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Injury and loss of podocytes are leading factors of glomerular disease and renal failure. The postmitotic podo-
cyte is the primary glomerular target for toxic, immune, metabolic, and oxidant stress, but little is known about 
how this cell type copes with stress. Recently, autophagy has been identified as a major pathway that delivers 
damaged proteins and organelles to lysosomes in order to maintain cellular homeostasis. Here we report that 
podocytes exhibit an unusually high level of constitutive autophagy. Podocyte-specific deletion of autophagy-
related 5 (Atg5) led to a glomerulopathy in aging mice that was accompanied by an accumulation of oxidized 
and ubiquitinated proteins, ER stress, and proteinuria. These changes resulted ultimately in podocyte loss 
and late-onset glomerulosclerosis. Analysis of pathophysiological conditions indicated that autophagy was 
substantially increased in glomeruli from mice with induced proteinuria and in glomeruli from patients with 
acquired proteinuric diseases. Further, mice lacking Atg5 in podocytes exhibited strongly increased suscepti-
bility to models of glomerular disease. These findings highlight the importance of induced autophagy as a key 
homeostatic mechanism to maintain podocyte integrity. We postulate that constitutive and induced autophagy 
is a major protective mechanism against podocyte aging and glomerular injury, representing a putative target 
to ameliorate human glomerular disease and aging-related loss of renal function.

The kidney filtration barrier is a unique structure characterized by 
a complex 3-dimensional framework of podocytes and endothelial 
cells. Podocytes form fine interdigitating foot processes, which 
envelope the glomerular capillaries (1, 2). In order to maintain the 
kidney filtration barrier, podocytes have to function as specific 
pericytes, counteracting the high transmural distending forces; 
serve as molecular sieves that establish the selective permeability 
properties of the glomerular filter; secrete soluble factors to regu-
late other cell types within the glomerulus; and coordinate dynam-
ic signaling events at the slit diaphragm. The combination of all 
these functions in one cell is reflected by the high differentiation, 
the neuron-like appearance, and the very complex cytoarchitecture 
of podocytes. Unlike all other cell types forming the kidney filtra-
tion apparatus, podocytes have a very limited capacity for cell divi-
sion and replacement (2). The fate of podocytes therefore entirely 
depends on their ability to cope with stress.

Recent research indicates that a decrease in the number of 
glomerular podocytes is a predictor for the progression of renal 
diseases, including focal segmental glomerulosclerosis and dia-

betic nephropathy (3–5). In addition, increased appearance of 
podocytes and podocyte constituents in the urine is associated 
with glomerulosclerosis (6, 7). Together these data underline the 
concept that loss of podocytes triggers glomerulosclerosis. Fur-
thermore, progressive glomerulosclerosis leads to an irreversible 
loss of renal function, ultimately culminating in end-stage renal 
disease (ESRD). Podocyte injury is therefore a key determinant 
of glomerular diseases and ESRD. Glomerulosclerosis in combi-
nation with loss of glomerular filtration also typically occurs in 
the aging human kidney. Animal models indicate that the age-
dependent development of glomerulosclerosis is due to a loss of 
podocytes (8, 9). However, the mechanism by which this might 
occur has not been elucidated.

Increasing age causes a progressive deterioration of most tis-
sues, leading to an impairment of cell function and increased 
vulnerability to environmental challenges. The accumulation of 
damaged proteins, lipids, and organelles usually accounts for the 
age-associated malfunctioning of individual cells (10). Recent 
studies have demonstrated that a decreased rate of protein degra-
dation is responsible for the age-dependent functional decline in 
many cell types (10).

The 2 major protein degradation pathways in eukaryotes are 
the ubiquitin-proteasome system (UPS) and autophagy (11). 
Both of these systems are responsible for the efficient degrada-
tion and turnover of proteins within the cell. Failure of either 
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the UPS or autophagy has been associated with disease, while the 
upregulation of these processes has been shown to ameliorate 
certain disease entities (11, 12). The proteasome is responsible for 
the selective degradation or recycling of short-lived cytosolic pro-
teins but also regulates the turnover of some long-lived proteins. 
Due to the size of the narrow barrel of the proteasome and the 
specificity of the process, many proteins and organelles cannot 
be degraded by the UPS. Autophagy is responsible for the bulk 
degradation of long-lived cytosolic proteins and organelles. Unlike 
proteasomal degradation, autophagic degradation is thought to 
be largely nonspecific. Portions of the cytoplasm are sequestered 
within cytosolic double-membrane vesicles, the autophagosomes, 
and damaged proteins and organelles are delivered to the lyso-
some (11). Autophagy is a major homeostatic and quality control 
mechanism to maintain cellular integrity (11). Thus, constitutive 
autophagy has been shown to function as a cell-repair mechanism 
that is particularly important for long-lived postmitotic cells such 
as neurons (11). Similar to neurons, podocytes are terminally dif-
ferentiated cells, and autophagosomes have been shown to be pres-
ent in podocytes in vitro (13), in mice (14), and in human renal 
biopsies (15). However, the functional significance of autophagy 
for glomerular development, maintenance, and disease progres-
sion has remained unknown.

Here we demonstrate the critical role of autophagy for glomeru-
lar maintenance in aging glomeruli. Moreover, these data provide 
the first evidence that glomerular injury — a major risk factor for 
ESRD (5) — triggers autophagy to prevent the progression of glo-
merular disease. The dynamic regulation of protein degradative 
pathways in the podocyte appears to be a general theme for glo-
merular aging and glomerular disease progression.

Glomerular podocytes exert high levels of autophagy under basal condi-
tions. We hypothesized that the postmitotic podocyte depends on 
autophagy to maintain cellular homeostasis, and we used trans-
genic mice expressing the fluorescent microtubule-associated pro-
tein 1 light chain 3, GFP-LC3, an autophagosome marker, to moni-
tor autophagy in vivo (14). Strikingly, only glomerular podocytes 
displayed clearly detectable levels of autophagosomes within the 
kidney under basal conditions (Figure 1, A and B). Moreover, podo-
cytes exerted unusually high levels of autophagosomes compared 
with other kidney cells (Figure 1C). However, increased numbers 
of autophagic vacuoles do not necessarily correlate with increased 
autophagic activity or flux, as such an increase can also result from 
impaired autophagosome/lysosome fusion or constitutively low 
lysosomal activity. To study the actual rate of autophagosome for-
mation in podocytes, we generated a podocyte cell line expressing 
GFP-LC3. Blockade of autophagosomal degradation with the lyso-
somal inhibitor chloroquine induced a rapid accumulation of GFP-
LC3–positive autophagosomes in GFP-LC3–expressing differenti-
ated podocytes (Figure 1D). Autophagic flux rates of differentiated 
podocytes and inner medullary collecting duct (IMCD) cells were 
compared. Densitometric analysis of Western blots from cells incu-
bated with chloroquine showed a significantly faster accumulation 
of converted LC3-II in podocytes, indicating a high rate of autopha-
gic flux under non-starving conditions (Figure 1, E and F).

Autophagy-related 5-dependent autophagy is dispensable for glomerular 
development. To analyze the autophagic activity during podocyte 
differentiation, kidney sections of newborn transgenic GFP-LC3 
mice were stained with the podocyte nucleus marker WT1 and 
the foot process marker podocin. Since glomerular development 
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occurs asynchronously, all glomerular developmental stages were 
monitored on day 1 kidney sections. GFP-LC3–positive autopha-
gosomes were not detected before late podocyte differentiation in 
the late capillary loop stage (Figure 2A). To further elucidate the 
role of autophagy in podocyte development, we analyzed constitu-
tive autophagy-related 5 (Atg5) knockout mice (16). Glomeruli and 
podocytes in kidneys from Atg5-deficient E19 embryos (Atg5–/–) 
showed no morphological abnormalities in histology and electron 
microscopy despite loss of LC3 conversion, indicating that the 
autophagic activity of podocytes is not required for their normal 
differentiation (Figure 2, B–D). We next generated podocyte-spe-
cific Atg5 knockout mice (Atg5Δpodocyte) by crossing Atg5-floxed mice 
(Atg5flox/flox) with podocin-Cre mice (17). In podocin-Cre–positive 
mice, floxed alleles are selectively excised in glomerular podocytes 
during late glomerular development (18). Western blot analysis 
from isolated glomeruli confirmed the almost complete loss of 
glomerular Atg5 and accumulation of LC3-I (Figure 2E), thus 
confirming that the high levels of autophagy observed in the 
glomerulus can be attributed to podocytes. To confirm the abla-
tion of autophagy in podocytes, the Atg5Δpodocyte mice were subse-
quently crossed to GFP-LC3 transgenic mice. In these triple trans-
genic mice, glomerular GFP-LC3–positive vesicles were completely 
absent and GFP-LC3 was distributed diffusely in the cytoplasm 
(Figure 2F and Supplemental Figure 1; supplemental material 
available online with this article; doi:10.1172/JCI39492DS1). Like 
in the constitutive Atg5 knockout animals, the kidneys of newborn 
Atg5Δpodocyte mice displayed no obvious histological abnormalities 
(data not shown). Glomerulus counts of kidneys from Atg5Δpodocyte  

mice and control littermates were almost identical, indicating that 
podocyte-specific Atg5 deletion did not affect the number of devel-
oping nephrons (Figure 2G). However, these results do not exclude 
the possibility that Atg5-independent autophagy might compen-
sate for correct development in Atg5-deficient animals (19).

Functional cross-talk between the ubiquitin proteasome pathway and 
autophagy in podocytes. To determine the physiological role of 
autophagy in podocytes, we analyzed Atg5Δpodocyte  and control mice 
in age-matched groups. Up to 2–4 months after birth, Atg5Δpodocyte 

mice were indistinguishable from control littermates as analyzed 
by kidney histology, albuminuria, and glomerular ultrastructure 
(Figure 3, A–C). In an 8- to 12-month follow-up, Atg5Δpodocyte mice 
developed albuminuria that was mild but significantly higher 
than in control mice (Figure 3A). Interestingly, acute induction 
of podocyte-specific Atg5 knockout in 12-week-old doxycycline-
inducible Atg5flox/flox;Podocin-rtTA+;tetO-Cre+ mice caused a rapid 
onset of albuminuria, suggesting that the constitutive loss of 
Atg5 might be partially compensated by other pathways such as 
chaperone-mediated autophagy (20), Atg5-independent autoph-
agy (19), or an upregulated proteasome activity (21) (Supplemen-
tal Figure 2). No obvious histological phenotype was detectable 
in 12-month-old podocyte-specific Atg5 knockout mice (Figure 
3B). However, electron microscopy analysis identified significant 
changes, including vacuolar degeneration and large cystic struc-
tures (Figure 3D) in 12-month-old mice. Similar changes could 
already be seen in 8-month-old mice (data not shown). Further 
magnification revealed additional ultrastructural abnormalities 
such as cisternal distension of rough ER and aberrant membra-
nous structures similar to those observed in Atg7-deficient livers 
(22), suggesting an abnormal turnover of organelles (Supplemen-
tal Figure 3). Surprisingly, and in contrast to many other tissues 
(17, 21–25), the genetic ablation of autophagy did not cause a 

significant accumulation of poly-ubiquitinated proteins in the 
glomeruli of 8-month-old mice (Figure 3E). Although podocytes 
account for less than 20% of all glomerular cells, podocyte-specific 
deletion of autophagy resulted in a remarkable increase of total 
glomerular proteasome activity in these mice, as measured by chy-
motrypsin-like activity (Figure 3F), suggesting that the enhanced 
proteasome activity antagonizes an accumulation of poly-ubiqui-
tinated proteins. To test the concept of a compensatory action of 
the proteasome in Atg5Δpodocyte animals in vivo, Atg5Δpodocyte and con-
trol mice were injected with the proteasome inhibitor bortezomib. 
Bortezomib injection resulted in a significant decrease of protea-
some activity in total kidney lysates (Figure 3G) and caused a sig-
nificant albuminuria in 6-month-old Atg5Δpodocyte mice compared 
with control littermates 24 hours after injection (Figure 3H). A 
functional coupling of autophagy and the UPS was also suggested 
by the fact that inhibition of the UPS by MG132 resulted in an 
increased autophagic activity, as documented by the conversion of 
cytoplasmic LC3-I into the membrane-bound LC3-II (Figure 3I)  
and the formation of GFP-LC3–positive autophagosomes in GFP-
LC3–expressing differentiated podocytes (Figure 3J).

Atg5 deficiency results in age-dependent late-onset glomerulosclerosis. In 
a 20- to 24-month follow-up, Atg5Δpodocyte mice developed a progres-
sive decline in glomerular function as evidenced by proteinuria 
(Figure 4A). Upon histology, 20- to 24-month-old Atg5Δpodocyte mice 
displayed significantly increased segmental or complete glomeru-
lar sclerosis compared with control littermates (Figure 4, B and C). 
In agreement with the measured proteinuria, proteinaceous casts 
and tubular dilatation were seen (Figure 4B). The expression and 
targeting of slit diaphragm proteins in non-sclerosed glomeruli 
displayed by immunofluorescence and specific immunogold stain-
ings for nephrin and podocin seemed not to be severely affected, 
indicating that the glomerulopathy was not primarily caused by a 
defective slit diaphragm function (Supplemental Figure 4). Elec-
tron microscopy analysis revealed extensive vacuolar degeneration 
of podocyte cell bodies and foot process fusion (Figure 4D). Many 
of the vacuoles consisted of expanded ER lumens (Figure 4D).  
Furthermore, Atg5Δpodocyte podocytes displayed typical features of 
aging cells, such as signs of mitochondrial damage (Figure 4E), 
and accumulation of intra-lysosomal indigestible material, such 
as lipofuscin (Figure 4, F and G).

ER stress and the accumulation of oxidized and ubiquitinated protein 
aggregates result in a loss of podocytes in Atg5Δpodocyte mice. The dilated ER 
lumens stained positive for Calnexin by immunofluorescence (Fig-
ure 5A), indicating ER stress, which was confirmed by the detec-
tion of upregulated ER stress markers from isolated glomeruli of 
Atg5Δpodocyte mice (Figure 5B). Interestingly, the proteasomal activity 
of glomeruli from these Atg5Δpodocyte mice was significantly reduced 
compared with glomeruli from control mice (Figure 5C). In agree-
ment with the reduced proteasomal activity, Western blot analysis 
(here shown as a short exposure) demonstrated a significant accu-
mulation of poly-ubiquitinated proteins in glomeruli of Atg5Δpodocyte 
mice (Figure 5D). Accumulation of ubiquitin and the lysosomal 
marker Lamp2 was also confirmed by confocal microscopy (Sup-
plemental Figure 5, A and B). In addition, a dramatic accumula-
tion of p62/SQSTM1, a ubiquitin-binding scaffold protein that 
colocalizes with ubiquitinated protein aggregates in many neu-
rodegenerative diseases (26), was detected, and p62 seemed to be 
deposited in larger aggregates as shown by immunofluorescence 
(Figure 5, E and F). These data suggest that the incremental accu-
mulation of toxic proteins and altered organelles in autophagy-
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deficient podocytes might ultimately overwhelm the protea-
some-dependent compensatory protein degradation, resulting in 
podocyte injury and glomerulosclerosis. Since the deposits of dam-
aged proteins and altered organelles are particularly detrimental 
in non-dividing cells, autophagy-deficient podocytes share strik-

ing characteristics with aging neurons (17, 23, 27). Accumulation 
of oxidized proteins is widely considered a hallmark of aging in 
many tissues (28). To quantitatively assess the accelerated process 
of cellular aging, we measured the content of oxidized proteins in 
Atg5Δpodocyte mice. Indeed, glomeruli from 22-month-old Atg5Δpodocyte 
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mice significantly accumulated oxidized proteins compared with 
glomeruli from control animals (Figure 5G). In terminally differ-
entiated neurons, several ubiquitin-associated proteins such as the 
ubiquitin carboxyterminal hydrolase L1 (UCH-L1) are known to 
be involved in the pathogenesis of neurodegenerative diseases and 
neuronal aging (11, 29). UCH-L1, recently identified in podocytes 
(30), was dramatically upregulated in glomeruli from autophagy-
deficient mice (Figure 5H). To asses whether the podocyte damage 

was accompanied by a loss of podocytes, we compared the number 
of glomerular podocytes from control and Atg5Δpodocyte mice at dif-
ferent ages. Indeed, a significantly reduced number of podocytes 
was already detected in non-sclerosed glomeruli of 22-month-old 
Atg5Δpodocyte mice, indicating that podocyte loss precedes the devel-
opment of glomerulosclerosis (Figure 5I). These results clearly 
demonstrate the importance of basal, constitutive autophagy in 
maintaining glomerular function in aging mice.

μ
μ μ
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Upregulation of autophagy in proteinuric diseases. The late onset of pro-
teinuria in Atg5Δpodocyte mice enabled us to study the role of autoph-
agy during glomerular injury. First we explored whether protein-
uria leads to changes of autophagosome formation in GFP-LC3; 
Atg5WT/WT mice. Application of BSA overload induced an approxi-
mately 3-fold increase of GFP-LC3–positive autophagosomes 
(Figure 6, A and B), indicating a role for autophagy in response to 
proteinuria. To examine the role of autophagy in human kidney 
disease, we examined ATG3 mRNA levels using quantitative real-
time PCR (rt-PCR) in microdissected glomeruli from patients with 
acquired proteinuric diseases (31). Intriguingly, ATG3 mRNA levels 
were 4- and 10-fold higher in podocytes from patients with focal seg-
mental glomerulosclerosis and membranous glomerulonephritis 
compared with control samples (Figure 6C). Immunofluorescence 

staining of 2 patient biopsy samples for the autophagosome marker  
LC3 showed an upregulation of autophagosomes in podocytes in 
membranous glomerulonephritis compared with controls (pre-
transplant allograft biopsies) (Figure 6D).

Autophagy is critically involved in podocyte stress adaptation. Autoph-
agy can have opposing effects on cell survival (32). To clarify the 
role of induced autophagy in glomerular stress, we applied several 
glomerular disease models on non-proteinuric young (4–6 months 
old) Atg5Δpodocyte and control mice. Injection of puromycin aminonu-
cleoside (PAN) (33, 34) or Adriamycin (35) resulted in a tremendous 
increase of albuminuria in young, non-proteinuric Atg5Δpodocyte mice 
compared with control littermates (Figure 7, A and E), with the 
subsequent development of glomerulosclerosis (Figure 7, B and F),  
foot process fusion (Figure 7, C and G), and loss of podocytes (Fig-
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ure 7, D and H), indicating that loss of autophagy dramatically 
sensitized animals toward the development of glomerular diseases. 
In addition, low doses of BSA (36, 37) or LPS (38) caused signifi-
cantly higher transient albuminuria in Atg5Δpodocyte mice compared 
with control littermates (Supplemental Figure 6).

These findings strongly support the hypothesis that autophagy 
defends the integrity of podocytes against glomerular disease pro-
gression (illustrated in Supplemental Figure 7).

Autophagy is a cellular pathway involved in protein and organelle 
degradation with an amazing number of connections between cellu-
lar homeostasis and human disease (11). Our results here highlight 
the critical role of autophagy as a determinant of glomerular aging 
and glomerular disease (illustrated in Supplemental Figure 7).

Glomerular diseases are primarily responsible for the rising costs 
associated with ESRD worldwide (5). Due to its complexity and 
its postmitotic nature, the podocyte represents the most fragile 
component of the glomerular filtration barrier. In most human 
glomerulopathies, podocyte foot process effacement is a hall-
mark of glomerular injury leading to proteinuria (39). Failures of 
reparative mechanisms promote persistent proteinuria and the 
development of glomerulosclerosis (39). Unfortunately, very little 
has been known on the molecular nature of the reparative mecha-
nisms that defend the podocyte against environmental stress and 
cellular aging. The understanding of this missing link could be 
the basis for successful therapeutic prevention of irreversible glo-
merulosclerosis. Our data now reveal autophagy as an important 
mechanism for podocyte homeostasis. Autophagy has previously 
been shown to be an essential cell repair and turnover mecha-
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nism for postmitotic cells such as neurons (10, 11). Strikingly, 
in the kidney, glomerular podocytes most prominently display 
autophagic activity. Atg5-deficient podocytes that are incapable 
of performing autophagy progressively accumulate biological 
“garbage” such as damaged mitochondria and ubiquitinated pro-
tein aggregates, underlining that the removal of this cellular waste 
depends on autophagy in podocytes. The compromised clearance 
of old and/or damaged mitochondria by autophagy coupled with 
reduced turnover of long-lived proteins probably contributes to 

the intracellular accumulation of oxidized proteins seen in Atg5-
deficient podocytes. Podocytes are particularly susceptible to oxi-
dative injury (40). Both ER stress and oxidative stress ultimately 
lead to irreversible podocyte injury and podocyte loss. This clearly 
distinguishes podocytes from other glomerular structures that are 
efficiently renewed due to proliferation, providing a dilution of 
oxidatively or otherwise damaged proteins and cell organelles.

The efficiency of autophagy seems to be a direct determinant 
of cellular aging for long-lived glomerular podocytes. Indeed, 
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autophagy-deficient podocytes perfectly phenocopied many age-
related cellular alterations (Figures 4 and 5). Most prominent 
signs of this accelerated aging in Atg5-deficient podocytes are 
the accumulation of lipofuscin, the formation of ubiquitinated 
protein aggregates and aggresomes, the occurrence of damaged 
mitochondria, and the increase in the load of oxidized proteins. 
To our knowledge this is the first genetic mouse model clear-
ly featuring an aging podocyte. Aging in humans and rodents 
progressively impairs renal function (5, 8, 41). The age-related 
structural kidney changes are characterized by loss of podocytes 
and glomerulosclerosis (5, 42). The exact mechanisms under-
lying age-dependent renal injury are unknown. Even in the 
absence of known risk factors such as hypertension or diabetes, 
otherwise healthy individuals (65 years old or older) frequently 
present glomerulosclerosis (5). The autophagy-lysosome system 
undergoes striking changes in aging cells. Aging in general leads 
to a reduction in autophagosome formation and autophago-
some-lysosome fusion (10, 43). It is intriguing to speculate that 
a gradual decrease of glomerular autophagic activity with age 
could play a major role in the functional decline of renal func-
tion in human aging kidneys.

In most cases, the ultimate fate of defective proteins identified 
by quality control systems is degradation by either the autopha-
gy-lysosome system or the UPS. Both of these degradation path-
ways have been implicated in the pathogenesis of neurodegen-
erative disease (11). However, the UPS and autophagy were long 
viewed as independent degradation systems. Interestingly, in the 
podocyte the UPS and the autophagy-lysosome system appeared 
to be functionally coupled, as Atg5-deficient podocytes did exert 
highly upregulated proteasome activities at young ages and the 
occurrence of a more severe podocyte phenotype in old mice 
seemed to be correlated with the decline in compensatory pro-
teasome activity. In addition, inhibition of the UPS resulted in 
an increased autophagic activity in wild-type podocytes. Simi-
lar induction of autophagy has been observed in response to 
genetic impairment of the proteasome in Drosophila melanogas-
ter (44). These results might suggest that podocytes can switch 
between autophagy and the UPS, and that each system can at 
least partially maintain the clearance of intracellular degrada-
tion products in podocytes. One simple possible mechanism of 
such an autophagy-UPS interaction could be that the autopha-
gic machinery directly degrades proteasomal components, which 
would explain the increased proteasomal activity in Atg5-defi-
cient podocytes. Although unproven at this point, it seems pos-
sible that the upregulation of alternative proteolytic pathways 
in constitutively autophagy-deleted tissues contributes to the 
observed phenotypes not only in podocytes, but also in other 
tissues such as cardiomyocytes, where heart-specific constitu-
tive and temporally controlled Atg5 deletion caused significantly 
different phenotypes (21). Thus, in contrast to the traditional 
notion of the UPS and autophagy providing discrete routes of 
degradation for short-lived and long-lived proteins, our data 
support recent findings indicating that a subset of proteins may 
be degraded by either pathway (45, 46).

Recently, it has been shown that autophagy can occur through 
an Atg5/Atg7-independent alternative pathway (19). This under-
lines the complexity of protein degradative pathways. Atg5-depen-
dent macroautophagy has been demonstrated to be crucial for 
basal and starvation-induced autophagy (11), for neuronal protein 
aggregate clearance, and for stress adaptation (11, 21). In contrast, 

the alternative Atg5-independent autophagy can be triggered by 
cellular stress in vitro and functions in the autophagic elimination 
of organelles during erythrocyte differentiation in vivo (19). In the 
future it will be important to further dissect the interplay of Atg5-
dependent autophagy, Atg5-independent autophagy, chaperone-
mediated autophagy, and other proteolytic pathways.

Despite the important function of basal autophagy in podo-
cytes, the requirement for autophagy is even more evident under 
glomerular disease conditions. Our data show that the autophagic 
machinery is induced in proteinuric animal models as well as in 
human glomerular diseases. Since autophagy can have opposing 
effects on cell survival (32), we proofed whether this process is a 
causative or a compensatory mechanism by comparing models of 
glomerular stress in wild-type and Atg5Δpodocyte mice. Intriguingly, 
autophagy deficiency dramatically sensitized podocytes toward 
glomerular stress. Thus, autophagy is a novel cellular stress sur-
veillance factor for podocytes that appears to function both as 
a sensor of stress stimuli and as an effector, which coordinates 
podocyte homeostasis.

In summary, this study identifies basal autophagy as crucial 
factor for glomerular maintenance and glomerular aging (Supple-
mental Figure 7). In addition, we demonstrate the importance of 
induced autophagy in glomerular injury — a major risk factor for 
glomerular disease and end-stage kidney disease (5). It is very rea-
sonable to assume that autophagy could be a novel therapeutic 
target (47) for the treatment of glomerular diseases. However, in 
any attempt at manipulating podocyte autophagy therapeutically,  
it will be important to acknowledge the dynamic nature of the 
changes that occur in the autophagic system and related protein 
degradative pathways during the course of glomerular disease.

Mice. Mice bearing an Atg5flox allele, in which exon 3 of the Atg5 gene is 

flanked by 2 loxP sequences, have been previously reported (17). Podocin-

Cre mice were provided by L. Holzman (Renal, Electrolyte and Hypertension 

Division, University of Pennsylvania School of Medicine, Philadelphia, PA, 

USA) (18). Atg5-floxed mice (Atg5flox/flox) were crossed with Podocin-Cre mice 

to generate podocyte-specific Atg5 knockout mice Atg5flox/flox;Podocin-Cre+ 

(Atg5Δpodocyte). Atg5flox/WT;Podocin-Cre+ and Atg5flox/flox;Podocin-Cre– littermates 

served as controls. Atg5Δpodocyte mice were subsequently crossed to GFP-LC3 

transgenic mice. Atg5 constitutive knockout mice (Atg5–/–) (16) and GFP-LC3 

transgenic mice (14) have been previously reported. All mice were crossed 

on a pure C57BL/6 background. The C57BL/6 strain, which is widely used 

as background for transgenic and knockout mouse models, is known to 

be relatively resistant to kidney injury (48), which might contribute to 

the late onset of glomerulosclerosis in C57BL/6 Atg5Δpodocyte mice. Podo-

cin-rtTA;tetO-Cre mice were provided by S. Quaggin (Samuel Lunenfeld 

Research Institute, Mount Sinai Hospital, University of Toronto, Canada) 

(49). To generate doxycycline-inducible podocyte-specific Atg5 knockout 

mice (Atg5flox/flox;Podocin-rtTA+;tetO-Cre+) Atg5-floxed mice (Atg5flox/flox) were 

crossed with Podocin-rtTA;tetO-Cre mice. TetO-Cre– littermates served as a 

control. For the induction of Atg5 deletion, 12-week-old Atg5flox/flox;Podocin-

rtTA+;tetO-Cre+ mice received doxycycline hydrochloride (Sigma-Aldrich) via 

drinking water (2 mg/ml with 5% sucrose, protected from light) for a total 

of 14 days. All animal studies were approved by the Committee on Research 

Animal Care, Regierungspräsidium Freiburg.

Protein overload and subsequent analysis. Atg5Δpodocyte mice (n = 5) and control 

littermates (n = 6) received endotoxin-free BSA (Sigma-Aldrich; catalog 

A9430) (250 mg/ml, dissolved in PBS) intraperitoneally for 5 consecutive 

days with increasing dose (2, 4, 6, 8 and 10 mg/g body weight) (36, 37). Uri-
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nary albumin excretion rates were analyzed before injections and at days 

1 to 7 after the first injection. To monitor the induction of autophagy, 

GFP-LC3 transgenic mice received either endotoxin-free BSA (n = 4) or the 

equivalent volume of PBS as control (n = 3) intraperitoneally for 7 consecu-

tive days with increasing doses (2, 4, 6, 8, 10, 10, 10 mg/g body weight). Pro-

teinuria was confirmed by urine dip-stix (≥20 g/l) and Coomassie gel. GFP-

LC3–positive autophagosomes were quantified using ImageJ software.

LPS-induced proteinuria. Atg5Δpodocyte mice and control littermates (n = 4 each) 

were injected intraperitoneally with a single dose of 200 μg LPS (Sigma-

Aldrich) (1 mg/ml in sterile PBS) in a total volume of 200 μl. Urinary albu-

min excretion rates were analyzed before the single dose injection and at 

days 1 and 3 after the injection and normalized to urinary creatinine (38).

PAN-induced proteinuria. Atg5Δpodocyte mice and control littermates (n = 6  

each) received 2 doses of intravenous PAN (Sigma-Aldrich) in 0.9% NaCl 

(15 mg/ml) at day 0 and 2 (18.25 mg/100 g body weight) (33, 34). Uri-

nary albumin excretion rates were analyzed before the 2 dose injections 

and at days 1, 3, 5, 9, 13, and 16 after the first injection. Kidneys were 

harvested and processed for PAS staining and electron microscopy after 

the 16-day follow-up.

Adriamycin-induced proteinuria. Atg5Δpodocyte mice and control littermates  

(n = 6 each) received 1 dose of intravenous Adriamycin (Sigma-Aldrich) in 

0.9% NaCl (2 mg/ml) (15 μg/g body weight) (35). Urinary albumin excre-

tion rates were analyzed before injection and 1, 2, 3, 4, and 8 weeks after 

injection. Kidneys were harvested and processed for PAS staining and elec-

tron microscopy after the 8-week follow-up.

Bortezomib-induced proteinuria. Atg5Δpodocyte mice (n = 3) and control litter-

mates (n = 4) received 1 dose of intravenous bortezomib (Janssen-Cilag) in 

0.9% NaCl (1 mg/ml) (1.5 μg/g body weight) (50). Urinary albumin excre-

tion rates were analyzed before injection and 24 hours after injection.

Urine analysis. Urinary albumin and creatinine were measured using 

mouse albumin-specific ELISA (Bethyl) and creatinine kits. Proteinuria was 

expressed as mg albumin/mg creatinine. In addition, Coomassie gels were 

used to semi-quantitatively confirm the proteinuria (data not shown).

Histological analysis. Kidneys were fixed in 4% paraformaldehyde and 

embedded in paraffin or in Lowicryl K4M resin (Electron Microscopy 

Sciences) and further processed for PAS staining or electron microscopy, 

respectively. Kidneys of 12-day-old Atg5Δpodocyte mice and control littermates 

were fixed with 4% paraformaldehyde. Fixed kidneys were embedded in 

paraffin and totally sectioned into a complete set of consecutive slices of  

8 nm on a Leica microtome. The total numbers of glomeruli per kidney 

were counted as previously described (51).

Immunoelectron microscopy. Kidneys of 22-month-old Atg5Δpodocyte mice and 

control littermates were fixed with 4% paraformaldehyde. Fixed samples 

were embedded in Lowicryl K4M resin (Electron Microscopy Sciences), and 

ultrathin sections were labeled by an indirect immunogold protocol, as 

described previously (52).

Immunofluorescence staining of kidney sections. Kidneys were frozen in OCT 

compound and sectioned at 6 μm (Leica Kryostat). The sections were fixed 

with 4% paraformaldehyde, blocked in PBS containing 5% BSA, and incu-

bated for 1 hour with primary antibodies. After several PBS rinses, fluo-

rophore-conjugated secondary antibodies (Invitrogen) were applied for  

30 minutes. Confocal images were taken using a Zeiss laser scan micro-

scope equipped with a ×63 water immersion objective. To determine the 

number of podocytes per glomeruli, kidney sections were stained against 

the podocyte nuclear marker WT1. WT1-positive cells were counted in 30 

glomeruli per mouse per condition (n = 3 for each condition).

Isolation and characterization of adult mouse glomeruli. Glomeruli were iso-

lated using Dynabead perfusion and were glass-glass homogenized in lysis 

buffer (containing 20 mM CHAPS and 1% Triton X-100) (53, 54). After 

centrifugation (15,000 g for 15 minutes at 4°C) protein concentration was 

determined by Dc Protein-Assay (Bio-Rad). Equal amounts of protein were 

separated by SDS-PAGE.

Proteasome activity analysis. Glomeruli were lysed in T-Per (Pierce Biotech-

nology Inc.) with Protease Complete Inhibitor cocktail without EDTA 

(Roche) (n = 3 for control and Atg5Δpodocyte mice). Protein concentration was 

determined by a standard bicinchoninic acid assay (Pierce Biotechnology 

Inc.) according to the manufacturer’s instructions. For the measurement of 

proteasomal (chymotrypsin-like) activity, 10 μg total protein were diluted in 

incubation buffer (20 mM HEPES, 0.5 mM EDTA, 5 mM DTT, 0.1 mg/ml 

ovalbumin in H2O, pH 7.8) to a final volume of 50 μl. Probes were preincu-

bated in incubation buffer for 2 hours at 4°C. Following preincubation, the 

substrate Suc-LLVY-AMC (Calbiochem) was added to the probes at a final 

concentration of 60 μM and to an end volume of 100 μl. Proteasomal activity 

was measured in triplicate at 355 and 460 nm in a Mithras LB 940 fluores-

cent spectrophotometer after incubation at 37°C for 1 hour in the dark.

Oxidized protein analysis. The amount of oxidized proteins in homogenates 

of glomeruli was determined by using an OxyElisa Oxidized Protein Quan-

titation Kit (Chemicon) according to the manufacturer’s instructions.

Patients and quantitative glomerular rt-PCR. Human renal biopsy speci-

mens were procured in an international multicenter study, the European 

Renal cDNA Bank–Kroener-Fresenius Biopsy Bank (ERCB-KFB; members 

are listed in ref. 55). Biopsies were obtained from patients after informed 

consent and with approval of the local ethics committees. Microdissec-

tion, RNA isolation, reverse transcription, and rt-PCR were performed as 

described previously (31). Pre-developed TaqMan reagents were used for 

human ATG3 (NM_022488.3) and for reference genes (Applied Biosys-

tems). In addition, 2 biopsy samples from histologically classified mem-

branous nephropathy and 2 controls (pretransplant living donor biopsy) 

were used for immunofluorescence analysis.

Cell culture. Human and mouse podocyte cell lines were provided by 

M. Saleem (Children’s Renal Unit, Bristol Royal Hospital for Children, 

University of Bristol, UK) and P. Mundel (Department of Medicine, Uni-

versity of Miami, Miller School of Medicine, Miami, FL, USA) and were 

cultured as previously described (56, 57). GFP-LC3–transgenic podocytes 

were generated by retroviral transduction of pMX-GFP-rat LC3 (58) as 

previously described (59, 60). For lysosomal inhibition, human podocytes 

and IMCD cells were incubated with chloroquine dissolved in PBS (25 μM  

final concentration) for 2, 4, and 6 hours. Western blots of cell lysates 

were stained against LC3 and CD2AP as loading control. Densitometric 

analysis of Western blots was performed with ImageJ software. For inhi-

bition of the UPS, cells were incubated for 6 hours with MG132 dissolved 

in DMSO (25 μM final concentration) or DMSO as control.

Antibodies. Antibodies were obtained from Acris (anti-Nephrin guinea 

pig pAb, BP5030), Sigma-Aldrich (anti-podocin rabbit pAb, P0372; anti–

β-actin mouse mAb, A5441; anti-ezrin mouse mAb, E8897), Chemicon 

(anti-nidogen rat mAb, MAB1946; anti-ubiquitin rabbit pAb, AB1690; 

anti-ubiquitin mouse mAb, MAB1510; anti–UCH-L1 rabbit pAb, AB1761), 

Abcam (anti-WT1 rabbit pAb, ab15249; anti-Lamp2 rabbit mAb, ab37024), 

Biomol (anti-calnexin rabbit pAb, SPA-860), Cell Signaling Biotechnology 

(anti-LC3B rabbit pAb, 2775; anti-human Atg12 rabbit pAb, 2010; anti-

mouse Atg12 rabbit pAb, 2011), ImmunoGlobe (anti–α-actinin-4 rabbit 

pAb, 0042-05), Stressgen (anti-GRP94 rat mAb, SPA-850), MBL (anti-LC3 

mouse mAb, M152-3), Cosmo Bio (anti-Atg5 rabbit pAb, TMD-PH-AT5) 

and Progen (anti-p62 guinea pig pAb, GP62-C). Anti-CD2AP rabbit pAb 

was described previously (61).

Secondary antibodies, actin, and nuclear staining reagents were obtained 

from Invitrogen (To-Pro-3, T3605; Alexa Fluor 546 phalloidin, A22283; 

Alexa Fluor 488 goat anti–guinea pig IgG, A11073; Alexa Fluor 555 goat 

anti-rat IgG, A21434; Alexa Fluor 488 goat anti-rat IgG; Alexa Fluor 488 

donkey anti-rabbit, A21206).
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Statistics. Data were expressed as the mean ± SEM. All experiments were 

performed at least 3 times. Statistical comparisons were performed with 

the program Statistica using ANOVA with the Scheffe test, 2-tailed Stu-

dent’s t test, 1-tailed Fisher’s exact test, or 1-tailed Mann-Whitney U test. 

Differences with P < 0.05 were considered significant.

We thank Dörte Thiel, Charlotte Meyer (University Hospital 
Freiburg), Elisabeth Wieser, Brigitte Langer (Medical University 
Vienna), and Evelyn Wätzig (University Hospital Freiburg) for 
excellent technical assistance. We thank Andrea Busse-Grawitz 
(University Hospital Freiburg) for support with the urinary cre-

atinine analysis. This study was supported by DFG grants to T.B. 
Huber (HU 1016/2-1, P7-KFO 201, and SFB592) and to G. Walz 
(WA 597/12) and by the Excellence Initiative of the German Fed-
eral and State Governments (EXC 294).

Received for publication April 8, 2009, and accepted in revised 
form January 6, 2010.

Address correspondence to: Tobias B. Huber, Renal Division, 
University Hospital Freiburg, Breisacher Str. 66, 79106 Freiburg, 
Germany. Phone: 49.761.270.3559; Fax: 49.761.270.3270; E-mail: 
tobias.huber@uniklinik-freiburg.de.

 1. Huber TB, Benzing T. The slit diaphragm: a signal-
ing platform to regulate podocyte function. Curr 
Opin Nephrol Hypertens. 2005;14(3):211–216.

 2. Pavenstadt H, Kriz W, Kretzler M. Cell biol-
ogy of the glomerular podocyte. Physiol Rev. 2003; 
83(1):253–307.

 3. White KE, et al. Podocyte number in normotensive 
type 1 diabetic patients with albuminuria. Diabetes. 
2002;51(10):3083–3089.

 4. Lemley KV, et al. Podocytopenia and disease severity in 
IgA nephropathy. Kidney Int. 2002;61(4):1475–1485.

 5. Wiggins RC. The spectrum of podocytopathies: a 
unifying view of glomerular diseases. Kidney Int. 
2007;71(12):1205–1214.

 6. Vogelmann SU, Nelson WJ, Myers BD, Lemley KV. 
Urinary excretion of viable podocytes in health 
and renal disease. Am J Physiol Renal Physiol. 2003; 
285(1):F40–F48.

 7. Skoberne A, Konieczny A, Schiffer M. Glomerular 
epithelial cells in the urine: what has to be done to 
make them worthwhile? Am J Physiol Renal Physiol. 
2009;296(2):F230–F241.

 8. Floege J, et al. Age-related glomerulosclerosis and 
interstitial fibrosis in Milan normotensive rats: a 
podocyte disease. Kidney Int. 1997;51(1):230–243.

 9. Brandis A, Bianchi G, Reale E, Helmchen U, Kuhn 
K. Age-dependent glomerulosclerosis and protein-
uria occurring in rats of the Milan normotensive 
strain and not in rats of the Milan hypertensive 
strain. Lab Invest. 1986;55(2):234–243.

 10. Cuervo AM, Bergamini E, Brunk UT, Droge W, 
Ffrench M, Terman A. Autophagy and aging: the 
importance of maintaining “clean” cells. Autophagy. 
2005;1(3):131–140.

 11. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. 
Autophagy fights disease through cellular self-
digestion. Nature. 2008;451(7182):1069–1075.

 12. Winslow AR, Rubinsztein DC. Autophagy in neu-
rodegeneration and development. Biochim Biophys 
Acta. 2008;1782(12):723–729.

 13. Asanuma K, et al. MAP-LC3, a promising autopha-
gosomal marker, is processed during the differ-
entiation and recovery of podocytes from PAN 
nephrosis. FASEB J. 2003;17(9):1165–1167.

 14. Mizushima N, Yamamoto A, Matsui M, Yoshi-
mori T, Ohsumi Y. In vivo analysis of autophagy 
in response to nutrient starvation using transgenic 
mice expressing a fluorescent autophagosome 
marker. Mol Biol Cell. 2004;15(3):1101–1111.

 15. Sato S, Kitamura H, Adachi A, Sasaki Y, Ghaziza-
deh M. Two types of autophagy in the podocytes 
in renal biopsy specimens: ultrastructural study.  
J Submicrosc Cytol Pathol. 2006;38(2–3):167–174.

 16. Kuma A, et al. The role of autophagy during the 
early neonatal starvation period. Nature. 2004; 
432(7020):1032–1036.

 17. Hara T, et al. Suppression of basal autophagy in 
neural cells causes neurodegenerative disease in 
mice. Nature. 2006;441(7095):885–889.

 18. Moeller MJ, Sanden SK, Soofi A, Wiggins RC, Holz-
man LB. Podocyte-specific expression of cre recombi-

nase in transgenic mice. Genesis. 2003;35(1):39–42.
 19. Nishida Y, et al. Discovery of Atg5/Atg7-indepen-

dent alternative macroautophagy. Nature. 2009; 
461(7264):654–658.

 20. Massey AC, Zhang C, Cuervo AM. Chaperone-
mediated autophagy in aging and disease. Curr Top 
Dev Biol. 2006;73:205–235.

 21. Nakai A, et al. The role of autophagy in cardiomyo-
cytes in the basal state and in response to hemody-
namic stress. Nat Med. 2007;13(5):619–624.

 22. Komatsu M, et al. Impairment of starvation-
induced and constitutive autophagy in Atg7-defi-
cient mice. J Cell Biol. 2005;169(3):425–434.

 23. Komatsu M, et al. Loss of autophagy in the central 
nervous system causes neurodegeneration in mice. 
Nature. 2006;441(7095):880–884.

 24. Jung HS, et al. Loss of autophagy diminishes pan-
creatic beta cell mass and function with resultant 
hyperglycemia. Cell Metab. 2008;8(4):318–324.

 25. Ebato C, et al. Autophagy is important in islet 
homeostasis and compensatory increase of beta cell 
mass in response to high-fat diet. Cell Metab. 2008; 
8(4):325–332.

 26. Bjorkoy G, et al. p62/SQSTM1 forms protein aggre-
gates degraded by autophagy and has a protective 
effect on huntingtin-induced cell death. J Cell Biol. 
2005;171(4):603–614.

 27. Levine B, Kroemer G. Autophagy in the pathogen-
esis of disease. Cell. 2008;132(1):27–42.

 28. Stadtman ER. Protein oxidation and aging. Science. 
1992;257(5074):1220–1224.

 29. Leroy E, et al. The ubiquitin pathway in Parkinson’s 
disease. Nature. 1998;395(6701):451–452.

 30. Meyer-Schwesinger C, et al. A new role for the 
neuronal ubiquitin C-terminal hydrolase-L1 (UCH-
L1) in podocyte process formation and podocyte 
injury in human glomerulopathies. J Pathol. 2009; 
217(3):452–464.

 31. Cohen CD, Frach K, Schlondorff D, Kretzler M. 
Quantitative gene expression analysis in renal biop-
sies: a novel protocol for a high-throughput multi-
center application. Kidney Int. 2002;61(1):133–140.

 32. Shintani T, Klionsky DJ. Autophagy in health 
and disease: a double-edged sword. Science. 
2004;306(5698):990–995.

 33. Kerjaschki D, Vernillo AT, Farquhar MG. Reduced 
sialylation of podocalyxin--the major sialoprotein 
of the rat kidney glomerulus--in aminonucleoside 
nephrosis. Am J Pathol. 1985;118(3):343–349.

 34. Nakajo A, et al. Mizoribine corrects defective neph-
rin biogenesis by restoring intracellular energy bal-
ance. J Am Soc Nephrol. 2007;18(9):2554–2564.

 35. Wang Y, Wang YP, Tay YC, Harris DC. Progressive 
adriamycin nephropathy in mice: sequence of his-
tologic and immunohistochemical events. Kidney 
Int. 2000;58(4):1797–1804.

 36. Weening JJ, Van Guldener C, Daha MR, Klar N, van 
der Wal A, Prins FA. The pathophysiology of protein-
overload proteinuria. Am J Pathol. 1987;129(1):64–73.

 37. Morita H, et al. Heparan sulfate of perlecan is involved 
in glomerular filtration. J Am Soc Nephrol. 2005; 

16(6):1703–1710.
 38. Reiser J, et al. Induction of B7-1 in podocytes is asso-

ciated with nephrotic syndrome. J Clin Invest. 2004; 
113(10):1390–1397.

 39. D’Agati VD. Podocyte injury in focal segmental 
glomerulosclerosis: Lessons from animal models (a 
play in five acts). Kidney Int. 2008;73(4):399–406.

 40. Kerjaschki D. Dysfunctions of cell biological mech-
anisms of visceral epithelial cell (podocytes) in glo-
merular diseases. Kidney Int. 1994;45(2):300–313.

 41. Anderson S, Brenner BM. The aging kidney: struc-
ture, function, mechanisms, and therapeutic impli-
cations. J Am Geriatr Soc. 1987;35(6):590–593.

 42. Kaplan C, Pasternack B, Shah H, Gallo G. Age-
related incidence of sclerotic glomeruli in human 
kidneys. Am J Pathol. 1975;80(2):227–234.

 43. McCray BA, Taylor JP. The role of autophagy in 
age-related neurodegeneration. Neurosignals. 2008; 
16(1):75–84.

 44. Pandey UB, et al. HDAC6 rescues neurodegenera-
tion and provides an essential link between autoph-
agy and the UPS. Nature. 2007;447(7146):859–863.

 45. Lamark T, Johansen T. Autophagy: links with 
the proteasome [published online ahead of print 
December 2, 2009]. Curr Opin Cell Biol. doi:10.1016/
j.ceb.2009.11.002.

 46. Korolchuk VI, Mansilla A, Menzies FM, Rubin-
sztein DC. Autophagy inhibition compromises 
degradation of ubiquitin-proteasome pathway 
substrates. Mol Cell. 2009;33(4):517–527.

 47. Rubinsztein DC, Gestwicki JE, Murphy LO, 
Klionsky DJ. Potential therapeutic applications of 
autophagy. Nat Rev Drug Discov. 2007;6(4):304–312.

 48. Ishola DA Jr, et al. In mice, proteinuria and renal 
inflammatory responses to albumin overload are 
strain-dependent. Nephrol Dial Transplant. 2006; 
21(3):591–597.

 49. Eremina V, et al. VEGF inhibition and renal 
thrombotic microangiopathy. N Engl J Med. 2008; 
358(11):1129–1136.

 50. Neubert K, et al. The proteasome inhibitor bortezo-
mib depletes plasma cells and protects mice with 
lupus-like disease from nephritis. Nat Med. 2008; 
14(7):748–755.

 51. Nyengaard JR, Bendtsen TF. A practical method to 
count the number of glomeruli in the kidney as exem-
plified in various animal species. Acta Stereol. 1990; 
9(Pt 2):243–258.

 52. Horvat R, Hovorka A, Dekan G, Poczewski H, Ker-
jaschki D. Endothelial cell membranes contain podo-
calyxin--the major sialoprotein of visceral glomerular 
epithelial cells. J Cell Biol. 1986;102(2):484–491.

 53. Takemoto M, et al. A new method for large scale 
isolation of kidney glomeruli from mice. Am J 
Pathol. 2002;161(3):799–805.

 54. Hartleben B, et al. Neph-Nephrin proteins bind the 
Par3-Par6-atypical protein kinase C (aPKC) com-
plex to regulate podocyte cell polarity. J Biol Chem. 
2008;283(34):23033–23038.

 55. Lindenmeyer MT, et al. Proteinuria and hyperglyce-
mia induce endoplasmic reticulum stress. J Am Soc 

Downloaded on September  6, 2013.   The Journal of Clinical Investigation.   More information at  www.jci.org/articles/view/39492



 The Journal of Clinical Investigation   http://www.jci.org   Volume 120   Number 4   April 2010

Nephrol. 2008;19(11):2225–2236.
 56. Saleem MA, et al. A conditionally immortalized 

human podocyte cell line demonstrating nephrin 
and podocin expression. J Am Soc Nephrol. 2002; 
13(3):630–638.

 57. Mundel P, et al. Rearrangements of the cytoskel-
eton and cell contacts induce process formation 
during differentiation of conditionally immor-

talized mouse podocyte cell lines. Exp Cell Res. 
1997;236(1):248–258.

 58. Kabeya Y, et al. LC3, a mammalian homologue 
of yeast Apg8p, is localized in autophagosome 
membranes after processing. EMBO J. 2000; 
19(21):5720–5728.

 59. Huber TB, et al. Podocin and MEC-2 bind cholester-
ol to regulate the activity of associated ion channels. 

Proc Natl Acad Sci U S A. 2006;103(46):17079–17086.
 60. Huber TB, et al. Nephrin and CD2AP associ-

ate with phosphoinositide 3-OH kinase and 
stimulate AKT-dependent signaling. Mol Cell Biol. 
2003;23(14):4917–4928.

 61. Shih NY, et al. Congenital nephrotic syndrome 
in mice lacking CD2-associated protein. Science. 
1999;286(5438):312–315.

Downloaded on September  6, 2013.   The Journal of Clinical Investigation.   More information at  www.jci.org/articles/view/39492


	Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice
	Recommended Citation
	Authors

	JCI39492.pdf

