antigen presentation, which will boost the adaptive immune response, as discussed in the following 

paragraph. 

In summary, autophagy plays a dual role in antiviral innate immune responses. Xenophagy triggered 

by various PRR signaling pathways keeps viral titers at bay, while selective autophagy degrades 

crucial components of the innate immunity signaling cascade to prevent excessive, possibly harmful 

immune activation.  

 

3. Adaptive anti-viral immune responses mediated by autophagy 

3.1. T cell monitoring of autophagic degradation products 

In addition to autophagy’s role in the early phase of viral infections, which are dominated by innate 

immune recognition as well as restriction of the infecting pathogen, autophagy also contributes to 

visualizing viruses to the adaptive immune system and sustaining adaptive lymphocyte 

differentiation and functions.  

T cells detect peptides presented on major histocompatibility complex (MHC) molecules. Two 

main T cell lineages exist, namely cytotoxic CD8
+
 T cells and helper CD4

+
 T cells, which orchestrate 

adaptive immune responses (Kanno et al., 2012). CD8
+
 T cells recognize octa- to nonameric peptides 

on MHC class I molecules, and CD4
+
 T cells longer peptides with a nonameric core sequence that 

binds to MHC class II molecules. MHC class I molecules are primarily loaded with products of the 

cytosolic and nuclear multicatalytic protease complex, the proteasome, while MHC class II molecules 

primarily present peptides that are generated by lysosomal proteolysis (Trombetta and Mellman, 
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2005). Therefore, autophagy is expected to deliver antigens for MHC class II restricted antigen 

presentation, but it has become clear in recent years that it also affects MHC class I restricted antigen 

presentation (Figure 2B). 

 Consistent with a role of autophagy in targeting cytosolic proteins for MHC class II restricted 

antigen presentation, it was noted early on that peptides eluted from MHC class II molecules 

originate to 20-30% from nuclear and cytosolic source proteins (Chicz et al., 1993;Dengjel et al., 

2005). This includes fragments of LC3, GABARAP and GABARAPL2 (Dengjelet al., 2005;Suri et al., 

2008). Moreover, upon autophagy up-regulating starvation, MHC class II presentation of these 

cytosolic proteins increased by 50%, while membrane protein presentation remained unchanged 

(Dengjelet al., 2005). These findings strongly support a role of autophagy in delivering antigens to 

late endosomal compartments, namely MHC class II containing compartments (MIICs), in which 

lysosomal proteolysis generates ligands to be loaded onto MHC class II molecules. Indeed 

autophagosomes fuse frequently with MIICs in human B cells, dendritic cells and epithelial cell lines, 

as well as in mouse thymic epithelial cells (Kasai et al., 2009;Schmid, Pypaert and Münz, 2007). 

Furthermore, fusing proteins to the N-terminus of LC3B enhances MHC class II presentation of viral 

and tumor antigens up to 20-fold (Comber et al., 2011;Fonteneau et al., 2016;Jin et al., 2014;Schmid, 

Pypaert and Münz, 2007). Thus, MHC class II molecules present peptides of autophagic substrates, 

but does this also apply to viral antigens? 

 Indeed, it was found that the nuclear antigen 1 of Epstein Barr virus (EBNA1) is intracellularly 

processed by autophagy for MHC class II presentation (Münz et al., 2000;Paludan et al., 2005). This 

viral nuclear antigen limits its MHC class I presentation via its glycine-alanine (Gly-Ala) repeat, which 

inhibits its translation and blocks proteasomal degradation (Levitskaya et al., 1995;Yin, Manoury and 

Fahraeus, 2003). This inability to be degraded by proteasomes presumably makes EBNA1 a substrate 

of autophagy. Primarily cytosolic EBNA1 gets incorporated into autophagosomes, either directly after 

translation or during cell division when nuclear compartmentalization of EBNA1 is compromised 

(Leung et al., 2010).  Mutation of the nuclear localization sequence of EBNA1 increases its 
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presentation on MHC class II molecules to specific CD4
+
 T cell clones (Leunget al., 2010). Similarly, 

MHC class II presentation of ovalbumin after infection with ovalbumin transgenic herpes simplex 

virus (HSV) is sensitive to the virus’ ability to inhibit autophagy via its BECN1 interacting ICP34.5 

protein (Gobeil and Leib, 2012). Mutation of the Beclin-binding domain (BBD) of ICP34.5 increases 

MHC class II presentation of HSV encoded antigen. Along the same lines, autophagy (ATG5) 

deficiency in DCs, the initiators of most anti-viral adaptive immune responses, compromised CD4
+
 T 

cell priming upon HSV infection in mice (Jiang et al., 2015;Leeet al., 2010). Accordingly, some of HSV-

induced pathogenesis, primarily virus driven stromal keratitis, is attenuated in mice with autophagy 

deficient DCs (Jianget al., 2015). Thus, some viral proteins are presented on MHC class II molecules 

after autophagy. 

 However, in addition to MHC class II presentation, autophagy substrates can also contribute 

to MHC class I presentation to CD8
+
 T cells, particularly under conditions of inhibition of the 

conventional MHC class I antigen processing pathway involving proteasomes and ER import via the 

transporter associated with antigen processing (TAP). It was noted that late during HSV infection in 

vitro, MHC class I antigen presentation of the viral glycoprotein B (gB) requires autophagy and 

lysosomal acidification (Englishet al., 2009). Interestingly, IFN-, but not IL-1 or heat shock exposure 

of the antigen presenting cells could overcome the requirement for autophagy in late HSV gB 

presentation on MHC class I molecules. Viral antigen processing for a second herpesvirus, human 

cytomegalovirus (HCMV), was also shown to require autophagy (Tey and Khanna, 2012).  HCMV 

pUL138 presentation on MHC class I molecules by TAP deficient and HCMV infected cells required 

autophagy, and was compromised by pharmacological VPS34 inhibition or RNA silencing of atg12 

expression. Thus, intracellular viral antigen presentation on MHC class I molecules requires 

autophagy under conditions that viral immunoevasins block conventional MHC class I antigen 

processing via proteasomes and TAP. 

 A third pathway, by which autophagy supports antigen processing for MHC presentation is 

release of autophagic cargo for cross-presentation by neighbouring DCs on MHC class I molecules. 
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IAV infected mouse embryonic fibroblasts (MEFs) provided antigen more efficiently to human 

monocyte-derived DCs to stimulate IAV-specific CD8
+
 T cells if apoptosis was compromised in the 

antigen donor cells (Uhl et al., 2009). Moreover, these IAV infected MEFs with deficient apoptosis 

also cross-primed IAV specific CD8
+
 T cell responses more efficiently after injection into mice. 

Inhibition of autophagy by ATG5 down-regulation compromised this cross-presentation ability of 

apoptosis deficient MEFs. Indeed, vesicular release of ubiquitinated proteins, which serve as 

substrates for both proteasomes and autophagy, can be augmented by lysosomal and proteasomal 

inhibition (Li et al., 2011b).  Thereby, proteasomal inhibition promotes the recruitment of 

ubiquitinated protein import into autophagosomes via p62 binding (Twitty et al., 2011). Autophagy 

competent cells indeed release vesicles that contain LC3 and ATG16L1 (Pallet et al., 2013), suggesting 

that under conditions inhibiting lysosomal degradation of autophagosomes, the inner 

autophagosomal membrane and its contents could be released into the supernatant. Vesicular 

fractions, whose secretion depended on macroautophagy, were found to be more efficient in 

delivering viral antigens, including EBV, HCMV and influenza proteins, to human monocytes and 

peripheral blood mononuclear cells for cross-presentation to specific CD8
+
 T cells (Ye et al., 2014). 

Therefore, macroautophagy might package antigens for release and cross-presentation by 

neighbouring DCs. 

 Autophagy proteins seem to support antigen processing for MHC class II presentation and, in 

case of TAP inhibition, also MHC class I presentation. In addition they support cross-presentation on 

MHC class I molecules. 

 

3.2. Lymphocyte differentiation and function requires autophagy 

In addition to regulating antigen presentation, autophagy also influences the development of the 

adaptive immune system. Absence of ATG7 from the hematopoietic lineage abolishes development 

of T and B cells (Mortensen et al., 2011). Lymphocytes seem to be particularly sensitive to the 

accumulation of damaged mitochondria and the associated ROS production. Accordingly, the number 



20 

 

of thymic T cell precursors is severely compromised if they are deficient in ATG5 or BECN1 (Arsov et 

al., 2011;Pua et al., 2007). In the transition of T cells from the thymus to the periphery, T cells were 

found to significantly reduce their mitochondrial mass and could not do so in the absence of ATG7, 

hence accumulating ROS (Pua et al., 2009). For B cells a more subtle effect during development was 

noted. Particularly the more innate B1 cells were compromised in their development and 

maintenance by ATG5 deficiency in the B cell lineage (Miller et al., 2008). Thus, lymphocytes are 

sensitive to loss of mitophagy. 

 A second step during T cell differentiation, at which autophagy is required, is thymic 

selection. Thymic epithelial cells present self-proteins on MHC molecules in order to select for 

thymocytes that can interact with MHC molecules by low avidity interactions and to delete 

autoreactive thymocytes that too strongly interact with self (Kyewski and Klein, 2006).  These have 

been found to be loaded in part via autophagy (Aichinger et al., 2013;Nedjic et al., 2008). Particularly, 

mitochondrial proteins and those that were targeted to autophagosomes by fusion to LC3B could 

delete T cell specificities from the thymocyte pool efficiently already at low transgene 

concentrations. Thus, autophagy supports thymocyte development by supporting MHC class II 

restricted self-protein presentation on thymic epithelial cells. 

 Finally, terminal differentiation of lymphocytes and the function of these mature lymphocyte 

populations also depend on autophagy. While the expansion of CD8
+
 T cells in response to LCMV 

infection was not altered without ATG5 and ATG7, the primed memory T cells survived less well and 

thereby memory T cell responses were diminished (Xu et al., 2014).  Similarly, after influenza A and 

murine cytomegalovirus (MCMV) infection memory CD8
+
 T cells were less well maintained, if they 

lacked ATG7 (Puleston et al., 2014). Interestingly, the decreased levels of autophagy in aged CD8
+
 T 

cells could be partially corrected by autophagy induction with spermidine, which improved memory 

responses by these T cells. ROS accumulation was again found in ATG5 deficient memory CD8
+
 T cells 

after IAV infection and memory CD8
+
 T cell responses could be partially rescued by ROS reduction in 

vivo (Schlie et al., 2015). Apart from T cells also B cells depend strongly on autophagy in their 
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terminal differentiation stages. Memory B cells that are established after IAV infection have been 

reported to depend on ATG7 in their maintenance (Chen et al., 2014). The second terminal 

differentiation stage of B cells for long-lived antibody secretion is plasma cells.  Their numbers were 

found to be diminished after loss of ATG5 from the B cell lineage (Conway et al., 2013). In the 

absence of ATG5 in B cells their endoplasmic reticulum was expanded and an up-regulation of the 

unfolded protein response could be detected (Pengo et al., 2013). This is consistent with a role of 

autophagy in reducing expanded endoplasmic reticulum compartments (Bernales, McDonald and 

Walter, 2006;Khaminetset al., 2015). Thus, maintenance of lymphocyte memory, both at the level of 

memory lymphocyte populations and long-lived effector cells like plasma cells depends on 

autophagy. Particularly mitochondrial and endoplasmic reticulum turnover by autophagy seems to 

be important for these functions. 

 

4. Autophagy manipulation by viruses 

4.1. Inhibition of autophagosome formation by DNA viruses 

Due to these important functions of autophagy in innate and adaptive immunity to virus infections, it 

is not surprising that viral pathogens manipulate this pathway for immune escape. In addition, they 

also often use the resulting membrane remodeling for their own benefit during replication (Figure 3). 

At two checkpoints of autophagy, viruses have been reported to interfere with this pathway. These 

are early during autophagosome formation and at the stage of autophagosome fusion with late 

endosomes or lysosomes (Münz, 2009).  

 Interestingly, especially herpesviruses are a rich source of autophagy inhibitors of the early 

checkpoint. The -herpesvirus HSV encodes ICP34.5, which binds with its N-terminal domain to 

BECN1 to inhibit autophagosome formation (Orvedahl et al., 2007;Talloczy et al., 2002). In the 

absence of autophagy inhibition by ICP34.5, neurovirulence of HSV is attenuated in mice, while 

replication in vitro is not affected (Alexander et al., 2007;Orvedahlet al., 2007). ICP34.5 mediated 

inhibition of autophagy, however, promotes only HSV encephalitis in the adult, but not the newborn 
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brain (Wilcox et al., 2015). Interestingly, ICP34.5’s binding to BECN1 might not exclusively affect 

autophagosome generation, but due to the additional involvement of BECN1 protein complexes in 

autophagosome maturation, might preferentially affect this later step of autophagy. In contrast to its 

inhibition of autophagosome formation in mouse neurons, ICP34.5 seems to arrest autophagosomes 

prior to lysosome fusion in DCs and neuroblastoma cells (Gobeil and Leib, 2012;Santana et al., 2012). 

Furthermore, the -herpesviruses Kaposi Sarcoma associated herpesvirus (KSHV) and murine -

herpesvirus 68 (MHV-68) also encode viral Bcl-2 proteins acting as BECN1 interactors (Ku et al., 

2008;Pattingreet al., 2005). This inhibition of autophagy supports chronic infection with MHV-68 (E et 

al., 2009). The -herpesvirus  HCMV also inhibits autophagy (Chaumorcel et al., 2012;Mouna et al., 

2015). Its TRS1 and IRS1 proteins interact with BECN1 to inhibit autophagosome formation.  HSV also 

encodes a second protein which inhibits autophagy, US11 (Lussignol et al., 2013). However, in 

contrast to ICP34.5, US11 does not interact with BECN1, but requires its dsRNA-dependent protein 

kinase PKR binding domain to block autophagy. Furthermore, KSHV also targets autophagy in a 

BECN1 independent manner. The K7 protein of the virus blocks autophagosome maturation and 

fusion with lysosomes (Liang et al., 2013). K7 achieves this block by interaction with RUBICON, the 

negative regulator of the UVRAG/BECN1 complex that modulates lysosomal fusion with 

autophagosomes. A third KHSV mechanism to modulate autophagy is targeting ATG3 and thereby 

inhibiting its function in LC3 conjugation to autophagosomal membranes (Lee et al., 2009). Viral 

FLICE-like inhibitor protein (vFLIP) binds to the LC3 conjugating enzyme ATG3 and blocks 

autophagosome formation. Also the vFLIP molecules of the -herpesvirus herpesvirus saimiri (HVS) 

and the poxvirus Molluscum contagiosum virus (MCV) were able to fulfill ATG3 mediated inhibition 

of autophagosome formation. Among the three KSHV encoded autophagy inhibitors (vBCL2, K7 and 

vFLIP), vBCL2 was required for lytic replication of KSHV, but this function did not require the ability of 

vBCL2 to inhibit autophagy (Gelgor et al., 2015;Liang et al., 2015). Nevertheless, these studies 

suggest that most herpesviruses, as a prominent group of DNA viruses, block autophagy either to 
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prevent their intracellular degradation during infection or to compromise autophagic antigen 

processing for MHC presentation. This at least applies to -, - and 2-herpesviruses. 

The notable exception among herpesviruses is the 1-herpesvirus Epstein Barr virus (EBV), 

which seems to benefit from autophagy. The latent membrane protein 1 (LMP1) of EBV was shown 

to stimulate autophagic flux and thereby regulate its own degradation (Lee and Sugden, 2008). In the 

absence of autophagic degradation of LMP1, the overexpression of this oncogene compromises EBV 

transformed B cell growth. Also LMP2 was recently shown to induce autophagy, preventing cell 

death (Fotheringham and Raab-Traub, 2015). Autophagy up-regulation seems to ensure the survival 

of infected B cells during virus induced transformation to lymphoblastoid cell lines and counteract 

p53 induced apoptosis (McFadden et al., 2016;Pujals et al., 2015).  In addition, EBV seems to also 

utilize autophagic membranes for its lytic replication (Granato et al., 2014;Nowag et al., 2014). This 

aspect of EBV’s interaction with the autophagic machinery will be discussed in more detail under 

point 6. Thus, except for EBV, most herpesviruses compromise autophagy to escape innate and 

adaptive immune restriction. 

 

4.2. Compromised autophagosome maturation by RNA viruses 

In contrast to DNA viruses, which in their majority inhibit autophagic membrane formation, RNA 

viruses often induce the accumulation of autophagic membranes, irrespective of their replication in 

the cytosol or the nucleus. These membranes are often used as scaffolds for the viral replication 

complexes or support virus particle release. Indeed, the first virus, for which such an accumulation of 

double membrane vesicles was described is the picornavirus poliovirus (Dales et al., 1965). Poliovirus 

proteins 2BC and 3A the accumulation of double membrane vesicles and the virus is thought to 

replicate at these membranes (Jackson et al., 2005). These structures stain positive for LC3 and the 

lysosome associated membrane protein 1 (LAMP1). They are also partially acidified, because they can 

be visualized with monodansylcadaverine, which stains multilamellar acidified vesicles. RNA silencing 

of LC3 and ATG12 prevents the formation of these vesicles and decreases infectious Poliovirus 
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release. The LC3 positive double membrane vesicles in poliovirus infected cells do not seem to 

support viral genome replication, but support maturation of virus particles and release (Richards and 

Jackson, 2012). Indeed the non-lytic release of poliovirus was found to depend in part on the 

autophagic machinery with less viral spreading in cell cultures after LC3 silencing (Bird et al., 2014). 

Vice versa autophagy stimulation with the mTOR inhibitor rapamycin increased viral spreading.  

Similar findings seem to also apply to other picornaviruses. Infection with the rhinoviruses 2 and 14 

leads to the accumulation of LC3 positive vesicles (Jacksonet al., 2005). Moreover, the proteins 2B, 

2C and 3A of the food-and-mouth disease virus also associate with LC3 positive structures (O'Donnell 

et al., 2011). RNA silencing or pharmacological inhibition of the autophagic machinery decreased 

while mTOR inhibition increased infectious virus production. Finally, coxsackievirus B can be found in 

LC3 positive extracellular vesicles that often contain multiple virus particles surrounded by one LC3-

PE containing membrane (Robinson et al., 2014). Thus, picornaviruses use mature autophagic 

vesicles to exit cells and spread in a non-lytic fashion to neighboring cells. Even so they are non-

enveloped viruses, they use LC3-PE positive vesicles with often multiple virus particles inside for this 

spreading.  

Another group of viruses that seem to be influenced by and regulate autophagy are 

alphaviruses. While Sindbis virus is mainly restricted in its infection by autophagy via p62 mediated 

import into autophagosomes, as mentioned above (Orvedahlet al., 2010;Orvedahlet al., 2011), 

Semliki Forest virus merely arrests autophagosome maturation (Eng et al., 2012). This arrest depends 

on the viral glycoprotein spike complex. However, inhibition or stimulation of autophagy does not 

change viral replication in culture. Finally, the alphavirus Chikungunya virus is at the same time 

restricted and uses part of the autophagic machinery (Judithet al., 2013).  On one hand, p62 targets 

viral particles for autophagic degradation via binding to LC3B. On the other hand, human NDP52 

binds to viral non-structural protein 2 (nsP2), on which the viral replication machinery assembles. 

Thereby, NDP52 enriches the viral replication complex at the trans-Golgi-network via its LC3C 

binding. In human cells, the net outcome of these interactions is that the core autophagic machinery 
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that allows LC3C lipidation supports Chikungunya virus replication. In mouse cells, however, 

autophagy mainly restricts Chikungunya virus replication. Thus different modules of the autophagic 

machinery play restrictive and supportive roles during alphavirus infections.  

The pro-replicative role of the autophagic machinery prevails during flavivirus infections. 

Hepatitis C virus (HCV) requires ATGs 4, 5, 6 and 12 for efficient translation of the replication complex 

of the virus (Dreux et al., 2009). Moreover, viral replication seems to proceed on LC3 positive 

membranes (Sir et al., 2012). Inhibition of autophagosomal membrane formation inhibits HCV 

replication. The formation of these double membranes, on which HCV replicates, is also dependent 

on early autophagy proteins like Vps34 and DFCP1, which has led to the proposition that HCV actually 

replicates on omegasome structures (Mohl et al., 2016).  Finally, even release of HCV was suggested 

to depend on autophagy (Shrivastava et al., 2015). The required inhibition of autophagic membrane 

degradation for HCV replication on these membranes and possibly for their support of exosomal viral 

release, seems to be mediated by RUBICON up-regulation (Wang, Tian and Ou, 2015). The non-

structural protein NS4B seems to be sufficient to stimulate this RUBICON up-regulation. With Dengue 

virus another flavivirus also blocks autophagic membrane degradation and p62 overexpression leads 

to restriction of virus replication (Metz et al., 2015). Thus, autophagic membranes and their 

precursors, like the omegasomes, seem to primarily support flavivirus replication. The block that 

stabilizes these membranes might at the same time prevent virus degradation via autophagy.  

Apart from the RNA virus families that replicate in the cytosol, regulation of autophagy has 

also been described for RNA viruses that replicate in the nucleus. One of the most prominent is the 

human immune deficiency virus (HIV). HIV-1’s viral infectivity factor (Vif) binds directly to LC3 (Borel 

et al., 2015). This interaction inhibits autophagosome maturation. However, the virus encodes 

another inhibitor of autophagosome maturation. HIV’s negative regulatory factor (Nef) also stabilizes 

autophagic membranes (Kyei et al., 2009). Preventing their degradation leads to efficient virus 

replication in macrophages. Nef seems to mediate this function through BECN1 binding (Kyeiet al., 

2009). This interaction was proposed to activate mTOR, which phosphorylates transcription factor EB 
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(TFEB), retaining TFEB in the cytosol (Campbell et al., 2015). Nuclear TFEB augments lysosomal 

function via its transcription of lysosomal content and inhibition of this transcription attenuates 

autophagosome degradation. In addition to these effects on autophagy in the infected cell, HIV also 

induces autophagy in trans via binding of its envelope protein to CXCR4 (Espert et al., 2006). This 

autophagy induction in bystander CD4
+
 T cells contributes to their cell death. Finally, as above, HIV 

seems to also benefit from inhibiting autophagosome degradation in order to counteract 

degradation of viral components that are essential for replication. Along these lines HIV’s 

transactivator Tat is recruited via direct p62 binding to autophagosomes for degradation (Sagnier et 

al., 2015). Thus, HIV inhibits autophagosome maturation via Vif and Nef for more efficient replication 

in macrophages, but is restricted by autophagy in T cells.  

As another example of a RNA virus that replicates in the nucleus, the segmented RNA virus 

IAV also inhibits autophagosome maturation (Gannage et al., 2009). M2 of IAV blocks 

autophagosome degradation. This inhibition of autophagy leads to increased apoptotic cell death of 

infected cells. M2 also contains a LIR, which redirects LC3 to the cell membrane through which IAV 

buds (Beale et al., 2014). This M2 mediated redistribution of LC3 coupled membranes to the cell 

membrane allows filamentous budding of IAV, which seems to increase virus stability. M2 seems to 

require its proton channel activity to accumulate autophagic membranes in infected cells, which are 

then redistributed to the cell surface (Ren et al., 2015).  Thus, IAV manipulates cell death of its host 

cells and redistributes LC3 bound membranes to its budding sites after inhibiting autophagosome 

maturation via M2. Finally, parainfluenza virus also blocks autophagosome degradation by 

preventing their fusion with lysosomes (Ding et al., 2014). The viral phosphoprotein binds to SNAP29 

to block STX17 mediated autophagosome fusion with lysosomes. The resulting autophagosome 

accumulation support viral replication. Thus influenza and parainfluenza virus block autophagosome 

fusion with lysosomes, but how this in detail affects viral replication, still needs to be mechanistically 

better understood.  
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5. Unconventional use of autophagy proteins 

Besides their role in orchestrating an important catabolic pathway, autophagic proteins may also 

take on alternative roles in cellular and anti-viral functions. As mentioned earlier, STING is an 

important sensor of cytosolic dsDNA of viral origin. While being an ER-resident protein under steady-

state conditions, STING’s activation coincides with its translocation to the Golgi and further 

localization at cytoplasmic punctuate structures where it interacts with TANK-binding kinase 1 

(TBK1). These structures are also positive for the autophagic adaptor protein p62 and LC3, but they 

are not conventional autophagosomes as electron microscopy has revealed a single limiting 

membrane. Furthermore, these structures contain ATG9, the transmembrane autophagy protein 

required for membrane shuttling to the growing phagophore. In case of STING signaling, ATG9 seems 

to play an immune regulatory role, as its absence leads to enhanced translocation of STING from the 

Golgi to LC3 positive punctae, stronger assembly with TBK1 followed by phosphorylation of the 

transcription factor IRF3 and overproduction of type I IFNs (Figure 4A). This however, cannot be 

explained by aberrant conventional autophagy, since the loss of ATG7 and hence block of 

autophagosome formation does not alter STING signaling (Saitohet al., 2009).  

Autophagic proteins seem to also aid another PRR, namely TLR9, by delivering DNA-based PAMPs to 

TLR9 containing compartments. This was shown for large DNA/auto-antibody immune complexes 

which bind Fc receptors and are taken up by pDCs via phagocytosis. Some proteins of the autophagic 

machinery are recruited to these phagosomes in a process that does not resemble conventional 

autophagy as the resulting structure is surrounded by a single membrane only (Henaultet al., 2012). 

This process has been described earlier and was termed LC3-associated phagocytosis (LAP) (Sanjuan 

et al., 2007) (Figure 4B). Recently, mechanistic details have been revealed highlighting which 

autophagic proteins are required for LAP (Martinez et al., 2015). Upon phagocytosis of pathogens or 

beads coupled with TLR2 ligands the PI3K complex containing RUBICON, but not ATG14 or AMBRA, is 

recruited to the phagosome in murine macrophages. The resulting PI(3)P production recruits the 

NADPH oxidase (NOX2) complex, which produces ROS. Together with PI(3)P, ROS are the signal for 
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recruitment of downstream autophagy effectors that facilitate the conjugation of LC3 to the 

phagosomal membrane. LAP proceeds independently of the pre-initiation ULK complex (Florey et al., 

2011;Henaultet al., 2012;Martinez et al., 2011).  LAP seems to enhance the rate of 

phagosome/lysosome fusion, thus ensuring efficient elimination of potential harmful pathogens 

(Martinezet al., 2011;Sanjuanet al., 2007). However, recent evidence in human macrophages and DC 

proposes a rather stabilizing role for LAP, enabling convergence with TLR containing endosomes 

(Henaultet al., 2012) or improved antigen delivery to MHC class II positive compartments for 

presentation to T cells (Romao et al., 2013). In addition to TLR2/4/6, Dectin-1 (Ma et al., 2012) and Fc 

receptors, also dying cells may trigger LAP via recognition of PE exposed at the cell surface by T cell 

immunoglobulin mucin protein 4 (TIM4) on the macrophage (Martinezet al., 2011).  Influenza 

infected cells expose PE on their cell surface and can be taken up via phagocytosis (Shiratsuchi et al., 

2000). A phagocytosis-like uptake mechanism has also been reported for HSV-1 (Clement et al., 

2006). However, a direct role of LAP in virus elimination or in antiviral immune responses has not yet 

been demonstrated. 

The complex formed by ATG5, ATG12 and ATG16L1, which acts as an E3-like enzyme in the 

conventional autophagy pathway (Figure 1), can also influence RLR-mediated signaling (Takeshita et 

al., 2008). ATG5/12/16L1 is able to interfere directly with CARD-mediated binding of RIG-I and the 

adaptor MAVS (Jounaiet al., 2007). The result of this interference is a reduction in type I IFN 

expression (Figure 2A). Furthermore, the ATG5/12/16L1 complex was shown to block the replication 

of norovirus. When type I IFN signaling is abrogated artificially or due to viral evasion strategies, IFNγ 

takes over and acts anti-virally preventing lethal infection. Loss of the ATG5/12/16L1 complex, but 

not other members of the conventional LC3 conjugation machinery, led to loss of the protective 

effect of IFNγ (Hwang et al., 2012).  

A rather unusual role for autophagy is unconventional protein secretion as described for IL-1β under 

point 2 of this review (Figure 2A). Here, conventional autophagosomes seem to harbour leaderless 

proteins like IL-1β in the intermembrane space (Zhanget al., 2015). This mode of secretion seems to 
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also facilitate the release of endogenous DAMPs like high-motility group protein B1 (HMGB1), which 

might affect the immune response (Dupontet al., 2011), and acyl coenzyme A-binding protein (ACBP) 

in yeast (Duran et al., 2010;Manjithaya et al., 2010). 

Lastly, autophagic proteins might also perform unconventional roles directly interfering with the viral 

lifecycle. UVRAG, a component of the PI3K complex, in which it binds BECN1, might alternatively bind 

to the C vacuolar protein sorting (C-VPS) tethering complex. In combination with C-VPS, UVRAG 

facilitates both autophagosome/lysosome and endosome/lysosome fusion (Lianget al., 2008). 

Recently, it was shown that this BECN1-independent function of UVRAG can also facilitate viral entry 

of VSV and IAV (Pirooz et al., 2014b). Upon infection, the pattern of UVRAG/C-VPS mediated SNARE 

pairing changes, favouring fusion of virus-containing endosomes with late endosomes rather than 

destructive lysosomes (Pirooz et al., 2014a). This poses a novel role for UVRAG in viral entry and 

evasion of lysosomal degradation irrespective of its role in conventional autophagy (Figure 4C). 

 

6. Role of autophagy in virus particle release 

A special case of unconventional use of the autophagy proteins is the export of viral particles from 

infected cells via autophagic membranes. This was first suspected for the picornavirus poliovirus and 

the term Autophagic exit With Out Lysis (AWOL) was coined (Jacksonet al., 2005) (Figure 3). 

Apparently the release of poliovirus occurs from LC3 positive vesicular structures and the virus 

matures upon their acidification (Richards and Jackson, 2012). Indeed, release of secretory lysosomes 

by osteoclasts has previously been demonstrated to depend on the autophagic machinery (DeSelm 

et al., 2011). Since poliovirus release from autophagosomes or multivesicular amphisomes would 

result in viral particle release inside the inner autophagosomal membrane, this could protect the 

non-enveloped virus particles from the extracellular milieu and explain the more efficient spreading 

in cell culture from autophagy competent cells (Birdet al., 2014). However, such structures have so 

far only been observed for the closely related coxsackievirus B (Robinsonet al., 2014). Coxsackievirus 

particles have been found in extracellular vesicles, whose membrane is decorated with lipidated LC3. 
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Interestingly multiple viral particles were observed in individual vesicles by electron microscopy. 

These findings suggest that picornaviruses can be shed as packages in vesicles surrounded by the 

inner autophagosomal membrane. How these viruses get exposed to acidification within this inner 

autophagosomal membrane for their maturation, however, requires further investigation. 

For enveloped viruses, especially those that acquire their membrane in the cytosol and not at 

the cell membrane, the autophagic machinery might provide the necessary means for envelope 

acquisition. Indeed, the -herpesvirus EBV stabilizes autophagic membranes upon reactivation from 

latency into lytic virus production (Granatoet al., 2014;Nowaget al., 2014). The production of these 

autophagic membranes is further improved by the up-regulation of LC3A, LC3B and ATG9B 

transcription by the immediate early lytic transcription factor Rta of EBV (Hung et al., 2014). 

Inhibition of autophagic membrane production decreases the production of infectious virus particles 

(Granatoet al., 2014;Nowaget al., 2014), but accumulated viral DNA and lytic EBV proteins in the 

cytosol (De Leo et al., 2015;Nowaget al., 2014). Moreover, viral DNA release was altered upon 

autophagy inhibition, elevated in some, but reduced in other studies (De Leoet al., 2015;Hunget al., 

2014). The accumulation of constituents of EBV particles in the cytosol and increased DNA release, 

possibly after cell death due to autophagy inhibition, is consistent with a loss of efficient infectious 

virus packaging in the cytosol. In good agreement, lipidated LC3B was found in purified virus particles 

and LC3 could be visualized by immune electron microscopy on these virus particles (Nowaget al., 

2014). Thus EBV might up-regulate autophagic membrane formation during lytic replication and 

block their degradation in order to use this membrane source during envelope acquisition in the 

cytosol. Its envelope seems to contain at least in part inner LC3 coupled autophagosomal 

membranes.  

The two hepatitis viruses B and C also utilize autophagic membranes during viral particle 

release, even so they belong to completely different virus families, one being a DNA and the other a 

RNA virus. HCV uses the autophagic machinery to extensively remodel cytoplasmic membranes of its 

host cell and associates with the exosomal maker CD63 during virus release (Shrivastavaet al., 2015). 
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Inhibition of autophagy decreases total and exosome contained HCV RNA in the supernatant of 

replicating cells, and accumulates viral particles intracellularly in exosome like structures. Thus, HCV 

seems to be in part released in exosomes that originate from multivesicular bodies and require the 

autophagic machinery for their release. Indeed, ATG16L1 and LC3 have been found in vesicular 

fractions containing exosomes of autophagy competent cells (Palletet al., 2013). Similarly, hepatitis B 

virus (HBV) shedding into the supernatant of producer cells is diminished upon autophagy inhibition 

(Li et al., 2011a).  As for HCV, HBV viral capsids get trapped within cells, suggesting a deficiency in 

cytosolic envelope acquisition in the absence of autophagy. However, the vesicular compartment by 

which HBV gets secreted is less well defined. However, multivesicular bodies (MVB) and exosomes 

might also play a role for HBV release. 

 In these MVBs the HIV is also thought to acquire some of its envelope in myeloid cells, while 

HIV buds through the cell membrane in T cells (Carter and Ehrlich, 2008;Jouvenet et al., 2006). 

Autophagy might participate in this viral budding into MVBs and exosome-like release of HIV. Indeed, 

it has been found that HIV blocks autophagosome maturation via its Nef protein (Kyeiet al., 2009). 

HIV’s group-specific antigen (Gag) colocalizes with LC3 on these stabilized autophagic membranes. 

Pharmacological or siRNA mediated inhibition of their formation by RNA silencing of ATG6 or 7 

decreases viral shedding into the supernatant of infected myeloid cells. These data suggest that 

autophagic membranes are required and interact with viral particles during release. 

However, for HBV, HCV and HIV autophagic membranes in the viral envelope have not been 

described. Apart from EBV the only other virus for which an envelope of autophagic membranes has 

been found is the double stranded DNA coccolithovirus that infects the phytoplankton Emiliania 

huxleyi (Schatz et al., 2014). Autophagic membrane formation is up-regulated during viral replication 

and its inhibition blocks infectious virus shedding. Phytoplankton ATG8 was found in purified virus 

particles and ATG8 could be localized to the membrane of these large viruses. These findings suggest 

that coccolithoviruses might induce autophagic membrane formation for enveloping of these giant 

viruses that contain 400kb DNA genomes. 
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While for all the above discussed viruses autophagic membranes might directly contribute to 

either transport vesicles or the viral envelope, IAV seems to interfere with autophagosome 

degradation for a different purpose. IAV infection leads to the accumulation of autophagic LC3 

positive membranes (Bealeet al., 2014;Gannageet al., 2009;Renet al., 2015). This membrane stock is 

then redirected to the plasma membrane by M2 and its direct binding to LC3 via its LIR motif (Bealeet 

al., 2014). Excess membrane that is delivered to the cell surface allows filamentous budding of IAV. 

Surprisingly, LC3 is not incorporated into the budding virus particles. However, in the absence of 

autophagic membrane formation and their LC3 mediated recruitment to the plasma membrane the 

produced virus particles are less robust and loose infectivity more rapidly than virus that was 

produced by autophagy competent cells. Thus, IAV uses the membrane remodeling functions of 

autophagy to provide more membrane to the cell surface, but how the lipids that are transported 

with LC3 get incorporated into viral particles, while LC3 is excluded, and how these lipids might 

render IAV more resilient to environmental stresses remains unclear. 

 

7. Conclusions and future directions 

Autophagy as one of the main catabolic pathways of eukaryotic cells interacts with virus infection 

and its immune control at multiple levels. It now has become apparent that innate as well as 

adaptive immune responses to virus infections are influenced by autophagy. Moreover, viruses 

manipulate autophagy for their immune escape, replication and release from infected cells, including 

recruitment of autophagic membranes to their envelopes. Recent years, however, have also 

provided evidence that not only canonical autophagy, but also other pathways that utilize just some 

modules of the molecular machinery of autophagy, influence virus infections and anti-viral immune 

responses. Therefore, the challenge for the future is to dissect, especially for the in vivo phenotypes 

of ATG deficiency, which of these are caused by canonical autophagy versus unconventional 

functions of ATGs. Only with a detailed understanding of this distinction, autophagy regulation can 

be explored for its anti-viral functions. 
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Tables 

Table 1 Receptors for selective autophagy (table is not exhaustive) 

Receptor Cargo Recognition Signal Reference 

Optineurin Mitochondria phospho-ubiquitin Lazarou Nature 2015 

 Bacteria Ubiquitin Wild Science 2011 

NDP52 Mitochondria phospho-ubiquitin Lazarou Nature 2015 

 Bacteria Ubiquitin Thurston Nat Immun 2009 

 damaged endosomes Galectin-8 Thurston Nat 2012 

p62 Bacteria Ubiquitin Zheng JI 2009 
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Hamacher-Brady CellMol 

LifeSci 2015 

NBR1 Peroxisomes Ubiquitin Deosaran J Cell Sci 2013 

FAM134B ER direct Khaminets Nature 2015 

SMURF1 Sindbis virus and HSV unknown Orvedahl Nature 2011 

TRIM5α HIV capsid protein p24 Mandell Dev Cell 2014 

 

 

Figure Legends 

Figure 1 Overview of the autophagic machinery. Autophagosome formation initiates at a structure 

called omegasome at the ER based on nutrient availability. Two protein complexes drive phagophore 

formation, namely ULK and PI3K complex. The membrane source for elongation of the phagophore is 

unknown. LC3 becomes conjugated to lipids in the autophagosomal membrane in an ubiquitin-like 

conjugation cascade. Autophagosomes can take up cytoplasmic material in bulk or in a very selective 

manner mediated by autophagic receptors like p62, which binds to ubiquitinated cargo. 

Autophagosomes move bidirectionally along microtubules owing to the action of different RAB7-

binding adaptor molecules. After closure of the autophagosome, LC3 coupled to the outer 

membrane can get recycled through cleavage by ATG4B. The entire process of autophagosome 

maturation and fusion is controlled by two variants of the PI3K complex. Fusion to the lysosome is 

mediated by an adaptor molecule, a tethering complex and SNARE proteins. Degraded cargo is 

shuttled out into the cytoplasm to serve biosynthesis. ER: endoplasmatic reticulum, PE: 

phosphatidylethanolamine. 

 

Figure 2 Role of Autophagy during anti-viral immune responses. (A) Viral PAMPs are recognized by 

various PRRs in the host cell leading to the activation of various transcription factors. PRR signaling 

often leads to the induction of selective autophagy of the virus (xenophagy). Autophagy also plays a 

regulatory role preventing an excessive activation of the innate immune response. Lastly, autophagy 

can aid in the unconventional secretion of IL-1β and IL-18. (B) Autophagy, LC3 associated 

phagocytosis (LAP) and autophagy assisted exocytosis contribute to antigen processing for MHC 
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presentation. Late endosomal MHC loading compartments receive input from autophagosomes. This 

leads to MHC class II presentation of autophagic cargo, and even to MHC class I presentation, if 

classical MHC class I loading in the ER is compromised. LAP phagosomes and secreted vesicles that 

are dependent on autophagy for their exocytosis also gain access to these MHC loading 

compartments. (C) Different immune system components act during different phases of viral 

infection. The early innate immune response is characterized by the production of type I interferons 

and pro-inflammatory cytokines and by mobilization of e.g. natural killer cells. The adaptive immune 

response that follows is dominated by CD8
+
 cytotoxic T cell activity and circulating virus-specific 

antibodies. 

 

Figure 3 Autophagy manipulation by viruses. Viruses interfere either with autophagosome 

generation or degradation. While herpesviruses escape their degradation by inhibiting 

autophagosome formation, many RNA viruses stabilize autophagic membranes for their replication 

and to facilitate their release from infected cells. 

 

Figure 4 Unconventional use of autophagy proteins. (A) ATG9 plays an unconventional role in 

inhibiting STING’s translocation from the Golgi to cytoplasmic, LC3-positive vesicles. This immune 

regulatory function prevents the over-activation of TBK1 and IRF3. (B) LC3-associated phagocytosis is 

triggered by engagement of various surface receptors with their respective ligand. Downstream 

these single-membrane LC3-positive vesicles may recruit TLR9 containing vesicles or may fuse with 

antigen loading compartments or lysosomes. (C) UVRAG is a member of the PI3K complex that 

facilitates autophagosome maturation. In context of the C-VPS complex it mediates early to late 

endosome transition and various fusion events downstream. Viral evasion strategies lead to 

increased fusion with late endosome preventing viral degradation in the lysosome. DNA-IC: DNA 

immune complex, MIIC: MHC class II containing compartment, EE: early endosome, LE: late 

endosome  



Table 1 Receptors for selective autophagy (table is not exhaustive) 

Receptor Cargo Recognition Signal Reference 

Optineurin Mitochondria phospho-ubiquitin Lazarou Nature 2015 

 Bacteria Ubiquitin Wild Science 2011 

NDP52 Mitochondria phospho-ubiquitin Lazarou Nature 2015 

 Bacteria Ubiquitin Thurston Nat Immun 2009 

 damaged endosomes Galectin-8 Thurston Nat 2012 

p62 Bacteria Ubiquitin Zheng JI 2009 

NIX/BNIP3 Mitochondria 
Ser phosphorylation 

adjacent to LIR 

Hamacher-Brady CellMol 

LifeSci 2015 

NBR1 Peroxisomes Ubiquitin Deosaran J Cell Sci 2013 

FAM134B ER direct Khaminets Nature 2015 

SMURF1 Sindbis virus and HSV unknown Orvedahl Nature 2011 

TRIM5α HIV capsid protein p24 Mandell Dev Cell 2014 
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