
Chapter 5

Autophagy and Viral Infection

Jingrong Mao, Eena Lin, Lian He, Jiaming Yu, Peng Tan and Yubin Zhou

Abstract Autophagy is an intracellular recycling process that maintains cellular

homeostasis by orchestrating immunity upon viral infection. Following viral infec-

tion, autophagy is often initiated to curtail infection by delivering viral particles

for lysosomal degradation and further integrating with innate pattern recognition

receptor signaling to induce interferon (IFN)-mediated viral clearance. However,

some viruses have evolved anti-autophagy strategies to escape host immunity and

to promote viral replication. In this chapter, we illustrate how autophagy prevents

viral infection to generate an optimal anti-viral milieu, and then concentrate on how

viruses subvert and hijack the autophagic process to evade immunosurveillance,

thereby facilitating viral replication and pathogenesis. Understanding the interplays

between autophagy and viral infection is anticipated to guide the development of

effective anti-viral therapeutics to fight against infectious diseases.
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5.1 Introduction

Autophagy, an evolutionarily conserved degradative process, is required to main-

tain organismal homeostasis and promote the clearance of intracellular waste and

invading pathogens by the host immune system [76, 77]. Triggered by various physi-

ological processes, autophagy is a frequent by-product of infection due to the cellular

E. Lin · L. He · P. Tan (B) · Y. Zhou (B)

Institute of Biosciences and Technology, College of Medicine,

Texas A&M University, Houston, TX 77030, USA

e-mail: tpengsysu@gmail.com

Y. Zhou

e-mail: yubinzhou@tamu.edu

J. Mao

Xiangya Hospital, Central South University, Changsha 410008, People’s Republic of China

J. Yu

Zhongshan School of Medicine, Sun Yat-sen University,

Guangzhou 510080, People’s Republic of China

© Springer Nature Singapore Pte Ltd. 2019

J. Cui (ed.), Autophagy Regulation of Innate Immunity, Advances in Experimental

Medicine and Biology 1209, https://doi.org/10.1007/978-981-15-0606-2_5

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0606-2_5&domain=pdf
mailto:tpengsysu@gmail.com
mailto:yubinzhou@tamu.edu
https://doi.org/10.1007/978-981-15-0606-2_5


56 J. Mao et al.

stress caused by viral infection and replication [22, 93]. Autophagy is also selective

for the recognition and degradation of specific cargoes tagged by ubiquitination by a

group of E3 ligase family proteins such as the tripartite motif (TRIM) proteins [142].

Depending on the cargos being sorted for destruction, selective autophagy can be clas-

sified into mitophagy (damaged mitochondria), pexophagy (peroxisome), ribophagy

(ribosomes), ER-phagy (ER), glycophagy (glycogen), xenophagy (pathogens), and

lipophagy (lipid droplets) [119]. Specifically, the xenophagy, a type of selective

autophagy specifically senses intracellular microorganisms, including viruses, and

physically targets them to autophagosomes for further degradation [75]. Autophagy,

programmed to dispose of cytoplasmic components, is first activated by the innate

immune system to degrade and clear invading viruses [22, 34], and then facilitates

antigen processing followed by the induction of adaptive immune responses at later

stages of infection [22, 103, 114].

Although autophagy aims at clearances, some viruses, those persisting and adapt-

able ones, have evolved a variety of strategies to inhibit, escape or manipulate multiple

steps during autophagy to the elemental goal of survival and propagation. Physically,

these viruses settle down in the membrane-bound, the protected environment offered

by the autophagosome; and metabolically, they utilize autophagy-generated energy

and metabolites. In short, these viruses suppress the autophagic process to avoid

being degraded or use the autophagosome as the site for replication. Lipophagy,

another form of autophagy that degrades intracellular lipid droplets, can also be

manipulated by viruses [53]. Lipid droplets serve as a desirable platform for virion

assembly, and directly inducing lipophagy allows viruses to sustain the high ATP

levels needed for viral replication. In brief, current evidence supports the notion that

viruses have evolved strategies to either combat or exploit autophagy to benefit their

own life cycle and survival.

The viral proteins [19] (Fig. 5.1, Step 1) or any single step in the viral life

cycle, including virus attachment and entry, membrane fusion, exposure of viral

components and replication, may trigger autophagy [105]. We provide herein sev-

eral representative examples to illustrate how viruses induce autophagy at multiple

phases during infection (Fig. 5.1, Steps 2–5).

The very first chance for viruses to induce autophagy is through virion bind-

ing [20]. CD46 serves as the binding and entry receptor for the measles virus

(MeV) to induce autophagy by interacting with the phosphatidylinositol 3-kinase

(VPS34)/Beclin-1 complex through a scaffold protein Golgi associated PDZ and

coiled coil motif-containing (GOPC) (Fig. 5.1, Step 2). This pathway is only sensitive

to vaccinal/attenuated strains that utilize CD46 to infect cells [59, 91, 96, 106, 112,

118]. In fact, MeV also activates autophagy by targeting an autophagy associated

protein, named as immunity-associated GTPase family M (IRGM) [45, 46, 107].

Autophagy can also be activated by viral membrane fusion. Human immunode-

ficiency virus type 1 (HIV-1) envelope glycoproteins (gp120 and gp41, called Env)

up-regulate autophagy with their fusogenic activity between HIV-infected cells and

uninfected CD4 T cells, which could be prevented by HIV fusion inhibitors T20 and

C34, leading to the cell death of uninfected T cells (Fig. 5.1, Step 3). There is not

much known about the specific pathways and mechanisms that make up this process,
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Fig. 5.1 Viral infection induces autophagy initiation. (1) Viral protein itself is able to trigger

autophagy. (2) The engagement of CD46, a ubiquitous human surface pathogen receptor for measles

virus (MeV) is sufficient to induce autophagy through a CD46-Cyt1/GOPC pathway. (3) Fusion

activity of the HIV-1 envelope glycoproteins gp120 and gp41 induce autophagy in uninfected

CD4 T cells through binding to CD4 and CXCR4, leading to HIV entry, T cell apoptosis, and

immunodeficiency. (4) The recognition process of certain viruses via TLR7 requires transport of

cytosolic viral replication intermediates into the lysosome by autophagy. (5) Chikungunya virus

(CHIKV)-triggered autophagy is mediated by the ER and oxidative stress pathways

although it hints that bioactive lipids involved in this fusion process and increased

reactive oxygen species (ROS) production may mediate the activation of autophagy

[33]. It is also important to note that the signaling activity of CD4 and CXCR4 are

not associated with autophagy activated by Env [33].

Events following the fusion initiate autophagy via distinct mechanisms. For

instance, the delivery of viral components into the cytosol can lead to cytosolic

pattern recognition receptor (PRR)-induced autophagy. This is best illustrated by

viral particles containing single-stranded RNA (ssRNA) such as vesicular stomatitis

virus (VSV): the cytosolic viral replication intermediates in VSV-infected plasma-

cytoid dendritic cells (pDCs) can be introduced and transported by autophagy to

lysosome compartment for the recognition by Toll-like receptor (TLR) 7, which

leads to the activation type I interferon (IFN) signaling and the production of IFN-α.

Atg5-deficient pDCs were not allowed to recognize VSV infection through TLR7,
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further demonstrating the critical step of VSV-induced autophagy in the host defense

of viral infection (Fig. 5.1, Step 4) [71].

Viral replication offers a distinct model of deterioration in homeostasis leading to

up-regulated autophagy [57]. One such example is the chikungunya virus (CHIKV)

whose replication competent form has been reported to promote autophagy through

endoplasmic reticulum (ER) stress and the generation of ROS [60]. ER stress is

thought to be activated via the accumulation of viral polyproteins [51], which trigger

the unfolded protein response (UPR) to restore homeostasis [51, 57]. In the case of

CHIKV, its replication promotes the activation of inositol-requiring Ser/Thr protein

kinase/endonuclease a (IRE-1a) pathway for provoking the UPR-elicited autophagy

through the splicing of X-box-binding protein 1. CHIKV replication also induces

increased ROS and reactive nitrogen species, which stimulates autophagy via AMPK-

mediated inhibition of the mechanistic target of rapamycin complex 1 (mTORC1)

(Fig. 5.1, Step 5) [60].

In summary, multiple steps during virus infection can activate autophagy by sens-

ing of viral genomes or proteins, acting indirectly through cellular stress pathways

to modulate homeostasis, and/or directly interacting with autophagy regulatory pro-

teins.

5.2 Virus-Mediated Inhibition of Autophagy

Autophagy is a compilated but well-coordinated cellular event, which can be further

divided into the processes of induction, nucleation of the phagophore, elongation,

fusion, and degradation artificially [79]. Smart enough, viruses have evolved a variety

of strategies to escape or manipulate these autophagic processes to benefit their own

replication and propagation.

5.2.1 Inhibition of Autophagy Prior to the Initiation Phase

Mechanistic target of rapamycin (mTOR) works as a central homeostatic regulator

of cell growth by promoting anabolic–metabolic processes like nucleotide synthesis

and suppressing catabolic processes such as autophagy [64]. In light of the cen-

tral role of mTORC1 in the prevention of autophagy, it is by no means out of the

ordinary that some viruses have evolved tactics to boost mTORC1 activity, lead-

ing to the indirect suppression of the Beclin-1/PI3KIII complex and subsequent

autophagy. HIV-1, whose envelope activates the mTOR pathway in dendritic cells

(DCs), causes autophagy exhaustion [12]. Fusion-defective HIV-1 and CD4 ago-

nist antibodies recapitulate these discoveries, underlining that HIV-1 might well

suppress autophagy preceding viral entry (Fig. 5.2). Furthermore, the v-G protein-

coupled receptor (v-GPCR), a Kaposi’s sarcoma-associated herpesvirus (KSHV)

protein, activates the mTOR pathway to negatively regulate autophagy (Fig. 5.2) [8].



5 Autophagy and Viral Infection 59

Aside from activating mTOR, v-GPCR is able to mimic the cellular homolog GPCR

and down-regulates autophagy via suppressing ATG14L expression (Fig. 5.2) [152].

Interestingly, Beclin-2 may affect the v-GPCR protein level, enhancing its endolyso-

somal degradation [37].

5.2.2 Inhibition of Vesicle Nucleation

Nucleation of the phagophore is impelled by the induction of the Beclin-1/PI3KIII

complex. Herpes simplex virus type 1 (HSV-1) encodes the neurovirulence factor

ICP34.5 that binds to Beclin-1 and suppresses autophagy (Fig. 5.2) [100]. Human

cytomegalovirus (HCMV) encodes a functional homolog of ICP34.5 called TRS1

that works against autophagy as well (Fig. 5.2) [17]. Unlike ICP34.5, the PKR bind-

ing domain of TRS1 is irrelevant to autophagy inhibition. Instead, TRS1 interacts

with Beclin-1 through its N-terminal region, and this binding is indispensable to

suppress autophagy. Besides TRS1, IRS1, another protein encoded by HCMV, has

also been proven to inhibit autophagy by interacting with Beclin-1(Fig. 5.2) [95].

A myriad of viruses encode viral BCL-2 (vBCL-2), a protein mimicking its cellular

counterpart (cBCL-2), and inhibit autophagy by directly interacting with Beclin-1

[104]. Biochemical and structural analyses showed that, compared with cBCL-2,

vBCL-2 lacks the regulatory loop of cBCL-2, which is required for its phospho-

rylation by JUN N-terminal kinase (JNK). As a result, the association of cBCL-2

with Beclin-1 segregates Beclin-1 from the autophagy initiation complex, thereby

attenuating the autophagosome formation [67, 149]. Human gamma-herpesvirus 4

(Epstein–Barr virus, EBV) encodes BHRF1 and BALF-1, two ortholog proteins of

cellular Bcl-2, but their inhibitory effects on autophagy remain unclear [3]. Most

members of the gamma-herpesvirus family encode and express vBcl-2 during their

productive lytic infection process. For example, KSHV and murine γ-herpesvirus

68 (MHV68) use ORF16 and M11 to antagonize autophagy (Fig. 5.2) [30]. These

studies have collectively illustrated that vBCL-2 has evolved to become a highly

mighty autophagy suppressor.

5.2.3 Inhibition of Vesicle Elongation and Autophagosome

Formation

KSHV encodes a homolog of the cellular FLICE-like inhibitor protein (FLIP; also

known as ORF71), called vFLIP, that prevents ATG3 from binding to and processing

LC3 in the autophagosome elongation process (Fig. 5.2) [72]. HSHV also expresses

K7 that boosts the Rubicon–Beclin-1 interplay to attenuate the enzymatic activity

of VPS34, thus hampering the fusion of autophagosomes with lysosomes (Fig. 5.2)

[80].
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◭Fig. 5.2 Viral infection suppresses autophagy. Viruses have evolved a variety of strategies to

escape or manipulate autophagic steps to benefit their own survival. HIV-1 envelope up-regulates

the mTOR pathway in DCs, resulting in autophagy exhaustion which promotes cell-associated

HIV-1 and transfer of HIV-1 infection to CD4 T cells. KSHV viral protein, v-GPCR which also

modulates the mTOR signaling pathway. Besides activating mTOR, v-GPCR can mimic the cellular

homolog GPCR and suppress autophagy by blocking the expression of ATG14L. ICP34.5 encoded

by HSV-1, binds to Beclin-1 and inhibits autophagy function. And the mutant HSV-1 virus lacking

the Beclin-1-binding domain of ICP34.5 cannot block autophagy in neurons. HCMV proteins,

TRS1 and IRS1, suppress autophagosome biogenesis by interacting with Beclin-1. In addition,

the anti-apoptotic protein, Bcl-2, interacts with the evolutionarily conserved autophagy protein,

Beclin-1. The majority of members of the gamma-herpesvirus family encode and express vBcl-2,

their cellular counterparts (cBCL-2), and inhibit autophagy by directly interacting with Beclin-1.

Like KSHV encodes orf16 and MHV-68 produces M11. There is a checkpoint of the autophagy

pathway in which cellular and KSHV FLIPs limit the Atg3-mediated step of LC3 conjugation

to regulate autophagosome biogenesis. In addition, KSHV K7 protein interacts with the Rubicon

autophagy protein and blocks the autophagosome maturation step by suppressing VPS34 enzymatic

activity. Red line, inhibition; green line, promotion

5.3 Autophagy as a Mechanism of Promoting Virus

Replication

Double-membrane compartments formed in autophagy serve as an excellent physical

platform for viral replication, as they concentrate essential intermediates locally and

prevent viral RNAs from detection with innate immune sensors and degradation. This

phenomenon was first observed over three decades ago [9, 21, 40]. It is also important

to note that RNA viruses are among the most frequent “hackers” of autophagy to

promote their own replication.

5.3.1 (+) ssRNA Viruses

Studies have illustrated the accumulation of double-membrane vesicles (DMVs) fol-

lowing picornaviral infection. These small RNA viruses take advantage of autophago-

somes as membrane scaffolds for their own RNA assembly and replication [2, 55,

148]. Moreover, the role of the autophagy machinery in inducing the non-lytic release

of picornaviruses has emerged. Picornaviruses, a group of non-enveloped viruses,

are conventionally thought to exit infected cells only through cell rupture. However,

growing evidence shows that picornaviruses, including poliovirus (PV) and cox-

sackievirus, are able to spread in a non-lytic manner among cells via extracellular

microvesicles (EMVs), including autophagosome derived EMVs (Fig. 5.3) [11, 18,

41, 113]. These viruses also acquire a defensive advantage by cloaking inside the

host-derived vesicles to protect themselves against host immune assaults.

The very first representative to show the benefits that viruses receive from remold-

ing intracellular membranes is PV. Current evidence suggests that rapamycin, which
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induces autophagy, up-regulates poliovirus replication, while the silencing of some

key genes of autophagosome formation down-regulates it [55]. PV is able to activate

the formation of autophagosome-like membranes for RNA replication, virion matu-

ration, and non-lytic viral spread [11, 55, 111]. A further study has shown that the

PV protein, 2BC, alone is adequate for inducing the lipidation of LC3 but not for the

construction of autophagosomes [139]. Nonetheless, the co-expression of both 2BC

and 3A is able to promote the formation of DMVs containing markers of autophago-

somes (Fig. 5.3) [55, 111, 131, 139]. Additionally, a recent study revealed that the

ULK1 complex is non-essential for PV-induced autophagy [24].

Coxsackievirus B3 (CVB3) is in the same Picornaviridae family as PV. The

mechanisms by which picornaviruses use to exploit autophagy for their benefits

are still unclear. Whether picornaviral infection results in incomplete versus com-

plete autophagy is disputable. Several studies have shown that CVB3 infection

restricts the fusion of autophagosomes with lysosomes, leading to the production

of giant autophagy-related vesicles during infections [63, 113, 148]. By contrast,

another report suggests that CVB3 prompts complete autophagy [121]. A third

recently published study showed that CVB3 infection compromises the

autophagosome-lysosome/endosome fusion and, at least in part, promotes the

accumulation of autophagosomes [94]. A new mechanism has been proposed:

synaptosomal-associated protein 29 (SNAP29) and adaptor protein pleckstrin homol-

ogy domain-containing protein family member 1 (PLEKHM1), known as regulators

in autophagosome fusion, are both indispensable to the accumulation of autophago-

somes. By cleaving SNAP29 and PLEKHM1 with proteinase 3C, CVB3 curtails
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◭Fig. 5.3 Viruses manipulate autophagy to promote their replication. Double-membrane vesi-

cles (DMVs), following picornaviral infection, furnish the virus an excellent physical platform for

viral RNA assembly and replication. And some picornaviruses, such as PV and coxsackievirus, can

spread via extracellular microvesicles (EMVs) in a non-lytic manner between cells. The poliovirus

triggered membranes can be specifically induced by the co-expression of two viral proteins, 2BC and

3A. HCV infection prompts the expression of Rubicon and UVRAG, which separately increases and

decreases the maturation of autophagosomes. And Rubicon can be triggered by HCV NS4B protein

alone. IRGM, known to contribute to autophagy, is localized at the Golgi apparatus and regulates

the fragmentation of Golgi membranes in response to HCV infection, resulting in co-localization

of Golgi vesicles with replicating HCV. Non-structural viral proteins 2B, 2C and 3A with LC3 and

viral structural protein VP1 with Atg5, and LC3 with LAMP-1 co-localize in FMDV-infected cells.

DENV stimulates and needs AMPK signaling and AMPK-independent suppression of mTORC1

activity for proviral lipophagy. ZIKV NS4A and NS4B, down-regulate cooperatively the Akt-mTOR

pathway and induce cellular dysregulation. ZIKV NS3-mediated cleavage of FAM134B blocks the

formation of ER and viral protein enriched autophagosomes, and the reticulophagy pathway further.

As for HIV, nondegradative stages of autophagy promote its yields at early stage; HIV Gag-derived

proteins bind to and interact with LC3, and autophagy enhances productive Gag processing. And

when autophagy progresses to the maturation stages, HIV protein Nef plays as an anti-autophagic

maturation factor by the interaction with the autophagy regulatory factor Beclin-1, which pro-

tects HIV from degradation. The dual and delicate interaction of HIV with the autophagy pathway

enhances viral yields by utilizing the early stages while inhibiting the late stages. SARS-CoV and

MHV, activate the formation of DMVs. And MHV utilizes the pathway of EDEMosome forma-

tion to generate the DMVs. IAV M2 interacts with LC3 and leads to LC3 re-localization. And a

highly pathogenic avian H5N1 strain of IAV is able to block mTOR, activating autophagy. HPIV3

induces incomplete autophagy by blocking autophagosome-lysosome fusion, leading to increased

virus production. The viral phosphoprotein binds to SNAP29 and suppresses its interaction with

syntaxin17, therefore preventing these two host SNARE proteins from mediating autophagosome-

lysome fusion. Matrix protein of HPIV3 shuttles to mitochondria and interacts with TUFM. The

interaction between M and the LC3 protein that mediates autophagosome formation. These interac-

tions with both TUFM and LC3 are required for the induction of mitophagy and result in inhibition

of the type I interferon response. In RV-infected cells, RV NSP4 co-localized with LC3 in cap-like

structures associated with viroplasms. And NSP4 enhances the release of calcium from the ER into

the cytoplasm, leading to CaMKK-β signaling to trigger autophagy. HBV HBx maintains inter-

relationships with PI3KC3 and DAPK, and directly activates Beclin-1 to trigger autophagy. EBV

LMP1 up-regulates PERK and the unfolded protein response to drive its own synthesis

autophagic flux and the resulting impaired versions of SNAP29/PLEKHM1 prompt

viral replication [94].

Hepatitis C virus (HCV) induces autophagy by promoting the accumulation of

autophagosomes and utilizing autophagosomal membranes as the spot for its RNA

replication [1, 38, 122]. However, it is still controversial whether HCV is able to effi-

ciently prompt the fusion between autophagosomes and lysosomes. Several studies

lean toward the viewpoint that HCV induces autophagosome formation but obstructs

the fusion to benefit viral replication and to prevent virion degradation [126, 127,

136]. For example, Sir et al. demonstrated that HCV induces the accumulation of

autophagosomes without causing autophagic protein degradation in cells, and this

inducement relies on UPR [126]. Dreux et al. suggested that the autophagy pathway

is required for the translation of incoming HCV RNA but not for the maintenance of

replication [39]. In contrast, Ke et al. found that the entire autophagic process used to
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complete autolysosome maturation is essential for supporting HCV RNA replication

[62]. Nevertheless, during the early stage of infection, the HCV RNA-dependent

RNA polymerase NS5B binds to ATG5, meaning that HCV utilizes ATG5 as a

proviral factor at the onset of infection. The resultant downregulation of autophagy

via ATG5 silencing obstructs HCV replication and persistence (Fig. 5.3) [47]. Two

autophagy regulatory proteins, ultraviolet radiation resistance-associated gene pro-

tein (UVRAG), and Rubicon, expressed with different kinetics upon HCV infection

activate and suppress the maturation of autophagosomes (Fig. 5.3). HCV is capable

of temporally regulating autophagy by inducing the expression of these two proteins

differentially to enhance its replication [145]. The early induction of Rubicon by

HCV suppresses the fusion between autophagosomes and lysosomes, as a result of

the accumulation of autophagosomes and encouragement of HCV replication [145].

Additionally, immunity-related GTPase family M protein (IRGM), an IFN-inducible

GTPase, has been reported to regulate autophagy and the development of a variety of

intracellular membrane compartments [46]. Upon HCV infection, IRGM interacts

with Golgi apparatus-specific brefeldin A-resistance guanine nucleotide exchange

factor 1 (GBF1) and facilitates AMPK-mediated GBF1 phosphorylation, thus acti-

vating GTPase ADB ribosylation factor 1 (ARF1) for Golgi apparatus fragmentation

and coordinating viral replication (Fig. 5.3) [49]. Furthermore, the IRGM-mediated

phosphorylation of ULK1 is triggered by HCV infection [16]. The sum of evidence

points to the fact that HCV dynamically modulates autophagy to promote viral repli-

cation (Fig. 5.3).

Similarly, Foot-and-mouth disease virus (FMDV) leads to ATG5-dependent

autophagosome formation as well as the redistribution of LC3 to punctate vesicles.

The PI3K activity of VPS34 is non-essential for this induction and occurs very early,

as ultraviolet-inactivated FMDV is still able to provoke the autophagosome formation

[6]. In addition, co-localization of viral non-structural proteins 2B, 2C, and 3A with

LC3 was observed and autophagosomes induced by FMDV contained VP1, the viral

capsid protein, which co-localizes with p62, suggesting that autophagosome forma-

tion is activated at FMDV entry (Fig. 5.3) [97]. A recent study offered evidence that

the expression of FMDV capsid protein VP2 is able to induce autophagy through

the EIF2S1-ATF4-AKT-mTOR cascade. VP2 was found to interact with HSPB1

(heat shock protein beta-1) and up-regulate the EIF2S1-ATF4 signaling, leading to

autophagy and enhanced FMDV replication [135].

Dengue virus (DENV) has been reported to activate the proliferation of LC3-

containing membranes [73, 92]. Using 3-methyladenine or spautin-1, two autophagy

inhibitors affect DENV infection [52, 89]. Lipophagy, a form of autophagy, regu-

lates the storage of cellular lipids by lysosomal degradation [84, 124]. Within starving

cells, lipophagy breaks down lipid droplets (LDs), in which the eukaryotic cells stock

lipids to provide mitochondria with fatty acids, which are oxidized to create acetyl-

CoA [84]. Viruses can also take advantage of lipophagy for their own benefits. The

number of LDs is increased in DENV-infected cells, and in turn, the inhibition of

LD formation remarkably damages DENV replication. Viral capsid proteins are con-

tained in these LDs, which means that these DENV-induced LDs offer a platform for
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nucleocapsid formation as well as viral replication [117]. Moreover, lipophagy is acti-

vated in DENV-infected cells; and the stored triglycerides are depleted. β-oxidation

and energy production are increased in this process, which creates a seedbed of viral

replication. If exogenous free fatty acids are added into autophagy-deficient cells,

DENV replication will be rescued. Etomoxir, a drug that blocks fatty acid transport

into the mitochondria, will prevent it [52]. So, the quantity of free fatty acids and

ATP released by lipophagy may be required for DENV replication and persistence.

Moreover, DENV induces AMPK kinase activity, which prohibits mTORC1, and this

modulation is crucial for virus-induced lipophagy (Fig. 5.3) [58]. Recently, AUP1,

a lipid droplet-localized type-III membrane protein with dual localization marks for

LDs and ER, was shown to be utilized by DENV to trigger lipophagy. Interaction of

unmodified AUP1with the viral non-structural proteins NS4A and NS4B in DENV-

infected cells triggers the acyltransferase activity of AUP1, generating phospholipids

as the source of membrane components necessary for lipophagy formation and sub-

sequent viral replication [151]. This mechanism seems to be a general phenomenon

in flaviviruses and underlies the key role of post-translational modifications during

viral infections [151].

Zika virus (ZIKV) has been found to induce the formation of LC3-containing

membranes as well [81]. Moreover, the spread of ZIKV might be up-regulated by

noncanonical secretory autophagy, as it is for PV and CVB3 [153]. In human neural

progenitor cells ER rearrangement and the formation of vesicular clusters in ZIKV

infection were thought to be the sites for viral RNA replication and virion assem-

bly [25, 98]. In ZIKV-infected primary fibroblasts, multi-membrane structures are

formed resembling autophagic vesicles [48]. In addition, increased lapidated LC3

in ZIKV-infected placentae and decreased viral titers in ATG16-deficient mouse

fetuses both work in favor of the proviral role of autophagy [15]. Zika virus (ZIKV)

utilizes the ER as a source of membranes to establish their viral replication, assembly

and maturation. A selective form of ER degradation by autophagy, or reticulophagy

has evolved in the host to restrict DENV and ZIKV, mediated by an ER-resident

reticulophagy receptor FAM134B [7]. The virally encoded proteases NS3 in several

flaviviruses including ZIKV, DENV, and West Nile Virus (WNV) cleaves FAM134B

to suppress the formation of ER and viral protein enriched autophagosomes, as a

strategy that viruses manipulate autophagy for their replication (Fig. 5.3) [74]. Fur-

thermore, upon ZIKV infection in fetal neural stem cells AKT phosphorylation and

subsequent mTOR activation will be inhibited through the viral protein NS4A and

NS4B, which leads to the aberrant activation of autophagy and defective neurogen-

esis, thus promoting viral replication (Fig. 5.3) [81].

HIV skillfully manipulates the autophagy process by utilizing its two proteins to

interact with two different autophagic factors separately. On the one hand, HIV Gag-

derived proteins co-localize with and bind to LC3, and autophagy supports productive

Gag processing in early and nondegradative stages of autophagy to promote HIV

yields (Fig. 5.3). On the other hand, when autophagy enters its maturation stages,

HIV protein Nef serves as an anti-autophagic maturation factor through interactions

with Beclin-1, thus protecting HIV from degradation. Therefore, the perturbation of

the early and late stage of autophagy process promotes HIV survival and replication
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[68]. However, during permissive infection, HIV attenuates autophagy in order to

avoid proteolytic degradation. Normally, mTOR phosphorylates transcription factor

EB (TFEB) and restricts its translocation by favoring its retention within the cytosol.

When mTOR is suppressed, TFEB gets dephosphorylated and is allowed to transfer to

the nucleus, where it can promote autophagy and lysosomal gene expression. Within

infected macrophages, the interplay between HIV and TLR8 activates autophagy,

which relies on the dephosphorylation and nuclear translocation of TFEB. During

permissive infection, Nef interacts with Beclin-1, leading to mTOR activation, TFEB

phosphorylation, and cytosolic sequestration, as well as the suppression of autophagy

[14].

5.3.2 (–) ssRNA Viruses

Upon infection, Coronaviruses (CoVs) like the severe acute respiratory syndrome

coronavirus (SARS-CoV) and mouse hepatitis virus (MHV) activate the formation of

DMVs in host cells and target their replication and transcription complexes (RTCs)

on the DMVs-limiting membranes [31, 43, 116]. However, the exact derivation of the

DMV lipid bilayers, the host protein content, and the identification of the cellular fac-

tors essential for DMVs formation remains unclear [66]. The probable participation

of autophagy in the conversion of host membranes into DMVs has been reported

[26, 87, 134]. The precise mechanisms that explain why CoVs limits subsequent

autophagosome expansion are still a mystery. The non-structural protein 6 (NSP6)

has been reported to trigger the autophagic pathway and limit autophagosome expan-

sion to favor CoVs infection [26, 27]. Atg5, according to a study, is non-essential for

MHV replication [154]. Contradictory evidence showed either the presence [108,

154] or the absence [31, 129] of LC3/Atg8 on DMVs. Another theory about the

origin of virus-induced DMVs suggests that these DMVs are part of a reticulovesic-

ular network of modified ER membranes and contain dsRNA in their interior, which

came from a natural and intuitive analysis of SARS-CoV and MHV-infected cells

via electron tomography [66]. This idea has been supported by several findings [50,

61, 99]. NSP4, when separately expressed, was shown to localize to the ER and then

translocate to the DMVs upon infection [99]. But the deficiency of ER, ER-Golgi

intermediate compartment (ERGIC), or Golgi protein markers within CoV-induced

DMVs might well mean that their biogenesis does not rely on the traditional path-

way [99, 129, 143]. Of special interest is a study that determined MHV hijacks the

pathway of EDEMosome (a vesicle involved in ER-associated degradation, ERAD)

formation to generate the DMVs (Fig. 5.3). In doing so, MHV trapped two ERAD

regulatory proteins into the DMVs, and therefore, exploited the ERAD pathway for

viral replication [109]. In addition, this study also revealed an autophagy-independent

role for nonlipidated LC3-I [109].

Influenza A virus (IAV) infection also triggers the accumulation of autophago-

somes for viral replication [157]. IAV Matrix 2 (M2) ion-channel protein is credited

with the manipulation of autophagy, which blocks the fusion of autophagosomes
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with lysosomes [42]. Further study showed that M2 hijacks autophagy with its LC3-

interacting region [4]. M2 interacts with LC3 and induces LC3 re-localization to

the plasma membrane, and disruption of this interaction down-regulates virion bud-

ding and stability (Fig. 5.3). Another protein, NS1 triggers autophagy by promot-

ing the synthesis of hemagglutinin (HA) and M2 [155]. Recently, IAV M2 protein

was reported to interact with MAVS and positively regulate MAVS-mediated innate

immunity. Moreover, ROS production induced by M2 is pivotal for the activation

of autophagy and the amplification of the MAVS signaling pathway [146]. In addi-

tion, a highly pathogenic avian H5N1 strain of IAV is able to activate autophagy by

inhibiting mTOR [85].

Human parainfluenza virus type 3 (HPIV3) suppresses autophagosome maturation

as well as triggers the accumulation of autophagosomes [35]. HPIV3 phosphoprotein

(P) binds to the SNARE domains of SNAP29 and blocks the interaction between

STX17 and SNAP29, which eventually prevents autophagosome-lysosome fusion

(Fig. 5.3) [35]. In addition, the matrix protein (M) of HPIV3 interacts with TUFM

and binds LC3 to trigger TUFM-mediated mitophagy (Fig. 5.3), a form of autophagy

that selectively removes damaged mitochondria and suppresses the subsequent IFN

response. These findings suggest that a viral protein is enough to activate mitophagy

via bridging autophagosomes and mitochondria [36].

5.3.3 dsRNA Viruses

Within rotavirus (RV)-infected cells, NSP4, whose appearance relies on the intracel-

lular calcium levels co-localizes with LC3 on viroplasms, sites of viral genome repli-

cation and immature particle assembly [5]. Further study found that NSP4 activates

the release of calcium from the ER into the cytoplasm, inducing calcium/calmodulin-

dependent kinase kinase-β (CaMKK-β) signaling to trigger autophagy (Fig. 5.3) [28,

29]. Besides CaMKK-β signaling, a mutually complementary mechanism about a

new small RNA was found in RV-initiated autophagy. RV-vsRNA1755 encoded by

the NSP4 gene targets the host cell IGF1R which is the part of the PI3K/Akt/mTOR

signaling process. In the initial stage of infection RV-vsRNA1755 activates autophagy

by obstructing induction of the mTOR pathway [156].

5.3.4 dsDNA Virus

Hepatitis B virus (HBV) has been shown to induce autophagy whether it is in its pro-

ductive or nonproductive cycles making autophagy vital for its replication [125, 128,

140]. Hepatitis B x protein (HBx) has been linked to an extraordinarily diverse group

of pathways, like ones that maintain interrelationships with PI3KC3, or the ones

that induce death associated protein kinase (DAPK) in a way that involves Beclin-1

[150], or the ones that directly activate Beclin-1 expression [137] to trigger autophagy
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(Fig. 5.3). Another one of its encoded proteins SHBs, can induce autophagy as well

[78]. As an intermediate process, the accumulation of autophagosomes mirrors the

balance between the rate of their generation and conversion into autolysosomes. Tang

et al. suggested the view that HBx, at the initiation stage of autophagic progression

triggers autophagy in a Beclin-1-dependent fashion (Fig. 5.3) [137]. Wang et al. sug-

gested that HBV induces autophagy at the initiation stage by the interaction of HBx

and c-myc to influence miR-192-3p-XIAP, which in turn regulates Beclin-1 [144].

Meanwhile, Liu et al. revealed that in the late phase of autophagy HBx induces the

formation of autophagosomes where HBx evidently damages the lysosomal degrada-

tive ability [83]. And they partly supported the conclusion of Sir et al., which stated

that HBx is enough to induce autophagosomes [83].

It has also been reported that human gamma-herpesvirus 4 (Epstein–Barr virus,

EBV) employ several strategies to interact with autophagic proteins and favor their

own survival [23, 90, 123]. Specific autophagy inhibitors are able to encourage

EBV lytic replication and might very well influence its oncogenesis [32]. The six-

transmembrane spanning domains (6TM) of LMP1 up-regulate PERK, resulting in

UPR-mediated autophagy (Fig. 5.3) [69, 70]. Moreover, EBNA1-fragments instead

of EBNA3C and EBNA2 are presented via MHC class-II through the autophagy-

lysosomal process [138]. And, the accumulation of EBNA1 in autophagosomes sup-

presses the lysosomal acidification, resulting in a reduction of EBNA1-antigen pre-

sentation for CD4+ T lymphocytes recognition [138]. In summary, these findings

illustrated that EBV latent antigens hijack autophagy and subsequently influence

B-cell lymphomagenesis.

The first study aiming at understanding the implication of autophagy on KSHV

replication was performed by Wen et al., who believed that KSHV replication and

transcription activator (RTA) enhances autophagy activation to facilitate KSHV lytic

replication [147]. Later on, Granato et al. confirmed the function of autophagy in

provoking KSHV replication triggered by RTA as well as butyrate combination (T/B),

which revealed that the last autophagic steps are suppressed [44].

5.4 Autophagy-Mediated Restriction of Viral Replication

As a piece of vital machinery that responds to environmental stresses rapidly, it is not

shocking that autophagy plays a pivotal role in both innate and adaptive immunity

to keep cellular homeostasis [114]. But, here, we illustrate that autophagy restricts

viral replication by degrading viral components, viral particles or even host fac-

tors required for viral replication rather than cooperating with innate and/or adap-

tive immunity. This process of autophagy targeting individual viral components for

degradation is termed virophagy [102]. It’s important to note that virophagy targets

neosynthesized viral components, while xenophagy targets entire viral particles [86].

Core proteins for HCV virion particles assembly and release are mainly localized

within the ER [56]. Overload of HCV in infected cells induces ER stress-associated

HPR and subsequent autophagy activation to promote viral replication [62]. The



5 Autophagy and Viral Infection 69

abilities of HCV to evade autophagic destruction and make use of autophagy for

its own benefit have been extensively studied. However, a recent study highlights

that an IFN-β-inducible SCOTIN (ER-resident protein, also named SHISA5) recruits

HCV non-structural protein 5A (NS5A) to autophagysome for degradation, thereafter

suppressing HCV replication (Fig. 5.4) [65].

Upon the Sindbis virus (SINV) infection, Beclin-1 was and Atg5 were reported

to protect the host from SINV-mediated encephalitis [82, 101]. Interestingly, knock-

down of p62 or other autophagy-related genes up-regulates viral capsid accumulation

and progresses virus-induced cell death without influencing virus replication [101].

An E3-ubiquitin ligase, SMURF1 is indispensable for the co-localization of the SINV

capsid protein with p62; this interaction advances virophagy by allowing the move-

ment of the SINV viral capsid to autophagosomes [102]. The Fanconi anemia group

C protein (FANCC) was also reported to interact with the SINV capsid protein and

enhance virophagy [132, 133]. The fact that SMURF1 and FANCC target HSV-1

for virophagy as well and suggests that they often function as virophagic factors

(Fig. 5.4) [133].

Picornaviruses are sensed by galectin 8 which restricts viral infection by triggering

the autophagic degradation of the viral RNA genome [130]. When poliovirus pierces

the endosomal membrane to dump its genome into the cytoplasm, β-galactosides are

exposed and activate galectin 8 which results in the detection of punctured endosomes

and marks them for further autophagic degradation. Poliovirus, in turn, utilizes the

host protein HRAS-like suppressor 3 (PLA2G16) to escape this detection and help

genome delivery. Coxsackievirus B3 (CVB3), another picornavirus cleaves p62 and

inhibits virophagy by hijacking the viral protease 2A (Fig. 5.4) [120].

HIV-1 is subjected to autophagic degradation as well. In order to surmount innate

immunity, the virion infectivity factor (Vif) induces the degradation of an HIV-1

restriction factor APOBEC3G favoring the HIV replication [88]. However, histone

deacetylase 6 (HDAC6), in turn, forms a complex with APOBEC3G and provokes

autophagy-dependent Vif degradation which down-regulates HIV-1 replication

(Fig. 5.4) [141]. Moreover, within CD4+ T cells the transactivator Tat, a protein

that promotes viral transcription was selectively degraded by autophagy [115]. In

Langerhans cells, which are dendritic immune skin cells, HIV was degraded by the

restriction factor tripartite motif-containing protein 5α (TRIM5α) and its ability to

regulate the assembly of autophagy activating complexes (Fig. 5.4) [110].

Autophagy also possesses anti-viral capabilities independent of its role in degra-

dation. For mouse norovirus (MNV) infection in vivo, the ATG5/ATG12/ATG16L1

complexplays a key role in autophagosome formation and is essential for IFNγ-

mediated anti-viral defense [54]. In ATG16L1 hypomorphic mice, MNV infection

induced a phenotype that resembled Crohn’s disease [13]. Interestingly, the ini-

tiation, fusion, and degradative activities of autophagy were indispensable; while

IFNγ-inducible GTPases, which were targeted to MNV replication complexes by

LC3 suppressed viral replication [10].
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Fig. 5.4 Autophagy-mediated restriction of viral replication. HCV NS5A protein interacts with

the IFN-β-inducible protein SHISA5, which transfers NS5A to autophagosomes for further degra-

dation. SMURF1 is indispensable for the co-localization of the SINV capsid protein to p62, which

prompts virophagy by shuttling the viral capsid to autophagosomes. FANCC also interacts with

SINV capsid protein (not known to be ubiquitinated) and enhance virophagy. Poliovirus breaks the

endosomal membrane and releases its genome into the cytoplasm, and Galectin-8 detects the perme-

ated endosomes and marks them for autophagic degradation, but PLA2G16 facilitates viral genome

translocation and prevents clearance. Upon HIV viral fusion, TRIM5α induces the recruitment of

Atg5 to the TRIM5α–Atg16L1–HIV-1p24 capsid complex, promoting lipidation of LC3 (LC3 II)

and thereby mediating autophagosome formation. HIV Vif interacts with the HD6A/APOBEC3G

complex to induce its rapid degradation. Autophagy selectively degrades the HIV-1 transactivator

Tat, a protein that is essential for HIV-1 transcription and virion production
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5.5 Conclusion

The control of viral infection by autophagy is a multi-faceted, dynamic physio-

logical, and pathological process. On one hand, autophagy destructs viruses, regu-

lates inflammatory responses, and provokes antigen presentation. On the other hand,

viruses try all means to enhance their immune escape, replication, and release from

infected cells by sabotaging or taking advantage of autophagy. Different virus finds

its own strategies to survive the autophagic destruction while secures the membrane

source provided by autophagy for viral replication. In summary, autophagy and viral

infection are highly connected and continuing investigations on the virus autophagy

interplays will be a fruitful area of scientific inquiry for many years to come.
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