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Abstract

Autophagy has a crucial role in many cancers, including brain tumors. Several types of endogenous molecules (e.g.

microRNAs, AKT, PTEN, p53, EGFR, and NF1) can modulate the process of autophagy. Recently miRNAs (small non-

coding RNAs) have been found to play a vital role in the regulation of different cellular and molecular processes,

such as autophagy. Deregulation of these molecules is associated with the development and progression of

different pathological conditions, including brain tumors. It was found that miRNAs are epigenetic regulators, which

influence the level of proteins coded by the targeted mRNAs with any modification of the genetic sequences. It has

been revealed that various miRNAs (e.g., miR-7-1-3p, miR-340, miR-17, miR-30a, miR-224-3p, and miR-93), as

epigenetic regulators, can modulate autophagy pathways within brain tumors. A deeper understanding of the

underlying molecular targets of miRNAs, and their function in autophagy pathways could contribute to the

development of new treatment methods for patients with brain tumors. In this review, we summarize the various

miRNAs, which are involved in regulating autophagy in brain tumors. Moreover, we highlight the role of miRNAs in

autophagy-related pathways in different cancers.
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Background
Brain tumors arise from a wide variety of cell types,

which give rise to tumors with different degrees of

malignancy and invasiveness, and can afflict both adults

and children [1, 2]. Despite the low incidence of these

tumors, they are a leading cause of cancer-associated

mortality and morbidity, particularly in young adults and

children, where they account for about 20 and 30% of

cancer deaths, respectively. Metastasis to the central

nervous system (CNS) is also responsible for deaths in

patients with other types of malignancies. In 2015, CNS

tumors were estimated to represent 2.6% of cancer-

related deaths as well as 1.4% of newly diagnosed

cancers [3–5].

Because surgical brain tumor resection only leads to

survival of a few months (median of 3 months), many

studies have been done to improve the effectiveness of

treatment, because complete tumor removal is usually

impossible [6, 7]. The surgical elimination of the tumor

is dependent on the glioma sub-type and its location

within the brain [6]. However, although additional

chemotherapy and radiotherapy can prolong median

survival up to more than 1 year, tumor cells still develop

resistance mechanisms to these therapies [8–10]. Identi-

fying the detailed molecular mechanisms involved in

tumor progression could reveal novel approaches to

developing more effective therapies.
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Several studies have revealed the contribution of

autophagy in the pathogenesis of brain tumors [11, 12].

Autophagy is known to a well-conserved cellular path-

way designed for recycling and degrading damaged or

denatured proteins, together with long-lived or short-

lived intracellular organelles [13, 14]. The autophagy

process can be categorized into 3 sub-types called,

micro-autophagy, macroautophagy, and chaperone-

mediated autophagy [15]. Autophagy plays important

roles in many biological functions ranging from embry-

onic development to cellular survival [16]. Dysfunction

of the autophagic process has been correlated with a

wide range of age-related diseases, such as CNS-related

disorders and cancers [17]. In recent years, autophagy

has begun to be investigated as a therapeutic target in

several malignancies, such as breast cancer [18] and mel-

anoma [19, 20]. There are currently a few anticancer

treatments which act on autophagy pathways. Fortu-

nately, compounds that directly or indirectly modulate

autophagy are currently being studied in the context of

phase I and phase II clinical trials [21]. Additionally, the

regulation of autophagy has also been identified as an

approach to the treatment of brain tumors in both chil-

dren and adults [22–25].

Nevertheless, the precise role of autophagy in pediatric

CNS tumors is not completely understood, which high-

lights the need to reveal additional details of autophagy-

related processes to assess whether the contribution of

autophagy inhibition to cancer therapy is a valid ap-

proach [26]. It has been shown that various cellular and

molecular mechanisms are associated with autophagy-

related processes in brain tumors and also in other dif-

ferent cancers. Along with genetic mechanisms, epigen-

etic mechanisms (e.g., miRNA networks) play major

roles in the regulation of autophagy-related processes.

MicroRNAs (miRNAs) are short non-coding RNAs

that bind to the 3′ untranslated regions of messenger

RNAs (mRNAs) [27]. In fact, miRNAs can modulate the

expression of more than 50% of each gene because each

individual miRNA is able to target several different

mRNAs [28, 29]. Therefore, the deregulated expression

of miRNAs is likely to be related to the pathogenesis of

many malignancies, such as brain tumors [30]. A variety

of miRNAs are able to modulate autophagy, and its re-

lated mechanisms in various cancers including brain tu-

mors [31–35]. Taken together, many reports suggest

that a better understanding of the underlying molecular

mediators (i.e. miRNAs), and their functions in autoph-

agy pathways, could contribute to the discovery and ad-

vancement of novel treatment approaches for patients

with brain tumors. Some reviews explained the role of

miRNAs and autophagy in generally cancers [36, 37].

However until now, their specific roles in brain tumors

have not been described. Herein, for first time, we

summarize the various miRNAs which are involved in

regulating autophagy in brain tumors. Moreover, we

highlight the contribution of miRNAs to autophagy-

related mechanisms in different cancers.

Autophagy mechanisms
Autophagy (literally self-eating) is the conserved, regu-

lated mechanism for an orderly degradation and recyc-

ling of various cellular elements that are damaged or

unnecessary [38]. It is known that autophagy can be in-

duced in mammalian cells by different factors, such as

oxidative stress that leads to endoplasmic reticulum (ER)

stress. During ER stress, autophagy serves as an essential

protective response [39]. Autophagy was first fully inves-

tigated in yeast cells, and the terminolgy “autophagy

genes, ATG” was agreed upon to describe the proteins

involved. The two main regulatory pathways of the au-

tophagy machinery include the ATG5/7-independent

and ATG5/7-dependent pathways [40, 41].

According to the literature, the Unc-51-like kinase

(ULK) complex containing several proteins, such as

ATG101, ATG13, FIP200 (FAK-family interacting

protein of 200 kDa), as well as ULK1/2 (mammalian

ortholog of yeast ATG1) initiates conventional ATG5/7-

dependent autophagy [42, 43]. Under non-stressed con-

ditions, ULK1/2 is phosphorylated by the mammalian

target of the rapamycin complex 1 (mTORC1) resulting

in inactivation of the ULK complex [44]. On the other

hand, the nutrient-sensitive mTORC1 is inhibited under

nutrient-limiting conditions, and the ULK complex sub-

sequently remains non-phosphorylated, and is therefore

activated [45]. After activation, translocation of the ULK

complex to the phagophore, has been shown to occur.

After this, the class-III phosphatidylinositol 3-kinase

(PI3K) complex containing VPS34 (phosphatidylinositol

3-kinase Vps34), VPS15, Beclin1, as well as ATG14 pro-

teins, becomes activated [46]. This results in the forma-

tion of the mature autophagosome, after phagophore

closure and extension. Two different ubiquitin-like

conjugation systems, microtubule-related protein 1 light

chain 3 (LC3) and the ATG5-ATG12 system, are the key

modulators of the elongation and closure of the autophago-

somal membrane [47–49]. In addition, ATG7 (E1-like en-

zyme) can activate ATG12, which is then transported into

the ATG10 (E2-like enzyme) to eventually conjugate with

ATG5 in the ATG5-ATG12 pathway. The non-covalent

interaction of the ATG5-ATG12 complex with ATG16L

leads to the formation of a large multimeric (E3-like) com-

plex. This tripartite complex is capable of conjugating LC3

to phosphatidyl-ethanolamine (PE) to produce a LC3-PE

conjugate (which is called LC3-II). LC3-II is then loaded

into the phagophore [50–52]. In order to monitor the pro-

gression of autophagy, LC3-II protein is frequently

employed as a biomarker, since it is localized to both the
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outer and inner membranes of autophagosomes and

phagophores [53, 54].

Lysosomes, which are the degrading machinery in

autophagy, are related to MTORC1 activation via the

Rag/RRAG GTPase pathways. It has been shown that a

MTORC1 inhibitor could suppress lysosomal degrad-

ation and increase lysosomal permeability [55]. The

fusion of lysosomes with autophagosomes is the last step

in the autophagy degradation cascade, which is triggered

via three different sets of protein families: (a) RabGT-

Pases (Rab7 protein) [56, 57]; (b) HOPS (homotypic

fusion & the protein sorting tethering complex); and (c)

the SNAREs (soluble N-ethylmaleimide-sensitive agent

attachment protein receptors) [58–60]. Therefore, 3

distinct SNARE proteins; the vesicle-associated mem-

brane protein 8 (VAMP8); synaptosomal-associated pro-

tein 29 (SNAP29); and syntaxin 17 (STX17) can all

induce lysosome-autophagosome fusion [61, 62] (Fig. 1).

The mechanism of ATG5/7-independent autophagy

has been discussed by Nishida and colleagues (2009)

[43]. It was called “alternative autophagy” because ATG7

as well as ATG5 had been thought to be essential for au-

tophagy [43]. The important finding in their study was

that etoposide treatment of ATG5-deficient mouse em-

bryonic fibroblasts (MEFs) triggered autophagy to a

similar degree as in the wild type ATG5-expressing cells.

Additionally, researchers found that PI3K, beclin1, and

ULK1 complex played an important role, just as they do

in conventional autophagy. Moreover, it was also found

that silencing of the ATG5-ATG12 pathway had no ef-

fect on alternative autophagy, and that the conventional

lipidation of LC3 was carried out by Rab9 activity to

allow phagophore extension [43]. Rab9, which usually

induces protein transport from the late endosomes to

the trans-Golgi membrane, has been suggested to carry

out phagophore closure and extension in the alternative

Fig. 1 Autophagy mechanisms. Autophagy includes five steps: initiation, elongation, maturation, fusion and degradation. Various inhibitors can

affect on these processes
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autophagy pathway. This was the same process as

carried out by ATG5/ATG7/LC3 in the conventional

autophagy pathway [63–65]. There are multiple sources

of phagophores in the ATG5/7-dependent autophagy

pathway, but in the alternative autophagy pathway, the

trans-Golgi cisternae seem to be the origin of the mem-

branes [43, 66, 67].

Studies have shown that autophagy is a critical quality

control function in cellular processes. Autophagy at

baseline levels operates to sustain cellular hemostasis.

Some organelles undergo selective turnover through the

autophagy mechanism. Various autophagy pathways can

be distinguished by categorizing the contents of the

autophagosomes. These pathways include, lipid droplets

(lipophagy), ER (reticulophagy or ERphagy), secretory

granules (zymophagy), mitochondria (mitophagy), and

even some parts of the nucleus (nucleophagy). Further-

more, proteins that are prone to aggregation (aggre-

phagy), ribosomes (ribophagy), and pathogens

(xenophagy), can be specifically targeted and degraded

by autophagic processes [68]. Some types of autophagy

function as cellular quality control mechanisms. These

might be able to distinguish their substrates, including

dysfunctional mitochondria or protein aggregates from

their fully functional counterparts. Cargo selection, as

well as autophagy regulation, still have mechanistic as-

pects that remain to be discovered, and this has been a

focus of intense research interest in recent years. Re-

cently a genome-wide small interfering RNA screening

study was carried out to identify the various mammalian

genes that are necessary for selective autophagy. This

study discovered 141 candidate genes, of which 96 of

them were required for Parkin-mediated mitophagy [69].

It appears that these pathways involve particular cargo-

recognizing autophagy receptors that link the autophagic

membranes to the cargo. These receptors may also inter-

act with specific molecular adaptors, which act as scaf-

folding proteins. These proteins may help to connect the

cargo receptor complex to the core ATG machinery.

This connection allows selective sequestration of the

substrate. There are other types of autophagy that are

based on similar core molecular machinery to the non-

selective (starvation-induced) bulk autophagy. On the

contrary, specific molecular adapters or autophagy

receptors are not necessary for the non-selective autoph-

agy pathway. Autophagy receptors have been proposed

as being capable of directing interaction with ATG8/

LC3 family members, as well as the autophagosome

cargo via specific (WxxL) sequences [70]. These are usu-

ally referred to as LC3 recognition sequences (LRS) or

LC3-interacting region (LIR) motifs [71, 72]. By compar-

ing the LIR domains among 20 different autophagy

receptors, studies found that the LIR consensus recogni-

tion motif comprised a sequence of 8 amino acids. This

sequence can be written down as D/E-D/E-D/E-W/F/Y-

X-X-L/I/V. This is not, however, an essential condition,

because at least one acidic residue upstream of the W-

site exists. On the other hand, the terminal L-site con-

tained a hydrophobic aminoacid residue, L, V, or I [73].

It was found that the LIR motifs of numerous autophagy

receptors could all interact with both GABARAP and

LC3 family members in vitro. But whether this inter-

action actually occurs under physiological conditions

should be elucidated in most cases. It may be the case

that all the LIR-containing proteins are not necessarily

autophagy-cargo receptors. For example, there are a

number of LIR proteins, such as ATG4B as well as

ATG3, which could function in the autophagic mem-

brane to produce autophagosomes [74, 75]. Other pro-

teins, such as the coiled-coil domain-containing protein

1 (FYCO1) and FYVE can interact with LC3 to promote

autophagosome maturation [76]. Other proteins, includ-

ing Dishevelled, act as adaptors in the Wnt signaling

pathway, and may exploit an LIR motif for their degrad-

ation [77]. These adaptor proteins have not yet been

completely described, but they appear to interact with

autophagy receptors and act as scaffold proteins for the

assembly of the ATG machinery. This allows the pro-

duction of autophagosomes that surround the cargo that

is required to be degraded. ATG11 and ALFY are exam-

ples of these autophagy adaptors [78, 79]. The

cytoplasm-to-vacuole targeting (Cvt) pathway mediates

the transportation of some vacuolar hydrolases, such as

amino-peptidase 4 (Ape4), α-mannosidase (Ams1), ami-

nopeptidase 1 (Ape1), and Ty1 transposon (in yeast) into

the vacuole [80, 81]. Ape1 is generated from a cytosolic

precursor (prApe1), which undergoes multimerization

into higher order Ape1 oligomers. Ams1, Ty1, and Ape4

then associate with the Ape1 oligomer to generate the

fully assembled Cvt complex, which is sequestered in a

small autophagosome-like vesicle. Sequestering the Cvt

complex inside the Cvt vesicle is a multistage process,

requiring the autophagy receptor ATG19 that promotes

ATG8 binding to PAS, and to adaptor protein ATG11

(Fig. 2a) [82]. ATG11 functions as a scaffold protein by

controlling the ATG9 reservoir, and allowing the Cvt

complex to bind to PAS in an actin-dependent manner,

and consequently forming the ATG1/ULK complex [83].

ATG20, ATG21, and ATG24 are PI3P-binding proteins,

which have been found to be necessary for the Cvt func-

tion, however, the exact functions of these proteins is

not yet clear. Surprisingly, over-expression of ATG11

led to greater ATG9 and ATG8 binding to PAS and

more Cvt vesicles [84]. These results suggest that the

level of ATG11 can selectively control the autophagy

rate. ATG11 can also control the size of the cargo-

loaded autophagosomes in yeast [85]. Some studies have

shown that ATG11 can contribute to other types of
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selective autophagy, including pexophagy and mito-

phagy. The individual autophagy receptors participating

in different ATG11-dependent types of selective autoph-

agy vary, because ATG32 is necessary for mitophagy,

while ATG30 is required for pexophagy [86, 87]. There-

fore, these receptors possess an ATG8-binding LIR motif

similar to ATG19, that governs the interaction with

ATG11. It seems that mammalian cells do not have the

ATG11 homologue. More investigations are required to

define the molecular mechanisms that govern the se-

questering as well as targeting the various cargoes to be

broken down by autophagy in different eukaryotes. The

Cvt pathway machinery appears to be similar to the

mammalian autophagy, named aggrephagy. This entails

the degradation of misfolded and unwanted proteins via

assembling them into ubiquitinated aggregates. Thus,

aggregation of the substrates (prApe1 or misfolded pro-

teins) is essential before sequestering them into the Cvt

vesicles or autophagosomes [88]. Aggregate-containing

autophagosomes, similar to Cvt vesicles, seem to not

contain any cytosolic elements, demonstrating the well-

controlled expansion of the vesicle membrane surround-

ing its cargo [78]. Besides, aggrephagy is dependent on

the unique functions of proteins that select the substrate

[89]. The p62 autophagy receptor and adjacent BRCA1

gene (NBR1) bind the ubiquitinated protein aggregates

via an ubiquitin-associated (UBA) domain, as well as

LC3, through their LIR motifs. This process ensures the

selective autophagic breakdown of the ubiquitinated pro-

teins (Fig. 2b) [90].

p62 and NBR1 also include a Bem1p (PB1) domain

and an N-terminal Phox by which they can be

Fig. 2 Mechanisms for selective autophagy. a Targeting pathway from the cytoplasm to the vacuole (Cvt). Ape1 is generated as a cytoplasmic

precursor protein alongside a propeptide. The molecule will rapidly oligomerize into dodecamers. These dodecamers will link to each other to

create higher-order composites. ATG19 as an autophagy receptor directly attaches to this complex and leads to another Cvt pathway cargo

named Ams1 resulting in the formation of the Cvt complex and ATG19 interaction with an autophagy adaptor ATG11. The Cvt complex is

transported to the location wherein the double-membrane vesicle will be created. ATG11 binds the ATG proteins required to generate Cvt

vesicles. However, ATG19 direct binding to ATG8 allows unique sequestration of the Cvt complex into vesicles. b Scheme for p62 as well as NBR1

acting as autophagy receptors along with the ubiquitinated cargos. Furthermore, P62 and also NBR1 bind to the ubiquitinated cargo through

their ubiquitin-associated (UBA) domain. This interaction initiates aggregate generation via oligomerization of p62 through its Bem1p (PB1) and

Phox domains. p62 interacts with autophagy-linked FYVE protein (ALFY) to activate ATG5 and bind PI3P, as well as direct binding to LC3. These

mechanisms seem to control and activate the ATG function along with the ubiquitinated cargos, and specifically sequester them inside

autophagosomes, similar to the Cvt pathway
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oligomerized, or interact with PB1-containing binding

partners [73]. Moreover, p62 has been implicated as a

cargo receptor for protein aggregates in the autophagic

breakdown of additional ubiquitinated substrates. These

substrates include viral capsid proteins, intracellular bac-

teria, peroxisomes, midbody remnants formed after cyto-

kinesis, bactericidal precursor proteins, and damaged

mitochondria [91]. It has been recently found that the

PB1 domain was necessary for p62 to restrict the autop-

hagosome genesis site in the vicinity of the ER. It was

suggested that PB1 may target the ubiquitinated cargos

to the location of autophagosome formation, or alterna-

tively to improve the assembly of ATG complexes at the

site [91].

MicroRNA biogenesis
MicroRNAs are non-coding single-stranded RNA mole-

cules with a length of approximately 17–25 nt. These

molecules modulate biological processes by posttran-

scriptional gene silencing [92]. Necrotic cells are able to

release the miRNAs as naked oligonucleotides, or else

they are secreted contained in extracellular vesicles. Fur-

thermore, researchers have detected circulating miRNAs

(c-miRNAs) in many body fluids, such as cerebrospinal

fluid (CSF). It has been proposed that these c-miRNAs

play a role in intercellular communication, and thus can

possibly affect various cellular processes at a molecular

level, such as cell growth and invasiveness, and can also

affect drug resistance in the recipient target cells [93,

94].

Long primary pri-miRNAs or miRNAs are usually

transcribed from miRNA genes by RNA polymerase II

[95]. Pri-miRNAs may occasionally produce several dif-

ferent functional miRNAs [95]. In order to produce

hairpin-structured pre-miRNAs, a core ribonuclease

complex, such as Drosha or the respective modulatory

sub-unit DGCR8 is used to process them in the nucleus.

Following cleavage, these hairpin-structured premiRNAs

are transferred from the nucleus into the cytoplasm.

Moreover, further cleavage of the pre-miRNA hairpin

structure in the cytoplasm is carried out by DICER pro-

tein, resulting in the formation of long miRNA duplexes.

These duplexes are loaded into the RNA-induced silen-

cing complex (RISC). In addition, Argonaute (AGO)

proteins are essential elements of the RISC that direct

mature single-stranded miRNAs to their target mRNAs.

However, the destiny of the targeted mRNA is governed

by the interrelationship between the miRNA response el-

ements (MRE) and the mature miRNA seed sequences.

Therefore, base-pairing of the target mRNA to the guide

miRNA leads to its endonuclease-mediated cleavage in a

slicer-dependent manner. The degradation process can

be proceeded by miRNA-mediated deadenylation and/or

de-capping of the target mRNA, while the translation

machinery may be blocked by partial complementary

binding (Fig. 3) [96, 97].

Regulation of autophagy by microRNAs in cancer
Over the past decade, it has been found that miRNAs

are able to control a number of ATGs (and their re-

spective modulators) at various steps of the autophagy

process, including vesicle nucleation, induction, retrieval,

fusion, and finally vesicle elongation (Fig. 3) [98]. The

first step in the induction of autophagy is triggered by

ULK complex activation. This complex includes the

components, ULK1/2, FIP200, and FIP200 [98, 99].

Moreover, ULK1 protein kinase has been considered to

be the main initiator of the autophagic process. In

nutrient-rich conditions, mTOR is able to phosphorylate

the mammalian ATG13 (mATG13) and ULK1 that to-

gether prevent the activation of ULK1 kinase. However,

under starvation conditions, mTOR is inactivated which

then allows ULK1 to phosphorylate FIP200 and

mATG13 as well as itself. This leads to engagement of

ATG complexes, like class-III phosphatidylinositol 3-

kinase (PI3KCIII) to initiate autophagy. In addition, the

miR-290–295 cluster was shown to down-regulate ULK1

levels, so that ATG7 inhibited autophagic cell death

caused by glucose starvation [100]. Leucine deprivation

also repressed expression of miR-106b and miR-20a

through repression of the transcription factor c-Myc.

Transfection of miR-20a or miR-106b mimics could

hamper the leucine deprivation mediated autophagy in

C2C12 myoblasts. This mechanistic investigation sug-

gested the probable targeting of ULK1 by miR-106b and

miR-20a, as well as directly preventing its expression

[101]. A simple chalcone-type flavonoid compound,

called isoliquiritigenin can be isolated from liquorice

compounds. This flavonoid mediated cell cycle arrest,

chemo-sensitization, as well as autophagy in multidrug

resistant MCF7 cells. This mechanic investigation sug-

gested that miR-25 was a key target of soliquiritigenin.

Moreover, miR-25 suppression caused autophagic cell

death via direct ULK1 over-expression [102].

It was reported that miR-126 was down-regulated in

malignant mesothelioma tissue, and also that its over-

expression inhibited cancer cell growth, probably be-

cause of its impact on their metabolism. miR-126 also

led to energy deprivation, reduced glucose uptake, and

inhibited IRS1, resulting in ULK1 activation [103]. Fur-

thermore, miR-126 also affected other metabolism-

associated proteins, including acetyl-CoA-citrate and

pyruvate dehydrogenase kinase. These metabolic

changes induced by miR-126 resulted in the suppression

of tumor growth and activation of autophagy both

in vitro and in vivo [103].

It was recently reported that ULK2, which is another

up-stream autophagy initiator, is a direct target of miR-
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885-3p. Therefore, miR-885-3p may be involved in

autophagy modulation [104]. Vesicle nucleation was

induced by activation of the class-III PI3K/Beclin-1

complex. This complex has numerous binding partners,

including hVPS34, UV-irradiation resistance-associated

gene (UVRAG), Bax-interacting factor-1 (BIF-1), ATG14L,

and Rubicon. Several miRNAs, including miR-376b, miR-

30a/b, miR-17-5p, and miR-216a can all hamper Beclin-1

expression, and inhibit vesicle nucleation [105–108]. In

one study Huang et al. showed that miR-519a could dir-

ectly target Beclin-1 [109]. Furthermore, it was shown that

miR-374a (as well as miR-630) could inhibit the inter-

action of UVRAG with Beclin-1, resulting in autophagy

activation. ATG14 is a vital component of the class III

PI3K/Beclin-1 complex in the nucleation of autophagoso-

mal membranes. ATG14 has also been recognized as a

miR-195 target [110]. Moreover, RAB5A a small GTPase,

which interacts with Beclin-1 and hVPS34 is able to medi-

ate autophagosome formation. In addition, RAB5A can

also be targeted by miRNA-101 to inhibit autophagy,

showing that miR-101 can regulate autophagy at the

vesicle nucleation stage [111, 112]. Thirdly, two different

ubiquitin-like conjugation mechanisms can act to elongate

the vesicle: one is the ATG8-phosphatidyl ethanolamine

mechanism and the other is ATG12-ATG5-ATG16L. Sev-

eral proteins are involved in this process, including ATG7,

ATG10, ATG4, ATG5, ATG3, ATG12, ATG16L, as well

as microtubule-related protein 1 light chain 3 (LC3). MiR-

376b and miR-101 can negatively modulate ATG4C and

ATG4D expression [107, 112]. MiR-376a was found to

have a similar seed sequence and similar targets to miR-

376b, including Beclin-1 [113] and ATG4C (90).

In hepatocellular carcinoma (HCC) cells, the conver-

sion of LC3-I into LC3-II is inhibited by miR-375 via

targeting of ATG7 [114]. Besides, miR-17 could also de-

crease the expression of ATG7 in glioblastoma cell lines

[115]. Furthermore, RAB5A participates in the conjuga-

tion of ATG5 to ATG12 [112]. Thus, miR-101 by target-

ing RAB5A, could have an impact on both the

nucleation and elongation of the vesicles. In addition,

Fig. 3 MicroRNA processing and function. In order to produce hairpin-structured pre-miRNAs, a core ribonuclease complex, such as Drosha or

the respective modulatory sub-unit DGCR8 is used to process them in the nucleus. Following cleavage, these hairpin-structured premiRNAs are

transferred from the nucleus into the cytoplasm. Moreover, further cleavage of the pre-miRNA hairpin structure in the cytoplasm is carried out by

DICER protein, resulting in the formation of long miRNA duplexes. These duplexes are loaded into the RNA-induced silencing complex (RISC). In

addition, Argonaute (AGO) proteins are essential elements of the RISC that direct mature single-stranded miRNAs to their target mRNAs. However,

the destiny of the targeted mRNA is governed by the interrelationship between the miRNA response elements (MRE) and the mature miRNA

seed sequences. Therefore, base-pairing of the target mRNA to the guide miRNA leads to its endonuclease-mediated cleavage in a

slicer-dependent manner

Pourhanifeh et al. Cell Communication and Signaling           (2020) 18:88 Page 7 of 22



miR-204 was able to modulate autophagy in renal clear

cell carcinoma (RCC) by modulating LC3B [116].

MiR142-3p, miR-106B, and miR-93 can all stimulate

autophagy by targeting ATG16L [117, 118]. Whereas,

miR-519a, miR-130a, miR-30a/c, miR-885-3p, miR-630,

miR-181a, and miR-374a, can repress autophagy by tar-

geting ATG5-ATG12 conjugation [119, 120]. The fusion

and retrieval process of autophagosomes could be mod-

ulated by targeting UVRAG, ATG9, ATG18, as well as

ATG2. Many different miRNAs can participate in this

final stage of autophagy. Moreover, ATG2B has been

established as one of the direct targets of miR-130a

[121]. Thus, MiR-34 suppresses autophagy via decreas-

ing ATG9 expression in mammalian cells [122]. Jegga

et al. investigated the transcriptional as well as the post-

transcriptional modulation of ATGs mediated by miR-

NAs. They showed that miR-130, 124, 98, 142, and 204

were all involved in the modulation of autophagy-

lysosomal pathway genes. UVRAG is also one of the key

molecules in the fusion process. The miRNAs that target

UVRAG including miR-374a as well as miR-630, may

participate in the modulation of autophagosome–lyso-

some fusion [109]. There are also some other miRNAs

that could be involved in autophagy modulation. BCL-2

binds to Beclin-1, and consequently inhibits Beclin-1-

dependent autophagy. MiR-182, miR-34a, miR-210,

miR-21, and miR-205 can target BCL-2, and are likely to

modulate autophagy via the BCL-2/Beclin-1-PI3KIII

pathways [123–126]. The p62 protein, called sequesto-

some 1 (SQSTM1), is a selective substrate for autophagy,

and also acts a scaffold in the autophagosome. The miR-

17/20/93/106 has a common AAGUGC seed motif, and

can directly modulate the expression of p62, suggesting

a possible role in autophagy modulation [126]. The

hypoxia-induced miR-155 can promote autophagy by

targeting numerous genes in mTOR signaling pathways,

such as RICTOR, RPS6KB2, as well as RHEB [127]. Fur-

thermore, miR-100 is able to enhance autophagy in he-

patocellular carcinoma cells via targeting IGF-1R as well

as mTOR [128]. Histone deacetylases (HDACs) and his-

tone acetyltransferases (HATs) have a key role in epigen-

etic regulation by affecting protein acetylation. MiR-9

and miR-206 can modulate HDAC and HAT expression

in Waldenstrom macroglobulinemia (WM) cells, leading

to autophagy dependent cell death [129]. HDAC6 is a

prominent cytoplasmic deacetylase, that targets heat

shock protein 90, cortactin, and tubulin. Thus, HDAC6

can modulate cell motility, adhesion, and chaperone

function [130]. It has been shown that HDAC6 has a

role in carcinogenic transformation and may regulate

the epithelial-mesenchymal transition (EMT) in various

types of cancer via modulation of major cellular compo-

nents. Many pieces of evidence suggest that HDAC6

expression is correlated with tumor aggressiveness,

anchorage-independent proliferation, and oncogenic

transformation [131, 132]. Studies have shown that

HDAC6 has a role in the clearance of aggresomes. These

studies also pointed out a functional connection between

autophagy and HDAC6 [133]. Another study showed that

transfection with miR-221 mimics could inhibit HDAC6

expression in pancreatic cancer cells compared to negative

controls [133]. In pancreatic cancer cells, the suppression

of HDAC6 could mediate autophagy. Down-regulation of

miR-221 expression via increasing HDAC6 function could

play an oncogenic role in suppressing autophagy and

apoptosis in pancreatic cancer cells [133].

Long non-coding RNAs are another member of the

class of non-coding RNAs that could have a crucial role

in cancer pathogenesis [134]. It is thought that lncRNAs

exert their modulating roles via sponging of miRNAs

and proteins. The physiological and biological roles of

autophagy-regulating lncRNAs in cancer have recently

been appreciated. The expression of lncRNAs substan-

tially affects the level of autophagy at various steps of

carcinogenesis, and especially in advanced metastatic

cancer [134]. It has been proposed that impaired expres-

sion of MALAT1 (metastasis associated lung adenocar-

cinoma transcript 1) regulates autophagy in different

cancers such as RTB, HCC, glioma, and GC via modula-

tion of miRNAs, miR-101, miR-124, miR-23b-3p, as well

as miR-216b [135–138]. Autophagy and GAS5 expres-

sion were both decreased in breast cancer cells. Further-

more, the GAS5 expression levels in patient samples

showed a negative correlation with tumor size, depth,

TNM stage, as well as with poor clinical prognosis. Sur-

prisingly, vector-induced GAS5 over-expression initiated

autophagy, and also elevated p62, LC3, and ATG3 ex-

pression through sponging of miR-23a. This result could

be helpful as a novel treatment for breast cancer via

modulating the GAS5/miR-23a/ATG3 axis [139].

RNA editing involves discrete changes being made to

specific nucleotide sequences within an existing RNA

molecule. It has recently been shown that the process of

A-to-I RNA editing can alter miRNA function [140]. For

instance, compared to the wild-type miRNA, the edited

miR-200b could increase the invasion and migration of

cancer cells [141]. In another study, it was shown that the

edited miR-379-5p, as opposed to the wild-type miR-379-

5p that targets CD97, suppressed rapid cell proliferation

and increased apoptosis in tumor cells in-vitro [142].

Table 1 and Fig. 4 lists various autophagy-related miRNAs

that have been reported to be involved in cancer.

Autophagy and brain tumors: paving the way for
the development of new drugs
Alterations in autophagy in brain tumors

The poor response of malignant brain tumors to con-

ventional therapies, many of which work by inducing
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Table 1 Selected autophagy-associated miRNAs in cancer

Cancer MicroRNA Target (s) Effect (s) Cell line (s) Ref

Melanoma miR-290-295 ATG7, ULK1 Inhibit autophagy R2L, B16F1 [100]

miR-638 TP53INP2 Inhibit autophagy SK-Mel-147, SK-Mel-28 [143]

Esophageal cancer miR-193b STMN1 Activate autophagy KYSE450 [144]

miR-634 BIRC5, XIAP, APIP, TFAM, OPA1, LAMP2 Inhibit autophagy KYSE850 [145]

Squamous cell carcinoma miR-374a ATG5, UVRAG Inhibit autophagy JHU-029 [146]

miR-630 UVRAG, ATG12 Inhibit autophagy JHU-029 [146]

miR-519a BECN1, ATG16L1, ATG10 Inhibit autophagy JHU-029 [146]

miR-885-3p AKT1, ULK2, ATG16L2, BCL-2 Inhibit autophagy JHU-029 [147]

Colorectal cancer miR-18a hnRNPA1 – HCT116, SW620 [148]

miR-22 BTG1 Inhibit autophagy RKO, SW620 [149]

miR-93 ATG16L1 Inhibit autophagy HCT116 [150]

miR-106 ATG16L1 Inhibit autophagy HCT116 [150]

miR-183 UVRAG Inhibit autophagy HT29, HCT116 [151]

miR-409-3p BECN1 Inhibit autophagy LovoOxa R [152]

miR-502 RAB1B Inhibit autophagy HCT116 [153]

Gastric cancer miR-143 GABARAPL1 Inhibit autophagy MKN28, AGS [154]

miR-181a ATG5 Inhibit autophagy SGC7901/CDDP [155]

Lung cancer miR-7 EGFR Activate autophagy A549, H1299 [156]

miR-16 BCL-2 Inhibit autophagy A549-T24 [157]

miR-17-5p BECN1 Inhibit autophagy A549-T24 [105]

miR-143 ATG2B Inhibit autophagy H1299 [158]

miR-144 TIGAR Activate autophagy H460, A549 [159]

miR-200b ATG12 Inhibit autophagy H1299/DTX, SPC-A1/DTX [160]

miR-216b BECN1 Inhibit autophagy Calu-3, A549 [161]

miR-451 RAB14 – A549, NCI-H520, SPC-A1 [162]

miR-487b-5p LAMP2 Inhibit autophagy H1299, A549 [163]

Breast cancer miR-25 ULK1 Inhibit autophagy MCF-7 [102]

miR-181a ATG5 Inhibit autophagy MCF-7 [119]

miR-199A-5p BECN1, DRAM1 Inhibit autophagy MDA-MB-231, MCF-7 [164]

miR-200c UBQLN1 Activate autophagy MDA-MB-231 [165]

miR-372 SQSTM1 Inhibit autophagy MCF10A, MCF-7 [166]

miR-376b ATG4C, BECN1 Inhibit autophagy MCF-7 [113]

miR-451a – Inhibit autophagy LCC2, MCF-7 [167]

Ovarian cancer miR-152 ATG14 Inhibit autophagy SKOV3/DDP, A2780/CP70 [168]

miR-373 RAB22A Inhibit autophagy SKOV3 [169]

Cervical cancer miR-15a/16 RICTOR Activate autophagy HeLa [170]

miR-20a ATG7 – SiHa [171]

miR-155 RHEB, RPS6KB2, RICTOR Activate autophagy HeLa, NSE [127]

miR-224-3p FIP200 Inhibit autophagy SiHa, HeLa, C33A [172]

Endometrial carcinoma miR-218 HMGB1 Inhibit autophagy RL95–2 [173]

Prostate cancer miR-96 ATG7, mTOR Inhibit autophagy LAPC4, 22Rv1, LNCaP [174]

miR-124 PIM1 Inhibit autophagy PC3, DU145 [175]

Liver cancer miR-21 PTEN Inhibit autophagy HepG2, Huh7 [176]

miR-101 EZH2 Inhibit autophagy HepG2 [177]
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apoptosis, makes it attractive to target autophagy as an

alternative mechanism for triggering glioma cell death

[185, 186]. Alterations or mutations that are commonly

found in brain tumors, include p53, PTEN, AKT, NF1

and EGFR, and some of these are accepted to be impli-

cated in the modulation of autophagy [185, 186]. Con-

sidering the frequencies of mutations in EGFR, p53,

PTEN, NF1, and PDGFR, the Cancer Genome Atlas con-

sortium categorized glioblastoma (GBM) tumors into

four molecular sub-types, including neural, classical,

mesenchymal, and proneural [187]. Researchers have

also found differences in basal expression levels of the

LC3 protein in xenografts of the GBM four subtypes,

which were associated with differences in the

Table 1 Selected autophagy-associated miRNAs in cancer (Continued)

Cancer MicroRNA Target (s) Effect (s) Cell line (s) Ref

miR-199A-5p ATG7 Inhibit autophagy HepG2, Huh7 [178]

miR-224 SMAD4 Inhibit autophagy Hbx, Hep3B [179]

miR-375 ATG7 Inhibit autophagy Hep3B, Huh7 [114]

miR-376b ATG4C, BECN1 Inhibit autophagy Huh7 [113]

Pancreatic cancer miR-23a ATG12 Inhibit autophagy BxPC3 [180]

miR-216a BECN1 Inhibit autophagy PANC-1 [181]

Kidney cancer miR-214 LC3B, LC3A Inhibit autophagy A498, 786-O, Caki-1 [182]

Thyroid cancer miR-9-3p ATG5 Inhibit autophagy MZ-CRC-1, TT [183]

Hepatocellular carcinoma miR-17 PTENP1, PTEN Activate autophagy Mahlavu [184]

miR-19b PTENP1, PTEN Activate autophagy Mahlavu [184]

miR-20a PTENP1, PTEN Activate autophagy Mahlavu [184]

Fig. 4 Various microRNAs involved in autophagy-related mechanisms. MiR-31, miR-34a miR-9 and miR-101 are able to affect on degradation and

recycling. MiR-204, miR-183, 101, and miR-376b affect on Autophagosome
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susceptibility to autophagy. It has been proposed that

combinational approaches targeting autophagy-

lysosomal related mechanisms might result in improved

GBM subtype-specific treatments. Furthermore, it has

been shown that autophagy can be activated by some ex-

perimental glioma treatments. Although autophagy

can increase the survival and resistance of tumor cells

under some circumstances, autophagy is also able to

exert cytostatic and/or cytotoxic effects in other

therapeutic approaches. The particular role of autoph-

agy in contributing to cell death or cell survival in

different therapeutic approaches is yet to be fully ex-

plained, and a better understanding of these contrary

findings is essential to design potential combination

therapies [187].

The most frequent genetic alterations/mutations found

in gliomas are: hemizygous/homozygous deletion of NF-

1 and PTEN; EGFR vIII mutant expression; and EGFR

amplification [187]. The abnormal signaling resulting

from such mutations interacts with PI3K-Akt-mTOR

pathways that promotes chemo-resistance and survival

in gliomas [188]. Thus, the idea to target receptor tyro-

sine kinases (RTKs) using small molecule inhibitors, or

else with monoclonal antibodies has emerged as a fa-

vored therapeutic approach (Fig. 5).

Development of therapeutic drugs

Disappointingly, the first clinical trials that were con-

ducted with small molecule EGFR inhibitors, including

gefitinib and erlotinib that had shown success for other

tumor types, did not show any encouraging results for

glioma treatment [189–191]. Likewise, monoclonal anti-

bodies targeting EGFR (panitumumab and cetuximab)

only exerted cytostatic effects on glioma cell lines [192,

193]. However, the variety of different types of RTK that

are found in gliomas (combined with frequency of PTEN

elimination) could explain the ineffectiveness of tyrosine

kinase inhibitors (TKI) each of which only targets a sin-

gle enzyme [194–196]. Moreover, preclinical investiga-

tions using selected mTOR and PI3K inhibitors, have

shown only a moderate efficacy against gliomas. A

phase-II trial using temsirolimus (CCI-779), a mTOR

blocker, did not improve survival in patients with recur-

rent GBM [197]. However, PI-103, a dual functional

mTOR and PI3K inhibitor, did show beneficial anti-

proliferative effects in preclinical glioma models, by sup-

pressing the Akt activation often found with mTOR

blockers [198]. Treatments which targeted components

of the RTK-PI3K-Akt-mTOR axis, increased the induc-

tion of autophagy with an overall cytoprotective effect.

Therefore, a combination of inhibitors of late stage au-

tophagy plus other compounds that actually induce au-

tophagy may work together to increase the cytotoxicity

in gliomas. Indeed, this concept was tested in one

approach, which combined the lysosomotrophic agent

chloroquine (CQ) that blocked the activity of lysosomal

proteases, with the PI3K/mTOR/AKT inhibitors (AKT-

1/2 and PI-103), resulting in the overall potentiation of

glioma cell death [199]. Furthermore, NVP-BEZ235 (a

dual mTOR and PI3K inhibitor currently being tested in

clinical trials) induced autophagy in solid tumors, and

synergistically acted in combination with CQ through

increased apoptosis in glioma cells [200]. A combination

of monensin or bafilomycin A1 (both late-stage autoph-

agy inhibitors) with Ku-0063794 or PI-103 also pro-

moted glioma cell death via apoptosis induction [200].

Also, experts in the field have proposed that inhibition

of autophagy could act synergistically with erlotinib for

induction of cytotoxicity in GBM cells [201]. In the case

of a combination of autophagy inhibitors with the TKI,

imatinib mesylate, the precise stage at which autophagy

was suppressed led to different outcomes in gliomas.

Early-stage inhibition of autophagy using small interfer-

ing RNAs targeting ATG5 or 3-methyladenine (3-MA)

decreased imatinib cytotoxicity, whereas conversely sup-

pression of late-phase autophagy using bafilomycin A1

increased cytotoxicity by inducing more apoptosis [202].

Therefore, the varying outcomes of autophagy suppres-

sion under different conditions may depend on the spe-

cific compound that targets different stages of

autophagy, and on other factors that are not yet com-

pletely understood.

Although the combination of drugs which induce

autophagy, with agents that inhibit the completion of

autophagy, appear to be somewhat promising up to

now, and some clinical trials are actually in progress,

there are other treatments that can contribute to

autophagy-associated glioma cell death. For example,

adding an inducer of autophagy, to some common

chemotherapeutic drug regimens could increase

cytotoxicity.

Several agents can cause autophagic cell death in dif-

ferent kinds of cancer, such as IFN-γ, resveratrol, vita-

min D analogues, tamoxifen, arsenic trioxide, and

actinomycin D. In glioma cell lines, it has been shown

that arsenic trioxide can induce autophagy-related cell

death by up-regulation of BNIP3 (a member of the Bcl-2

family), as well as its respective homologue BNIP3L. Ac-

cording to earlier findings, displacement of Beclin1 from

its complex with Bcl-2 (BNIP3) enhances autophagy.

Furthermore, BNIP3 over-expression also induced au-

tophagy in some cell types [203]. Likewise, BNIP3 can

make a key contribution to ceramide-mediated autoph-

agy in malignant glioma cells [204]. An inorganic com-

pound, sodium selenite, was also able to induce

autophagy in malignant glioma cells via superoxide-

induced mitochondrial damage [205]. Sodium selenite,

ceramide and arsenic trioxide have all been shown to
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contribute to autophagic cell death by triggering mito-

chondrial damage. However, Δ9-tetrahydrocannabinol

(THC) resulted in autophagy-related glioma cell death

through induction of ER stress [206].

GBMs contain many hypoxic regions, and there can

also be large necrotic regions inside the tumors. In-

creased expression levels of Bcl-2 family members leads

to resistance to hypoxia in gliomas [207], and may result

in increased resistance to some therapies. BH3 mimetics

are small molecules, which can selectively attach to the

BH3-binding groove of the anti-apoptotic Bcl-2 proteins.

Therefore, BH3 mimetics are able to disturb the inter-

action between Bcl-2/beclin1 as well as between Bax/

Bcl-2, in order to trigger autophagy or apoptosis in dif-

ferent kinds of cancer. In hypoxia-resistant malignant

glioma cells, it was found that BH3 mimetics could in-

duce autophagy-dependent cell death [207]. In addition,

gossypol (a BH3 mimetic) specifically induces caspase-

independent autophagic cell death [208].

p53 has been shown to be mutated in about one third

of gliomas, and it can reduce the susceptibility of tumors

to treatments that induce apoptosis [209]. Investigators

have found that autophagy-related cell death can be in-

duced in gliomas by addition of CQ, independently of

the p53 status [210]. Nevertheless, p53 plays an essential

role in governing autophagy in a variety of therapeutic

approaches. Autophagy and DNA damage have both

been induced by selective inhibitors of cyclooxygenase-2

(e.g. celecoxib) in glioma cells, which require a func-

tional p53 pathway [211].

Fig. 5 Autophagy in brain tumors and possible role of inhibitors in brain tumor treatment. Various inhibitors exert their effect on different targets

in glioma cells. Dual inhibitors (PI-103 and NVP-BEZ235) inhibit mTOR. TKI inhibits RTK and PI3K
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MicroRNAs and autophagy in brain tumors
GBM is the most common as well as the most lethal pri-

mary tumor in the CNS [212, 213]. Nonetheless, all

GBMs are not uniform and can display fundamental het-

erogeneity and may contain small sub-populations of

cells, that have been called “glioma stem-like cells”

(GSCs). One study suggested that GSCs are mainly re-

sponsible for tumor initiation, specify the malignant

phenotype, cause therapy-resistance, and recurrence

[214]. Analysis of gene expression has categorized GSCs

extracted from patients into sub-types: mesenchymal

(MES); classical (CL); and proneural (PN) [215–217].

Among them, MES GSCs have been suggested to be the

most radiation-resistant and invasive cells [217]. The en-

hanced autophagic activities in the MES GSCs as com-

pared to the PN GSCs, has been implicated in the high

tumorigenicity and resistance to therapy [218].

MiR-93 is an important miRNA, which is highly

expressed in different human cancers, and functions as

one of the oncogenic miRNAs, through actuation of

PI3K-AKT signaling pathways [219, 220]. Nevertheless,

oncogenic effects of miR-93 has been considered to be

depended on the contexts. As an instace, miR-93 acts as

one of the tumour suppressors via suppressing parame-

ters in a TGF-β signaling pathway, and the genes re-

sponsible for cell stemness such as EZH1, SOX4, AKT3,

STAT3, JAK1, CDKN1A, and CCND2 [221, 222].

Huang and colleagues examined two clinically relevant

GBM subtypes, and found that miR-93 expression af-

fected the GSC phenotype, together with the response to

therapy, due to its effects on autophagy [223]. They also

showed that miR-93 modulated autophagy functions in

GSCs by synchronized suppression of several autophagy

modulators, such as SQSTM1/p62, ATG4B, ATG5 and

BECN1/beclin 1. Furthermore, two first-line GBM ther-

apies, Temozolomide (TMZ) and irradiation (IR), as well

as rapamycin (Rap) decreased the expression of miR-93,

which itself, triggered the autophagic cascades in the

GSCs. In fact, autophagy suppression using the ectopic

expression of miR-93, or mediated by autophagy

blockers, CQ and NSC (the ATG4B suppressor), in-

creased TMZ as well as IR activities against the GSCs.

The results suggested an important role for miR-93 in

autophagy regulation, and proposed a combination

therapeutic approach using autophagy suppression while

administering cytotoxic treatment [223].

It has been shown that miR-30a has suppressive effects

on autophagy, through direct targeting of beclin1 [224].

Xu and colleagues studied whether miR-30a enhanced

TMZ cytotoxicity against GBMU251 cells, and the

underlying mechanisms [225]. They found that TMZ

therapy blocked the proliferation of U251 cells, while in-

ducing apoptosis in a dose-dependent manner. More-

over, beclin1 and LC3-II expression levels, as well as the

LC3-II to LC3-I ratio were significantly enhanced in

TMZ-treated U251 cells in comparison to untreated

cells. These results suggested that TMZ therapy could

induce autophagy. Researchers found that TMZ therapy

resulted in a considerable reduction of miR-30a expres-

sion levels in U251 cells in a dose-dependent manner.

MiR-30a significantly suppressed autophagy induced by

TMZ, as confirmed by the reduced levels of beclin1 and

LC3-II, as well as lower ratio of LC3-II to the LC3-I, ac-

companied by elevated apoptosis as well as decreased

proliferation of TMZ-treated U251 cells. Overall, this

study showed that, miR-30a enhanced the TMZ chemo-

sensitivity of GBMU251 cells through direct suppression

of autophagy. Consequently, autophagy may be a target

for improving the treatment effects against TMZ-

resistant tumors [225].

Flavonoids (phenolic compounds derived from plants)

have a wide range of pharmacological properties includ-

ing antitumor activity. Studies have recently revealed the

ability of flavonoids to affect cancer cell metastasis,

angiogenesis, differentiation, proliferation, apoptosis, and

multi-drug resistance [226]. The anticancer impact of

luteolin (LUT), a naturally occurring flavonoid, includes

suppression of metastasis, angiogenesis, cell proliferation

and autophagy, as well as stimulation of apoptotic path-

ways [227]. During the passage through the intestinal

mucosa, some LUT molecules are probably converted to

glucuronides [228]. Due to its ability to cross the blood-

brain barrier, LUT could be considered an appropriate

molecule for the treatment of different brain tumors,

such as GBM [229].

Ray and Chakrabarti showed that a combination of

50 μM SIL (silibilin, a flavonolignan) and 20 μM LUT

synergistically inhibited the growth of T98G and

GBMU87MG cells, and the combination of these two

natural compounds was more effective than conven-

tional chemotherapy (100 μM TMZ or 10 μM BCNU)

[230]. The SIL and LUT combination suppressed GBM

cell growth via inducing apoptosis and inhibiting tumor

cell migration and invasion. Additionally, the SIL and

LUT combination repressed rapamycin (RAPA)-medi-

ated autophagy by PKCα suppression, and promoted

apoptosis through iNOS down-regulation. The combin-

ation also significantly enhanced the expression of the

tumor inhibitor miR-7-1-3p in GBM cells. It was also

shown that miR-7-1-3p over-expression increased the

antitumor activity of SIL and LUT in RAPA-pre-treated

T98G and U87MG cells. Consequently, these findings

indicated that miR-7-1-3p over-expression enhanced the

antitumor effects of SIL and LUT to induce apoptosis

and suppress autophagy in several human GBM-cells,

both in-vivo and in-vitro [230].

Under hypoxic conditions, autophagy can have a pro-

tective effect on cancer cells. Moreover, hypoxia affects
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Table 2 Selected autophagy-related miRNAs in brain tumors

Brain tumor miRNA Expression Effect (s)
on
autophagy

Target (s) Study outcome (s) Model Cell line Ref

GBM miR-
93

Up Inhibit
autophagy

BECN1/
Beclin 1,
ATG5,
ATG4B,
SQSTM1/p62

Autophagy inhibition increased antitumor
effects of Rap, IR, and TMZ on glioma stem-
like cells

In
vitro,
In vivo

U87 [237]

miR-
30a

Up Inhibit
autophagy

Beclin 1 MiR-30a over-expression increased the cyto-
toxicity of TMZ to U251 cells

In
vitro

U251 [225]

miR-
224-
3p

Up Inhibit
autophagy

ATG5 Mir-224-3p suppressed metastasis. It also
enhanced the chemo-sensitivity of LN229
cells in hypoxic conditions through autoph-
agy suppression

In
vitro,
In vivo

LN229 [238]

miR-
17

Up Inhibit
autophagy

ATG7 The activation of autophagy by anti-miR-17
led to a decrease of the threshold resistance
at temozolomide doses in T98G cells.
Modulation of miR-17 led to sensitization to
low dose ionizing radiation in U373-MG cells

In
vitro

T98G, U373-MG [115]

miR-
340

Up Inhibit
autophagy

XIAP, BMI1,
ROCK1

MiR-340 reduced cell growth, inhibited cell
motility, and regulated glioma development

In
vitro

U87MG, U251MG,
U373, A172, U118,
T98G, SHU-44

[239]

miR-
224-
3p

Up Inhibit
autophagy

ATG5, FIP200 MiR224-3p increased hypoxia-induced apop-
tosis, inhibited hypoxia-induced autophagy,
reduced cell proliferation in vitro, inhibited
tumorigenesis of GBM cells in vivo

In
vitro,
In vivo

U251, U87 [232]

miR-
517c

Up Inhibit
autophagy

Tp53 Mir-517c suppressed autophagy and
decreased tumor invasion

In
vitro,
In vivo

U251, U87 [240]

miR-7-
1-3p

Up Inhibit
autophagy

PKCa, mTOR,
SQSTM1,
p62, XIAP

MiR-7-1-3p over-expression potentiated sili-
binin & luteolin to induce apoptosis and in-
hibit autophagy

In
vitro,
in vivo

U87MG, T98G [230]

miR-
138

Up Inhibit
autophagy

LC3-II, BIM MiR-138/BIM axis regulated autophagy-
mediated resistance to TMZ

In
vitro,
In vivo

LN-18, LN-229, LN-
308, LN-319, LN-428,
D247MG, A172,
U87MG, T98G

[241]

miR-
155-
3p

Up Activate
autophagy

LC3B-II,
SQSTM1

MIR155-3p enhanced hypoxia-induced au-
tophagy through targeting the CREBRF-
CREB3-ATG5 pathways

In
vitro,
In vivo

U251, T98G [242]

miR-
30e

Up Inhibit
autophagy

Beclin-1 Combination of proanthocyanidin and miR-
30e suppressed sodium sulfite-induced
autophagy

In
vitro

GSC, SNB19 [243]

miR-
128

Up Activate
autophagy

mTOR,
RICTOR,
IGF1, PIK3R1

MiR-128 directly blocked mTOR pathway
and induced glioma cell death

In
vitro

Hs683, M059K,
U87MG

[244]

miR-
590-
3p

Up Activate
autophagy

LC3-II,
Beclin-1,

TMZ combined with endothelial-monocyte
actuating polypeptide II inhibited malignant
phenotype of GSCs through miR-590-3p/
MACC1 suppressing the PI3K/AKT/mTOR sig-
naling pathways

In
vitro,
In vivo

U87, U251 [245]

Scwannoma miR-
21

Up Inhibit
autophagy

LC3-II,
Beclin-1

Ailanthone-induced autophagy & apoptosis,
suppressed proliferation of vestibular
schwannoma cells

In
vitro

vestibular
schwannoma

[234]

miR-
210

Up Activate
autophagy

P62, elf4E Inhibition of miR-210 promoted tumor cell
apoptosis and cell cycle arrest, decreased
angiogenesis, and activated autophagy

In
vitro

RT4-D6P2T [246]

Medulloblastoma miR-
30a

Up Inhibit
autophagy

LC3B, Beclin-
1

Mir-30a inhibited tumorigenicity and growth
of medulloblastoma cell lines, and
suppressed autophagy

In
vitro,
In vivo

Daoy, D283, D425 [236]

Let-7f- Up Inhibit HMGB1 SPARC regulated cisplatin resistance by In D425 [247]
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protein stability, mRNA stability, and also mRNA tran-

scription. In addition, hypoxia causes a shift in expres-

sion levels of a particular class of miRNAs [231]. The

mechanisms of miRNA-associated hypoxia-induced au-

tophagy in GBM are not yet fully understood. A study

using miRNA microarray analysis in GBM cells, revealed

the differential expression of several miRNAs under hyp-

oxic condition [232]. It has also been reported that

miR224-3p could be implicated in the regulation of

hypoxia-mediated autophagy in GBM cells. The over-

expression of miR224-3p inhibited hypoxia-induced au-

tophagy, while its down-regulation promoted autophagy

under normoxic conditions. Moreover, one study [232]

reported that miR224-3p directly suppressed the expres-

sion of two autophagy-associated genes i.e., ATG5 &

FAK family interacting protein of 200 kDa (FIP200) and

therefore inhibited autophagy. Furthermore, miR224-3p

enhanced hypoxia-induced apoptosis and decreased cell

proliferation in vitro, and its over-expression inhibited

GBM tumorigenesis in vivo. These authors demon-

strated that miR224-3p is a new down-regulated miRNA

in hypoxia, and could be a significant autophagy regula-

tor by suppression of ATGs in GBM cells.

Vestibular schwannoma (VS) is a Schwann cell tumor

of the vestibular nerves, and comprises about 10% of

intracranial neoplasms [233]. VS occurs in both familial

(neurofibromatosis type 2, NF2) and sporadic forms,

both of which are related to defects in the NF2 gene

[233]. In one investigation, the antitumor effects of

ailanthone (AIL) (a quassinoid compound derived from

the traditional Chinese medicinal herb, Ailanthus altis-

sima) against VS was evaluated by Yang and colleagues

[234]. Different doses of AIL (0–1 μM) were used to

treat VS cells, and autophagy, apoptosis, cell viability

and proliferation were evaluated. After miRNA transfec-

tion, miR-21 expression was increased in VS cells. AIL

significantly decreased VS cell viability. In response to

0.6 μM AIL, p62 was down-regulated, beclin-1 and LC3-

II were accumulated, caspase 3 and caspase-9 were

cleaved, the rate of apoptotic cells was increased, and

the expression of cyclin D1 as well as the proportion of

BrdU+ cells were decreased. miR-21 was poorly

expressed in cells treated with AIL, and furthermore

AIL-mediated autophagy and apoptosis were reduced by

the over-expression of miR-21. Furthermore, AIL down-

regulated Raf and Ras, and also deactivated p70S6K,

mTOR, ERK and MEK, whereas the deactivation and

down-regulation of these mediators induced by AIL

were reversed by miR-21 over-expression. Consequently,

AIL suppressed the proliferation of VS cells and induced

autophagy and apoptosis. The anticancer properties of

AIL in VS cells were explained by miR-21 down-

regulation and consequent suppression of the mTOR

and Ras/Raf/MEK/ERK pathways [234].

Approximately, 30% of patients with medulloblastoma,

another malignant pediatric brain tumor [235], undergo

metastasis at an early stage, and therefore they have a

poor prognosis. If harsh cytotoxic therapy is adminis-

tered to children whose brain is still developing, the sur-

viving patients can suffer long-lasting developmental,

endocrine and neurocognitive deficits. Therefore, in

order to achieve a more effective treatment for medullo-

blastoma with fewer side effects, it is essential to dis-

cover more targeted therapeutic approaches based on

validated biological mechanisms. It is believed that, be-

cause the SHH and WNT developmental pathways are

involved, medulloblastoma could result from the deregu-

lated expansion of cells in the nervous system [235].

Moreover, one study carried out by Singh et al. found

low expression levels of miR-30a (which targets beclin1)

in the medulloblastoma cell lines, D425, D283, and Daoy.

Restoring the miR-30a expression level blocked tumori-

genicity, and reduced the clonogenic potential as well as

the proliferation of the medulloblastoma cells. It was pro-

posed that miR-30a down-regulates the expression of

beclin1, and suppresses autophagy in medulloblastoma

cell-lines, by LC3B down-regulation. This could be re-

versed by CQ therapy, which induces starvation-induced

autophagy. Therefore, miR-30a could be considered as a

treatment approach for medulloblastoma, via suppressing

autophagy, reversing the malignant phenotype, and redu-

cing survival of cancer cells [236].

Table 2 Selected autophagy-related miRNAs in brain tumors (Continued)

Brain tumor miRNA Expression Effect (s)
on
autophagy

Target (s) Study outcome (s) Model Cell line Ref

1 autophagy regulating the Let-7f-1 miRNA/HMGB1 axis vitro,
In vivo

UW228

Glioma miR-
193a-
5p

Up Activate
autophagy

LCII/LCI,
Beclin-1

CASC2 is down-regulated in glioma, leading
to enhanced levels of miR-193a-5p and de-
creased expression of mTOR, resulting in in-
creased autophagy

In
vitro

U257, U87 [248]

Astrocytoma miR-
224-
3p

Up Inhibit
autophagy

ATG5 HIF-1α/miR-224-3p/ATG5 axis influenced
chemosensitivity and cell mobility through
modulating hypoxia-mediated autophagy

In
vitro,
In vivo

U-251MG [245]
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Table 2 lists some of the various miRNAs that have

been associated with autophagy in brain tumors.

Conclusion
Due to the generally poor survival of patients diagnosed

with malignant brain tumors (especially GBM), it is ne-

cessary to discover novel therapeutic strategies with

fewer side effects. According to mounting evidence, dis-

turbed autophagy critically contributes to the pathogen-

esis as well as progression of brain tumors. Therefore,

new rationally designed drugs are needed, that should be

soundly based on the underlying mechanisms of autoph-

agy. Recent data shows that miRNAs can regulate and

influence autophagy through different pathways. There-

fore, miRNAs such as miR-30a, could be considered as a

new therapeutic approach for the therapy of brain tu-

mors, via suppressing autophagy, which has been shown

to play a role on the malignant phenotype, survival and

growth of cancer cells. The present review has summa-

rized studies related to this concept, but it is obvious

that there is still a long way to go before miRNA-based

drugs could be used for brain tumor treatment. In order

to find novel potential drugs for brain tumors, further

attention should be focused on the regulatory properties

of different miRNAs in the autophagy cascade. To reach

this goal, more experimental studies must be conducted

to clarify the underlying molecular mechanisms, and

then clinical trials could be warranted to prove the ef-

fectiveness and safety of therapies based on miRNAs.
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