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Abstract

Background/aim: Autophagy is a macromolecular degradation process playing a pivotal role in the maintenance

of stem-like features and in the morpho-functional remodeling of the tissues undergoing differentiation. In this

work we investigated the involvement of autophagy in the osteogenic differentiation of mesenchymal stem cells

originated from human gingiva (HGMSC). METHODS: To promote the osteogenic differentiation of HGMSCs we

employed resveratrol, a nutraceutical known to modulate autophagy and cell differentiation, together with

osteoblastic inductive factors. Osteoblastic differentiation and autophagy were monitored through western blotting

and immunofluorescence staining of specific markers.

Results: We show that HGMSCs can differentiate into osteoblasts when cultured in the presence of appropriate

factors and that resveratrol accelerates this process by up-regulating autophagy. The prolonged incubation with

dexamethasone, β-glycerophosphate and ascorbic acid induced the osteogenic differentiation of HGMSCc with

increased expression of autophagy markers. Resveratrol (1 μM) alone elicited a less marked osteogenic

differentiation yet it greatly induced autophagy and, when added to the osteogenic differentiation factors, it

provoked a synergistic effect. Resveratrol and osteogenic inductive factors synergistically induced the AMPK-BECLIN-

1 pro-autophagic pathway in differentiating HGMSCs, that was thereafter downregulated in osteoblastic

differentiated cells. Pharmacologic inhibition of BECLIN-1-dependent autophagy precluded the osteogenic

differentiation of HGMSCs.

Conclusions: Autophagy modulation is instrumental for osteoblastic differentiation of HGMSCs. The present

findings can be translated into the regenerative cell therapy of maxillary / mandibular bone defects.
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Background

Bone resorption, bone wound healing and osteo-integra-

tion of implants remain major clinical challenges in ortho-

pedics and dentistry. An attractive solution is exploiting

the regenerative potential of Mesenchymal Stem Cells

(MSCs) isolated from adult tissues that could differentiate

into osteoblasts and chondrocytes [1–3]. In this context,

interest recently arose for MSCs from the lamina propria

of the gingiva (GMSCs), that represents an easily

accessible source from which MSCs can be isolated with

minimally invasive techniques [4–6]. GMSCs can be prop-

agated in vitro for long-time while maintaining a stable

phenotype and can be induced to differentiate into the

osteogenic lineage employing a variety of substances, in-

cluding herbal-derived polyphenols [7–11].

Recently, interest arose for the potential of resveratrol

(RV, trans 3,5,4′ trihydroxy-stylbene), a naturally occur-

ring polyphenol, to prevent and cure bone loss-related dis-

eases [12, 13]. RV shows anti-inflammatory [14] and anti-

osteoclastic activities [15, 16] while showing osteoblastic

differentiation promoting activities on MSCs [17–21].
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However, the osteogenic response to RV has not been

tested yet in human GMSCs (HGMSCs).

Stem cell differentiation implies a morpho-func-

tional remodeling of the cell that is accomplished

through dynamic and coordinated processes of macro-

molecular degradation and synthesis along with tran-

scriptional and epigenetic reprogramming [22–24].

Macromolecular degradation in stem cells undergoing

differentiation occurs via macro-autophagy (now on

simply autophagy), which consists in the entrapment

of cellular components such as organelles, membranes

and cytosolic proteins within a double-membrane

vesicle (the autophagosome) that will eventually fuse

with lysosomes to form an autolysosome wherein the

substrates will be degraded to completion [24, 25].

Autophagy is a stress-response and homeostatic

process that plays a pivotal role in bone homeostasis

[26]. However, whether and how autophagy is impli-

cated in the osteogenic differentiation of MSCs re-

mains to be elucidated yet. Here, we have investigated

the functional role and the regulation of autophagy

during the osteogenic differentiation of HGMSCs

using RV as an inducer of autophagy [27] and of

osteogenic differentiation of MSCs [18] at the same

time. We show that RV synergizes with osteogenic in-

ductive factors to accelerate the osteogenic differenti-

ation of HGMSCs and that this effect is strictly

dependent on the modulation of autophagy.

Methods

Isolation of human gingival mesenchymal stem cells

Human Gingival Mesenchymal Stem Cells (HGMSCs)

were isolated from gingival tissue samples of adult

healthy patients undergoing orthodontic surgery proce-

dures. Each subject gave written informed consent, in

accordance with the Helsinki Declaration, before their

inclusion in the study. The Ethical Committee of Padova

Hospital (Padova, Italy) approved the research protocol.

After collection, gingival biopsies were briefly washed

with Phosphate Buffered Saline (PBS; EuroClone, Milan,

Italy), minced, then enzymatically digested with a solu-

tion of 3 mg/mL collagenase type I (Sigma-Aldrich, Saint

Louis, MO, USA) and 4mg/mL dispase (Sigma-Aldrich)

in PBS for 2 h at 37 °C, as described elsewhere [28].

Once digested, the solution was filtered through 70mm

Falcon strainers (Becton & Dickinson, Franklin Lakes,

NJ). The isolated cells were then cultured with Dulbec-

co’s Modified Eagle’s Medium (DMEM) high glucose

(EuroClone), supplemented with 10% Fetal Bovine

Serum (FBS; EuroClone), and 1% penicillin/streptomycin

(P/S; EuroClone). Culture medium was refreshed twice a

week. At 80–90% confluence, cells were detached with

trypsin-EDTA solution (Sigma-Aldrich) and passaged

repeatedly.

Characterization of HGMSCs by flow cytometry

Adherent cells at passage 3 were dissociated and resus-

pended in flow cytometry staining buffer (R&D Systems,

Minneapolis, MN, USA) at a final cell concentration of

1 × 106 cells/mL. For surface markers characterization,

the following fluorescent monoclonal mouse anti-human

antibodies were used: CD73 APC (eBioscience™, Thermo

Fisher Scientific, San Diego, CA, USA), CD90 BV510

(BD Biosciences, San Jose, CA, USA), CD105 PE-Cya-

nine7 (eBioscience™), CD14 PE (eBioscience™), CD34

APC-eFluor 780 (eBioscienceTM), and CD45 Pacific

Orange (Thermo Fisher Scientific), as published

elsewhere [29]. Cells were washed twice with 2 mL of

flow cytometry staining buffer and resuspended in

500 μL of flow cytometry staining buffer. Fluorescence

was evaluated by flow cytometry in Attune NxT flow

cytometer (Thermo Fisher Scientific). Data were ana-

lyzed using Attune NxT software (Thermo Fisher

Scientific).

Cell culture and reagents

HGMSCs were cultivated under standard conditions

(37 °C, 95% air: 5% CO2 v/v) in α-Minimum Essential

Medium Eagle (α-MEM, Cod. M8042, Sigma-Aldrich, St.

Luis, MO, USA) supplemented with 10% heat-inacti-

vated Fetal Bovine Serum (FBS, cod. ECS0180L; Euro-

clone S.p.A., Milan, Italy), 2 mM L-glutamine (cod.

G7513, Sigma-Aldrich) and 1% w/v of Penicillin/Strepto-

mycin (cod. P0781, Sigma-Aldrich). For osteogenic dif-

ferentiation, cells were incubated up to 21 days in α-

MEM supplemented with 50 μg/mL of L-ascorbic acid

2-phosphate (Cod. 49,752, Sigma-Aldrich), 100 nM of

dexamethasone (Cod. D1756, Sigma-Aldrich), and 10

mM of β-glycerophosphate (Cod. G9422, Sigma-Aldrich)

(referred to as ‘differentiation medium’) [30]. Differenti-

ation medium was replaced twice or thrice a week by

adding all previous reagents. Resveratrol (RV, Cod.

R5010, Sigma-Aldrich) was added to the standard or

differentiation medium as indicated. Where reported,

5 μM spautin-1 (Sp1, Cod. SML0440, Sigma-Aldrich)

was added to the culture medium.

HGMSCs were seeded on 35mm Petri dishes at

80.000 cells per dish or on sterile glass coverslips at

10.000 cells per dish for western blot and immunofluor-

escence analysis, respectively. For histochemical staining

with Alizarin Red Staining, the cells were cultured on

24-well plates at 20.000 cells per well and let adhere 24

h before treatments.

Antibodies

The following primary antibodies were employed for

western blotting and immunofluorescence techniques:

rabbit monoclonal anti-RUNX2 (Cod. 12,556, Cell Sig-

naling Technology Inc., Danvers, MA, USA), rabbit
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polyclonal anti-collagen Type 1 alpha 1 (Cod. NB600–

408, Novus Biological Centennial, USA), mouse monoclo-

nal anti-osteopontin (Cod. MA5–17180, Thermo Fisher

Scientific Inc., Waltham, MA, USA), mouse monoclonal

anti-osteocalcin (Cod. sc-74,495, Santa Cruz Biotechnol-

ogy Inc., Dallas, TX, USA), mouse monoclonal anti-

beclin-1 (Cod. 612,112, BD Biosciences, San Jose, CA,

USA), rabbit monoclonal anti-phospho-beclin-1 (Ser93)

(Cod. 14,717, Cell Signaling Technology Inc.), rabbit

monoclonal anti-PI3 Kinase Class III (Vps34, Cod. 4263,

Cell Signaling Technology Inc.), rabbit polyclonal anti-

LC3B (Cod. L7543, Sigma-Aldrich), mouse monoclonal

anti-β-tubulin (Cod. T5293, Sigma-Aldrich Corp.), mouse

monoclonal anti- β-actin (Cod. A5441, Sigma-Aldrich),

mouse monoclonal anti-LAMP1 (Cod. 555,798, Becton,

Dickinson and Company, New Jersey, NJ, USA), rabbit

polyclonal anti-AMPKα (Cod. 2532, Cell Signaling Tech-

nology Inc.) and rabbit monoclonal anti-phospho-AMPKα

(Thr172) (Cod. 2535, Cell Signaling Technology Inc.).

Western blotting

HGMSCs were homogenized in RIPA buffer (0.5% deoxy-

cholate, 1% NP-40, 0.1% Sodium Dodecyl Sulfate in PBS

solution) supplemented with protease inhibitor cocktail

and phosphatase inhibitors (Na3VO4 and NaF). Proteins

were determined by Bradford assay, denatured with 5X

Loading buffer at 95 °C for 10min and fractionated by

SDS-PAGE at different acrylamide percentage (15, 12.5,

8% or 6%) according to the m.w. of the target protein. Mo-

lecular weight markers were PageRuler Prestained Protein

Ladder (Cod. 26,616, Thermo Fisher Scientific Inc.) for 15

and 12.5% gels, and Spectra Multicolor High Range Pro-

tein Ladder (cod. 26,625, Thermo Fisher Scientific Inc.)

for 8 and 6% gels. After PAGE, the proteins were blotted

onto PVDF membranes (cod. 162–0177, Bio-Rad,

Hercules, CA, USA). Membranes were blocked with 5%

non-fat milk (cod. 68,514–61-4, SERVA Electrophoresis

GmbH, Heidelberg, Germany) containing 0.2% Tween-20

for 1 h at room temperature (RT), incubated with specific

primary antibody overnight at 4 °C and, thereafter, with

the secondary HRP-conjugated antibody for at least 1 h at

RT. β-tubulin and β-actin were used as homogenate

protein loading control. Membranes were developed with

the enhanced chemiluminescence method (ECL, cod.

NEL103E001 EA; PerkinElmer Inc., Waltham, MA, USA).

The relative band intensity was acquired with the Versa-

DOC Imaging System apparatus (Bio-Rad) and quantified

by Quantity One 4.5.0 software (Bio-Rad). At least three

independent replicates per each western blot were

performed.

Immunofluorescence

HGMSCs plated on sterile coverslips were incubated as

indicated. At the end, the cells were washed with PBS,

fixed with ice-cold 100% methanol and permeabilized

with 0.2% Triton X-100 in PBS for 10 min. Then, cells

were incubated with the specific primary antibodies

overnight at 4 °C. The following day, the coverslips were

washed with 0.1% Triton X-100 in PBS and incubated

for 1 h at RT with goat-anti-rabbit IgG Alexa Fluor™ plus

488 (Cod. A32731, Thermo Fisher Scientific Inc.) or

goat-anti-mouse IgG Alexa Fluor™ plus 555 (Cod.

A32727, Thermo Fisher Scientific Inc.) secondary anti-

bodies, as appropriate. Nuclei were stained with DAPI

(4′,6-diamidino-2-phenylindole, cod. 32,670, Sigma-Al-

drich Corp.). Thereafter, coverslips were mounted onto

glasses using slow-FADE anti-FADe reagent (Cod.

S36936, Life Technologies Ltd) and fluorescence images

were acquired with the Leica DMI6000 fluorescence

microscope (Leica Microsystems AG, Wetzlad, DE). The

fluorescence intensity was measured by Image-J 1.48v

software (http://imagej.nih.gov/ij/) and indicated as

IntDen, for either single channel and co-labelling (red +

green = yellow). IntDen (Integrated Density) refers to the

average value of fluorescence in a selected area normal-

ized to the number of cells. At least three slides were

prepared for each experimental condition and fluores-

cence in up to 100–200 cells in total present in six to

ten microscopic fields randomly chosen was quantified.

Images shown are representative of at least three separ-

ate experiments.

Assessment of osteogenic differentiation

The presence of calcium deposition in the extracellular

matrix, a sign of osteoblastic activity, was detected by

Alizarin Red S staining [31]. At the end of incubation in

medium containing or not the osteogenic differentiation

factors and/or resveratrol, the cell culture was washed

with PBS, fixed in 10% formaldehyde for 30 min at room

temperature (RT), rinsed twice with deionized water and

stained with 40mM Alizarin Red S (Cod. TMS-008-C,

Sigma-Aldrich), pH 4.1, for 45 min at RT. Then, the

cultures were washed four times with deionized water to

remove non-specifically bound stain. After drying,

stained monolayers were observed and imaged under the

phase microscope. The area of calcium deposits, indi-

cated as Calcium Deposition (% Area), was calculated

using the Image-J 1.48v software.

Statistics

All experiments were performed at least three times,

separately. Data in histograms are shown as average ±

S.D. GraphPad Prism was employed (GraphPad Software

Inc.) for statistical analysis. Statistical significance of the

data was given by one-way ANOVA analysis of variance

followed by Tukey’s test. Differences were considered

significant for *p < 0.05; **p < 0.01; ***p < 0.001.
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Results

Characterization of human gingival mesenchymal stem

cells

The HGMSCs isolated from the gingival samples were

characterized according to their surface protein expres-

sion by flow cytometry. As shown in Fig. 1, the cells

were found positive for the established MSCs-specific

surface markers CD73, CD90, and CD105 [32]. Flow cy-

tometry immunophenotyping also revealed the negativity

to CD14, CD34, and CD45, confirming the absence of

hematopoietic cells in the isolated stem cells population.

Resveratrol promotes the osteogenic differentiation of

human gingival mesenchymal stem cells

To determine the optimal conditions for osteogenic differ-

entiation by RV, HGMSCs were incubated for up to 21

days with RV in concentration ranging from 1 to 100 μM.

As positive control, the cells were incubated in a medium

Fig. 1 Isolation and characterization of Human Gingival Mesenchymal Stem Cells. Characterization of cell surface markers in HGMSCs at passage 3

by flow cytometry. The stem cells isolated from the gingival biopsies are positive to CD73, CD90, and CD105 MSCs-specific markers, and negative

to CD14, CD34, and CD45 hematopoietic markers
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supplemented with the osteogenic differentiation factors

dexamethasone, β-glycerophosphate and ascorbic acid

(from now on, referred as ‘differentiation medium’). To

monitor the mineralization associated with osteogenic dif-

ferentiation of HGMSCs the cultures were stained with

Alizarin Red S to detect the calcium deposits in the extra-

cellular space. The mineralization was clearly detectable

after a minimum of 7–14 days culture in differentiation

medium (not shown). Representative images in Fig. 2 (and

relative quantification) show that the osteogenic differenti-

ation promoted by RV is maximal at 1 μM and declines

when concentration raises up to 100 μM, which turned out

to be toxic. When 1 μM RV was added to the differenti-

ation medium, osteogenic differentiation of HGMSCs (as

mirrored by the mineralization of the extracellular matrix)

was accelerated, indicating a synergism between RV and

osteogenic differentiation factors (Fig. 3). To characterize

at molecular level this effect, we analyzed the expression of

signaling and structural protein markers of the osteogenic

differentiation [33]. Western blotting showed that RUNX2,

the transcription factor of osteocalcin (OCN) and of other

genes associated with osteoblast differentiation, [34, 35]

was upregulated in the HGMSCs cultured in the differenti-

ation medium or in the presence of RV alone (though to a

lower extent in the latter case) (Fig. 4). Interestingly, when

RV was added to the differentiation medium, the expres-

sion of RUNX2 was further induced compared to the cul-

ture conditions in either the differentiation medium or RV

Fig. 2 Resveratrol promotes the osteoblastic differentiation of Human Gingival Mesenchymal Stem Cells. Adherent HGMSCs were cultured for 21

days in control medium supplemented or not with resveratrol (RV) at the indicated concentration or in differentiation medium (Diff) containing

the three osteoblastic inductive factors dexamethasone, β- glycerophosphate and ascorbic acid. At the end, the cultures were processed for

Alizarin Red S staining of extracellular calcium deposits. The stained area was quantified using the ImageJ software

Vidoni et al. Cell Communication and Signaling           (2019) 17:98 Page 5 of 17



alone (Fig. 4). The combined expression of collagen 1

(COL1A1) and of osteopontin (OPN) is suggestive of differ-

entiation of MSCs toward the osteogenic line, while OCN

synthesis is switched on in osteoblasts and its expression is

therefore proofing that osteoblast differentiation indeed oc-

curred [33]. Compared to the osteogenic inductive factors,

RV alone elicited a slight increase in the expression of these

markers (Fig. 4). However, when RV was added to the

osteogenic differentiation medium it greatly stimulated the

expression of these three proteins in a synergistic manner

with the osteogenic factors (Fig. 4). To prove further the ac-

quisition of an osteogenic phenotype by HGMSCs under

these culture conditions, we performed the immunofluores-

cence co-staining of the above markers. Representative im-

ages and their quantification are shown in Fig. 5. The data

confirm that after 21 days of treatment with 1 μM RV alone

the expression of these markers was weakly induced, while

the addition of RV to the osteogenic differentiation medium

Fig. 3 Resveratrol synergizes with osteogenic inductive factors to accelerate osteoblastic differentiation of Human Gingival Mesenchymal Stem

Cells. Adherent HGMSCs were cultured for 1 to 21 days in control medium or in differentiation medium (Diff) supplemented or not with 1 μM

resveratrol (RV). At the end, the cultures were processed for Alizarin Red S staining of extracellular calcium deposits. Quantification of stained area

in the time-course is reported in the histogram
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synergistically augmented their expression in the cells.

Noteworthy, RV greatly stimulated the nuclear transloca-

tion of RUNX2 (Fig. 5a).

Osteogenic differentiation of human gingival mesenchymal

stem cells associates with induction of autophagy

To see if autophagy is involved in the osteogenic

differentiation of HGMSCs we first performed the

immunofluorescence staining of autophagic vacuoles with

antibodies specific to LC3, a lipidated protein specifically

associated with the membranes of the autophagosomes,

and to LAMP1, an integral protein of the lysosomal mem-

branes [36]. The co-labeling marks the autolysosome and

is indicative of the effective fusion of autophagosomes with

lysosomes. Representative images taken at day 1 and day

21 are shown in Fig. 6. ImageJ quantification of co-labeled

Fig. 4 Expression of osteoblastic differentiation markers in Human Gingival Mesenchymal Stem Cells. Adherent HGMSCs were cultured for 21 days in

control medium or in differentiation medium (Diff) supplemented or not with 1 μM resveratrol (RV). At the end, cell homogenates were processed for

western blotting analysis of the expression of the osteoblastic transcription factor RUNX-2 and of the osteogenic differentiation markers COL1A1, OPN

and OCN. Densitometry of the specific bands (average ± S.D.) of three independent experiments is shown in the histograms
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vesicles (autolysosomes) indicated that the autophagy flux

was greatly and promptly (since day 1) stimulated by RV,

while it was initially (at day 1) downregulated and later (at

day 21) induced by the osteogenic differentiation factors.

Remarkably, the formation and accumulation of autolyso-

somes were greatly stimulated in the cells cultured in dif-

ferentiation medium supplemented with RV (Fig. 6). As a

further proof of the induction of autophagy during

HGMSCs differentiation, we analyzed the AMPK-

BECLIN-1 pathway, as primary candidate of the signaling

pathway triggered by RV [37]. It was found that under

osteogenic inductive culture conditions AMPK was active

and, particularly, BECLIN-1 was synergistically activated

by the combination of RV and osteogenic differentiation

Fig. 5 Immunofluorescence staining of osteoblastic differentiation markers in Human Gingival Mesenchymal Stem Cells. HGMSCs were plated on

sterile coverslips, let adhere and cultured for 21 days in control medium or in differentiation medium (Diff) supplemented or not with 1 μM

resveratrol (RV). At the end, the coverslips were fixed and processed for immunofluorescence staining of the osteogenic differentiation markers.

Fluorescence staining was quantified with the ImageJ software
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factors (Fig. 7). It is to be noted that by day 21, when the

culture reached confluency and osteoblastic differentiation

almost reached completion, the AMPK-BECLIN-1 path-

way was switched off (Fig. 7).

Inhibition of BECLIN-1-depedent autophagy impairs

osteogenic differentiation of HGMSCs by resveratrol

Finally, we investigated whether autophagy was actively

involved in the differentiation process or it was just an

accompanying epiphenomenon. To this end, we moni-

tored the occurrence of osteogenic differentiation in

HGMSCs cultivated in the presence of spautin-1, a po-

tent inhibitor of autophagy that promotes the prote-

asome-mediated degradation of BECLIN-1 [38]. We first

determined the appropriate concentration of spautin-1

that could inhibit chronically (for 21 days) autophagy

with no toxic side effect on HGMSCs cell viability (data

not shown). 5 μM Spautin-1 effectively depleted the cell

Fig. 6 Osteoblastic differentiation of Human Gingival Mesenchymal Stem Cells associates with induction of autophagy. HGMSCs were plated on

sterile coverslips, let adhere and cultured for 1 to 21 days in control medium or in differentiation medium (Diff) supplemented or not with 1 μM

resveratrol (RV). At the end, the coverslips were fixed and processed for immunofluorescence staining of the autophagy markers LC3 (marker of

autophagosomes) and LAMP1 (marker of lysosomes). Fluorescence staining was quantified with the ImageJ software. Integrated fluorescence

intensity of co-labeled area (yellow) was calculated and reported in histograms
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of BECLIN-1 (Fig. 8a), resulting in a strong inhibition of

autophagy as shown by the impaired conversion of LC3-

I into LC3-II (Fig. 8b). This was further confirmed by

the lack of interaction between BECLIN-1 and Vps34

(aka PI3KC3) in the cells cultivated in RV-supplemented

differentiation medium in the presence of spautin-1, as

shown by immunofluorescence co-staining (Fig. 8c).

Next, we searched for the mechanistic link between au-

tophagy and osteogenic differentiation. The chronic in-

cubation in differentiation medium supplemented with

RV led to the synthesis and accumulation of OCN in the

cells with upregulated autophagy, as indicated by the

presence of LC3-positive dots (Fig. 9a). However, in the

parallel cultures co-treated with spautin-1 the number of

LC3-positive dots per cell was greatly reduced to the

level in controls and the OCN staining was faintly visible

(Fig. 9a). Similarly, intense fluorescent staining of OCN

and COL1A1 was apparent in the cells cultivated in RV-

supplemented differentiation medium, while it was no

apparent in the parallel culture co-treated with Sp-1 (Fig.

9b). From a functional point of view, spautin-1 inhibition

of autophagy resulted in impaired mineralization of the

extracellular matrix, as indicated by the lack of Ali-

zarin Red-positive deposits of calcium (Fig. 9c). Add-

itionally, western blotting of RUNX2, COL1A1, OPN

and OCN showed that the expression of these

Fig. 7 Osteoblastic differentiation of Human Gingival Mesenchymal Stem Cells associates with modulation of the AMPK-BECLIN-1 autophagy

signaling pathway. HGMSCs were cultured for 1 to 21 days in control medium or in differentiation medium (Diff) supplemented or not with 1 μM

resveratrol (RV). At the end, cell homogenates were processed for western blotting analysis of the expression of activated (phosphorylated) AMPK

and BECLIN-1, two signaling proteins that govern autophagy. Densitometry (arbitrary units) is included. Similar data were reproduced in another

independent experiment
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Fig. 8 Spautin-1 abrogates induction of BECLIN-1-dependent autophagy in Human Gingival Mesenchymal Stem Cells cultivated in osteoblastic

differentiation condition. HGMSCs were cultured for 21 days in control medium or in differentiation medium supplemented with 1 μM resveratrol

(Diff + RV) in the absence or in the presence of spautin-1 (Sp1). At the end, cell homogenates were processed for western blotting analysis of the

expression of a BECLIN-1 (target of spautin-1) and of b LC3 (marker of autophagosome). Densitometry (arbitrary units) of the specific bands is

included. Data were reproduced in three independent experiments. The ratio LC3-II/LC3-I is assumed as an index of autophagosome and

autolysosome accumulation in the cell. c HGMSCs were plated on sterile coverslips, let adhere and cultured for 21 days in control medium or in

differentiation medium supplemented with 1 μM resveratrol (Diff + RV) in the absence or the presence of spautin-1 (Sp1). At the end, the

coverslips were fixed and processed for immunofluorescence staining of the autophagy interactome markers Vps34 (PI3KC3) and BECLIN-1.

Fluorescence staining was quantified with the ImageJ software. Integrated fluorescence intensity of co-labeled area (yellow) was calculated and

reported in histograms. Data from three coverslips per condition reproduced in three separate experiments
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markers of osteogenic differentiation was completely

prevented in the cultures exposed to Sp-1 despite the

concomitant presence in the medium of RV and

osteogenic inductive factors (Fig. 10). From these data

we may conclude that autophagy is functionally linked

to osteogenic differentiation of HGMSCs.

Discussion

Autophagy is the major pathway for the cellular bulk

degradation associated with the remodeling of cellular

structures during differentiation of MSCs [23, 24].

During cellular differentiation, the autophagy pathway

is finely tuned to meet the metabolic needs associated

with the morpho-functional changes [22]. Two princi-

pal signaling pathways converging on the ULK1 com-

plex control autophagy: the mTORC1 pathway, with

inhibitory function, and the AMPK pathway, with acti-

vating function [39]. The mTORC1 pathway is posi-

tively triggered by growth factors and availability of

nutrients, the AMPK pathway is activated when there is

a lack of ATP production because of lack of nutrients

or mitochondrial poisoning [40]. The AMPK-ULK1

pathway was shown to positively regulate autophagy-

dependent mitochondrial homeostasis in embryonic

stem cells, contributing to stemness properties [41].

Consistently, autophagy plays a role in maintaining the

stemness properties and is modulated during stem cell

differentiation [42]. In this work, we analyzed the con-

tribution of autophagy in the osteoblastic differenti-

ation of HGMSCs induced by RV or the osteoblastic

inductive factors dexamethasone, β-glycerophosphate

and ascorbic acid or their combination. We

Fig. 9 Spautin-1 prevents the autophagy-associated osteoblastic differentiation of Human Gingival Mesenchymal Stem cells. a HGMSCs were

plated on sterile coverslips, let adhere and cultured for 21 days in control medium or in differentiation medium supplemented with 1 μM

resveratrol (Diff + RV) in the absence or the presence of spautin-1 (Sp1). The coverslips were then fixed and processed for immunofluorescence

staining of the autophagy marker LC3 and of the osteoblastic differentiation marker OCN. As an index of autophagy in the cells, LC3 puncta were

quantified (as per the guidelines 36). b HGMSCs were plated and treated as in a and the coverslips processed for immunofluorescence staining of

the osteoblastic differentiation markers OCN and COL1A1. Integrated fluorescence intensity quantified with the ImageJ software is shown in the

histograms. c HGMSCs cells were plated on plastic and treated as in a and at the end the cultures were processed for Alizarin Red S staining of

extracellular calcium deposits. The stained area was quantified using the ImageJ software
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demonstrate that RV induces the osteoblastic differenti-

ation of HGMSCs when used at 1 μM, while it is toxic

at concentrations above 10 μM. Our results are in

agreement with similar studies conducted on human

bone-derived MSCs [17] and human embryonic stem

cells [18]. Compared to the osteogenic inductive fac-

tors, RV elicited a less pronounced differentiation by

day 21. It is likely that prolonging the incubation with

RV would eventually attain a full osteoblastic differenti-

ation. RV induced the expression and promoted the nu-

clear translocation of the osteogenic transcription

factor RUNX2. Remarkably, RV synergized with the

osteogenic inductive factors accelerating the osteo-

blastic differentiation of HGMSCs, as indicated by

Fig. 10 Spautin-1 prevents the expression of osteoblastic differentiation markers in Human Gingival Mesenchymal Stem cells. HGMSCs were

cultured for 21 days in control medium or in differentiation medium supplemented with 1 μM resveratrol (Diff + RV) in the absence or in the

presence of spautin-1 (Sp1). At the end, cell homogenates were processed for western blotting analysis of the expression of the osteoblastic

transcription factor RUNX-2 and of the osteogenic differentiation markers COL1A1, OPN and OCN. Densitometry of the specific bands (average ±

S.D.) of three independent experiments is shown in the histograms
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anticipation and increased mineralization of the extra-

cellular matrix. Signs of osteoblastic differentiation

such as OCN synthesis and extracellular calcium de-

posits became detectable after 7 days of culture.

Osteoblastic differentiation of HGMSCs was strictly

dependent on BECLIN-1 dependent autophagy, as dem-

onstrated by the observation that it was prevented by

spautin-1 induced depletion of BECLIN-1 and conse-

quent inhibition of autophagy. It is likely that RV accel-

erated the osteoblastic differentiation of HGMSCs

cultivated in the osteogenic differentiation medium be-

cause of its strong stimulation of autophagy. RV has

been shown to induce autophagy in mouse embryonic

stem cells via activation of the AMPK/ULK1 pathway,

and this correlated with enhanced pluripotency of the

cells [37]. RV mimics a situation of energy restriction

and activates the AMPK pathway regardless of the pres-

ence of nutrients, leading to activation of autophagy

[27]. Activation of AMPK bypasses the block by

mTORC1 and triggers autophagy through direct acti-

vating phosphorylation of ULK1 and of BECLIN-1 [43,

44]. Under metabolic stress conditions, the parallel acti-

vation of mTOR and of AMPK allows the coordinated

and contemporary protein degradation and protein syn-

thesis processes, with the former providing the amino

acids needed for the latter [45]. We observed that

AMPK was transitorily activated in HGMSCs undergo-

ing cell differentiation and it was down-regulated when

osteoblastic differentiation was achieved. This same

pattern was paralleled by phosphorylated Ser93

BECLIN-1, which is operated by AMPK [44]. Modula-

tion of AMPK activation drives osteoblast differenti-

ation: it is induced during early differentiation and its

silencing or inhibition causes bone loss, yet its constitu-

tive activation prevents full differentiation [46]. This

modulation was paralleled by modulation of autophagy,

suggesting that down-regulation of AMPK-dependent

autophagy could favor glycolysis, which is necessary in

the late stages of differentiation [46]. Interestingly,

similar findings were reported in the myoblast to myo-

tube differentiation of muscle satellite cells, which are

regarded as stem-like cells [47]. Thus, down-regulation

of the AMPK-BECLIN-1 pathway is consistent with the

progressive downregulation of autophagy to basal levels

once that full differentiation is achieved when it is no

more requested the degradation of redundant or un-

wanted cell components.

Conclusions

In summary, here, we provide for the first time the

evidence that RV and osteogenic inductive factors syner-

gize to induce the osteoblastic differentiation of HGMSCs

and that this process relies on modulation of autophagy.

Human gingiva represents an abundant and easily

accessible source of MSCs. The possibility of inducing the

differentiation of HGMSCs in an osteogenic sense in vitro

can be translated into the regenerative cell therapy of

maxillary / mandibular bone defects [5, 6, 48]. Inductive

factors such as RV and autophagy modulators can be

incorporated into scaffold nanostructures containing

HGMSCs and be implanted in situ for repairing and

reconstructive purposes) [49].
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