
https://doi.org/10.1007/s12031-022-02029-3

Autophagy Dysfunction in ALS: from Transport to Protein Degradation

Marta Cozzi1 · Veronica Ferrari1

Received: 28 February 2022 / Accepted: 17 May 2022 
© The Author(s) 2022

Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting upper and lower motor neurons (MNs). 
Since the identification of the first ALS mutation in 1993, more than 40 genes have been associated with the disorder. The 
most frequent genetic causes of ALS are represented by mutated genes whose products challenge proteostasis, becoming 
unable to properly fold and consequently aggregating into inclusions that impose proteotoxic stress on affected cells. In this 
context, increasing evidence supports the central role played by autophagy dysfunctions in the pathogenesis of ALS. Indeed, 
in early stages of disease, high levels of proteins involved in autophagy are present in ALS MNs; but at the same time, with 
neurodegeneration progression, autophagy-mediated degradation decreases, often as a result of the accumulation of toxic 
protein aggregates in affected cells. Autophagy is a complex multistep pathway that has a central role in maintaining cel-
lular homeostasis. Several proteins are involved in its tight regulation, and importantly a relevant fraction of ALS-related 
genes encodes products that directly take part in autophagy, further underlining the relevance of this key protein degrada-
tion system in  disease onset and progression. In this review, we report the most relevant findings concerning ALS genes 
whose products are involved in the several steps of the autophagic pathway, from phagophore formation to autophagosome  
maturation and transport and finally to substrate degradation.
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Introduction

Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a rare adult motor 
neuron disease (MND) characterized by degeneration of 
upper and lower motor neurons (MNs), leading to pro-
gressive muscle atrophy and death within 3–5 years after 
symptom onset. Besides MNs, skeletal muscle (Dobrowolny 
et al. 2008; Onesto et al. 2011; Cicardi et al. 2018; Meroni 
et al. 2019) and glial cells (Trotti et al. 1999; Lobsiger et al. 
2009; Philips et al. 2013) can be targeted by ALS. Neurons 
residing in the frontotemporal cortex might be affected, too, 
which may lead to the development of a mixed form of MND 
and frontotemporal dementia (FTD) referred to as ALS/FTD 

(Robberecht and Philips 2013). No drugs are currently avail-
able to treat or cure ALS (Taylor et al. 2016).

Most ALS cases (90%) are sporadic (sALS), while only 
10% are characterized by familial inheritance (fALS). Clini-
cal symptoms fully overlap between the two forms of the dis-
ease, but fALS tends to be more severe compared to sALS. 
Inherited ALS cases are associated to both loss-of-function 
(LOF) and aberrant gain-of-function (GOF) mutations, as 
well as to mixed LOF and GOF, that can be found in more 
than 40 genes. Nonetheless, around 30% of fALS genetic 
causes still need to be identified, indicating that ALS is a 
disease with a widely heterogeneous genetic background 
(Cristofani et al. 2020). Noteworthily, the wild-type forms of  
the gene products causing fALS display an aberrant behavior 
in sALS too,  suggesting that the two forms of the disease prob-
ably share some pathogenetic mechanisms (Neumann et al.  
2006).

ALS is caused by a combination of genetic, epigenetic, 
and environmental factors which result in different patho-
genetic mechanisms capable of triggering neuronal damage  
(Morgan and Orrell 2016). To date, the precise etiology of 
ALS is still unknown, as well as the exact molecular mecha-
nisms involved in the degeneration of motor neurons (Shaw 
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2005). The analysis of ALS-related genes outlined the main 
pathophysiological mechanisms involved in neurodegen-
eration in sALS and fALS: oxidative stress, mitochondrial 
dysfunction, impairment of axonal transport, excitotoxicity,  
protein aggregation, endoplasmic reticulum (ER) stress, abnor-
mal RNA processing, and neuroinflammation (Kiernan et al. 
2011; Taylor et al. 2016). One of the main disease mechanisms  
is the alteration in protein quality control (PQC). In this respect,  
a distinctive hallmark of both fALS and sALS is the forma-
tion of aberrant aggregates of TAR DNA-binding protein 43 
(TDP-43), often together with a mixture of other proteins, 
into target cells. The only exceptions are fALS forms linked 
superoxide dismutase 1 (SOD1) mutation, being the only 
devoid of TDP-43 inclusions. When mutated, most of the 
proteins characterizing the aggregates misfold and partition 
into initially small structures which later degenerate into 
aggresomes and insoluble inclusions if they are not rapidly 
degraded (Patel et al. 2015; Boeynaems et al. 2017). The  
accumulating aggregates end up tampering with the PQC  
system, that fails in keeping under control protein misfold-
ing and undergoes saturation, leading inclusions to become  
toxic for the affected cells.

In this review, we will focus on the connections between 
ALS and autophagy, one of the main branches of the PQC 
system. To highlight the strict relations between ALS and 
autophagy and to better clarify the role of ALS-associated 
autophagic genes, we will describe the function and report 
the most relevant findings on the pathogenetic mechanisms 
lying behind the mutations of these genes in ALS (Table 1).

Autophagic Pathway

Autophagy is an evolutionarily conserved cellular mecha-
nism that disassembles old, unnecessary, or dysfunctional 
cytosolic components and allows their degradation by lyso-
somal hydrolases to fuel bioenergetic metabolism and repair 
processes (Klionsky et al. 2021a). Autophagy contributes to 
the maintenance of proteostasis by avoiding the accumula-
tion of potentially dangerous protein species (Li et al. 2012; 
Cuervo and Wong 2014; Sica et al. 2015). An active and 
functional autophagy in neurons is more relevant than in 
other cell types. Indeed, neurons are cells with no mitotic 
activity and a very low capacity to regenerate. Moreover, 
neurons present a particular morphology composed by long 
axons that makes necessary a characteristic organization 
for autophagic degradation of synaptic substrates (Cai and 
Ganesan 2022). Disruption of the autophagic flux occurs in 
several ALS forms and leads to the accumulation of toxic, 
ubiquitin-positive inclusion bodies and aberrant stress gran-
ules that eventually cause neuronal death (Buchan et al. 
2013; Iguchi et al. 2016; Chitiprolu et al. 2018).

Autophagy includes three distinct pathways that promote 
and regulate the degradation of substrates via lysosomes, 
microautophagy (Schuck 2020), chaperone-mediated 
autophagy (CMA) (Kaushik and Cuervo 2018), and mac-
roautophagy, that includes the chaperone assisted–selective 
autophagy or CASA (Cristofani et al. 2020). Here we will 
focus on macroautophagy (hereafter autophagy).

Autophagy is characterized by different steps: initia-
tion, elongation, maturation, and degradation (Klionsky 
et al. 2021b). The initiation consists in the nucleation of 
the autophagic membrane (phagophore) and is regulated 
by different complexes. The first complex involved is the 
preinitiation complex, that is negatively regulated by the 
mammalian target of rapamycin (mTOR) pathway and is 
positively regulated by the AMP-activated protein kinase 
(AMPK) pathway. It is composed by autophagy-related  
proteins 13 and 101 (ATG13, ATG101), unc-51 like 
kinase 1/2 (ULK1/2), and FAK family-interacting protein 
of 200 kDa (FIP200). Another complex is the phospho-
inositide 3-kinase (PI3K) complex composed by ATG14, 
vacuolar protein sorting-associated proteins 34 and 15 
(VPS34, VPS15), and Beclin1 (BECN1) (Matsunaga et al. 
2010; Cicchini et al. 2015). The contribution of ALS-related 
genes in this step is represented in Fig. 1.

On the forming phagophore are recruited other com-
plexes that regulate its elongation and expansion into the 
autophagosome. These complexes are the ATG7-ATG3-
microtubule-associated protein 1A/1B light chain 3B 
(MAP1LC3B, or simply LC3) complex that promotes the 
formation of the lipidated active form of LC3 (LC3-II),  
and the ATG12-ATG5-ATG16L1 complex (Itakura and  
Mizushima 2010). Autophagic substrate recognition, target-
ing, and engulfment are highly regulated. Ubiquitinated mis-
folded proteins and aggregates are specifically recognized  
by a complex of chaperones and co-chaperones known as 
the CASA complex. The components of this complex are  
heat shock protein B8 (HSPB8), Bcl2-associated atha-
nogene 3 (BAG3), heat shock protein 70 (HSP70), and  
C-terminus of HSC70-interacting protein (CHIP). The sub-
strates are recognized by HSPB8 and BAG3, and subsequently  
ubiquitinated by CHIP. The CASA complex is then routed 
to the forming autophagosome through a dynein-mediated 
process regulated by BAG3-dynein interaction (Carra et al.  
2008). Ubiquitinated substrates are recognized by autophagy 
receptors such as sequestosome 1 (SQSTM1/p62) or 
optineurin (OPTN) (Kraft et  al. 2010). These proteins  
act as shuttles mediating substrates to phagophores.  
Indeed, autophagy receptors, thanks to the specific motifs 
present in their sequence such as LC3-interacting regions 
(LIRs), bind components of the autophagic machinery pre-
sent in the forming autophagosome, such as LC3-II (Rogov 
et  al. 2014). Subsequently to substrate engulfment, the 
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constituted autophagosome maturation may include fusion 
with an endosome and always terminates in fusion with  
a lysosome (Zhong et al. 2009). The importance of various 
ALS-associated genes in these steps has been highlighted 
in Figs. 2 and 3.

Strictly correlated to autophagy is the endocytosis path-
way where the ALS-related genes described in Fig. 4 exert 
their function. Indeed, the formed endosome as previously 
described fuses with autophagosomes contributing to its 

maturation. The ALS-related genes contribution will be 
better explained in the dedicated sections.

In neurons, axonal transport plays a relevant role in pro-
moting autophagosome maturation by guiding membrane 
fusion between autophagy intermediates and components 
of the endolysosomal pathway (Hollenbeck 2014). Fusion 
with lysosomes eventually results in the degradation of 
substrates, thanks to hydrolytic enzymes present in the 
lysosome lumen (Xu and Ren 2015).

Table 1  Summary of  autophagic genes role in ALS pathogenesis. LOF = loss of function, GOF = gain of function

Gene Role in autophagy and in ALS pathogenesis References

ALS2 Regulates endosomal maturation → truncating mutations cause 
rapid ALS2 degradation and abolish its guanine-nucleotide 
exchange factor activity for RAB5, leading to impairments in 
endosome maturation (LOF)

Hadano et al. (2001); Yamanaka et al. (2003); Cai et al. (2005)

C9ORF72 Regulates autophagy initiation and maturation → G4C2 
hexanucleotide expansion leads to dipeptide repeats accumulation 
(GOF) and impaired ULK1 complex formation (LOF)

DeJesus-Hernandez et al. (2011); Koppers et al. (2015)

CHMP2B Modulates ESCRT-III complex assembly to form multivesicular 
bodies → truncating mutations disrupt autophagosome-lysosome 
fusion (GOF)

Lee et al. (2007); Han et al. (2012); West et al. (2020)

DCTN1 Essential cofactor in dynein-mediated retrograde transport of 
autophagosomes and lysosomes → mutations are associated 
to decreased DCTN1 levels and immature autophagosome 
accumulation (LOF); protein accumulation (GOF) is still debated

Lai et al. (2007); Laird et al. (2008); Ikenaka et al. (2013); 
Stockmann et al. (2013)

FIG4 Regulates PI(3,5)P2 levels together with PIKfyve and VAC14 
to modulate late endosome maturation → mutations lead to 
enlarged endosomes accumulation (LOF)

Chow et al. (2007); Ferguson et al. (2009); Bharadwaj et al. 
(2016)

KIF5A Transports  lysosomes along axons → mutations might impair 
the autophagic flux (LOF)

Liu et al. (2021); Baron et al. (2022)

OPTN Autophagy receptor → mutations prevent association with 
ubiquitinated substrates, including mitochondria, and disrupt 
myosin VI-mediated autophagosome-lysosome fusion (LOF)

Maruyama et al. (2010); Korac et al. (2013); Sundaramoorthy 
et al. (2015)

SQSTM1/p62 Autophagy receptor → mutations prevent association with 
ubiquitinated substrates or interaction with LC3-II (LOF)

Le Ber et al. (2013); Teyssou et al. (2013); Lattante et al. 
(2015); Goode et al. (2016)

TBK1 Activates autophagy receptors through phosphorylation 
and promotes autophagosome formation and 
maturation → truncating mutations reduce TBK1 levels and 
abolish autophagy receptors activation (LOF)

Ryzhakov and Randow (2007); Freischmidt et al. (2015); 
Brenner et al. (2019); Duan et al. (2019)

TUBA4A Forms microtubules → mutations alter microtubule stability, 
therefore tampering with microtubule-based transport of 
autophagosomes and lysosomes (LOF), and lead to TUBA4A 
aggregation (GOF)

Howes et al. (2014); Rademakers and van Blitterswijk (2014); 
Smith et al. (2014)

UBQLN2 Promotes the autophagic disposal of ubiquitinated ER 
proteins and regulates autophagy initiation and lysosomal 
acidification → mutations disrupt substrate recognition and 
increase autophagy activation while impairing lysosome-
mediated degradation (LOF); UBQLN2 aggregation (GOF) is 
still debated

Deng et al. (2011); Wu et al. (2015); Şentürk et al. (2019)

VAPB Promotes autophagy and mitophagy initiation → mutations alter 
the autophagic flux (LOF); VAPB aggregation (GOF) is still 
debated

Teuling et al. (2007); Kuijpers et al. (2013a)

VCP Promotes the autophagic disposal of ubiquitinated substrates 
and aggresomes, operates in autophagy initiation and 
maturation, and regulates lysosome homeostasis → mutations 
aberrantly trigger autophagy but disrupt autophagosome-
lysosome fusion (LOF)

Watts et al. (2004); Johnson et al. (2010); Nalbandian et al. 
(2012)
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Fig. 1  Schematic representation 
of the ALS-related gene prod-
ucts involved in autophagy 
initiation (green) in their con-
ventional intracellular functions

Fig. 2  Schematic representation 
of the ALS-related gene prod-
ucts involved in autophago-
some elongation and maturation 
(green) in their conventional 
intracellular functions

Fig. 3  Schematic representa-
tion of the ALS-related gene 
products involved in autophago-
some-lysosome fusion and 
degradation (green) in their 
conventional intracellular func-
tions
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Autophagic Genes Involved in ALS

ALS2

Alsin (ALS2) is a guanine-nucleotide exchange factor (GEF) 
encoded by the gene ALS2 (chromosome 2q33). It is found 
in all tissues but particularly in neurons (Hadano et al. 2001; 
Otomo et al. 2003; Yamanaka et al. 2003). ALS2 comprises 
three GEF-specific domains: an N-terminal regulator of 
chromatin condensation–like domain (RCC1-like domain, or 
RLD), a central Db1-pleckstrin homology (DH/PH) domain, 
and a C-terminal vacuolar protein sorting 9 (VPS9) domain 
(Hadano et al. 2001; Yang et al. 2001).

ALS2 VPS9 domain mediates its homo-oligomerization 
and endosomal localization. ALS2 was indeed demonstrated 
to localize to structures positive for the early endosomal anti-
gen 1 (EEA1) protein, a marker of early endosomes (Otomo 
et al. 2003; Topp et al. 2004; Kunita et al. 2004). The VPS9 
domain is also essential for ALS2 to act as GEF for the 
small GTPase RAB5, a key player in endosomal membrane 
fusion (Fig. 4) (Otomo et al. 2003, 2011; Chandran et al. 
2007). Transient ALS2 overexpression was shown to pro-
mote endosome enlargement and fusion through a RAB5-
dependent mechanism in neuronal and non-neuronal cells, 
confirming ALS2 role in endosomal maturation (Kunita et al. 
2004). Furthermore, ALS2 mutations were  demonstrated to 
be associated with alterations in amphisome formation, 
and ALS2 downregulation was  shown to cause a decrease 
in the autophagic clearance of substrates, suggesting that 
ALS2 is also involved in autophagosome maturation (Hadano 
et al. 2010; Otomo et al. 2011, 2012). Additionally, ALS2 
was demonstrated to protect cultured murine MNs from 

the neurotoxic activity exerted by the ALS-related SOD1 
mutants A4T, G85R, and G93R. It has been shown that 
ALS2 exerts such neuroprotective activity by directly bind-
ing to mutant SOD1 while contemporarily acting as GEF for 
the small GTPase Rac1 through its DH/PH domain. Indeed, 
Rac1 activation upon ALS2 binding triggers an antiapoptotic 
response mediated by the PI3K Akt3 that preserves neurons 
from death. Both Rac1 downregulation through RNA inter-
ference and deletion of ALS2 DH/PH domain fully abolish 
such neuroprotective function. Interestingly, ALS2 does not 
display the same activity against any other proteins impli-
cated in neurodegeneration, such as Alzheimer’s disease-
related amyloid-β and presenilin 1/2 mutants (Kanekura et al. 
2004, 2005).

ALS2 mutations causing fALS are characterized by a 
recessive pattern of inheritance and produce premature stop 
codons in ALS2 sequence that abolish its VPS9 domain 
(Hadano et al. 2001; Yang et al. 2001; Kress et al. 2005; 
Sheerin et al. 2014). Truncated ALS2 isoforms are unstable 
and get rapidly eliminated, so that ALS2 pool is depleted 
in neurons harboring ALS2 mutations (Yamanaka et al. 
2003). Such loss of ALS2 function is expected to reduce 
active RAB5 levels, since ALS2-deprived neurons display 
decreased motility of RAB5-positive endosomes (Lai et al. 
2009). Consistently, neurons isolated from Als2 knock-out  
mice show defective RAB5-dependent endosomal maturation  
leading to the accumulation of large, EEA1-positive  
vacuoles. The impairments in the early phases of endosomal  
trafficking and fusion caused by ALS2 loss  increase  
MN susceptibility to oxidative stress and promote  
astrogliosis in the brain and in the spinal cord of ALS2-
null mice (Cai et al. 2005; Hadano et al. 2006; Devon et al. 

Fig. 4  Schematic representa-
tion of the ALS-related gene 
products involved in endocyto-
sis (green) in their conventional 
intracellular functions
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2006). Nonetheless, Als2 knock-out mice do not display an 
overt ALS phenotype but are only characterized by subtle  
impairments in motor function and learning (Cai et al. 
2005; Hadano et al. 2006; Devon et al. 2006; Yamanaka  
et al. 2006). Taken together, these data suggest that ALS2  
loss is per se insufficient to cause neurodegeneration but that 
it might be responsible for an increased MN vulnerability.

Regarding ALS2 neuroprotective activity, loss of Als2 
was shown to worsen the accumulation of protein aggre-
gates in H46R SOD1 mice MNs. Indeed, Als2 knock-out 
correlated with a reduction in the autophagic clearance of 
mutant SOD1, as a consequence of impaired autophagosome 
maturation, and disrupted endosomal trafficking (Hadano 
et al. 2010). Additionally, ALS2 depletion was reported to 
exacerbate the effect of SQSTM1/p62 loss in H46R SOD1 
mice, enforcing the hypothesis that ALS2 role in endosomal 
dynamics is essential to support autophagy (Hadano et al. 
2016).

C9ORF72

C9ORF72 protein is encoded by chromosome 9 open read-
ing frame 72 (C9ORF72), which presents 10 coding exons 
and two non-coding exons (Smeyers et al. 2021). C9ORF72 
products are 3 transcript variants: a short transcript V1  
and two transcripts V2 and V3 that share the coding of 
exons 2–11 (DeJesus-Hernandez et al. 2011; Smeyers et al. 
2021). Interestingly for the development of animal models, 
the C9ORF72 human gene is conserved in primates but 
has a very low similarity in nematode and no orthologue in  
Drosophila (Therrien et al. 2013; Chen et al. 2017). C9ORF72  
expression is found in most tissues including all brain 
regions, spinal cord, and immune system. At cellular level, 
C9ORF72 is localized in the cytoplasm or in organelles such 
as Golgi, mitochondria, lysosome, and other components 
of the endolysosome pathway. The V1 short-isoform was 
also found localized in the nuclear membrane (Xiao et al. 
2015; Atkinson et al. 2015; Aoki et al. 2017; Chitiprolu et al. 
2018; Wang et al. 2021). To date, C9ORF72 has been found 
implicated in different pathways, including nucleocytoplas-
mic import, stress granule (SG) formation and degrada-
tion or recovery, endosomal trafficking, axon growth, and 
autophagy regulation (Farg et al. 2014; Zhang et al. 2015; 
Yang et al. 2016; Amick et al. 2016; Sivadasan et al. 2016; 
Maharjan et al. 2017).

C9ORF72 regulates autophagy at different steps of its 
pathway as presented in Figs. 1 and 3. Its role in autophagy 
is supported by two cofactors, Smith–Magenis chromosome 
region 8 (SMCR8) and WD repeat domain 41 (WDR41), 
forming the C9ORF72-complex (Tang et al. 2020; Su et al. 
2020). Both C9ORF72 and SMC38 present a differentially 
expressed in normal and neoplastic cells (DENN) domain 
which functions as a GEF for RAB GTPases (Levine et al. 

2013; Iyer et al. 2018). In autophagy initiation, its role is 
difficult to discriminate as C9ORF72 interacts with dif-
ferent complexes involved in this step. Firstly, C9ORF72 
and SMCR8 interact with different members of the ULK1-
complex (Yang et al. 2016). During starvation C9ORF72-
complex is recruited by solute carrier family 66 member 
1 (SLC66A1) to lysosomes, increasing the interaction 
with ULK1-complex (Amick et al. 2020). Moreover, the 
C9ORF72 complex promotes the interaction between 
RAB1 and ULK1-complex, enhancing its recruitment to 
forming autophagosomes (Webster et al. 2016). Another 
sign of C9ORF72-positive regulation of autophagy initia-
tion stands in its interaction with RAB5 which promotes 
the delivery of the PI3K and the ATG7-ATG5-LC3 com-
plexs to autophagosome (Shi et al. 2018; Bingol 2018). The  
localization of C9ORF72 in forming autophagosomes was 
suggested to be mediated by SQSTM1/p62 or OPTN, which 
bind to C9ORF72-complex and RAB39b, another substrate 
of the complex (Sellier et al. 2016). While these interac-
tions refer to a positive regulation of C9ORF72 complex in  
autophagy initiation, another mediates a negative regu-
lation of autophagy. Indeed, signs of the interaction of 
C9ORF72 with mTOR complex 1 (mTORC1) were detected, 
which suggests a supporting role in mTORC1 function. 
C9ORF72 silencing decreases mTORC1 activity, promot-
ing autophagy transcriptional factor regulators activation (Ji 
et al. 2017; Wang et al. 2020). C9ORF72 is also implicated 
in autophagosome maturation mainly by cooperating with 
RAB proteins, such as RAB7 and RAB11, which regulate  
microtubular transport of autophagosomes, late endosomes, 
multivesicular bodies, and the fusion with lysosomes (Hyttinen  
et al. 2013; Ao et al. 2014; Aoki et al. 2017; Tang et al. 
2020).

C9ORF72 gene mutation consisting in a hexanucleotide 
expansion of the sequence GGG GCC   (G4C2) present in the 
first intron has been associated to ALS and FTD in 2011 
(Renton et al. 2011; DeJesus-Hernandez et al. 2011). The 
physiological size of the expansion can reach 24 repeats, 
whereas above 30 repeats it is considered pathological. The  
pathological length of expansion is very heterogenous; 
indeed, patients generally present hundreds or even thousands 
of repeats (DeJesus-Hernandez et al. 2011; Gijselinck et al.  
2016). Still, the length of the expansion can differ in brain 
and blood tissues of the same patient. This mosaicism is due  
to the instability of the repeat number (van Mossevelde  
et al. 2017). The mutation has an autosomal-dominant trans-
mission and is associated to 40% of fALS, 80% of ALS/
FTD, and 25% of familial FTD cases  (Gijselinck et  al. 
2016; van Mossevelde et al. 2017). The mutation leads to 
both GOF and LOF that together concur in the onset of the 
pathology. The LOF is due to protein haploinsufficiency that 
is triggered by the decrease in gene transcription caused  
by altered RNA structures and by hypermethylation of  
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the promoter (Haeusler et al. 2014; Gijselinck et al. 2016; 
Esanov et al. 2017). The GOF is associated to the toxicity of 
the RNA repeats and the formation of abnormal dipeptide-
repeat proteins (DRPs). The RNA repeats are transcribed 
bidirectionally forming sense and antisense transcripts. 
These transcripts are instable and form nuclear RNA foci 
that sequester RNA-binding proteins preventing their func-
tionality (Gendron et al. 2013; Barker et al. 2017). In addi-
tion, guanosine-rich RNA repeats tend to fold in a stable sec-
ondary structure, known as G-quadruplex, that deleteriously 
interacts with splicing factors causing splicing errors (Reddy 
et al. 2013; Conlon et al. 2016). The translation of DPR 
sense and antisense transcripts occurs in an unconventional 
ATG-independent mechanism and results in the formation 
of five DRPs constituted of glycine-alanine (GA), glycine-
proline (GP), glycine-arginine (GR), proline-arginine (PR), 
and proline-alanine (PA) (Zu et al. 2013). All DPRs are 
found in the brain tissue and spinal cord of patients and exert 
their toxicity by sequestering proteins, impairing ribosome 
biogenesis, and altering translation. Specifically, the DPRs 
poly-PR and poly-GR alter nuclear transport (Freibaum and 
Taylor 2017; Hayes et al. 2020). In addition, poly-GR also 
interferes with SGs formation and degradation (Chew et al. 
2019). Both GOF and LOF concur in alteration of cellular 
proteostasis. A sign of altered proteostasis stands in TDP-43 
mislocalization and aggregation, which is a hallmark of ALS 
and FTD C9ORF72 patients (Cook et al. 2020). Another 
sign of altered proteostasis in C9ORF72-patients is the pres-
ence of SQSTM1/p62 and ubiquitin-positive inclusions that 
frequently also contain DPRs (Mann et al. 2013).

C9ORF72 animal models were developed to mimic LOF 
and GOF. For what concerns C9ORF72 role in autophagy, 
transient reduction of C9orf72 expression in conditional 
knock-out mice in neurons does not cause alterations in 
behavior or motor phenotype (Koppers et al. 2015), whereas 
constitutive C9orf72 knock-out animals present dysregula-
tion of the immune system probably associated to autophagy 
dysfunction, reduced survival, and mild motor and cognitive 
phenotypes (Jiang et al. 2016; Atanasio et al. 2016). Overall, 
data on animals support the theory that loss of C9ORF72 
function alone is not sufficient to develop ALS. On the other 
hand, models of GOF present neuronal alterations.

CHMP2B

Charged multivesicular body protein 2B (CHMP2B) is 
encoded by the gene CHMP2B (chromosome 3p11.2). It is 
an evolutionarily conserved protein playing a key role in 
the assembly of the endosomal sorting complex required for 
transport III (ESCRT-III; Fig. 4). The ESCRT-III machin-
ery is implicated in the generation of multivesicular bod-
ies (MVBs), endosomal sorting, and autophagy in several 
tissues, including all brain regions (Skibinski et al. 2005; 

Rusten and Stenmark 2009; Hurley and Hanson 2010; Henne 
et al. 2013).

When inactive, CHMP2B is found in an autoinhibited 
conformation masking the N-terminal sites required to 
recruit the ESCRT-III complex. Activation occurs through 
the interaction of CHMP2B C-terminal domain with the 
ATPase vacuolar protein sorting-associated protein 4 (VPS4) 
and triggers the assembly of the ESCRT-III and VPS4 com-
plexes on the endosomal membrane. VPS4 ATPase activity 
is then required to let intraluminal vesicles bud from endo-
somal membranes, hence generating MVBs, and to finally 
dissociate ESCRT-III proteins from one another for MVB 
generation (Fig. 4). (Schmidt and Teis, 2012).

Apart from being involved in MVB maturation, CHMP2B 
also participates to lysosomal membrane repair and to 
autophagy together with the other components of the ESCRT-
III machinery (Krasniak and Ahmad 2016; Radulovic et al. 
2018). Loss of ESCRT genes was demonstrated to corre-
late with autophagosome accumulation in yeast (Roudier 
et al. 2005), Drosophila (Rusten et al. 2007), and mammals 
(Komatsu et al. 2006), implying a key role played by ESCRT 
proteins in autophagosome-lysosome fusion. Even though the 
mechanism through which CHMP2B is involved in autophagy 
is still not clearly defined, CHMP2B mutations are associated 
to important signs of autophagy impairment.

The first CHMP2B mutation linked to neurodegeneration 
was found in 1995 in a Danish family affected by autoso-
mal-dominant FTD and was characterized as a substitution 
occurring at exon 6 splice acceptor site (Brown et al. 1995; 
Gydesen et al. 2002; Skibinski et al. 2005). Such mutation 
determines the production of two mutant CHMP2B forms, 
one including intron 5 in the protein sequence and produc-
ing a truncated CHMP2B isoform with a valine residue 
replacing the last 36 amino acids of the wild-type protein 
 (CHMP2BIntron5) and the other generating a 29-amino acid 
nonsense sequence  (CHMP2BΔ10) (Skibinski et al. 2005). 
Additional CHMP2B mutations were later identified also in 
fALS and ALS/FTD (Parkinson et al. 2006; Cox et al. 2010; 
van Blitterswijk et al. 2012c; Narain et al. 2018).

Truncated CHMP2B mutants are incapable of autoin-
hibition and tend to associate to the rest of the ESCRT-III 
machinery at a higher frequency compared to wild-type 
CHMP2B. This abnormal interaction leads to the formation 
of aberrant complexes that remain associated to endosomal 
membranes, thus preventing autophagosome-lysosome fusion 
(Lee et al. 2007; Han et al. 2012). Indeed,  CHMP2BIntron5 
was shown to induce the accumulation of ubiquitin-positive 
puncta and/or SQSTM1/p62- and LC3-positive vacuoles in 
cells (Lee et al. 2007; Filimonenko et al. 2007; West et al. 
2020). Autophagosome accumulation was also observed in 
murine and Drosophila  CHMP2BIntron5 models (Ghazi-Noori 
et al. 2012; Vernay et al. 2016; West et al. 2020) and even 
in patient-derived fibroblasts and cortical tissue (Urwin et al. 
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2010), supporting the involvement of autophagic flux block-
age in  CHMP2BIntron5-related pathogenesis. Additionally, 
 CHMP2BIntron5 was evidenced to localize on accumulating 
endosomes positive for the small GTPases RAB4, RAB5,  
and RAB7 in both Drosophila and rat primary neurons (West 
et al. 2020). Similar observations were made in postmor-
tem brains of fALS patients bearing CHMP2B mutations 
(T104N, I29V, Q206H), which displayed an accumulation 
of autophagosomes positive for SQSTM1/p62 and LC3-II  
(Parkinson et al. 2006; Cox et al. 2010), and the T140N  
CHMP2B  mutant was also shown to localize with other 
ESCRT-III subunits in RAB5- and RAB7-positive endosomes 
in cortical neurons (Han et al. 2012). These data support the  
involvement of endolysosomal and autophagosomal activity 
dysfunction in CHMP2B-related neurodegeneration.

DCTN1

Dynactin subunit 1 (DCTN1, or  p150Glued) is the largest subu-
nit of the dynactin complex and is encoded by the gene DCTN1 
(chromosome 2p13.1). The dynactin machinery is composed 
of at least 11 proteins organized into more than 20 subunits 
(Urnavicius et al. 2015). The dynactin complex interacts with 
dynein to increase its processivity in microtubule-based retro-
grade transport and acts as a multifunctional adaptor between 
dynein and specific cargos, including vesicles, organelles, 
cytosolic proteins, and mRNA (Karki and Holzbaur 1999; Cul-
ver-Hanlon et al. 2006). Inside the dynactin complex, DCTN1 
forms dimers that interact with dynein intermediate chains 
and bind to microtubules through its N-terminal cytoskeletal-
associated protein/glycine-rich (CAP-Gly) domain (Vaughan 
and Vallee 1995; Karki and Holzbaur 1995; Culver-Hanlon 
et al. 2006).

Considering autophagy, DCTN1 plays a central role in 
dynein-mediated retrograde transport of autophagosomes 
and lysosomes to the perinuclear region (Fig. 3). DCTN1 
was indeed shown to interact with Hermansky-Pudlak syn-
drome 6 (HSP6), a protein that is strictly required to drive 
lysosomes to the microtubule organizing center  for degrada-
tion (Li et al. 2014).

Based on the current knowledge, it is still unclear whether 
DCTN1 mutations promote ALS development through  
GOF or LOF mechanisms. The first pathogenetic muta-
tion ever identified in DCTN1 sequence was an autosomal 
dominant missense associated to a form of hereditary motor 
neuropathy that primarily affectes lower MNs (HMN7B) 
(Puls et al. 2003). Such mutation produces a G59S substitu-
tion in DCTN1 CAP-Gly domain that alters the folding of 
DCTN1 microtubule-binding domain, reducing the affinity of  
the mutant protein for microtubules. G59S DCTN1 tends to 
misfold and form neurotoxic aggregates that were shown to 
sequester dynein, mitochondria, and TDP-43 (Puls et al. 2003, 
2005; Levy et al. 2006; Deshimaru et al. 2021). Additional 

DCTN1 mutations lying both in DCTN1 CAP-Gly domain 
and in its dynein-binding domain have then been identified 
in ALS (Münch et al. 2004; Stockmann et al. 2013; Liu et al. 
2014, 2017), including those forms with an FTD component 
(Münch et al. 2005). Several in vitro studies were performed 
to characterize the impact of ALS-related DCTN1 mutations  
on the protein. While some DCTN1 mutants did not evidence 
any alterations in protein conformation or distribution (Münch 
et al. 2004; Dixit et al. 2008; Stockmann et al. 2013), other 
variants identified in sALS patients were shown to form aggre-
gates or abnormal filamentous structures upon overexpression 
in primary rat MNs (Stockmann et al. 2013). However, most of 
the DCTN1 mutations causing an aberrant protein behavior are 
characterized by uncertain patterns of inheritance and can be 
found also in control populations, suggesting that they might 
represent risk factors predisposing to ALS, rather than overt 
pathogenetic variants (Stockmann et al. 2013).

Analyses performed by Jiang and colleagues on post-
mortem samples revealed that both upper and lower MNs 
of sALS patients display lower DCTN1 mRNA levels com-
pared to non-ALS controls starting from very early stages 
of disease progression (Jiang et al. 2005, 2007). Similarly, 
Kuźma-Kozakiewicz and colleagues evidenced increased 
DCTN1 mRNA levels but reduced DCTN1 protein levels 
in the motor cortex of sALS patients compared to the sen-
sory cortex, suggesting that in sALS MNs DCTN1 depletion 
occurs and cannot be restored by gene expression upreg-
ulation, probably due to inefficient translation (Kuźma-
Kozakiewicz et al. 2013). In contrast, while homozygous 
Dctn1 knock-out or G59S DCTN1 knock-in was proven to 
be embryonic lethal in mice, animals deprived of one Dctn1 
allele did not develop MN degeneration (Lai et al. 2007), 
and neuron-specific Dctn1 knock-out mice only began mani-
festing neurodegeneration symptoms at 18 months of age 
(Yu et al. 2018). On the other hand, two heterozygous G59S 
DCTN1 knock-in strains generated by distinct research 
groups displayed halved DCTN1 protein levels and no sign 
of mutant protein aggregation in brain and spinal cord, sug-
gesting that the G59S substitution might lead to rapid protein 
degradation in vivo, but at the same time, mice started mani-
festing muscle atrophy due to spinal MN loss at 10 months 
of age. These symptoms were accompanied by astroglio-
sis and by the accumulation of cytoskeletal and synaptic 
vesicle proteins at neuromuscular junctions, probably as a 
consequence of disrupted retrograde transport (Levy et al. 
2006; Lai et al. 2007). Moreover, a third heterozygous G59S 
DCTN1 murine strain evidenced fast lower MN loss paral-
leled by impaired ER-to-Golgi vesicular trafficking and by 
the accumulation of LC3-II- and ubiquitin-positive DCTN1 
aggregates in MN cell bodies hinting at an involvement of 
dysfunctional retrograde transport of autophagosomes in 
neuronal death (Laird et al. 2008). In line with these obser-
vations, knockout of the DCTN1 ortholog in C. elegans, 
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dnc-1, was associated to immature autophagosome accumu-
lation in adult MNs, fostering their degeneration and leading 
to severe motor deficits that recapitulate ALS symptomatol-
ogy (Ikenaka et al. 2013). These conflicting data suggest that 
further studies are required to gain better insight into the 
pathogenetic mechanisms associated to DCTN1 mutations 
in neurodegeneration.

FIG4

Factor-induced gene 4 (FIG4) is a magnesium-dependent 
phosphatase encoded by the gene FIG4 (chromosome 6q21). 
FIG4  mediates phosphatidylinositol-3,5-bisphosphate 
(PI(3,5)P2) conversion to phosphatidylinositol-3-phosphate  
(PI(3)P) on the cytosolic side of endosomal membranes, 
where FIG4 localizes through the interaction with the scaf-
folding protein VAC14 (Rudge et al. 2004; Sbrissa et al. 
2007; Jin et al. 2008). PI(3)P and its derivatives are central 
players in endosomal transport and autophagy, with differ-
ent PI3-phosphate pools generated by distinct kinases and 
phosphatases localized to different endosomal compartments 
(Di Paolo and De Camilli 2006). Specifically, PI(3,5)P2 is 
produced by the kinase 1-phosphatidylinositol 3-phosphate 
5-kinase (PIKfyve), which joins the complex formed by 
FIG4 and VAC14 on endosomal membranes, and this modi-
fied phospholipid acts as a key signal for the retrograde traf-
ficking of endosomes (Sbrissa et al. 2007; Ferguson et al. 
2009). Conversion of PI(3)P to PI(3,5)P2 is also essential 
for endosomal maturation since PI(3,5)P2 modulates cargo 
degradation in late endosomes/lysosomes (Odorizzi et al. 
1998; Rutherford et al. 2006; Zhang et al. 2007). Therefore, 
the PIKfyve-FIG4-VAC14 ternary complex plays a central 
role in regulating endosomal metabolism (Fig. 4).

The first mutation identified in FIG4 is an insertion of the 
5.5-kb retrotransposon ETn2β into intron 18 of Fig4 murine 
gene, which caused alterations in Fig4 mRNA processing, 
therefore resulting in a substantial reduction in Fig4 protein 
levels. Animals affected by this autosomal recessive mutation 
displayed resting tremor accompanied by diluted pigmentation 
and were thus referred to as “pale tremor” mice. This phenotype 
is consistent with Charcot-Marie-Tooth (CMT) axonal neu-
ropathies; notably, recessively inherited FIG4 mutations were 
subsequently identified in CMT4J patients (Chow et al. 2007). 
ALS-associated FIG4 mutations include truncating mutations, 
missenses, and mutations in splice sites and are all predicted 
to cause loss of protein function, similarly to that observed in 
pale tremor mice and CMT4J patients (Chow et al. 2007, 2009; 
Osmanovic et al. 2017). While FIG4 mutations are reported 
to be responsible for 1–3% of ALS cases among European 
patients, no deleterious FIG4 variants have been found in larger 
ALS groups, and some of the variants isolated in the European 
cohort display reduced penetrance (Osmanovic et al. 2017), so 
that further investigation is required.

Animal models have been exploited to better characterize 
the role of FIG4 mutations in endolysosomal trafficking. 
Concerning pale tremor mice, the relevant reduction in Fig4 
protein levels dependent on ETn2β retrotransposition deter-
mined a strong decrease in PI(3,5)P2 levels accompanied by 
the accumulation of large vacuoles harboring ubiquitinated 
proteins and positive for SQSTM1/p62, LC3-II, and the 
late-stage endosomal markers lysosomal-associated mem-
brane proteins 1 and 2 (LAMP-1 and LAMP-2) in murine 
neurons and astrocytes (Ferguson et al. 2009; Lenk et al. 
2011). Comparable accumulation of enlarged lysosomes 
causing the rapid development of severe brain degeneration 
was observed in both constitutive and neuron-specific Fig4 
knock-out murine models (Ferguson et al. 2012), while in 
Drosophila Fig4 loss correlated with motility impairments 
and shorter lifespan (Bharadwaj et al. 2016; Kyotani et al. 
2016). The decrease in PI(3,5)P2 levels associated to Fig4 
loss is hypothesized to depend on reduced PIKfyve activity, 
since FIG4 is required to stabilize the interaction between 
PIKfyve and VAC14 (Botelho et al. 2008).

KIF5A

Kinesin 5A (KIF5A) is a neuron-specific kinesin heavy chain 
encoded by the gene KIF5A (chromosome 12q13.3) (Aizawa 
et al. 1992). Kinesins are ATP-dependent molecular motors 
that transport cargo along microtubule tracks in the anterograde 
direction, from the center of the cell to its periphery (Vale et al. 
1985; Brady 1985). KIF5A comprises an N-terminal motor 
domain involved in microtubule binding and ATP hydrolysis, 
a stalk domain required for homodimerization and interaction 
with kinesin light chains, and a C-terminal tail domain which 
mediates interaction with cargos and adaptor proteins (Miki 
et al. 2005; Hirokawa and Noda 2008). Among KIF5A car-
gos, lysosomes can be found, conferring KIF5A a role in the 
autophagic pathway (Fig. 3) (Liu et al. 2021).

KIF5A was found mutated in ALS in 2018, with genome-
wide analyses identifying both low- and high-risk mutations 
(Brenner et al. 2018; Nicolas et al. 2018). Mutations in 
KIF5A had been previously linked to other neurodegenera-
tive or neurodevelopmental disorders. Interestingly, muta-
tions targeting different KIF5A domains give rise to distinct 
phenotypes, with minimal overlapping. Specifically, muta-
tions targeting KIF5A motor or stalk domains cause heredi-
tary spastic paraplegia and CMT2 (Reid et al. 2002; Fichera 
et al. 2004; Crimella et al. 2012), while mutations falling 
in its C-terminal tail are associated to neonatal intractable 
myoclonus as well as ALS (Rydzanicz et al. 2017; Brenner 
et al. 2018; Nicolas et al. 2018).

Recently, de novo frameshift mutations causing exon 
27 skipping (ΔExon27) and downstream elongation of the 
KIF5A tail have been reported to abolish KIF5A ability to 
perform autoinhibition, leading to aberrant mitochondrial 
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transport along axons, and to enhance mutant KIF5A inter-
action with SQSTM1/p62 (Baron et al. 2022). Therefore, 
neurodegeneration caused by ΔExon27 KIF5A mutations 
seems to be linked to a toxic GOF disrupting neuronal 
trafficking and homeostasis. Since lysosomes are part of 
KIF5A cargos (Liu et al. 2021), the axonal transport altera-
tions implicated in KIF5A-related ALS pathogenesis might 
tamper with the autophagic flux, too. Further studies are 
required to better elucidate the contribution of KIF5A muta-
tions to ALS.

OPTN

OPTN is a multifunctional adaptor protein encoded by the 
OPTN gene (chromosome 10p13). It is highly expressed in 
brain and skeletal muscle (Rezaie et al. 2002; De Marco et al. 
2006) and takes part in a wide variety of cellular processes, 
such as NF-κB activation, viral sensing, Golgi maintenance, 
and autophagy (Markovinovic et al. 2017). OPTN acts as an 
autophagy receptor by binding substrates, including dam-
aged mitochondria, through its C-terminal ubiquitin-binding 
region of ABIN proteins and NEMO (UBAN) domain and 
delivers them to phagophores by interacting with LC3, thanks 
to its LIR domain (Figs. 1 and 2) (Wild et al. 2011; Wong 
and Holzbaur 2014). Subsequently, it links to myosin VI to 
promote autophagosome fusion with lysosomes (Tumbarello 
et al. 2012).

OPTN role as an autophagy receptor makes it a neuropro-
tective factor. Indeed, OPTN is sequestered into aggregates 
formed by mutant proteins in several neurodegenerative 
disorders (Maruyama et al. 2010; Hortobágyi et al. 2011; 
Osawa et al. 2011), and its deletion promotes aggregates 
accumulation (Korac et al. 2013). Additionally, OPTN inter-
acts with SOD1 aggregates through its C-terminal coiled-
coil domain, therefore in an ubiquitin-independent fashion 
(Korac et al. 2013).

OPTN mutations were initially associated to primary open-
angle glaucoma (Rezaie et al. 2002; Minegishi et al. 2016) and 
were found to impair the autophagic flux. For example, retinal 
cells harboring OPTN E50K were shown to be characterized by 
defects in phagophore formation and by autophagy inhibition 
upon amino acid starvation (Chalasani et al. 2014). For what 
concerns ALS, more than 40 OPTN variants have been reported 
both in sALS and in fALS, with a limited number of muta-
tions being shared between populations of different ethnicity  
(Maruyama et al. 2010; Del Bo et al. 2011; Tümer et al. 2012; 
van Blitterswijk et al. 2012b; Iida et al. 2012; Beeldman et al. 
2015; Gotkine et al. 2021). ALS-related OPTN mutations are 
mainly missenses, truncations, and exon 5 deletions. A LOF 
mechanism is hypothesized for truncating mutations since 
mRNA decay and loss of OPTN immunoreactivity were reported 
in patient spinal cord (Maruyama et al. 2010; Iida et al. 2012;  
Gotkine et al. 2021). Regarding missense variants, they tend  

to cluster around OPTN UBAN domain (Maruyama et al. 2010). 
The best characterized one is E478G OPTN, which is defective 
in ubiquitin binding (Wild et al. 2011) and was indeed reported 
to lose the ability to associate with polyubiquitinated inclusions 
and mitochondria to drive them to autophagy (Korac et al. 2013; 
Wong and Holzbaur 2014). The E478G mutant also sequesters 
wild-type OPTN into oligomers upon overexpression, limiting 
the OPTN pool available to guide phagophore formation (Shen 
et al. 2015) and forming inclusion bodies in sALS neurons 
(Maruyama et al. 2010).

Furthermore, E478G and G398X OPTN were shown to be 
unable to bind to myosin VI, determining the accumulation 
of immature autophagosomes triggering ER and Golgi stress 
(Sundaramoorthy et al. 2015).

Animal models recapitulate most observations on ALS-
associated OPTN mutations made in vitro. OPTN ortholog 
knock-down in zebrafish is associated to motor axonopathy 
symptoms resembling models of SOD1 pathology (Korac 
et  al. 2013). Moreover,  470T Optn mice mimic human 
OPTN truncations and reduced protein levels following 
mRNA decay are reported for such animal model (Munitic 
et al. 2013). Finally, the murine equivalent of the human 
E478G mutation (D477N Optn) is similarly unable to bind 
ubiquitin (Gleason et al. 2011). Despite the wide variety of 
data collected about OPTN mutations in ALS, the patho-
genetic mechanisms causing autophagy impairments lying 
behind them are still to be fully characterized.

SQSTM1/p62

SQSTM1/p62 is a multifunctional adaptor protein encoded 
by the gene SQSTM1 (chromosome 5q35.3). It is highly 
expressed in spinal cord MNs (Keller et al. 2012) and is 
implicated in several cellular processes, including NF-κB 
activation, apoptosis, and proteostasis maintenance (Rea et al. 
2013). Concerning the latter process, SQSTM1/p62 acts as an 
autophagy receptor similarly to OPTN, therefore by sequester-
ing ubiquitinated proteins via its C-terminal ubiquitin-binding 
domain (UBD), named ubiquitin-associated (UBA) domain, 
and contemporarily interacting with LC3 through its LIR to 
deliver substrates to autophagosomes (Figs. 1 and 2) (Bjørkøy 
et al. 2005; Pankiv et al. 2007; Ichimura et al. 2008). The 
N-terminal Phox and Bem1p-1 (PB1) ubiquitin-like domain 
allows SQSTM1/p62 to oligomerize, and both the PB1 and 
the UBA domains are involved in the interaction with other 
autophagy receptors, like OPTN and neighbor of BRCA1 
gene 1 (NBR1), required to better coordinate autophago-
some formation (Johansen and Lamark 2011). SQSTM1/p62 
is also able to drive ubiquitinated substrates to proteasomal 
degradation, thanks to its ubiquitin-like domains (Seibenhener  
et al. 2004; Babu et al. 2005; Geetha et al. 2008). Evidence 
supports the hypothesis that SQSTM1/p62 might be a neu-
roprotective factor, once again similarly to OPTN. Firstly, 
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it is upregulated at the onset of neuronal apoptosis, when 
ubiquitinated proteins accumulate in response to cell damage 
(Kuusisto et al. 2001). Moreover, it is found within ubiqui-
tin-positive inclusions formed by mutant proteins in several 
neurodegenerative disorders (Zatloukal et al. 2002; Arai 
et al. 2003; Mizuno et al. 2006; King et al. 2013), underlin-
ing the central role this autophagy receptor plays in PQC. 
SQSTM1/p62 is also responsible for driving mutant SOD1 
to autophagosomes through an ubiquitin-independent interac-
tion mediated by its SOD1 mutant interaction region (SMIR) 
(Gal et al. 2009). Lastly, mice deprived of Sqstm1 display tau 
hyperphosphorylation and memory impairments (Babu et al. 
2008), both hallmarks of Alzheimer’s disease, while Sqstm1 
knock-down in zebrafish determines the development of loco-
motory impairments associated with autophagy defects and 
MN axon shortening (Lattante et al. 2015).

SQSTM1 mutations were firstly identified in 2002 in 
patients suffering from Paget disease of bone (PDB), a 
chronic progressive skeletal disorder. PDB-causing SQSTM1 
mutations mainly target SQSTM1/p62 UBA domain, with 
the P392L substitution being the most frequent among 
them (Laurin et al. 2002). Mutations spanning the whole 
SQSTM1 sequence, including its promoter, have thereafter 
been related to fALS, sALS, and ALS/FTD (Rubino et al. 
2012; Teyssou et al. 2013; Hirano et al. 2013; Shimizu et al. 
2013; Le Ber et al. 2013; Chen et al. 2014; Kwok et al. 
2014), and in most cases they have been associated with 
TDP-43 pathology (van der Zee et al. 2014). Since many 
ALS-related SQSTM1 variants were also found at relatively 
high frequencies in control populations, it is still unclear 
whether they are actually causative of the phenotype, as it 
remains to be determined how mutations in the same gene 
give rise to such distinct phenotypes as ALS and PDB (Rea 
et al. 2014). Nonetheless, the body of evidence connect-
ing ALS-associated SQSTM1 mutations to specific impair-
ments of SQSTM1/p62 functions in autophagy is growing. 
For example, the L341V substitution in SQSTM1/p62 LIR 
sequence was shown to cause a strong decrease in its inter-
action with LC3-II, thus tampering with the ability of the 
autophagy receptor to deliver cargo to forming phagophores 
(Goode et al. 2016). Additionally, some studies have con-
firmed the presence of SQSTM1/p62-positive inclusions 
along with increased levels of the protein in spinal MNs of 
SQSTM1 mutation carriers and found frontal cortical atro-
phy associated with these aggregates, thus providing fur-
ther evidence of pathologic overlap between ALS and FTLD 
(Teyssou et al. 2013; Le Ber et al. 2013).

Until now, mechanistic studies on SQSTM1 mutations 
have mainly concentrated on the P392L substitution. Over-
expression of P392L SQSTM1/p62 was shown to enhance 
autophagosome formation in the osteoclasts of mice har-
boring the murine equivalent of the P392L mutation 

(Daroszewska et al. 2011). Additionally, rescue of the loco-
motor defects displayed by zebrafish upon Sqstm1 downregu-
lation could be achieved through overexpression of human 
wild-type SQSTM1/p62, but not of the P392L mutant. Ame-
lioration of the phenotype was also evidenced upon adminis-
tration of the autophagy inductor rapamycin, which further 
supports the hypothesis of a LOF being connected to the 
P392L substitution (Lattante et al. 2015). Interestingly, the 
P392L mutation was later found in ALS patients (Teyssou 
et al. 2013; Le Ber et al. 2013; Kwok et al. 2014), but its 
effect on MNs has not been characterized yet.

Finally, Sqstm1 depletion was demonstrated to exacerbate 
H46R SOD1 mice ALS phenotype, with shorter lifespan and 
accelerated MN degeneration and weight loss (Hadano et al. 
2016).

TBK1

TANK-binding kinase 1 (TBK1) is a serine/threonine kinase 
encoded by the gene TBK1 (chromosome 12q14.2). TBK1 is 
highly expressed in neuronal cells belonging to the cerebral 
cortex, the hippocampus, and the lateral ventricle (Uhlén 
et al. 2015).

TBK1 was first isolated as OPTN binding partner 
through yeast two-hybrid screening (Morton et al. 2008). 
In fact, it phosphorylates OPTN in its UBAN domain, 
promoting its binding to LC3-II and to ubiquitinated sub-
strates to enhance the autophagic flux (Oakes et al. 2017). 
OPTN phosphorylation also enforces its role in TBK1 acti-
vation, which generates a positive feedback loop between 
TBK1 and OPTN activation (Lazarou et al. 2015; Heo 
et al. 2015). TBK1 exerts a similar modulatory activity 
on nuclear domain 10 protein 52 (NDP52) and SQSTM1/
p62, two other autophagy adaptors, increasing their affin-
ity for the  ubiquitin chains of their UBDs through phos-
phorylation (Thurston et al. 2009; Pilli et al. 2012; Li et al. 
2018a). TBK1-mediated OPTN, NDP52, and SQSTM1/
p62 phosphorylation also promotes their association with 
damaged mitochondria to support mitophagy (Lazarou 
et al. 2015; Heo et al. 2015; Richter et al. 2016; Moore 
and Holzbaur 2016). Additionally, this kinase targets the 
C9ORF72-coupled GEF SMCR8, leading to C9ORF72 
activation and therefore promoting autophagy initiation 
(Fig. 1) (Sellier et al. 2016). Moreover, TBK1 plays a 
role in autophagosome maturation, probably by interact-
ing with the small GTPase RAB8b. TBK1 silencing was 
indeed shown not to interfere with autophagosome for-
mation but to prevent autophagosome-lysosome fusion 
(Wang et al. 2018). Finally, microtubule-binding proteins 
required to trigger retrograde transport of autophagosomes 
and autolysosome formation are among TBK1 substrates, 
too (Oakes et al. 2017).
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TBK1 mutations were firstly identified in ALS in 2015 
through whole-exome sequencing of large patient cohorts 
of European ethnicity. Subsequently, additional studies 
confirmed the role of TBK1 in ALS pathogenesis, includ-
ing ALS/FTD (Le Ber et al. 2015; Williams et al. 2015; 
Shu et al. 2016; Tsai et al. 2016; Borghero et al. 2016; van 
Rheenen et al. 2016). To date, more than 90 TBK1 mutations 
have been reported (Abramzon et al. 2020), and while they 
are rare in sALS patients, they account for around 3–4% of 
fALS and ALS/FTD cases (Cirulli et al. 2015; Freischmidt 
et al. 2015; Gijselinck et al. 2015). Most identified TBK1  
variants are missense mutations with uncharacterized 
pathogenic effects (Oakes et al. 2017). On the other hand,  
nonsense and frameshift TBK1 mutations associated to 
the deletion of its second coiled-coil domain (CCD2) are 
reported to alter TBK1 ability to interact with adaptor pro-
teins that regulate its localization and activation of down-
stream signaling pathways (Ryzhakov and Randow 2007). 
Nonsense and frameshift TBK1 mutations also correlate with  
reduced TBK1 expression as a consequence of mRNA decay 
(Freischmidt et al. 2015; Brenner et al. 2019). Thus, the 
pathogenetic mechanisms underlying TBK1-related ALS 
cases are considered to depend on the loss of TBK1 function.

Abolishment of the interaction between TBK1 and OPTN 
by TBK1 mutations seems to play a prominent role in ALS 
pathogenesis. Indeed, an ALS-related TBK1 mutant deprived 
of amino acids 690–713 in the CCD2 domain was shown 
to be unable to bind OPTN when transiently overexpressed 
in HEK293T cells while preserving interaction with other 
TBK1 protein partners (Freischmidt et al. 2015). The same 
was demonstrated for additional TBK1 mutants (Richter et al. 
2016; Moore and Holzbaur 2016; Li et al. 2018a; de Majo 
et al. 2018). Moreover, E696K TBK1 was shown to correlate 
with decreased recruitment of OTPN and LC3 to damaged 
mitochondria, leading to mitochondrial dysfunction and accu-
mulation (Moore and Holzbaur 2016). Finally, TBK1 muta-
tions were shown to correlate with the formation of inclusions 
positive for TDP-43, ubiquitin, and SQSTM1/p62 in MNs and 
glial cells of ALS and FTD patients (Van Mossevelde et al. 
2016), further reflecting autophagy disruption. Taken together, 
these data support the hypothesis that the concerted activity of 
TBK1 and OPTN in autophagy and mitophagy is essential to 
prevent neurodegeneration.

Animal models have been generated to better investigate 
TBK1 role in ALS. While heterozygous Tbk1 knock-out 
mice did not develop MN degeneration or autophagy impair-
ments (Brenner et al. 2019), loss of murine Tbk1 resulted 
embryonic lethal (Bonnard et al. 2000), and animals under-
going neuron-specific Tbk1 deletion displayed loss of corti-
cal synapses, dendrite dysmorphism, and accumulation of 
neurofibrillary tangles correlating with motor and cognitive 
defects reminiscent of ALS/FTD (Duan et al. 2019). Addi-
tionally, loss of one Tbk1 allele in a G93A SOD1 murine 

model accelerated autophagy dysfunction and muscle den-
ervation during the early stage of ALS, but at the same time, 
it extended mouse survival by reducing neuroinflammation 
at later stages (Brenner et al. 2018). A comparable disease 
course was observed in G93A SOD1 mice harboring Tbk1 
mutations that impair its kinase activity (Gerbino et al. 
2020). Therefore, these findings seem to indicate that loss 
of TBK1 function does not only lead to ALS development 
but can also modify the course of the pathology.

TUBA4A

α-tubulin isoform 4a (TUBA4A) is encoded by the gene 
TUBA4A (chromosome 2q35). It is ubiquitously expressed 
but particularly enriched in neurons (Rustici et al. 2013; 
Smith et al. 2014). α-and β-tubulins heterodimerize to form 
microtubules, cytoskeletal scaffolds along which kinesin- 
and dynein-mediated transport occurs in cells (Fig. 3).

TUBA4A mutations were firstly identified in familial 
ALS and ALS/FTD in 2014 based on exome sequencing 
performed on a large cohort of European and American 
patients (Smith et al. 2014). In the following years, addi-
tional TUBA4A mutations were found in other European and 
Asian cohorts (Dols-Icardo et al. 2016; Perrone et al. 2017; 
Li et al. 2018b) and even among sporadic ALS and ALS/
FTD patients (Pensato et al. 2015). Differently from other 
tubulin genes that are highly expressed during brain devel-
opment and that are therefore found mutated in neurode-
velopmental disorders, TUBA4A expression increases with 
aging (Tischfield et al. 2011; Hersheson et al. 2013), which 
might explain why its mutations are associated to late-onset 
neurodegeneration (Smith et al. 2014; Clark et al. 2016) and 
may account for TUBA4A contributions to ALS progres-
sion. The frequency of TUBA4A mutations is anyway low 
in all tested populations so far, making them a rare cause of 
ALS (Chia et al. 2018).

Most TUBA4A mutations found in ALS cluster in the pro-
tein domain involved in the interaction with other tubulins 
and with the molecular motors kinesin and dynein (Howes 
et al. 2014) and are therefore predicted to tamper with micro-
tubule stability and microtubule-based transport in cells. 
To date, the best characterized ALS-associated TUBA4A 
mutant is the truncated W407X variant, which displays 
impaired α/β-tubulin dimer formation and incorporation into 
microtubules accompanied by aggregation propensity when 
expressed in primary MNs (Smith et al. 2014).

Concerning autophagy, disruption of microtubule 
dynamics related to TUBA4A mutations might negatively 
reflect on autolysosome formation, which is dependent on 
dynein-mediated retrograde transport (Rademakers and van  
Blitterswijk 2014). Mutant TUBA4A aggregation might fur-
ther worsen autophagy impairment; however, up to now, no 
data are available to confirm this hypothesis except for the 
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fALS-associated W407X mutant (Smith et al. 2014). The 
generation of animal models could help in characterizing 
the pathogenetic mechanisms associated to TUBA4A muta-
tions in ALS.

UBQLN2

Ubiquilin-2 (UBQLN2) is one of the four members of the 
ubiquilin (UBQLN) family in the human genome encoded by 
the UBQLN2 gene located on chromosome Xp11.21 (Kaye and 
Shows 2000). It is expressed in various tissues, but the high-
est expression levels are found in muscles and brain (Lin et al. 
2021). UBQLN2 localizes mainly in the cytoplasm where it 
functions in the maintenance of proteostasis. UBQLN2 pre-
sents an ubiquitin-like (UBL) domain at the N-terminus, which 
interacts with the regulatory cap of the proteasome, and a UBA 
domain at the C-terminus, which recognizes polyubiquitin 
chains present on substrates; the UBQLN2 central domain is 
characterized by the presence of four stress-induced protein 1 
(STI-1)-like motifs, which bind to heat shock proteins through a 
still unclear mechanism, and a proline-rich repeat domain con-
taining 12 PXX repeats whose function is unknown (Kaye et al. 
2000; Walters et al. 2002; Ko et al. 2004; Deng et al. 2011). 

UBQLN2 activity mainly consists in promoting the dis-
posal of misfolded or redundant proteins through the UPS or 
autophagy. The UBL and UBA domains permit the shuttling 
of ubiquitinated proteins to the UPS. UBQLN2 substrates 
are cytosolic and ER proteins. Indeed, through its bind-
ing with ER membrane proteins as ubiquitin regulatory X 
domain-containing protein 8 protein (Ubxd8) and homocyst-
eine-induced ER protein (Herp), UBQLN2 specifically pro-
motes the disposal of altered ER proteins. UBQLN2 inter-
action with autophagy is more complex. In the first place, 
UBQLN2 is implicated in autophagy initiation; indeed, it 
regulates mTORC1 activity. Loss of UBQLN2 activity pre-
vents mTORC1-mediated autophagy inhibition resulting in 
an increased autophagy induction (Şentürk et al. 2019). Fur-
thermore, UBQLN2 interacts indirectly with LC3 through 
its UBA domain promoting autophagosome formation 
(N’Diaye et al. 2009), and it was found also to interact with 
OPTN, confirming a role of UBQLN2 in the first steps of 
the autophagic pathway (Figs. 1 and 2) (Osaka et al. 2015). 
Recent data showed a role of UBQLN2 also in lysosomal 
activity by regulating its acidification. Indeed, different 
groups presented two parallel mechanisms through which 
UBQLN2 interacts with subunits of v-ATPase, promoting 
its formation (Fig. 3) (Şentürk et al. 2019; Wu et al. 2020). 
Thus, silencing or mutations of UBQLN2 gene are associ-
ated to an increase in autophagy induction that is paralleled 
with a blockage of autophagosome disposal due to a loss of 
lysosome activity (Şentürk et al. 2019). 

UBQLN2 mutations were associated in 2011 to a domi-
nantly inherited, X-linked form of ALS and ALS/FTD  

(Deng et al. 2011). To date, more than 20 mutations have 
been detected mainly in the PXX domain, while fewer are 
present in STI-1-like motifs  or between domains [as reviewed 
in (Renaud et al. 2019)]. UBQLN2 mutations impair cellular 
homeostasis with different mechanisms: by triggering protea-
some impairment, preventing the delivery to the proteasome 
of polyubiquitinated substrates, which accumulate leading to 
further cellular alterations (Chang and Monteiro 2015); by 
altering different steps of autophagy as previously described; 
by interacting with TDP-43 and its C-terminal fragments, 
triggering their aggregation and formation of cytoplasmatic 
inclusions (Cassel and Reitz 2013; Picher-Martel et al. 2015); 
and by promoting neuroinflammation through direct inter-
action with NF-κB, an inflammation transcriptional factor 
regulator, or through a TDP-43-dependent process (Swarup 
et al. 2011). Different pathological mechanisms associated 
with UBQLN2 mutations result in colocalization of UBQLN2 
and TDP-43 cytoplasmic inclusions in the brain and the spi-
nal cord of patients. Of interest, UBQLN2 colocalization 
with TDP-43 was also present in the spinal cord of sALS 
patients, underling a central role for UBQLN2 in ALS pathol-
ogy (Fecto and Siddique 2011).

In vivo models were developed to better understand 
UBQLN2 pathology. The first model generated was a 
mouse strain harboring the P497H UBQLN2 substitution 
under the human UBQLN2 promoter which expressed low 
protein levels (Gorrie et al. 2014). Because of the limited 
mutant UBQLN2 expression, this model presented cognitive 
impairments and hippocampal inclusions but did not show 
MNs loss. Subsequently, two rat models harboring the same 
mutation but expressed at higher levels were developed. 
These models presented impaired autophagy and endocy-
tosis associated with neuronal loss (Wu et al. 2015; Chen 
et al. 2018). Also, transgenic mice expressing the P520T 
substitution, which is highly aggressive in humans causing 
an early ALS/FTD onset (Deng et al. 2011), failed to present 
neurodegeneration, but only displayed alterations in neu-
ronal proteostasis (Sharkey et al. 2020). Furthermore, mice 
and rat knock-out models showed late or no neurodegenera-
tive phenotype. Together, these data suggest that UBQLN2 
pathology is triggered by both GOF and LOF.

VAPB

VAMPs-associated protein B (VAPB) is a member of 
the evolutionarily conserved VAP protein family (Skehel  
et  al. 1995) encoded by the gene VAPB (chromosome 
20q13.32). VAPs localize on the membrane of the ER 
and of ER-Golgi intermediates, in close association with 
vesicle-associated membrane proteins (VAMPs). There, 
VAPs act as adaptors for the recruitment to the ER surface  
of cytosolic proteins mainly identified by the  two pheny-
lalanines in an acidic tract (FFAT) motif (Loewen et al. 
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2003). VAP proteins comprise an N-terminal major sperm 
protein (MSP) domain (Kaiser et al. 2005) involved in target  
proteins recruitment, a central coiled-coil domain, and a 
C-terminal hydrophobic sequence anchoring VAPs to the 
ER membrane. Among VAP interactors, many proteins 
allowing to put the ER in contact with other organelles can 
be found. The interaction sites that form through this pro-
cess are known as membrane contact sites (MCS) and repre-
sent regions of communication between organelles achieved 
in the absence of membrane fusion (Prinz et al. 2020).

Based on these features, VAPB takes part in several cel-
lular processes, among which autophagy can be found. For 
example, VAPB triggers mitophagy by interacting with 
the mitochondrial protein tyrosine phosphatase interacting 
protein 51 (PTPIP51), thus promoting autophagosome for-
mation at the ER-mitochondria interface (Fig. 3) (Gomez-
Suaga et al. 2017). Additionally, VABP regulates autophagy 
through its interaction with RAB3 GTPase-activating protein 
1 (RAB3GAP1), which plays a role in autophagy initiation 
(Spang et al. 2014).

The autosomal dominant P56S substitution was the first 
and best characterized VAPB mutation ever associated to 
ALS (Nishimura et al. 2004; Funke et al. 2010; Di et al. 
2016; Guber et al. 2018). Other VAPB mutations were there-
after associated to fALS (Chen et al. 2010; van Blitterswijk 
et al. 2012a; Sun et al. 2017). The observations made in cel-
lular and animal models of P56S VAPB pathology suggest 
that both LOF and GOF mechanisms might be implicated 
in neurodegeneration. Nevertheless, data collected in ALS 
patient-derived cell models are in contrast with the GOF 
hypothesis. The P56 VAPB residue is evolutionarily con-
served and lies in the MSP domain, in close proximity to the 
FFAT binding site (Nishimura et al. 2004). The P56S substi-
tution almost entirely prevents VAPB binding to its FFAT-
containing cytosolic partners; this contemporarily induces 
mutant VAPB aggregation both in cellular (Nishimura et al. 
2004; Kanekura et al. 2006; Teuling et al. 2007; Suzuki 
et al. 2009) and in murine ALS models (Tudor et al. 2010; 
Qiu et al. 2013; Kuijpers et al. 2013a; Aliaga et al. 2013). 
Aggregating P56S VAPB also sequesters into its inclusions 
both wild-type VAPB (Kanekura et al. 2006; Teuling et al. 
2007; Suzuki et al. 2009) and other proteins involved in 
membrane trafficking and MCS formation (De Vos et al. 
2012; Kuijpers et al. 2013b; Hua et al. 2017). Moreover, 
increased SQSTM1/p62 and LC3 levels were detected in the 
spinal cord of P56S VAPB mice, possibly indicating altera-
tions in the autophagic flux (Larroquette et al. 2015). This 
observation, coupled with the fact that P56S VAPB accu-
mulation was shown to determine profound rearrangement 
of the affected ER sites in cells (Fasana et al. 2010; Papiani 
et al. 2012), might provide a link between disrupted VAPB 
function, ER stress, and autophagy impairments. Indeed, the 
reduction in ER-mitochondria MCS observed upon VAPB 

depletion resulted in an enhancement of the autophagic  
flux in HEK293 cells, probably due to impaired ER-to- 
mitochondria calcium transfer triggering mitophagy  
(Gomez-Suaga et  al. 2017). At the same time, reduced 
VAPB protein levels and no signs of VAPB aggregation 
were detected in sALS spinal cord MNs (Teuling et al. 
2007; Anagnostou et al. 2010) and in P56S VAPB fibro-
blasts, iPSCs, and iPSC-derived MNs (Mitne-Neto et al. 
2011). Additionally, despite harboring MN inclusions, most 
P56S VAPB murine models (Tudor et al. 2010; Qiu et al. 
2013; Kuijpers et al. 2013a) did not develop ALS-like motor 
symptoms, except for the ones overexpressing the highest 
levels of the transgenic protein (Aliaga et al. 2013). The 
same occurred for Drosophila models harboring the P56S 
substitution (Sanhueza et al. 2014; Moustaqim-Barrette et al. 
2014). At the same time, though, VAPB-null mice develop 
mild motor dysfunction (Kabashi et al. 2013), suggesting 
that loss of VAPB function alone might not be sufficient to 
justify the onset of ALS symptoms in patients. Overall, the 
contrasting evidence coming from cellular and animal mod-
els indicates that further investigation is required to better 
elucidate the role of VAPB mutations in ALS pathogenesis.

VCP

Valosin-containing protein (VCP) is an ATPase associated 
with diverse cellular activities (AAA +) encoded by VCP 
gene (chromosome 9p13.3). VCP is ubiquitously expressed 
in tissues (Koller and Brownstein 1987). At cellular level, 
VCP localizes mainly found in the cytoplasm, while a 
smaller fraction binds to organelles or localizes in the nucleus  
(Acharya et al. 1995; Latterich et al. 1995; Madeo et al. 1998; 
Xu et al. 2011; Ramanathan and Ye 2012). VCP functions 
assembling in a homo-hexamer. Each monomer presents an 
N-terminal domain that interacts with adaptors and cofactors; 
two ATPase domains, D1 and D2, that function respectively 
in the formation of the homo-hexamer and in accomplish-
ing VCP activity; and a C-terminal domain that cooperates 
with D2 activity and binds to a small subset of VCP partners 
(Huyton et al. 2003; Niwa et al. 2012; Chou et al. 2014). 

VCP mechanism of action is to identify and segregate ubiq-
uitinated proteins from different cellular compartment and to 
enhance their degradation through the UPS or the autophagic 
pathway. Thanks to the binding of various cofactors and 
adaptors, VCP has a key role in the maintenance of cellular 
homeostasis, regulating different cellular pathways as endo-
plasmic reticulum-associated degradation  (Stein et al. 2014), 
organelle degradation (Tanaka et al. 2010; Papadopoulos et al. 
2017), ribosome-associated degradation  (Verma et al. 2013), 
regulation of autophagy (Hill et al. 2021), chaperone activity 
(Hirabayashi et al. 2001), chromatin-associated degradation 
(Meerang et al. 2011), NF-κB activation (Dai et al. 1998), and 
membrane fusion (Amenta et al. 1978). Most of VCP activity 
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is aimed at regulating and preserving cellular proteostasis. To 
contribute to the maintenance of proteostasis, VCP is involved 
in the routing of misfolded proteins and aggregates to the UPS 
or autophagy for their disposal (Figs. 1 and 2). 

VCP role in addressing substrates to autophagy is still not 
completely clear. However, it was established that VCP inter-
acts with different partners involved in aggresome formation 
and promotes substrates routing to autophagosomes (Iwata 
et al. 2005; Boyault et al. 2006). Besides this, VCP regulates 
different steps of the autophagic pathway [as reviewed in ( 
Ferrari et al. 2022)]. VCP participates in the activation of tran-
scriptional regulators of autophagy, such as NF-κB and TFEB. 
In particular, VCP promotes the degradation of IκBα that 
releases NF-κB permitting its activation (Dai et al. 1998). On 
the other hand, VCP mechanism in the regulation of TFEB is 
unknown, but when lysosomal damage is induced, the silenc-
ing or inhibition of VCP activity stabilizes TFEB activation, 
suggesting that VCP modulates TFEB action (Arhzaouy et al. 
2019). In addition, VCP is involved in autophagy initiation 
and maturation (Figs. 1 and 2). Recent data showed that VCP 
promotes the formation of the initiation complex ATG14-
VPS34-VPS15-BECN1 through two distinct pathways (Hill 
et al. 2021). Different studies show that VCP mutation impacts 
on autophagosome maturation; indeed, VCP silencing or muta-
tions are correlated with an increase in LC3-II and SQSTM1 
protein levels and accumulation of autophagosomes with 
increased size (Ju et al. 2009; Tresse et al. 2010). Finally, VCP 
has a key role in regulating lysosome stability and disposal. 
Studies on muscle tubular  lysosomes show that VCP, sup-
ported by its cofactor small VCP interacting protein (SVIP), 
preserves lysosome stability (Fig. 3). Indeed, the inhibition 
or downregulation of VCP causes lysosomal fragmentation  
(Johnson et al. 2015). VCP, together with its cofactors phospho-
lipase A2 activating protein (PLAA), UBX domain-containing  
protein 6 (UBXD1), and ubiquitin thioesterase OTU1 (YOD1), 
is also essential for damaged lysosome degradation. Indeed, 
they promote the removal of ubiquitinated proteins exposed on 
damaged lysosome membrane, an essential step in lysosome 
disposal (Papadopoulos et al. 2017). 

The essential involvement of VCP in proteostasis is 
also demonstrated by cellular alterations of VCP-patients 
affected tissue. VCP mutations have been mainly associ-
ated in 2004 to inclusion bodies myopathy Paget disease 
and frontotemporal dementia (IBMPFD), a multisystem 
proteinopathy, and in 2010 to fALS (Watts et al. 2004; 
Johnson et al. 2010). To date, more than 40 missense muta-
tions, localized at the interface between N-terminal and D1 
domains, were associated to IBMPFD, and almost 20 muta-
tions, localized at N-terminal and D1 interface and in D2, 
were associated to ALS (Johnson et al. 2010; Mehta et al. 
2013; Kenna et al. 2013). VCP-patients present different 
phenotypes, yet they display similar alterations at cellu-
lar level. In skeletal muscles of VCP-patients inclusions 

positive to ubiquitin and VCP, damaged lysosomes and 
rimmed vacuoles can be found (Watts et al. 2004; Kimonis 
and Watts 2005; Ritson et al. 2010). Similarly, in affected 
neurons  cytoplasmatic inclusions positive to VCP and ubiq-
uitin are also found (Kimonis and Watts 2005). Moreover, 
in both muscles and neurons, TDP-43 mislocalizes and 
forms inclusions (Ritson et al. 2010).

Animal models recapitulate most observations made on 
VCP mutations in vitro and in VCP-patients. VCP mouse 
models  with VCP mutations or conditional knockout (Watts 
et al. 2004; Johnson et al. 2010) present lower survival with 
TDP-43 pathology in spinal cord and/or in skeletal mus-
cle, muscle weakness, increase in fibers size that harbor 
ubiquitinated protein inclusions, and increased autophagy 
activity (Yin et al. 2012; Nalbandian et al. 2012). VCP 
mutants-induced neurodegeneration is also visible in Dros-
ophila VCP models that overexpress mutations of TER94 
(VCP ortholog in Drosophila), such as R152H, R188Q, and 
A229E (corresponding to human VCP mutations R155H, 
R191Q, and A232E). These models present disruption in 
nervous system and in muscle tissue that additionally shows 
specific lysosomal alterations (Chang et al. 2011; Johnson 
et al. 2015). Together, data obtained from animal models 
show an impairment in the autophagic pathway, reinforcing 
VCP essential role in this pathway.

Conclusions

Research over the past decades has highlighted the central 
role played by the autophagic pathway in ALS. Autophagy 
has a determinant role in the disposal of toxic proteins, 
including the aberrant aggregates formed by mutated proteins 
in ALS, and damaged organelles, and its failure in keeping 
under control protein misfolding upon saturating conditions 
is strictly associated to ALS progression. For this reason, 
the modulation of the autophagic pathway has been stud-
ied by different groups and has been outlined as a target to 
ameliorate ALS-related pathological conditions. Moreover, 
as this review summarizes, several ALS-associated mutations 
are found in genes implicated in all different steps of the 
autophagic pathway, from transport to protein degradation. 
Despite the efforts in studying ALS, to date no cure is avail-
able, and no therapies that drastically ameliorate life-span 
have been discovered yet. Thus, by analyzing the physiologi-
cal role of ALS-related genes involved in autophagy and by 
evaluating the main experimental data linking mutations in 
these genes to ALS, it is clear that not all the implications of 
autophagy dysfunction in ALS have been completely unrave-
led yet. Indeed, in several cases, the molecular mechanisms 
explaining the pathogenicity of autophagy-related gene 
mutations found in ALS are still to be fully deciphered. In 
some cases, in vitro and cellular analyses might contrast with 
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observations made in patients or in animal models, indicat-
ing that further studies are required to fully elucidate the 
connection between genes involved in the various steps of 
autophagy and ALS. In addition, this review highlights that 
alterations in autophagy are directly linked with ALS pro-
gression and suggests that a better functionality of autophagy 
could ameliorate the phenotype. Indeed, various studies on 
modulation of autophagy have been carried out and are ongo-
ing with promising results. Compounds that positively modu-
late autophagy, such as trehalose, rapamycin, and colchicine, 
have been tested in animals or are already in clinical trial 
(Castillo et al. 2013; Mandrioli et al. 2018, 2019). These 
compounds stimulate autophagy through different mecha-
nisms that have still to be completely clarified. Potentiation of 
the autophagic flux in ALS is surely positive in presence of a  
LOF of autophagy or in presence of impairment of organelles 
or accumulation of protein aggregates. Contrary, the implica-
tion of a potentiation of autophagy in presence of alterations 
derived by mutations of autophagic components has to be 
carefully analyzed. In this context, a better understanding of 
ALS-related genes function and contribution in each step of 
autophagy is fundamental to fully comprehend the pathologi-
cal mechanisms and to display novel rescue strategies.
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