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Abstract 

Parkinson’s disease (PD) is a debilitating movement disorder typically associated with the 

accumulation of intracytoplasmic aggregate-prone protein deposits. Over recent years, increasing 

evidence has led to the suggestion that the mutations underlying certain forms of PD impair 

autophagy. Autophagy is a degradative pathway that delivers cytoplasmic content to lysosomes for 

degradation and represents a major route for degradation of aggregated cellular proteins and 

dysfunctional organelles. Autophagy upregulation is a promising therapeutic strategy that is being 

explored for its potential to protect cells against the toxicity of aggregate-prone proteins in 

neurodegenerative diseases. Here we describe how the mutations in different subtypes of PD can 

affect different stages of autophagy.  

 

Abbreviations 

AD, Alzheimer’s disease; AMPK, AMP activated protein kinase; ATG, autophagy related genes; CMA, 

chaperone-mediated autophagy; FIP200, focal adhesion kinase family interacting protein of 200 kDa; GBA, 
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glucocerebrosidase; HD, Huntington’s disease; MTOC, microtubule organizing center; mTORC1, 

mammalian target of rapamycin complex 1; PD, Parkinson’s disease; PE, phosphatidylethanolamine; PI3P, 

phosphatidylinositol 3-phosphate; SNCA, synuclein; TFEB, transcription factor EB; ULK1, mammalian 

homologs of the C. elegans uncoordinated-51 kinase 1; WIPI, WD repeat domain phosphoinositide-

interacting protein.  

 

Introduction 

Autophagy is an evolutionarily conserved degradation pathway responsible for digestion and 

recycling of most long-lived intracytoplasmic proteins and organelles. Autophagy is subcategorized 

into three types – microautophagy, chaperone-mediated autophagy (CMA) and macroautophagy.  

Microautophagy involves degradation of cytosolic contents via small invaginations in the lysosome 

membrane (1), while CMA involves selective translocation of cytoplasmic proteins with a KFERQ-

like peptide motif into the lysosomal lumen for degradation (2). Macroautophagy (hereafter called 

autophagy and the focus of this review) is characterized by engulfment of cytoplasmic cargo by a 

double-membraned cup-shaped transient structure known as the phagophore. After the 

phagophore expands and its edges close, the resulting vesicle is known as an autophagosome. 

Autophagosomes then fuse with lysosomes resulting in degradation of the autophagosomal 

contents (Figure 1). This series of events is regulated by an array of proteins called autophagy-

related (ATG) proteins.  

It has become evident in recent years that both selective and non-selective types of autophagy 

exist and maintain degradation of cargo material, such as aggregate-prone proteins (aggrephagy) 

and damaged organelles, such as mitochondria (mitophagy), peroxisomes (pexophagy) and 

endoplasmic reticulum (ER-phagy) (3). Mutations underlying various neurodegenerative diseases 

that manifest with intracytoplasmic protein aggregates have been shown to affect the clearance of 

these substrates by compromising autophagy (4). In the present review, we focus on autophagy 

impairment in Parkinson’s disease (PD). Autophagy upregulation has been studied extensively as 

a promising strategy for treatment of PD. Therefore, a more refined distinction between the classes 

of autophagy defects underlying certain subtypes of PD may be helpful in strategizing effective 

treatments for this condition.   

 

The Autophagic Machinery 

Autophagy is essential for cellular health and is activated as a response to the nutrient state of the 

cell. In basal conditions, the presence of nutrients, growth factors and AMP/ATP levels are sensed 
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by the Rag/Ragulator complex, tyrosine kinase receptors and AMP-dependent protein kinase 

(AMPK), leading to activation of the primordial negative autophagy regulator, mammalian target of 

rapamycin complex 1 (mTORC1). Active mTORC1 inhibits the ULK1-ATG13-FIP200 complex 

through phosphorylation of ULK1/2 and ATG13. The ULK complex is the most upstream unit 

amongst the autophagy proteins and plays a crucial role in autophagy initiation. The inhibition of 

this complex results in suppression of autophagosome formation (5–7).  

 

During cellular starvation, autophagy activation provides building blocks from degraded 

macromolecules. As a response to low nutrient levels, mTORC1 is inhibited leading to 

dephosphorylation of the ULK complex, causing activation of the class III PI3-kinase, VPS34. 

VPS34 is recruited to the phagophore initiation site where it interacts with VPS15, ATG14, and 

Beclin 1 to generate phosphatidylinositol 3-phosphate (PI3P), an essential lipid component of the 

autophagosomes. The presence of PI3P on nascent autophagosomes facilitates the recruitment of 

PI3P-binding proteins, such as WD repeat domain phosphoinositide-interacting protein 2 (WIPI2), 

which is crucial for recruitment of downstream autophagic proteins (8–10).  

 

Next, phagophore elongation occurs, mediated by two specialized ubiquitin-like conjugation 

systems, with membranes obtained from the endoplasmic reticulum, Golgi, mitochondria and 

plasma membrane (11–13). The first system involves a conjugation reaction between ATG12 and 

ATG5 mediated by the E1- and E2-like enzymes ATG7 and ATG10, respectively. The subsequent 

non-covalent binding between ATG12-ATG5 complex and ATG16L1 enables the resulting complex 

to associate with pre-autophagosomal membranes to assist their elongation by recruiting LC3 and 

its family members. Membrane association of LC3 is mediated by the second conjugation system. 

After the C termini of LC3 family members are cleaved by ATG4, exposing glycine residues, LC3 

family proteins can be conjugated to phosphatidylethanolamine (PE) in the preautophagosomal 

membranes via a reaction mediated by ATG7, ATG3, and ATG12-ATG5-ATG16L1. The lipid-

conjugated LC3 is known as LC3-II. The transmembrane protein mATG9 may assist in the 

expansion of the phagophore by providing further lipids (14,15).  

 

Following the completion of autophagosome formation, these vesicles are transported along 

microtubules to the microtubule organizing center (MTOC), where lysosomes are clustered. This 

facilitates autophagosome-lysosome fusion, which results in the degradation of the 

autophagosomal contents by lysosomal acid hydrolases. The expression of lysosomal enzymes is 
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regulated by the transcription factor EB (TFEB), which is the master regulator of autophagy and 

lysosomal genes. Translocation of TFEB to the nucleus enables its transcriptional activity, 

autophagosome formation and autophagosome-lysosome fusion (16). Studies have shown that 

overexpression of TFEB improves degradation of complex molecules (17,18).  

 

Autophagy and Parkinson’s Disease  

Basal autophagy is essential for maintaining neuronal homeostasis, since neurons are particularly 

susceptible to the accumulation of defective organelles and proteins due to their postmitotic nature. 

The importance of autophagy for the nervous system was confirmed by studies in which 

suppression of autophagy in atg7- and atg5-deficient mice led to phenotypes similar to those 

observed in neurodegenerative diseases, such as progressive motor impairment and 

intracytoplasmic inclusion bodies (19,20). This supports earlier studies showing the importance of 

autophagy in the clearance of aggregate-prone proteins in models of PD (21). Consistent with this, 

in vivo and in vitro studies, described below, have shown that autophagic dysfunction plays a likely 

role in disease pathogenesis.  

 

PD is the most common neurodegenerative movement disorder. It is characterized by motor 

deficits and non-motor symptoms, like mood disorders and cognitive impairment. PD pathology is 

characterised by progressive neuronal loss which is observed in many areas but is most marked in 

dopaminergic neurons in the substantia nigra, and the presence of intraneuronal inclusions known 

as Lewy bodies (LBs) and Lewy neurites enriched with filamentous forms of α-synuclein (α-syn) 

(22,23). This protein, encoded by the SNCA gene, has been extensively studied. Multiplications of 

the SNCA locus cause autosomal dominant forms of PD. The identification of familial cases with 

SNCA multiplications revealed a strong correlation between levels of α-syn and disease severity 

(24). Although these findings show that increased levels of α-syn is critical for disease severity, α-

syn mRNA levels do not consistently change in sporadic PD cases. Since α-syn degradation is 

maintained by multiple degradative routes including autophagy (21), chaperone-mediated 

autophagy (CMA) (25) and the endolysosomal pathway (26), impaired clearance of α-syn is 

suggested to be an underlying mechanism responsible for α-syn accumulation and aggregation in 

sporadic cases of PD.  
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Initial genetic studies led to the discovery of causal mutations in PD, which were subjected to 

extensive research and many were found to have functions related to autophagy. These can be 

subdivided into mutations that affect mitophagy or cause trafficking or lysosomal defects (Figure 

2). Consistent  with the converging evidence pointing towards impaired autophagy in PD, a recent 

meta-analysis of genome-wide association studies (GWAS) has identified novel PD risk loci that 

may play roles in autophagy and lysosomal function (27).  

 

Mitophagy defects in PD  

Mitochondria are essential for maintaining critical cellular functions, such as generating energy. 

Genetic linkage studies identified mutations in phosphatase and tensin homologue-induced 

putative kinase 1 (PINK1 or PARK6) and Parkin (PARK2) in autosomal recessive juvenile 

Parkinson’s disease. PINK1 and Parkin coordinately regulate the autophagic degradation of 

mitochondria (mitophagy), which is a crucial quality control that removes defective mitochondria 

from the cells, and these two proteins were first shown in D. melanogaster studies to act via the 

same pathway (28–30). Under normal conditions, the mitochondrial serine/threonine kinase PINK1 

is recruited to the inner mitochondrial membrane (IMM) by the translocase of the outer membrane 

(TOM) complex and the translocase of the inner membrane (TIM23) complex. It is then cleaved by 

the mitochondrial processing peptidase (MPP) and presenilin-associated rhomboid-like protein 

(PARL) before it is translocated back to the cytoplasm. The cleaved PINK1 is ubiquitinated and 

consequently degraded by the 26S proteasome. However, when mitochondria are depolarised or 

damaged, PINK1 accumulates on the outer mitochondrial membrane (OMM), where it 

phosphorylates parkin and ubiquitin on Ser65, which in turn leads to activation of Parkin (31). 

Activated Parkin forms polyubiquitin chains on damaged mitochondria, which are then 

phosphorylated by PINK1. The phospho-polyubiquitination of dysfunctional mitochondria enables 

the binding of autophagy receptors, such as NDP52 and Optineurin, which serve as signals for 

autophagic clearance by recruiting LC3-containing phagophores (3,32,33).  

 

The function of these PD-related mitophagy effectors have been subject to extensive research. 

Interestingly, deletion of parkin in mouse models did not cause an obvious behavioural phenotype 

(34–36), although it impaired striatal neuron mitochondria and caused a deficit in evoked dopamine 

release (37). PINK1 deletion also resulted in striatal mitochondria defects and increased sensitivity 

to oxidative stress (38). However, a study in which parkin is deleted in adult mice described age-

dependent loss of dopamine neurons, suggesting the existence of a compensatory mechanism in 
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germline knockouts (39). The importance of Parkin for ensuring mitochondrial quality was further 

shown in a study using the so-called mutator mice, in which mitochondrial function is gradually 

impaired due to an accelerated generation of mtDNA mutations. The absence of Parkin in the 

mutator mice led to degeneration of dopaminergic neurons. The motor deficit that appeared in the 

Parkin-mutator mice was reversed by administration of L-DOPA (40). A recent study in DA neurons 

derived from iPSCs with Parkin or PINK1 mutations show impaired ubiquitination of mitochondria  

and may explain how these mutations cause reduced clearance of damaged mitochondria (41).   

Mutations in the F-box protein 7 (FBXO7) gene (PARK15) are associated with a severe form of 

juvenile onset PD. FBXO7 interacts with PINK1 and Parkin and helps facilitate Parkin-mediated 

mitophagy (42). PD-associated FBXO7 mutations in D. melanogaster led to mitochondrial toxicity 

as a result of FBXO7 aggregation in the mitochondria (43). 

 

Trafficking defects in PD  

It is well-established that α-syn plays a substantial role in PD pathogenicity. The presence of α-syn 

inclusion bodies affects autophagosome maturation and fusion with lysosomes, resulting in 

decreased protein degradation (44). In vitro studies show that the presence of α-syn inclusions 

specifically inhibits transport of endocytic and autophagic vesicles (45). Additionally, 

overexpression of α-syn in vitro and in vivo leads to compromised autophagosome biogenesis by 

inhibiting Rab1 causing mislocalization of mATG9 (46).  

 

Autophagy is also impaired by the vacuolar protein sorting-associated protein 35 (VPS35) D620N 

mutation causing an autosomal dominant form of PD. VPS35 is a component of the retromer 

complex, which is required for the recruitment of the actin nucleation-promoting WASP and Scar 

homolog (WASH) complex to endosomes to facilitate protein sorting (47) and trafficking of 

transmembrane receptors within the endosome-to-Golgi retrieval pathway (48). D620N VPS35 

associates poorly with the WASH complex and impairs the recruitment, which causes mATG9 

mislocalization and inhibition of autophagosome formation (49). Interestingly, the effects of the 

VPS35 D620N mutation on autophagy were not mimicked by loss of VPS35 in this study and were 

unrelated to retrograde endosome-to-Golgi trafficking, suggesting that the point mutation may 

affect only a subset of VPS35 functions. Studies suggest that VPS35 interacts with Parkin (50), 

which in turn ubiquitinates VPS35 in human neuroblastoma cells (51). Interestingly, loss of Parkin 

led to decreased membrane association of VPS35 (52). Additionally, the D620N VPS35 mutation 
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has been suggested to affect the endolysosomal pathway (53) leading to increased α-syn 

aggregation (54). A study conducted in α-syn expressing mice showed a reduction in α-syn 

inclusions and reduced neuronal loss when delivering lentiviral WT VPS35, in contrast to lentiviral 

D620N VPS35 (55).  

 

Lysosomal defects in PD 

Degradation of α-syn can be maintained via multiple degradative routes. However, regardless of 

the route, functioning lysosomes are required for the degradation. The importance of lysosomal 

function for α-syn clearance was suggested by a study conducted in both cathepsin D (CatD) 

deficient mice and C. elegans showing that not only does CatD deficiency impair autophagy, but it 

also causes accumulation of α-syn aggregates in the nervous system (56). As outlined below, 

there is increasing evidence of lysosomal defects in PD. 

 

Autosomal dominant mutations in the gene LRRK2, which encodes a multidomain protein with 

multiple functions, are among the most common genetic determinants underlying familial forms of 

PD. The causative role of LRRK2 in PD has been studied extensively and many studies suggest 

that LRRK2 is involved in endosome-to-lysosome trafficking. A study in D. melanogaster showed 

that the LRRK2 homolog, Lrrk, is localized on late endosomal and lysosomal membranes and that 

Lrrk physically binds to the late endosomal protein Rab7. Overexpression of mutant GS lrrk, 

analogous to the most common PD causing mutation in human LRRK2 (G2019S), led to defective 

lysosomal positioning mediated by Rab7 (57). Further studies in D. melanogaster showed that loss 

of Lrrk function led to the accumulation of enlarged lysosomes containing undigested content, 

indicating defective lysosomal degradation. Constitutive activation of Rab9, which promotes 

endosomal recycling, suppressed the lysosomal dysfunction caused by the G2019S lrrk mutation 

(58). Additionally, endolysosomal sorting defects were observed in primary rodent neurons 

expressing G2019S LRRK2, leading to VPS35 retromer complex deficiency (59). The notion that 

LRRK2 is involved in regulating lysosome function is further supported by a study conducted in 

mice and in primary cells. In this study, expression of G2019S LRRK2 led to production of 

enlarged lysosomes and a reduction in lysosomal pH. The perturbations in lysosomal pH and 

morphology were rescued by selective inhibition of LRRK2’s kinase activity. This suggests that the 

G2019S LRRK2 mutation promotes lysosomal dysfunction (60).  

 

The role of LRRK2 in autophagy has been controversial, as LRRK2 knockdown has been shown to 

both reduce and potentiate autophagic flux (61,62). Studies in mutant fibroblasts showed both 
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increased levels of autophagy through activation of the MEK/ERK pathway in G2019S-LRRK2 

cells (63) and decreased responses to autophagy induction in R1441G, Y1699C and G2019S-

LRRK2 cells. Studies of PD fibroblast-derived neurons (G2019S-LRRK2) also showed impairment 

of autophagy, however at the stage of autophagosome clearance level rather than induction. A 

recent study in an astrocyte cell model proposes that the kinase activity of LRRK2 negatively 

regulates autophagy, as chemical inhibition of LRRK2 kinase activity led to induction of non-

canonical, mTOR/ULK1-independent, Beclin 1-dependent autophagy (64). LRRK2 studies have 

been complicated by the existence of a wide range of LRRK2 models and LRRK2 modulators and 

the role of LRRK2 in autophagy remains yet to be clarified.  

 

Heterozygous mutations in the gene encoding the lysosomal enzyme glucocerebrosidase (GBA) 

are the most common known genetic risk factor for PD. Individuals carrying a heterozygous GBA 

mutation have a five-fold higher risk of developing PD than non-carriers (65). Homozygous 

mutations in this gene cause Gaucher disease (GD), in which the loss of GBA causes 

accumulation of its substrate glucosylceramide within lysosomes, leading to lysosomal dysfunction 

(66). Studies using iPSC-derived neurons from PD patients with GBA mutations showed increased 

α-synuclein levels as well as autophagic and lysosomal defects (67). In non-GBA related PD 

patients, α-syn accumulation impairs trafficking of GBA to lysosomes (68). This suggests a 

possible positive feedback loop, in which loss of GBA leads to impaired lysosomal function and α-

syn accumulation. Inhibition of glycosylceramide synthase (the enzyme that regulates the 

formation of the GBA substrate glucocerebroside) in a mouse model of GBA-related 

synucleinophathy and in mice overexpressing α-syn (A53T) reduced α-syn and ubiquitin 

accumulation in hippocampal neurons and improved cognitive behaviour (69).  

 

Mutations in the gene ATP13A2/PARK9, which encodes a transmembrane lysosomal P-type 

ATPase, cause familial Kufor-Rakeb syndrome characterized by early-onset Parkinsonism (70). 

Mutations in ATP13A2 impair lysosomal function, which manifests with an accumulation of 

lysosomes and autophagosomes (71). Studies in cell models of PD showed that the dopaminergic 

neuron loss caused by α-syn overexpression could be rescued by co-expression of ATP13A2. 

Additionally, knockdown of the ATP13A2 ortholog in C. elegans enhanced α-syn misfolding, 

suggesting a link between α-syn and ATP13A2 (72). This was further supported by a study in 

which loss of ATP13A2 in vitro impaired lysosomal function and led to α-syn accumulation (73). 

The increase in α-syn was, however, not observed in mice, in which loss of ATP13A2 caused 

endolysosomal abnormalities without disrupting α-syn levels (74). Depletion of ATP13A2 in vitro 

led to a decrease in the levels of another PD-associated gene, synaptotagmin 11 (SYT11). The 



9 
 

decrease in SYT11 can account for the lysosomal dysfunction and impaired autophagosome 

degradation resulting from ATP13A2 deficiency, since SYT11 overexpression in ATP13A2 

knockdown cells was able to rescue the autophagy defects in these cells, suggesting that these 

proteins act in the same pathway (15).  

 

Autophagy as a therapeutic strategy 

There is compelling evidence suggesting that impaired trafficking to the lysosome is a common 

mechanism underlying PD pathogenesis and that the aggregate-prone α-syn is an autophagy 

substrate (21,75). Upregulation of autophagy for degradation of aggregate-prone proteins is a 

promising mechanism to protect cells against the toxicity of such proteins and is, therefore, a major 

therapeutic strategy that is being explored (76). 

 

Autophagy can be upregulated by targeting either the mTOR-dependent or mTOR-independent 

pathway. The allosteric mTORC1 inhibitor rapamycin ameliorates toxicity in animal models of PD 

(77,78). Due to its non-ATP-competitive inhibitory properties, rapamycin possesses a safer profile 

than ATP-competitive mTOR inhibitors like Torin1. While rapamycin specifically inhibits mTORC1, 

Torin1 inhibits mTORC1 as well as mTORC2, which is a positive autophagy regulator, thus leading 

to neuronal toxicity rather than protection (77). 

 

Several mTOR-independent compounds that stimulate autophagosome formation have been 

studied for their therapeutic potential (79). Some of those have been shown to induce autophagy 

by stimulating the AMPK pathway, including the FDA-approved compound trehalose, which 

induces autophagy and enhances clearance of α-syn  both in vitro (80) and in vivo (81). Nilotinib, a 

tyrosine kinase inhibitor and AMPK activator protects against loss of DA neurons and improves 

motor behaviour in a mouse model of PD by accelerating autophagic clearance of α-syn (82).  

 

At early stages of disease, pharmacological activation of autophagosome biogenesis may be 

neuroprotective. Such strategies have potential for treating PD variants where increased levels of 

α-syn caused by factors like SNCA multiplication is the underlying mechanism and impairs not only 

autophagosome formation (46), but also endosomal trafficking (83), chaperone-mediated 

autophagy (84) and mitochondrial fusion (85). Indeed, lentiviral delivery of Beclin 1, which is a part 

of the VPS34 complex, into α-syn  transgenic mice reduced α-syn accumulation by inducing  
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autophagosome biogenesis and enhanced lysosomal activation (75). However, inducing 

autophagy may be detrimental, if the presence of α-syn containing inclusion bodies is due to 

impaired autophagosome clearance caused by compromised lysosomal function, as is the case for 

several PD variants. In PD cases with mutations causing impaired autophagosome clearance, an 

upstream induction of autophagosome biogenesis may cause a pathological accumulation of 

autophagosomes and exacerbate disease.  

 

Since α-syn aggregation in some cases of PD is associated with reduced lysosomal capacity 

implied by the impaired trafficking of lysosomal hydrolases (86) and reduction of lysosomal 

markers in nigral DA neurons (87), enhancement of lysosomal capacity through strategies like 

gene therapy may be a promising strategy. A study conducted in a PD model with adeno-

associated virus (AAV) vector-mediated overexpression of human wild-type (WT) α-syn in the rat 

midbrain showed that delivery of the TFEB gene prevents α-syn  induced neurodegeneration (88).  

 

Although autophagy upregulation is a strategy that holds great therapeutic potential, the side-effect 

profiles of many autophagy inducers make them unsuited for long-term treatment due to the 

caveats related to prolonged autophagy upregulation. Development of specialized autophagy 

modulators with tightly regulated mechanisms of action is desirable for effective and differential 

treatment of the subtypes of PD.  

 

 

Concluding remarks 

Treatment of PD is expected to become more personalized in the future, due to the heterogeneity 

in causal elements underlying the vast range of PD variants. This will be facilitated by  

understanding the genetic determinants and molecular mechanisms responsible for the clinical 

phenotype of each PD patient, in order to tailor the most appropriate treatment option towards the 

elements that specifically disrupt autophagy and α-syn clearance in each case. 
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Figure Legends: 

Figure 1. Overview of the autophagy pathway. Low levels of nutrients, growth factors and 

energy levels culminate in inhibition of mTORC1 and AMPK activation. AMPK activates the ULK1 

complex, which subsequently activates the VPS34 complex, resulting in PI3P synthesis. PI3P 

recruits WIPI2 and assists in the recruitment of the ATG12-ATG5-ATG16L1 complex, which is 

essential for the conjugation of LC3-I to PE, leading to membrane elongation and engulfment of 

cytosolic contents. These include aggregate-prone proteins and damaged organelles that 

ultimately are degraded in the lysosome after fusion with autophagosomes. Upregulation of 

autophagy after starvation/mTOR inhibition is in part regulated by translocation of TFEB to the 

nucleus, where it induces transcription of many autophagic and lysosomal genes. AMPK, AMP-

dependent protein kinase; FIP200, focal adhesion kinase family interacting protein of 200kD; 

mTORC1, mammalian target of rapamycin complex 1; PE, phosphatidylethanolamine; PI3P, 

phosphatidylinositol 3-phosphate; TFEB, transcription factor EB; ULK, mammalian homologs of the 

C. elegans uncoordinated-51 kinase. 

Figure 2. PD-related genes associated with the autophagic and endolysosomal pathways. A 

variety of genes associated with sporadic and familial forms of PD are known to affect mitophagy, 

autophagosome biogenesis, lysosomal function and lysosome formation.  
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