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ABSTRACT

Autophagy is a catabolic pathway by which cellular components are

delivered to the lysosome for degradation and recycling. Autophagy

serves as a crucial intracellular quality control and repair mechanism

but is also involved in cell remodelling during development and cell

differentiation. In addition, mitophagy, the process by which damaged

mitochondria undergo autophagy, has emerged as key regulator of

cell metabolism. In recent years, a number of studies have revealed

roles for autophagy and mitophagy in the regulation of stem cells,

which represent the origin for all tissues during embryonic and

postnatal development, and contribute to tissue homeostasis and

repair throughout adult life. Here, we review these studies, focussing

on the latest evidence that supports the quality control, remodelling

and metabolic functions of autophagy during the activation, self-

renewal and differentiation of embryonic, adult and cancer stem cells.
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Introduction

Autophagy is an intracellular catabolic mechanism by which cell

components, including proteins, lipids and whole organelles,

are degraded and recycled inside lysosomes (Galluzzi et al.,

2017a). The degradation products are then transported back to

the cytoplasm and are used to sustain cell homeostasis. Autophagy

is a fundamental metabolic response to nutrient and oxygen

deprivation, as well as an essential cytoplasmic quality control

process (Boya et al., 2013; Galluzzi et al., 2017a). In recent years,

studies have shown that autophagy plays a crucial role in various

cell types, including neurons, muscle and cancer cells. However, it

has also emerged that autophagy is key for the functioning and

maintenance of various populations of stem cells (SCs), acting to

promote their quiescence, maintain their stemness and self-renewal,

and mediate their differentiation.

SCs give rise to the body’s key cell lineages during

embryogenesis, and also participate in tissue homeostasis and

repair postnatally and throughout adult life. They divide to self-

renew and to produce daughter cells that can undergo differentiation

(García-Prat et al., 2017). These differentiation processes require

cell remodelling, which is achieved by the autophagic elimination

of structures and cell components that are no longer needed

(Mizushima and Levine, 2010). Because most SCs are long-lived

and need to remain functional for the life span of the organism,

robust quality control mechanisms are essential for their

subsistence. Autophagy, the main cellular quality control

pathway, is thus thought to play a crucial role in sustaining SC

homeostasis. In recent years, a number of studies have also revealed

that autophagy contributes to the control of metabolism (Esteban-

Martínez et al., 2017a; Kaur and Debnath, 2015) and can thus

regulate the metabolism, identity and function of SCs. Indeed, the

view that SCs are metabolically distinct from their differentiated

counterparts, and that these metabolic features are essential for

maintaining SC identity, is well-supported in the literature (Shyh-

Chang et al., 2013). The fact that most SCs appear to rely more on

glycolysis to generate ATP than on oxidative phosphorylation

(Shyh-Chang and Ng, 2017) has been linked to the hypoxic milieu

of SC niches. However, increased glycolysis is a crucial step in

the conversion of differentiated cells into induced pluripotent stem

cells (iPSCs; see Glossary, Box 1), suggesting that glycolytic

metabolism is a requirement to maintain stemness rather than being

an adaptation to the SC environment (Folmes et al., 2011; Shyh-

Chang and Ng, 2017). Overall, this growing body of evidence

suggests that autophagy helps to preserve SC function by

simultaneously regulating cell remodelling and metabolism and

serving as an important quality control mechanism.

In this Review, we discuss our current understanding of the

mechanisms by which autophagy preserves SC function. We also

highlight the key consequences of autophagy dysregulation in SCs

on tissue development and maintenance, and discuss how SCs

respond to stressful conditions. The functions of autophagy in

somatic cells and disease models have been reviewed elsewhere

(Schneider and Cuervo, 2014) and are therefore not discussed here.

Autophagy: induction, molecular machinery and general

functions

The activation of autophagy during periods of starvation is an

evolutionarily conserved response in eukaryotes (Kaur and

Debnath, 2015). Under these conditions, the cell uses protein and

lipid degradation to adapt its metabolism and fulfil its energy needs.

Accordingly, the pharmacological or genetic downregulation of

autophagy results in rapid cell death in starvation conditions (Boya

et al., 2005). Other stressors, such as hypoxia, oxidative stress and

infection, can also induce autophagy (Fig. 1).

The process of autophagy involves members of the autophagy-

related (ATG) family of proteins. Autophagy induction is controlled

by mTOR and AMP-activated protein kinase (AMPK) signalling

pathways, which regulate the assembly and activation of an

ATG1/ULK1 complex that in turn triggers formation of the

phosphatidylinositol 3-kinase (PI3K) complex (Fig. 1). This

complex regulates the incorporation of phosphatidylinositol 3-

phosphate into the phagophore membrane from which

autophagosomes (see Glossary, Box 1) are generated (Hurley and

Young, 2017). Next, two conjugation reactions catalysed by ATG7

are necessary for autophagosome formation: one relies on ATG7
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and ATG10, which induce the conjugation of ATG5 to ATG12 in

the context of a multiprotein complex containing autophagy-related

16-like 1 (ATG16L1); the other results in the conjugation of

phosphatidylethanolamine to LC3 (MAP1LC3) to form the

autophagosome-bound form of LC3 called LC3-II. The

continuous assembly of these complexes and the delivery of lipids

via ATG9, the only multi-membrane-spanning ATG protein, allow

the autophagosomal membrane to elongate and close to form the

mature autophagosome (Hurley and Young, 2017). The later stages

of autophagy are controlled by molecules that regulate

autophagosome fusion with lysosomes, such as LAMPs and

RAB7, and by lysosomal acidic hydrolases that regulate the

degradation of the autophagy cargo (Fig. 1). The final degradation

products then translocate to the cytoplasm to be recycled for use in

new anabolic reactions to sustain cell homeostasis. Because

autophagy is a highly dynamic process, the blockade of one of its

stages, or impaired lysosomal function or biogenesis, leads to the

accumulation of autophagosomes, ultimately disrupting or

diminishing autophagic flux (see Glossary, Box 1) (Boya et al.,

2013).

Development and differentiation are often accompanied by large-

scale cellular and tissue remodelling, which is mediated by

autophagy (Mizushima and Komatsu, 2011). At the cellular level,

autophagy is essential for the differentiation of many cell types,

including adipocytes, erythrocytes, lymphocytes and neurons

(Mizushima and Levine, 2010). In addition to its role in

intracellular quality control and metabolic regulation during cell

differentiation, autophagy provides a rapid and efficient means of

altering the composition of the cytosol, and is involved in

controlling cell size through the degradation of receptors,

organelles and transcription factors, all of which are processes that

are crucial for cell differentiation (Mizushima and Levine, 2010).

Given that autophagy is essential for the elimination of unnecessary

or harmful components from cells, and is a key regulator of cell

metabolism, its dysregulation has significant pathological

consequences. Indeed, autophagy is implicated in a plethora of

pathologies, including neurodegenerative, metabolic and immune

diseases (Boya et al., 2016; Deretic et al., 2015; Galluzzi et al., 2015;

Menzies et al., 2017; Stienstra et al., 2014). Defects in proteostasis

and autophagy have also been described to occur in ageing, and

autophagy is proposed to underlie the beneficial effects of caloric

restriction (Kaushik and Cuervo, 2015; Madeo et al., 2015).

Autophagy can also be a highly selective process, allowing

specific cytoplasmic components to be delivered to lysosomes via

Box 1. Glossary
Autophagic flux. The rate at which lysosomes degrade autophagy

substrates. It is a measurement used as an indicator of the efficiency of

autophagy activity that can be assessed by comparing the number of

autophagosomes in the presence and absence of lysosomal inhibitors.

Autophagosomes. Transient, double-membrane vesicles that engulf

cytoplasmic components, including entire organelles, and deliver them

to lysosomes for degradation.

Blastocyst. The mammalian pre-implantation/early-stage embryo.

FOXO transcription factors. Evolutionarily conserved regulators of the

expression of genes involved in cellular metabolism and resistance to

oxidative stress.

Induced pluripotent stem cells (iPSCs). Somatic cells, typically skin or

blood cells, that have been reprogrammed back into an embryonic-like

pluripotent state through overexpression of a cocktail of transcription

factors.

Mitophagy. The specific removal of mitochondria by the process of

autophagy.

NuRD complex. A macromolecular chromatin remodelling complex that

regulates gene transcription, genome integrity and cell cycle

progression, and is essential for embryo development and ESC self-

renewal/differentiation among other functions.

Primary cilium.A non-motile microtubule-based organelle that acts as a

cellular antenna sensing environmental cues linked to the cell cycle.

Ubiquitin proteasome system (UPS). The catabolic system that

predominantly degrades short half-life, properly folded and misfolded,

cytoplasmic and nuclear proteins that have been ubiquitylated,

producing as a result short peptides.

Zygote-to-embryo transition. The stage of development following

fertilization in which the molecular programmes of the fertilized

oocyte are degraded. Genetic and epigenetic reprogramming changes

occur resulting in activation of the embryonic molecular programmes

(days 0-3).
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Fig. 1. Themolecular machinery implicated in autophagy. The induction of autophagy is controlled by themTORand AMPK signalling pathways and relies on

the assembly and activation of two macromolecular complexes: ATG1/ULK1 (composed of ULK1, FIP200, ATG13 and ATG101) and the Class III PI3K complex

(composed of BECN1, ATG14, AMBRA1, VPS34, VPS15 and UVRAG). Next, two conjugation reactions are necessary for autophagosome formation. In the

first, mediated by ATG7 and ATG10, ATG5 and ATG12 are conjugated and bind to ATG16L. In the second, catalysed by ATG7 and ATG3 together with the

ATG12-ATG5:ATG16L complex, LC3 conjugates to the lipid phosphatidylethanolamine (PE) to generate LC3-II, which facilitates its anchoring at the

autophagosomal membrane. Once formed, the autophagosome then fuses with a lysosome, a process that involves several lysosomal proteins including LAMPs

and RAB7. After degradation by the action of lysosomal hydrolases, the final products, which include amino acids, lipids and nucleotides, translocate to the

cytoplasm to be used in new anabolic reactions to sustain cell homeostasis.
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specific cargo-recognition proteins called autophagy receptors

(Khaminets et al., 2016). The selective autophagy of

mitochondria, a process termed mitophagy (see Glossary, Box 1),

can also occur and allows damaged or unwanted mitochondria to be

engulfed into autophagosomes for lysosomal delivery and

degradation (Ashrafi and Schwarz, 2013). Under conditions of

mitochondrial stress, for instance, the kinase PINK1 activates the

ubiquitin ligase PRKN, which then ubiquitylates mitochondrial

proteins that recruit autophagy receptors that bridge between

mitochondria and autophagosomes (Lazarou et al., 2015).

Mitochondria are also eliminated in developmental contexts, for

example during cell differentiation, in a process named programmed

mitophagy. Programmed mitophagy has been observed during

erythrocyte and lens maturation and during neuronal differentiation

(Ashrafi and Schwarz, 2013; Esteban-Martínez and Boya, 2017;

Ney, 2015). In addition, mitophagy facilitates cell remodelling

while also acting as a quality control mechanism by eliminating

potential sources of oxidative stress (Takamura et al., 2011). Finally,

recent evidence has demonstrated that mitophagy regulates a

metabolic shift towards glycolysis in several contexts, such as

during neuronal differentiation and macrophage activation

(Esteban-Martínez et al., 2017b), indicating a link between

mitophagy and metabolic reprogramming (Esteban-Martínez and

Boya, 2017). How mitophagy controls SC homeostasis is further

described in Box 2.

Autophagy and stem cells

Given their unique properties of self-renewal, multipotency,

differentiation and quiescence in adult tissues, SCs must strictly

control their rates of protein and organelle turnover and of ATP

production (Guan et al., 2013; Vessoni et al., 2012). Metabolic

regulation is now widely believed to function as a general

mechanism for controlling SC quiescence (García-Prat et al.,

2017). However, a growing body of evidence indicates that

autophagy is also required for SC quality control and for

maintaining the cellular homeostasis of SCs (García-Prat et al.,

2017; Guan et al., 2013).

Depending on their source, SCs can be classified as embryonic

stem cells (ESCs) or adult SCs. ESCs are derived from the inner cell

mass (ICM) of blastocysts (see Glossary, Box 1), around 3.5-

5.5 days after fertilization in the case of mouse embryos and 4-

9 days after fertilization for human embryos. They are grown in vitro

and are pluripotent, meaning they can produce all the cells of the

embryo proper (but not the placental lineages). By contrast, adult

SCs are found in tissues and organs after they have completed their

development. These multipotent cells have a restricted potency

compared with ESCs, and only give rise to a subset of cell types to

replace and repair specific tissues. Some of the best-studied types of

adult SCs include haematopoietic stem cells (HSCs), neural stem

cells (NSCs) and muscle stem cells (better known as satellite cells)

(Rumman et al., 2015). Adult SCs are also found in tissues that

exhibit high turnover, such as the intestine and skin. Such SCs are

responsible not only for tissue repair after damage but also for

maintaining normal tissue turnover. Conversely, HSCs are

maintained in a quiescent or very low-cycling state for months, a

state that they abandon to repopulate the blood in response to

haematopoietic stress, and muscle satellite cells are maintained in

quiescence for most of their life and only divide in response to tissue

damage (Rumman et al., 2015). Maintaining a balance between

stemness and differentiation is therefore of crucial importance for

SCs. Excessive cell differentiation depletes the SC population

(leading to SC exhaustion) and promotes ageing or decay. On the

contrary, excessive SC proliferation can give rise to cancer. Thus,

quality control mechanisms are essential to preserve adult SC

homeostasis and the capacity of SCs to respond rapidly to

environmental stressors, damage and differentiation signals to

sustain tissue regeneration. Below, we review recent studies that

demonstrate the essential role of autophagy in maintaining

embryonic and adult SC homeostasis. We describe how

autophagy functions as an intracellular quality control and repair

mechanism in SCs, and how autophagy remodels cellular

morphology by eliminating, for example, organelles and stemness

factors that control cellular reprogramming. We also review why

and how autophagy controls metabolism to sustain energy

homeostasis in SCs.

Autophagy in early development and embryonic stem cells

After fertilization, the mammalian zygote is reprogrammed to form

pluripotent cells located in the ICM of blastocysts. This

reprogramming, which requires the epigenetic modification of

maternal and paternal genomes, the expression of pluripotency

genes, and the removal of inherited maternal proteins, involves both

the ubiquitin proteasome system (UPS; see Glossary, Box 1) and

autophagy (DeRenzo and Seydoux, 2004). For example, the

participation of autophagy in cell reprogramming during the

zygote-to-embryo transition (see Glossary, Box 1) has been

documented (Hanna et al., 2010; Jopling et al., 2011). Autophagy

is also essential in the very early stages of mouse embryogenesis,

and is required for the embryo to reach the 4- to 8-cell stage

(Tsukamoto et al., 2008; Wang et al., 2013b). The relevance of

autophagy in this process was first evidenced in fertilized mouse

oocytes lacking Atg5, which do not proceed beyond this stage if

Box 2. Mitophagy in stem cells
A growing body of evidence indicates that mitophagy constitutes a

prominent pathway controlling SC homeostasis. The role of mitophagy in

the regulation of SC fate is associated with its quality control function as

well as its ability to regulate cellular metabolism. For example, mitophagy

prevents senescence by removing damaged mitochondria, the main

source of ROS, and thereby limits ROS-induced genome damage, which

is essential to maintain stemness (Garcia-Prat et al., 2016; Ho et al.,

2017; Ma et al., 2015; Paik et al., 2009; Pan et al., 2013; Renault et al.,

2009; Sena and Chandel, 2012; Tan and Wong, 2017). The lower

mitochondrial number in HSCs and ESCs is associated with reduced

reliance on aerobic metabolism (Kondoh et al., 2007; Shyh-Chang et al.,

2013; Shyh-Chang and Ng, 2017), which results in the generation of

fewer ROS. Mitophagy also maintains low ROS levels during the

reprogramming of somatic cells into iPSCs through autophagy-related

proteins including PINK1 and ATG3 (Liu et al., 2016; Vazquez-Martin

et al., 2016; Xiang et al., 2017). Indeed, loss of PINK1-dependent

mitophagy is sufficient to dramatically decrease the speed and efficiency

of iPSC reprogramming from mouse embryonic fibroblasts (Vazquez-

Martin et al., 2016). In line with this, iPSCs from Pink1 knockout mice

show decreased glycolytic metabolism and a strong tendency to

differentiate. Mitophagy also removes paternal mitochondria from

fertilized oocytes, a process initially described in nematodes and flies

and recently in mouse embryos (Al Rawi et al., 2011; Rojansky et al.,

2016; Sato and Sato, 2011). Lastly, recent evidence has demonstrated a

pivotal role for mitophagy in regulating a metabolic shift towards

glycolysis during mouse developmental neurogenesis (Esteban-

Martínez et al., 2017a; Esteban-Martinez et al., 2017b). Further

studies are needed to unravel the molecular mechanisms underlying

mitophagy-dependent metabolic reprogramming and to determine

whether targeting mitophagy could constitute a useful strategy to

promote the quiescence and/or differentiation of SCs.
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fertilized with Atg5-null sperm, and therefore fail to form the

blastocyst and the ICM (Tsukamoto et al., 2008). More recently, it

has been proposed, based on the well-documented induction of

autophagy during the 4- to 8-cell stage, that markers of autophagy

activity could be used in the future to determine embryonic viability

in the field of assisted reproduction (Tsukamoto et al., 2014).

The induction of autophagy during embryonic reprogramming

and early embryonic development seems to be controlled by

different molecular mechanisms. The initial pulse of autophagy

induced by fertilization is independent of mTORC1 activity; it is

possible that calcium oscillations triggered by fertilization initiate

autophagic responses instead (Tsukamoto et al., 2008; Yamamoto

et al., 2014). However, once the 4- to 8-cell stage of embryogenesis

is reached, the downregulation of mTOR expression, which is

mediated by Sox2 and the nucleosome remodelling and deacetylase

complex (NuRD, see Glossary, Box 1), becomes indispensable for

autophagy induction, similar to the situation seen during the

reprogramming of somatic cells into iPSCs (Wang et al., 2013b) (as

discussed later). Interestingly, during this period, overactivation of

autophagy with the mTOR inhibitor rapamycin accelerates

embryonic reprogramming and the formation of the blastocyst

(Wang et al., 2013b). Autophagy is also essential for the removal of

maternal material that otherwise blocks the reprogramming process

(DeRenzo and Seydoux, 2004), and provides recycled amino acids,

nucleotides and sterols that are crucial for maintaining cellular

energy homeostasis prior to pre-implantation, after which cells have

access to transplacental nutrients (Tsukamoto et al., 2008).

Interestingly, autophagy appears to be dispensable for the later

stages of embryogenesis. Indeed, mice null for Atg3, Atg5, Atg7,

Atg9 orAtg16L1 are not embryonically lethal, although they are born

with reduced body weight and generally die 1 to 2 days after birth,

possibly owing to suckling defects caused by deficient neurological

development (Mizushima and Levine, 2010). It is thought that the

neonatal survival of these mutant embryos is due to the presence of

maternally inherited ATG proteins in the oocyte cytoplasm

(Mizushima and Levine, 2010; Tsukamoto et al., 2008). However,

this is not the case for mice that are null for the genes encoding the

phagophore-forming BECN1, AMBRA1 or FIP200 (RB1CC1)

proteins, which are embryonically lethal. The origin of such

phenotypic differences among ATG gene knockout mouse models

is unclear. It is possible that the embryonic death affecting BECN1,

AMBRA1 andFIP200-deficientmice is due to other (i.e. autophagy-

independent) functions of these proteins, as has been recently

demonstrated for FIP200 (Chen et al., 2016), for example. Different

degrees of functional redundancy or compensatory mechanisms for

the different ATG proteins have also been postulated (Mizushima

andLevine, 2010).Moreover, it has also been suggested that theUPS

can compensate for the absence of autophagic activity in these

autophagy-deficient ESCs (Lee et al., 2017; Vilchez et al., 2012).

Indeed, crosstalk between theUPS and autophagy has been observed

in human ESCs, which show high levels of proteasome activity that

progressively decline during differentiation, coinciding with an

increase in autophagy, which possibly then degrades damaged or

unnecessary proteins and organelles (Vilchez et al., 2012). FOXO

transcription factors (see Glossary, Box 1) have also been shown to

regulate autophagy and the UPS (Sandri, 2012; Webb and Brunet,

2014). For instance, FOXO1 has been reported to be essential for

maintaining human and mouse ESC pluripotency, probably by

controlling OCT4 (POU5F1) and SOX2 expression (Zhang et al.,

2011), and, more recently, it has been shown that FOXO1 regulates

the expression of autophagy genes and maintains a high level of

autophagic flux in mouse ESCs (Liu et al., 2017).

Autophagy has also been linked to the phagocytosis of apoptotic

cells by either neighbour cells or professional phagocytes, a process

that is required for proper metazoan development and adult tissue

homeostasis. Qu and co-workers were the first to show that mouse

ESCs lacking Atg5 or Becn1 fail to cavitate during embryoid body

(EB) generation (Qu et al., 2007); these EBs display defective ATP

production, which results in deficient expression of the engulfment

signals required for the phagocytosis of dead cells. This phenotype

could be reversed by the addition of methylpyruvate, a cell-

permeant intermediate of glucose metabolism, which is

incorporated into the mitochondrial tricarboxylic acid cycle.

Similar findings were also shown in Caenorhabditis elegans and

mouse embryonic development, in which autophagy is required for

the proper clearance of apoptotic cells (Cheng et al., 2013; Huang

et al., 2013; Li et al., 2012; Mellén et al., 2008, 2009).

Finally, it has been shown that autophagy promotes

morphological changes associated with SC differentiation

(Vessoni et al., 2012). For example, autophagy contributes to the

degradation of the midbody ring (MB) during ESC differentiation, a

process that can be triggered by either starvation or treatment with

rapamycin (Kuo et al., 2011). The MB is a circular structure that

forms an intercellular bridge after cytokinesis, and is required for the

separation of daughter cells (Schink and Stenmark, 2011). Studies

have provided some indication of how autophagy removes MBs,

via a process known as midbophagy, which involves a complex

consisting of p62 (SQSTM1), ALFY (WDFY3) and TRAF6

(Isakson et al., 2013), interactions between NBR1 and CEP55

(Kuo et al., 2011), and the participation of TRIM17 (Mandell et al.,

2016). A better understanding of how these structures are cleared by

autophagy and how they can avoid autophagosomal degradation

could greatly advance our understanding of how SC pluripotency

and differentiation are controlled. Studies have also demonstrated

that the primary cilium (see Glossary, Box 1) emerges from ESCs

after induced lineage specification and activates autophagy. This

results in the inactivation of nuclear factor erythroid-related factor 2

(Nrf2; Nfe2l2), likely by autophagy-mediated degradation of its

positive regulator p62, promoting the transcriptional activation of

the pluripotency factors OCT4 and NANOG and directing ESCs

towards a neuroectodermal fate (Jang et al., 2016). This induction of

autophagy is not observed during mesoderm differentiation,

indicating that autophagy is required for the degradation of

organelles and proteins only in specific differentiated cells, rather

than for the removal of damaged proteins. In conclusion, autophagy

is required in ESCs to fulfil the energy requirements for cell

remodelling and metabolic and proteostatic changes, and for the

engulfment and clearance of apoptotic cells.

Autophagy in neural stem cells

A number of studies have investigated the role of autophagy in

embryonic and adult NSCs. Our group has demonstrated that the

expression of Atg7, Becn1, LC3 and Ambra1 is markedly increased

in cultured embryonic mouse olfactory bulb (OB)-derived NSCs

during the initial period of neuronal differentiation (Vazquez et al.,

2012). Furthermore, it was shown that Ambra1 and Atg5 deficiency

decreases neurogenesis, a phenotype reversed by methylpyruvate

supplementation, suggesting that progenitor cells activate

autophagy to meet their high energy demands (Vazquez et al.,

2012). Defective neurogenesis in the mouse cerebral cortex during

early brain development has also been reported following Atg5

knockdown (Lv et al., 2014). A recent study using Atg16L1

hypomorph mice and primary neurons showed that NOTCH, a

plasma membrane receptor and master regulator of neuronal
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development, is taken up into ATG16L1-positive autophagosome-

precursor vesicles and modulates neurogenesis (Wu et al., 2016).

Inhibition of mTOR via the autophagy-related protein Eva1a (also

known as Tmem166) has also been linked to mouse NSC self-

renewal and differentiation (Li et al., 2016).

In the adult mammalian brain, the best studied NSCs are those

located in the subventricular zone (SVZ) of the lateral ventricles and

in the subgranular zone (SGZ) of the hippocampal dentate gyrus

(Doetsch et al., 1999; Palmer et al., 1997). These niches, like other

SC niches in the body, are hypoxic, a condition required for

stemness. NSCs, unlike terminally differentiated neurons, can

expand through self-renewal and differentiate into several neural

lineages. Oxidative stress, which is marked by elevated levels of

reactive oxygen species (ROS), is one of the best-known factors

inhibiting SC proliferation. Autophagy appears to maintain a low

level of ROS in order to sustain the slow cycling of NSCs.

Interestingly, the absence of FOXO1, FOXO3 and FOXO4 (i.e. in

triple-null mice) leads to increased ROS production in the NSC

pool, and this is accompanied by an initial increase in NSC

proliferation followed by an abrupt reduction of the NSC pool and

reduced neurogenesis (Paik et al., 2009; Palmer et al., 1997; Renault

et al., 2009). It has been suggested that FOXO3 regulates the NSC

pool by promoting quiescence, preventing premature differentiation

and controlling oxygen metabolism (Renault et al., 2009). Once in

the nucleus, FOXO3a might promote the expression of mitophagy

genes to facilitate mitochondrial clearance, and it is therefore likely

that FOXO activation decreases ROS levels via the induction

of mitophagy as a protective mechanism to counterbalance

mitochondrial stress (Tan and Wong, 2017). However, there is

some disagreement regarding whether adult NSCs have lower or

higher endogenous ROS levels than their differentiated progeny and

the extent to which this could influence their self-renewal

properties. A study of NSCs in the mouse SVZ reported high

levels of ROS, on which the self-renewal and neurogenesis

capabilities of these cells depend (Le Belle et al., 2011). The

authors proposed that NSCs might maintain high ROS levels during

highly proliferative stages of development, and lower levels during

quiescence, suggesting a mechanism for antioxidant regulation.

Several other studies have also described the autophagy-mediated

control of NSC proliferation and differentiation. For example, the

downregulation of Ambra1 and Becn1 results in the decreased

proliferation and increased apoptosis of mouse NSCs (Yazdankhah

et al., 2014), and downregulation of miR-34a gives rise to increased

expression of synaptic proteins and Atg9a, which appear to also

regulate mouse NSC differentiation in vitro (Morgado et al., 2015).

Together, these observations suggest that autophagy participates in

the regulation of ROS levels throughmitophagy, thereby controlling

adult NSC proliferation, although the involvement of other

molecular players or signalling pathways cannot be ruled out.

Further studies will be required to identify whether crosstalk exists

between autophagy and other catabolic systems in controlling NSC

stemness, as well as the mechanisms that regulate the relative

quiescence of NSCs during adult life.

The regulation of adult neurogenesis by autophagy has received

surprisingly little research attention, with only a handful of studies

supporting a role for autophagy in the maintenance and

differentiation of adult SCs into different neuronal lineages. Wang

and colleagues reported that ablation of FIP200, but not of Atg5,

Atg16L1 or Atg7, results in increased ROS that leads to a progressive

loss of NSCs caused by p53 (Trp53)-dependent apoptotic and cell

cycle arrest (Wang et al., 2016a, 2013a). The authors showed that

FIP200-null NSCs, but not NSCs deficient for other autophagy

genes, display p62 aggregates and increased SOD1 retained in the

cytoplasm, leading to increased levels of superoxide (Wang et al.,

2016a). Loss of FIP200 causes defects in neuronal differentiation

and both failures can be rescued by treatment with the antioxidant

N-acetylcysteine. Interestingly, FIP200 deletion causes NSC

depletion in the postnatal mouse brain but does not affect

embryonic NSCs (Wang et al., 2013a). The same group recently

showed that autophagy regulates NSCs through cell-extrinsic

mechanisms. They demonstrated that FIP200 regulates the

differentiation of NSCs in the mouse postnatal SVZ by restricting

microglia infiltration and activation (Wang et al., 2017). However,

other studies, using different genetic approaches to modulate gene

expression, found that Atg5 deletion impairs adult neurogenesis in

the SGZ of the mouse hippocampus (Xi et al., 2016) and that Atg5

downregulation leads to increased proliferation and decreased

differentiation of mouse embryonic cortical neural precursor cells

(Lv et al., 2014). It is therefore possible that autophagy is required

for the maintenance and differentiation of NSCs at different stages

of postnatal life.

Some authors have proposed very different roles for autophagy in

the maintenance of adult rat hippocampal NSCs. Chung and co-

workers found that rat hippocampal NSCs undergo autophagic cell

death in response to insulin withdrawal despite the presence of intact

apoptotic machinery, and that this effect is suppressed by the

knockdown of Atg7 (Chung et al., 2015). Conversely, Yu and

colleagues reported that the tight regulation of calpains – a family of

calcium-dependent cytosolic proteases – by the proteasome and by

Ca2+ levels switches the mode of hippocampal NSC cell death from

being autophagic, when calpain levels are low, to apoptotic, when

calpains levels are high (Yu et al., 2008). These apparently

contradictory findings demonstrate that there is still much to be

discovered in order to fully understand the role of autophagy in adult

neurogenesis. In recent years, other populations of NSCs have been

detected in other regions of the mouse adult nervous system, such as

Müller glia in the retina (Jorstad et al., 2017) and nestin-expressing

progenitors in the cerebellum (Wojcinski et al., 2017), and it has

been shown that these cells are able to repopulate their respective

tissues upon induced damage.Mouse adult spinal cord glial cells can

also be reprogrammed in vivo to generate neurons upon injury

(Wang et al., 2016b). These studies constitute a compelling incentive

to elucidate the molecular mechanisms through which autophagy

mediates neuronal differentiation, as that knowledge could be

applied to stimulate these resident SCs for adult brain repair.

Autophagy in haematopoietic stem cells

HSCs sustain the production of all blood cells (Fig. 2). The

first HSCs appear in mid-gestation in mouse embryos and

progressively colonize the foetal liver, the main haematopoietic

organ during these embryonic stages. Just before birth, the bone

marrow replaces the liver as the main reservoir of HSCs. In

adulthood, haematopoiesis is maintained by multipotent bone

marrow-resident HSCs (Hirschi, 2012). These quiescent HSCs self-

renew but can enter the cell cycle and differentiate into multipotent

progenitors during physiological haematopoiesis (Crisan and

Dzierzak, 2016) to balance the massive destruction of blood cells

that occurs daily, and also as a consequence of haematological stress

(e.g. bone marrow transplantation, cytotoxic drugs, radiation).

Dysregulation of the fine balance between quiescence, self-renewal

and differentiation can result in the development of blood disorders,

such as anaemia and leukaemia (Ansó et al., 2017). Understanding

the mechanisms that protect HSCs from damage is therefore

essential to treat haematopoietic malignancies.
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Single-cell RNA sequencing has recently demonstrated high

levels of transcription activity of autophagy-related genes during

foetal HSC formation in mouse embryos (Hu et al., 2017; Zhou

et al., 2016). Unlike adult SCs, which are mainly quiescent, foetal

HSCs undergo rapid cycling. The cytofluorimetric analysis of cells

isolated from transgenic GFP-LC3 mice, which express the

autophagosomal marker LC3 tagged to GFP (Mizushima et al.,

2004), has revealed increased autophagic flux activity in HSCs,

compared with their differentiated progeny (Watson et al., 2015).

Autophagy is also increased in HSCs from GFP-LC3 mice after

cytokine withdrawal and is induced in a FOXO3a-dependent

manner in response to metabolic stress (Warr et al., 2013). These

data indicate that HSCs exhibit a high degree of basal and induced

autophagy, supporting the view that autophagy is crucial for

preserving HSC function.

Autophagy also plays an important role in maintaining foetal and

adult HSCs. The conditional deletion of FIP200 in mouse HSCs

(i.e. in FIP200flox/flox; Tie2-Cre mice) results in a massive

reduction in the number of liver embryonic HSCs, resulting in

foetal/perinatal lethality (Liu et al., 2010). Competitive

reconstitution experiments in lethally irradiated recipients show

that FIP200-null foetal liver HSCs also fail to provide long-term

multilineage reconstitution. At the cellular level, these cells display

increased mitochondrial mass and elevated ROS, and a slight

increase in bromodeoxyuridine (BrdU) incorporation, suggesting

that the observed exhaustion of HSCs might be due to increased

proliferation following autophagy downregulation (Liu et al., 2010).

Autophagy is also essential for adult HSC function. Indeed, foetal

and adult HSCs isolated from Atg7flox/flox; Vav-Cre mice are

unable to form secondary colonies in colony-forming assays, and

in transplantation experiments Atg7-deficient HSCs are unable

to rescue lethally irradiated hosts (Mortensen et al., 2011).

Interestingly, foetal liver Atg7-deficient HSCs can rescue lethally

irradiated recipients, suggesting that Atg7 is less crucial for foetal

than for adult HSC function. Mice with Atg7-deficient HSCs also

have increased numbers of mitochondria as well as elevated

oxidative stress, DNA damage and cell proliferation, which might

promote the onset of blood malignancies observed in these mice

(Mortensen et al., 2011). A similar phenotype has also been

documented in Atg5flox/flox; Vav-Cre mice (Watson et al., 2015),

and heterozygous loss of Atg5 in a model of acute myeloid

leukaemia leads to increased HSC proliferation in vitro and to the

development of more aggressive leukaemias in vivo (Watson et al.,

2015). Deleting Atg12 in 4-week-old mice using the pan-

haematopoietic promoter Mx, which responds to the synthetic

analogue of double-stranded RNA polyIpolyC, results in defective

HSC self-renewal and myeloid-biased differentiation (Ho et al.,

2017). Interestingly, this myeloid lineage expansion is also

observed in other autophagy-deficient HSCs (Liu et al., 2010). In

conclusion, these data support the view that autophagy preserves

HSC stemness by reducing oxidative damage and limiting HSC

proliferation.

The importance of mitophagy in the haematopoietic system has

also been recognized. Mice deficient for the mitophagy receptor

BNIP3L (also known as NIX) develop anaemia as a result of the

defective elimination of mitochondria in red blood cells (Diwan

et al., 2007; Sandoval et al., 2008). Recent findings also indicate that

mitophagy is important not only for the elimination of mitochondria

from mature erythrocytes but also to preserve stemness in HSCs (Ito

et al., 2016). Ito and co-workers demonstrated that in a newly

described HSC population [Tie2 (Tek)-positive cells; hereafter

Tie2+] the upregulation of two essential mitophagy regulators,

PINK1 and PRKN, results in high levels of mitophagy that maintain

HSC division potential. Silencing Pink1 and Prkn results in a failure

to reconstitute the haematopoietic system in irradiated recipient

mice (Ito et al., 2016). Interestingly, in single-cell gene expression

assays this Tie2+ population displays increased expression of fatty

acid oxidation and peroxisome proliferator-activated receptor-delta

(PPAR) genes. PPAR agonist treatment results in increased

mitophagy through enhanced transcriptional expression of Pink1

via FOXO3 signalling, in agreement with earlier data showing that

FOXO3-dependent autophagy preserves HSC function (Warr et al.,
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Fig. 2. The role of autophagy in preserving haematopoietic stem cell homeostasis. Autophagy contributes in several ways to the preservation of HSC

quiescence. It regulates glycolysis and mitochondrial elimination, and limits proliferation and ROS production. In response to HSC activation, an asymmetric

division produces another HSC (self-renewal) and a progenitor cell that displays reduced autophagy compared with HSCs. These progenitor cells differentiate

into several lineages, and autophagy is also essential for this final differentiation step, acting as a cell remodellingmechanism, protecting cells from cell death, and

influencing cellular metabolism.
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2013). These findings contrast with those of another study in which

HSCs from Prkn-deficient animals were found to reconstitute the

blood in transplantation experiments (Ho et al., 2017). Further

studies are therefore required to understand better the putative role

of mitophagy in HSC function (Joshi and Kundu, 2013).

The ability of HSCs to differentiate depends on their ability to

activate mitochondrial oxidative phosphorylation (Kohli and

Passegué, 2014). Accordingly, deletion of the mitochondrial

phosphatase PTPMT1, which regulates the transition from

anaerobic glycolysis to oxidative phosphorylation, results in

accumulation of HSCs that are unable to differentiate (Yu et al.,

2013). PTPMT1-Vav-Cre mice display important alterations in the

HSC pool, as well as cell cycle delay and differentiation defects due

to an inability to upregulate mitochondrial fatty acid oxidative

metabolism. Moreover, deletion of the same gene in myeloid or

lymphoid lineage progenitors does not impair normal development,

indicating that PTPMT1 plays a pivotal role in HSCs but is not

essential in late lineage progenitors (Yu et al., 2013). Other data

support the existence of a close relationship between mitochondrial

metabolism and HSC function. A recent report demonstrated that

loss of the mitochondrial complex III subunit, Rieske iron sulfur

protein (RISP), in mouse foetal HSCs has no effect on cell

proliferation but does alter differentiation, leading to severe anaemia

and embryonic death. Furthermore, deletion of the same gene in

adult HSCs leads to the loss of HSC quiescence and to increased

BrdU incorporation, indicative of cell cycle entry, and results in

severe deficiencies in red and white cells as well as platelets (Ansó

et al., 2017).

As mentioned earlier, autophagy is crucial for the later stages of

the differentiation of many blood cell types, as evidenced by the

dramatic alterations in cell function and differentiation observed

following cell-specific autophagy blockade. Interestingly, GATA1,

a master regulator of haematopoiesis, regulates several autophagy

genes (Kang et al., 2012). Phenotypically, dysregulated autophagy

is characterized by alterations in cellular quality control and

by marked metabolic changes, which affect, for example, the

glycolytic shift that occurs during proinflammatory macrophage

activation (Esteban-Martínez and Boya, 2017; Riffelmacher et al.,

2017). Autophagy activity is therefore not only necessary to sustain

the self-renewal of HSCs but also to control the terminal

differentiation of different blood cell types to maintain

haemostasis (Fig. 2).

Autophagy and muscle stem cells

Skeletal muscle is composed of muscle fibres (myofibres), which

consist of multinucleated syncytial cells. These postmitotic cells are

unable to sustain muscle growth and repair, which instead relies on a

unique population of muscle stem cells, also known as satellite cells.

Named for their location beneath the basal lamina of muscle fibres,

these are somite-derived myoblasts that have not fused to other

myoblasts and remain as stem cells throughout adult life (Wang and

Rudnicki, 2011).

During muscle development, embryonic myoblasts differentiate

to generate primary myofibres that will serve as template fibres for

subsequent myogenesis before birth. Later, rapid and extensive

proliferation of postnatal myoblasts is responsible for further muscle

growth and maturation during neonatal myogenesis (Wang and

Rudnicki, 2011). By the third week of life in mice, the muscle is

mature, and the number of satellite cells reaches a steady state as

they enter quiescence (Fig. 3). Quiescent satellite cells are then

activated in response to muscle damage and enter the cell cycle to

give rise to committed proliferating muscle precursors, which

differentiate and fuse to repair the damaged muscle. As in the case

of HSCs, transplantation experiments are often used to evaluate the

capacity of self-renewal to replenish the SC pool and to generate

committed descendants that will proliferate and differentiate to

orchestrate tissue repair.

Studies have only recently begun to investigate the role of

autophagy in satellite cells. In Atg7-deficient mouse satellite cells

(generated by crossing Pax7-Cre with Atg7flox/flox mice), satellite

cell numbers are severely reduced (García-Prat et al., 2016). At the

cellular level, this autophagy deficiency is very similar to the

phenotype observed in aged satellite cells, which are characterized

by increased oxidative stress, DNA damage, accumulation of p62

and ubiquitin aggregates, damaged mitochondria and presence of

senescence markers, including p16INK4a (CDKN2A), p21CIP1

(CDKN1A) and P15INK4b (CDKN2B) (Fig. 3). Interestingly,

satellite cells isolated from aged mice show a reduction in
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Fig. 3. Autophagy is essential for preventing senescence and aging in muscle satellite cells. Schematic of mammalian muscle development and repair.

(A) During muscle development, embryonic muscle progenitor cells migrate to the myofibres and, by 3 weeks of age in mice, give rise to a pool of mature

adult satellite cells by symmetric division. Basal autophagy helps to preserve quiescence in these satellite cells by preventing senescence and by limiting
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subsequent proliferation. During the later phases of muscle regeneration, increased autophagy is also required for the final stages of myocyte differentiation

during fibre fusion.
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autophagic flux, which is completely restored in vivo in response to

mTOR inhibition with rapamycin or administration of spermidine, a

natural polyamine that has been shown to extend the lifespan of

mice in an autophagy-dependent manner (Eisenberg et al., 2016).

These data demonstrate the potential role of autophagy in preserving

muscle homeostasis and preventing age-dependent senescence

(García-Prat et al., 2016). Interestingly, a recent study found that

adult mouse satellite cells express genes involved in autophagy in a

circadian manner, and aged satellite cells exhibit a markedly

reduced capacity to cyclically recycle damaged components that are

generated on a daily basis (Solanas et al., 2017).

In addition to the role of basal autophagy in maintaining SC

stemness, induced autophagy is also essential for supporting the

bioenergetic demands generated during satellite cell activation

(Tang and Rando, 2014). When autophagy is acutely

downregulated by pharmacological or genetic approaches in

isolated ex vivo mouse myofibres or in sorted satellite cells,

reduced BrdU incorporation during spontaneous activation in

culture is observed, suggesting a delay in satellite cell activation

(Fig. 3). Moreover, autophagy downregulation in mouse satellite

cells reduces ATP levels, which can be restored by supplementing

the cultures with sodium pyruvate, which also partially restores

levels of cell proliferation (Tang and Rando, 2014).

Autophagy is also essential in the later stages of muscle cell

differentiation, with autophagy blockade resulting in altered

myocyte fusion and myotube formation during muscle

differentiation (Fortini et al., 2016; Sin et al., 2016). Interestingly,

autophagy is activated during the early, compensatory regenerative

stages in the mdx mouse model of Duchenne muscular dystrophy,

and impaired autophagy activation in late stages of disease

progression correlates with fibrotic tissue deposition and with

diminished regeneration in dystrophic muscles (Fiacco et al., 2016).

These findings indicate that autophagy is essential for preserving

muscle homeostasis, serving as a quality control mechanism by

preventing satellite cell senescence and meeting the bioenergetic

demands of satellite cells during activation (Fig. 3).

Autophagy in somatic reprogramming and iPSC generation

The advent of cell reprogramming methodologies has enabled the

generation of iPSCs. These are pluripotent SCs generated from

differentiated somatic cells that are reset to a pluripotent state

(Yamanaka and Blau, 2010) by the pluripotency transcription

factors, which include Oct4, Sox2, Klf4 and Myc (together called

OSKM) (Takahashi and Yamanaka, 2006; Yamanaka, 2012). In

recent years, a number of studies have revealed that autophagy is

implicated in this reprogramming process, particularly during the

early stages (Buckley et al., 2012; Hansson et al., 2012; Tsukamoto

et al., 2008; Wang et al., 2013b) (Fig. 4). For example, the deletion

of Atg5, Atg3 or Atg7 in mouse embryonic fibroblasts impairs

reprogramming efficiency (Tsukamoto et al., 2008; Wang et al.,

2013b). Furthermore, autophagy degrades nuclear pluripotency-

associated proteins that are normally only transiently expressed

(Cho et al., 2014). Transducing mouse fibroblasts with OSKM

triggers a transient pulse of increased autophagy from day 1 that

peaks the following day and subsequently declines to basal levels by

day 3, correlating with mTOR downregulation at both the mRNA

and protein levels (Menendez et al., 2011; Wang et al., 2013b). This

transient mTOR inhibition is essential, as demonstrated by

experiments in which cells treated with rapamycin during the first

3 days after OSKM transduction show increased efficiency of cell

reprogramming; by contrast, rapamycin treatment at later stages, or

very high concentrations of rapamycin, abolish iPSC generation,

suggesting that autophagy needs to be downregulated soon after it

peaks (Chen et al., 2011; He et al., 2012). Accordingly, iPSC

reprogramming is also inhibited by increasing mTOR activity by

knocking down the mTOR negative regulator Tsc2 or by using

Tsc2−/− mouse embryonic fibroblasts in which mTOR activity is

hyperactivated (He et al., 2012). At the molecular level, it has been

shown that Sox2, which is one of the OSKM factors, controls

mTOR expression via the NuRD complex (Hu and Wade, 2012;

Wang et al., 2013b). During the early stages of cell reprogramming,

the NuRD complex is recruited by Sox2 to a repressive region of the

mTOR promoter to mediate its transcriptional repression, and it

dissociates from it 2 days after the induction of reprogramming.

However, little is known about the feedback mechanisms that shut

down the activity of the NuRD complex to enable the transcription

and translation of mTOR to resume in the later stages of

reprogramming (Rais et al., 2013). Such mechanisms might be

essential for establishing the pluripotency signalling network

required for cell reprogramming.

A role for mitochondria and mitophagy has also been implicated

in iPSCs. As in ESCs, the mass, maturation status and number of

mitochondria are significantly reduced in iPSCs compared with

somatic cells (Armstrong et al., 2010; Facucho-Oliveira and St John,

2009; Prigione et al., 2010; Sena and Chandel, 2012; St John et al.,

2006), suggesting that pluripotent SCs rely more heavily on

glycolysis for energy production (Fig. 4). Although it is commonly

accepted that mitophagy plays an important role in creating the

conditions necessary to establish pluripotency (Vessoni et al., 2012;

Wang et al., 2013b) and mediates mitochondrial rejuvenation to

prevent iPSC differentiation, the form of autophagy involved and

the molecular mechanisms that govern these processes remain a
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Fig. 4. The role of autophagy during reprogramming. iPSCs can be generated from healthy donors or diseased patients by reprogramming somatic cells,

such as skin fibroblasts, via the transient expression of several transcription factors. Reprogramming is dependent upon autophagy, which promotes the

degradation of stemness factors and mediates mitochondrial degradation by mitophagy, thus limiting ROS production and modulating metabolism.
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matter of debate (Vessoni et al., 2012; Wang et al., 2013b). A recent

study reported that mitophagy is essential for iPSC reprogramming

and is regulated by Atg5-independent, AMPK-dependent

autophagy (Ma et al., 2015). However, how mitophagy is

controlled and how it functions in pluripotency reprogramming

remains to be elucidated.

Autophagy in cancer stem cells

The role of autophagy in cancer stem cells (CSCs) has been studied

in detail (Auberger and Puissant, 2017; Hamaï et al., 2014). Below,

we briefly summarize how the autophagic-lysosomal pathway

contributes to the unique characteristics of CSCs. We also discuss

the potential value of targeting autophagy as a means of eradicating

CSCs.

Recent in vivo lineage-tracing approaches support the

involvement of CSCs in many cancers (Beck and Blanpain, 2013;

Pattabiraman and Weinberg, 2014; Singh et al., 2015). Similar to

other SCs, CSCs can self-renew (Beck and Blanpain, 2013) but they

also have a potential for malignancy (Beck and Blanpain, 2013;

Pattabiraman and Weinberg, 2014; Tam and Weinberg, 2013). Of

note, they are highly resistant to cancer therapy and recent evidence

suggests they can initiate tumour metastasis (de Sousa e Melo et al.,

2017; Lawson et al., 2015; Massagué and Obenauf, 2016; Pascual

et al., 2017). Moreover, it has been shown that CSCs harbour the

ability to convert into non-cancer SCs and vice versa, a

phenomenon known as CSC plasticity (Beck and Blanpain, 2013;

Pattabiraman and Weinberg, 2014; Singh et al., 2015). This

phenomenon of CSC plasticity increases the complexity of the

relationship between autophagy and CSCs. Thus, although active

autophagy is a recognized hallmark of tumours (Galluzzi et al.,

2015; White, 2015), it can serve as a tumour-suppressing

mechanism or can promote tumour formation, depending on the

type of cancer and the stage of development (Galluzzi et al., 2015).

Autophagy is also implicated in the crosstalk between cancer cells

and the microenvironment, host tissues and the immune system

(Galluzzi et al., 2017b, 2015; Zhong et al., 2016). Compelling

evidence indicates that autophagy is a major cellular pathway

involved in the origin, maintenance and differentiation of CSCs

(Auberger and Puissant, 2017; Guan et al., 2013; Hamaï et al., 2014;

Pan et al., 2013); CSCs reside in hypoxic, nutrient-poor and acidic

environments, conditions known to induce autophagy, and many

studies have shown that CSCs are highly responsive to these stimuli

(Fig. 5) and, hence, that the basal rate of autophagy is frequently

higher in CSCs than in non-cancer SCs.

Given the multiple functions of autophagy in CSCs (Fig. 5), a

number of studies have investigated if and how autophagy can
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influence tumorigenesis. It has been shown that autophagy supports

the survival of human breast malignant precursor cells but that

treatment with chloroquine, a lysosomotropic inhibitor of

autophagy, blocks the generation of breast ductal carcinoma

in situ spheroids in vitro and abrogates xenograft tumour

formation (Espina et al., 2010). The silencing of BECN1 and

ATG7 impairs the in vitro self-renewal of ALDH1-positive breast

cancer cell lines or CSCs isolated from human breast cancer

specimens and inhibits their growth in xenografts in mice (Gong

et al., 2013; Yue et al., 2013). Similarly, the silencing of ATG7,

ATG12 orATG8/LC3 impairs the in vitro growth of CD44+CD24−/low

breast cancer stem cells (Cufi et al., 2011; Maycotte et al., 2015).

Interestingly, the inhibition of autophagy in CD44+CD24− breast

CSCs decreases the secretion of IL6 (Maycotte et al., 2015), a

cytokine important for CSC maintenance (Iliopoulos et al., 2011).

The role of autophagy in the survival of CSCs and the

maintenance of stemness has also been described in other tumour

types (Auberger and Puissant, 2017; Hamaï et al., 2014; Lin et al.,

2015; Marcucci et al., 2017; Ojha et al., 2015). However, the role of

autophagy in CSCs is probably more complex, as demonstrated by

the fact that autophagy inhibition decreases the viability of chronic

myeloid leukaemia CD34+ progenitor cells, whereas its inhibition in

HSCs favours the expansion of acute myeloid leukaemia progenitor

cells (Auberger and Puissant, 2017). In summary, these data

underscore the importance of autophagy in CSC function but

highlight the need for further studies to investigate the potential of

cancer therapies that target autophagy in CSCs.

Conclusions

In this Review, we have discussed studies that have provided

important insights into the pivotal roles that autophagy plays in

embryonic and adult SCs, including in the maintenance of stemness,

the promotion of cellular reprogramming and the differentiation of

SCs (summarized in Fig. 6). Together, these findings indicate that: (1)

autophagy is used for cell remodelling to degrade organelles

and stemness factors during SC reprogramming, activation or

differentiation; (2) autophagy-mediated cell repair and quality control

mechanisms are essential to preserve homeostasis inmost if not all SCs,

and this is usually associated with eliminating damaged mitochondria,

the most usual source of cellular ROS; and (3) autophagy and

mitophagy are essential to preserve the energy homeostasis and

metabolic reprogramming that allow different SC types to maintain

quiescence, self-renewal, activation and differentiation. Accordingly,

autophagy deficiency results in significant alterations in SC function

including SC exhaustion, senescence, aging and cell death (Fig. 6).

Although pharmacological approaches to modulate SC fate have

shown some promise (Angelos et al., 2017; Bouchez et al., 2011;

Fares et al., 2014; Rentas et al., 2016), few studies have successfully

modulated SC function by targeting autophagy. SMER28, a small

molecule capable of inducing autophagy (Sarkar et al., 2007), has

been used to reverse erythropoiesis abnormalities in patients with

Diamond–Blackfan anaemia (DBA), a congenital disorder

characterized by severely diminished red blood cell production

due to defective erythroid progenitor differentiation (Doulatov et al.,

2017). Classical autophagy-modulating approaches, such as
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rapamycin or spermidine treatment, caloric restriction, and low

protein diets, have also been shown to preserve HSC and muscle

satellite cell function (Cerletti et al., 2012; Fiacco et al., 2016;

García-Prat et al., 2016; Kohli and Passegué, 2014). These studies

suggest that SC function could indeed be modulated by targeting

autophagy, a finding that has relevant therapeutic implications.

A better understanding of the molecular mechanisms through

which autophagy regulates the function of SCs and their

differentiation into specific cell types could hold significant

promise for the development of new therapies for haematological,

muscular and neurological diseases, as well as for some cancers.

Other questions on the role of autophagy in SC maintenance and

differentiation remain unanswered. For example, it is still unclear

whether autophagy failure during ESC expansion or differentiation

has deleterious consequences in the adult organism. How

autophagy is involved in maintaining adult stem cell quiescence,

exit and re-entry into this cellular stage is an emerging field that has

only recently started to be explored in HSCs and muscle satellite

cells and remains dark for other SC types, such as NSCs.

Furthermore, we also emphasize the need to finely decipher the

distinct autophagy requirements for healthy adult SCs and ESCs

versus CSCs in order to find autophagy-based targets for potential

anti-cancer therapies and to prevent malignant reprogramming into

CSCs. Our knowledge on the understanding of autophagy function

in SC biology has expanded dramatically in the last decade.

However, although it is clear that autophagy is a key determinant of

SC self-renewal, stemness and differentiation, many aspects of this

relationship remain unclear. Answering these questions will

increase our insight into SC biology and human development,

improve the efficiency of iPSC reprogramming and differentiation

protocols, and facilitate the design of strategies to delay the onset of

degenerative and age-associated diseases.
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E. V., Figueroa, M. E. and Passegué, E. (2017). Autophagy maintains the

metabolism and function of young and old stem cells. Nature 543, 205-210.

Hu, G. and Wade, P. A. (2012). NuRD and pluripotency: a complex balancing act.

Cell Stem Cell 10, 497-503.

Hu, Y., Huang, Y., Yi, Y., Wang, H., Liu, B., Yu, J. andWang, D. (2017). Single-cell

RNA sequencing highlights transcription activity of autophagy-related genes

during hematopoietic stem cell formation in mouse embryos. Autophagy 13,

770-771.

Huang, S., Jia, K., Wang, Y., Zhou, Z. and Levine, B. (2013). Autophagy genes

function in apoptotic cell corpse clearance during C. elegans embryonic

development. Autophagy 9, 138-149.

Hurley, J. H. and Young, L. N. (2017). Mechanisms of autophagy initiation. Annu.

Rev. Biochem. 86, 225-244.

Iliopoulos, D., Hirsch, H. A., Wang, G. and Struhl, K. (2011). Inducible formation

of breast cancer stem cells and their dynamic equilibrium with non-stem cancer

cells via IL6 secretion. Proc. Natl. Acad. Sci. USA 108, 1397-1402.

Isakson, P., Lystad, A. H., Breen, K., Koster, G., Stenmark, H. and Simonsen, A.

(2013). TRAF6 mediates ubiquitination of KIF23/MKLP1 and is required for

midbody ring degradation by selective autophagy. Autophagy 9, 1955-1964.

Ito, K., Turcotte, R., Cui, J., Zimmerman, S. E., Pinho, S., Mizoguchi, T., Arai, F.,

Runnels, J. M., Alt, C., Teruya-Feldstein, J. et al. (2016). Self-renewal of a

purified Tie2+ hematopoietic stem cell population relies on mitochondrial

clearance. Science 354, 1156-1160.

Jang, J., Wang, Y., Lalli, M. A., Guzman, E., Godshalk, S. E., Zhou, H. andKosik,

K. S. (2016). Primary cilium-autophagy-Nrf2 (PAN) axis activation commits

human embryonic stem cells to a neuroectoderm fate. Cell 165, 410-420.

Jopling, C., Boue, S. and Izpisua Belmonte, J. C. I. (2011). Dedifferentiation,

transdifferentiation and reprogramming: three routes to regeneration. Nat. Rev.

Mol. Cell Biol. 12, 79-89.

Jorstad, N. L., Wilken, M. S., Grimes, W. N., Wohl, S. G., VandenBosch, L. S.,

Yoshimatsu, T., Wong, R. O., Rieke, F. and Reh, T. A. (2017). Stimulation of

functional neuronal regeneration from Muller glia in adult mice. Nature 548,

103-107.

Joshi, A. and Kundu, M. (2013). Mitophagy in hematopoietic stem cells: the case

for exploration. Autophagy 9, 1737-1749.

Kang, Y.-A., Sanalkumar, R., O’Geen, H., Linnemann, A. K., Chang, C.-J.,

Bouhassira, E. E., Farnham, P. J., Keles, S. and Bresnick, E. H. (2012).

Autophagy driven by a master regulator of hematopoiesis. Mol. Cell. Biol. 32,

226-239.

Kaur, J. and Debnath, J. (2015). Autophagy at the crossroads of catabolism and

anabolism. Nat. Rev. Mol. Cell Biol. 16, 461-472.

Kaushik, S. and Cuervo, A. M. (2015). Proteostasis and aging. Nat. Med. 21,

1406-1415.

Khaminets, A., Behl, C. andDikic, I. (2016). Ubiquitin-dependent and independent

signals in selective autophagy. Trends Cell Biol. 26, 6-16.
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