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Autophagy is a gatekeeper of hepatic
differentiation and carcinogenesis by controlling
the degradation of Yap
Youngmin A. Lee1,2, Luke A. Noon1,3, Kemal M. Akat2, Maria D. Ybanez1, Ting-Fang Lee1, Marie-Luise Berres4,5,

Naoto Fujiwara1,6, Nicolas Goossens1,7, Hsin-I Chou1, Fatemeh P. Parvin-Nejad1, Bilon Khambu8,
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Zhenyu Yue9, Xiao-Ming Yin8, Ana Maria Cuervo 13, Mark J. Czaja14, M. Isabel Fiel10, Yujin Hoshida 1,6 &

Scott L. Friedman 1

Activation of the Hippo pathway effector Yap underlies many liver cancers, however no

germline or somatic mutations have been identified. Autophagy maintains essential meta-

bolic functions of the liver, and autophagy-deficient murine models develop benign adenomas

and hepatomegaly, which have been attributed to activation of the p62/Sqstm1-Nrf2 axis.

Here, we show that Yap is an autophagy substrate and mediator of tissue remodeling and

hepatocarcinogenesis independent of the p62/Sqstm1-Nrf2 axis. Hepatocyte-specific dele-

tion of Atg7 promotes liver size, fibrosis, progenitor cell expansion, and hepatocarcinogen-

esis, which is rescued by concurrent deletion of Yap. Our results shed new light on

mechanisms of Yap degradation and the sequence of events that follow disruption of

autophagy, which is impaired in chronic liver disease.
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H
epatocellular carcinoma (HCC) is the third leading cause
of cancer-related mortality worldwide1 with a rising
incidence attributed to advanced liver disease from mul-

tiple etiologies2. HCC develops as a multistep process on a
background of chronic liver injury leading to inflammation,
stromal activation, fibrosis, and regeneration3. Pathways involved
in the malignant transformation of hepatocytes from dysplastic
nodules to early stage HCC include oxidative stress responses,
deregulation of the protein folding machinery and dediffer-
entiation with reexpression of fetal genes4,5.

Autophagy, a nexus of metabolic homeostasis in liver is typi-
cally impaired during chronic injury, leading to reduced clearance
of cellular constituents, and dysregulated mitochondrial and
cellular integrity6–8. Although reduced autophagy is a feature of
chronic liver disease, mechanisms linking autophagy loss to
carcinogenesis are not fully clarified1–5,8–13.

Autophagy has a dual role in cancer. During tumor initiation
autophagy removes damaged organelles and reactive oxygen
species to maintain genomic stability and promote oncogene-
induced senescence, thereby inhibiting malignant transformation.
However, in advanced tumors and metastases autophagy may
promote tumor cell survival in low-nutrient conditions and
chemotherapy-induced stress14,15.

Autophagy’s role in liver is primarily tumor-suppressive, yet its
full activity in hepatocarcinogenesis is unclear. Rodent models
with liver-specific deletion of the autophagy-related proteins 5
(Atg5)16 or Atg717–19 display hepatic metabolic dysfunction with
steatosis, ER stress and marked hepatomegaly and develop benign
tumors (adenomas), but not HCCs. Central to this phenotype is
signaling by p62/Sqstm1-Keap1-Nrf2, because loss of either p62/
Sqstm120 or Nrf2 in autophagy-deficient double knock out mice
normalizes liver size16,21 and decreases tumorigenesis in p62/
Sqstm1/Atg7 DKO mice18. When autophagy is impaired, the
autophagy adaptor protein p62/Sqstm1 accumulates and binds
Kelch-like protein 1 (KEAP1), a negative regulator of the oxi-
dative master regulator nuclear factor erythroid 2-related factor 2
(NRF2, NFE2L2). NRF2 stabilization leads to a deleteriously high
antioxidative response with induction of downstream targets
such as NAD(P)H quinone oxireductase 1 (Nqo1) or gluthathion
S-transferase 1 (Gst1) exacerbating liver injury and metabolic
reprogramming22. The p62/Sqstm1-Keap1-Nrf2 axis has been
thus identified as the pathway linking autophagy inhibition in the
liver to hepatomegaly and tumorigenesis. However, the current
paradigm does not account for the dramatic tissue remodeling
and progenitor cell activation within autophagy deficient livers
prior to the onset of cancer.

Yap is the major nuclear effector of the Hippo signaling path-
way and mediates organ size control, proliferation, differentiation,
and stemness. Yap can be activated by multiple stimuli including
DNA damage23, ER stress24, and mechanical/shear stress25, but its
inhibition is tightly regulated and includes signaling by the
Hippo core kinase cassette26. Yap may also be inhibited by cyto-
plasmic sequestration by dystrophin–glycoprotein complex27 or
Yap/Amot, which can result in the translocation of Yap to the
cytoplasm or to cell junctions28,29. Upon its activation, Yap
translocates into the nucleus, where it interacts with Tead1–4 as
transcriptional co-activators to promote a range of biologic
activities, including cell survival, proliferation, polarity, and, most
importantly, organ size control30. Liver-specific deletions of Hippo
pathway components (e.g.,Mst1/2, Sav1, Nf2) or overexpression of
Yap, lead to prominent hepatomegaly, progenitor cell expansion
and hepatocarcinogenesis31–34. Ectopic overexpression of Yap in
hepatocytes promotes their plasticity, with dedifferentiation to a
cholangiocytic phenotype35.

Yap activation is an early event in liver cancer development36.
Up to 65% of HCCs harbor dysregulation of the Hippo/Yap

pathway, which is associated with a significantly poorer
prognosis37,38. Strikingly, despite comprehensive efforts, no
germline or somatic mutations have been uncovered39. Thus,
mechanisms underlying Yap dysregulation in hepatocarcinogen-
esis remain obscure.

Here, we identify Yap as an autophagy substrate and as an
essential downstream mediator of tissue remodeling, progenitor
cell activation and hepatocarcinogenesis in autophagy-deficient
livers. Our results shed new light on mechanisms of Yap dysre-
gulation in HCC by implicating impaired autophagy as
a potential driver of Yap stabilization and activity. Because
autophagy is impaired chronic liver disease, the findings provide a
potential basis for enhanced Yap activity associated with
hepatocarcinogenesis7,40.

Results
Autophagy maintains hepatic organ size and differentiation.
To explore the mechanisms underlying autophagy’s regulation of
hepatic growth and tumorigenesis, we generated mice with
conditional deletion of Atg7 in hepatocytes (Albumin-CRE:
Atg7F/F mice) (Fig. 1a). Consistent with earlier studies18,19,41

mice with liver-specific deletion of the autophagy-related protein
7 (Atg7) displayed massive hepatomegaly with up to 8.5 fold
increased relative liver weight compared to CRE negative litter-
mates at 3 months of age (Supplementary Fig. 1A, B, C). By
histological analysis, hypertrophic and hyperplastic hepatocytes
were prominent with a marked thickening of hepatocyte plates
that were composed of at least 2–3 cells instead of single cells
based on HE staining and on the pattern of cell membranous
staining for β-catenin (Supplementary Fig. 1D, F). Hepatocytes
were markedly dedifferentiated based on HNF4α staining
(Fig. 1b) and whole liver RNA array analysis in which
hepatocyte-specific genes including Albumin, Transthyretin and
complement factors (C2, C3) were significantly downregulated
(Fig. 1c). Immunostaining showed Epcam+ progenitor cell
expansion (Fig. 1d). Blinded histologic scoring demonstrated
increased lobular and portal inflammation, steatosis and bal-
looning (Supplementary Fig. 1E) and significant fibrosis (Sup-
plementary Fig. 1G, H). Hepatocyte proliferative activity was
markedly increased as assessed by Ki67 staining and quantifi-
cation (Supplementary Fig. 1I, J). All Atg7 KO mice developed
dysplastic nodules at 8 months, which progressed to HCC at
12 months (Supplementary Fig. 2A, B, C). In contrast to previous
reports17, tumors had typical features of HCCs including pseu-
doglandular transformation, loss of reticulin staining and diffuse
Gst1 staining42 (Supplementary Fig. 2D, E).

Autophagy maintains hepatic Hippo tumor suppressor path-
way. Yap is a key regulator of hepatocellular fate35, stem cell
renewal, and liver size with overexpression or dysregulation of the
Hippo/Yap signaling pathway leading to liver outgrowth, pro-
genitor cell expansion and tumorigenesis32,34. We thus analyzed
livers of Atg7 KO mice at 3 months and tumors at 12 months of
age and found increased cytoplasmic and nuclear Yap (Fig. 1e).
consistent with activation of the Hippo pathway effector. Primary
hepatocytes isolated from Atg7 KO mice also displayed increased
nuclear Yap staining (Supplementary Fig. 3B). Gene set enrich-
ment analysis (GSEA) of the livers’ transcriptome revealed sig-
nificant enrichment of Yap activation signatures previously
identified in Mst1/Mst2 KO mice43 and in human cancer
cells44,45 (Fig. 1f). Significant induction of genes associated with
Yap activation and Yap target genes was confirmed by gene array
(Fig. 1g) and qRT-PCR (Fig. 1h).

To analyze the immediate response to Atg7 deletion, we
generated an inducible conditional Atg7 KO mice by crossing
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Atg7 floxed mice into the tamoxifen-inducible CRE line driven by
the Albumin promoter46,47 (Fig. 1i). This model allows for time
dependent, hepatocyte-specific gene deletion in adult liver.
Immunoblotting of whole liver lysates from tamoxifen-inducible,
conditional Atg7 KO mice revealed increased total Yap protein
within 7 days post tamoxifen injection, concomitant with effective
Atg7 deletion and abrogation of autophagy characterized by
reduced conversion of LC3-I to LC3-II (Fig. 1j). In contrast,
protein levels of the Yap paralog Taz/Wwtr1 were consistently
increased from 14 d (Supplementary Fig. 3D). Immunostaining

for Taz/Wwtr1 showed significant staining in non-parenchymal
cells rather than hepatocytes (Supplementary Fig. 3E). P62/
Sqstm1, a selective autophagy adaptor protein, which accumulates
upon inhibition of autophagy7 and which mediates
Nrf2 stabilization via Keap121 was increased at 28 days post
tamoxifen injection, indicating that the early increase in Yap at d7
is independent of p62/Sqstm1 (Fig. 1j). Quantitative band
densitometry showed significantly increased Yap/β-Tubulin and
decreased P-Yap/Yap ratios, consistent with Yap activation
(Fig. 1k, l).
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Yap is degraded by autophagy. The Hippo/Yap signaling path-
way contains a highly conserved core kinase cassette which, when
engaged, phosphorylates and inactivates Yap by βTrCP-mediated
proteasomal degradation38,48. Yap may also be inactivated by
sequestration in the cytoplasm27,28,32. Since previous data indi-
cated normal proteasomal activity in autophagy-deficient neu-
rons49 we hypothesized that Yap is degraded by autophagy. To
test our hypothesis, we stably infected the murine hepatocyte line
AML12 with lentiviral shRNAs (scrambled or shAtg750) and
verified Atg7 knockdown by qRT-PCR and immunoblotting
(Supplementary Fig. 4A, B, C). shAtg7-AML12 cells displayed

increased p62/Sqstm1 typical of autophagy inhibition and
increased nuclear Yap localization by immunofluorescence
(Fig. 2a), which was also verified by immunoblotting Yap in
cytoplasmic and nuclear fractions (Fig. 2b). Gapdh and Nucleo-
protein p62 (Nup62) (nuclear Nup62 62 kD, cytoplasmic pre-
cursor 61 kD protein)51 served as markers for the respective
fractions. We observed increased nuclear Nup62 in shAtg7 cells
despite loading equal amounts of protein per lane, however,
increased expression of Nup62 and other nucleoproteins have
been described to be cell cycle-regulated with increases of Nup62
from G1 to G2/M phase52. Indeed, shAtg7 cells exhibited greater
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proliferative activity as assessed by [3H]-Thymidine incorpora-
tion (Fig. 2c) consistent with nuclear Nup62 increase and Yap-
mediated proliferation.

Similarly, shAtg7-AML12 cells transfected with a Tead4-
Luciferase reporter35 displayed significantly more luciferase
activity compared to controls, consistent with increased Yap
activation (Fig. 2d). By cycloheximide chase assay Yap half-life

was increased in shAtg7-AML12 cells (Fig. 2e, f) while
proteasomal activity was maintained (Supplementary Fig. 4D).
We thus tested if Yap is degraded by autophagy. Leupeptin/
NH4Cl which inhibits lysosomal degradation including autop-
hagy, further increased Yap protein levels in scram-AML12 cells
but not in shAtg7-cells (Fig. 2g), confirming that increased Yap
levels in shAtg7-cells are a consequence of reduced lysosomal
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degradation. Furthermore, Tead4-Luciferase activity was signifi-
cantly increased in AML12 cells incubated with Leupeptin/NH4Cl
compared to cells incubated with vehicle alone (Fig. 2h). In the
human hepatocyte line THLE5B53, YAP protein was also
increased upon inhibition with the lysosomal inhibitor Leupep-
tin/NH4Cl or by the macroautophagy inhibitor 3-methyladenine
(Supplementary Fig. 4E). Increased YAP protein levels and
Tead4-Luciferase activity indicative of YAP activation was also
observed in shATG5-THLE5B cells (Supplementary Fig. 4J, K).
Combined, these result indicate that YAP activation results from
a general deficiency in the autophagy pathway rather than from
loss of ATG7 alone.

To confirm that YAP colocalized with lysosomes, THLE5B
cells were transfected with YAP-DsRed and incubated with
Lyso®TrackerGreen, which enabled tracking of Yap and lyso-
somes. Incubation with Leupeptin increased the appearance of
lysosomes and the colocalization of YAP and lysosomes,
indicating lysosomal degradation of YAP (Supplementary Fig. 4F,
G). Similarly, THLE5B cells transfected with YAP-DsRed and
GFP-LC3 also showed colocalization of YAP and autophago-
somes upon Leupeptin/NH4Cl incubation (Supplementary
Fig. 4H,I). Finally, endogenous YAP colocalized with autophago-
somes in cells transfected with GFP-LC3 (Fig. 2i, j) upon
Leupeptin/NH4Cl incubation, further confirming that YAP is
degraded by autophagy.

Yap deletion attenuates hepatomegaly and hepatocarcinogen-
esis. To determine if Yap drives hepatomegaly and hepatocarci-
nogenesis in Atg7 KO mice, we generated conditional Atg7 and
Yap54 double-floxed mice (Atg7F/F, YapF/F) crossed into the
tamoxifen-inducible Albumin-CRE line46. The use of this system
enabled timed and simultaneous hepatocyte-specific knock out of
Atg7 and Yap in adult mouse liver. Control (Atg7F/F, YapF/F)
mice, Atg7 KO (ERT2-Alb-CRE:Atg7F/F), Atg7 KO/Yap Het
double knock out (ERT2-Alb-CRE:Atg7F/F, YapF/wt), and Atg7/
Yap DKO (DKO, ERT2-Alb-CRE:Atg7F/F,YapF/F) mice were
sacrificed 7, 14, 28 days, and 12 months after tamoxifen injection
(Fig. 3a). Deletion of Atg7 led to an immediate liver outgrowth
apparent at 2 weeks after tamoxifen injection, which was sig-
nificantly attenuated by homozygous deletion of Yap in Atg7/Yap
DKO (Fig. 3c; Supplementary Fig. 5A-E) and complete normal-
ization at 12 months (Fig. 3b–d; Supplementary Fig. 6B, C).
Immunostaining and quantification for BrdU+ cells demon-
strated significantly increased proliferative activity in Atg7 KO
mice at 2 weeks, which was attenuated in Atg7/Yap DKO mice
(Supplementary Fig. 5F-H). The attenuation in hepatomegaly was
proportionate to the number of Yap alleles deleted (heterozygous
or homozygous deletion) at 4 weeks and 12 months following
tamoxifen administration (Fig. 3d, Supplementary Fig. 5D).

Moreover, tumor size and number were significantly decreased in
Atg7/Yap het DKO mice and Atg7/Yap DKO mice compared to
Atg7 KO at 12 months after tamoxifen administration (Fig. 3b, e,
f, Supplementary Fig. 6D, E) thereby identifying Yap as a driver of
liver growth and hepatocarcinogenesis when autophagy is
impaired.

Deletion of Yap in Atg7/Yap DKO mice reduced hepatocyte
size (Fig. 3g–i) and significantly improved portal and lobular
inflammation, ductular reaction, steatosis, and fibrosis in Atg7/
Yap DKO mice (Supplementary Fig. 6F-H). Restored hepatic
differentiation was demonstrated by increased immunostaining
for HNF4α and qRT-PCR of whole liver RNA for Albumin
(Fig. 3g, j) in agreement with previous findings linking Yap
overexpression to hepatic dedifferentiation35,55. In addition,
progenitor cell expansion, which is observed with Yap over-
expression35 was significantly decreased in Atg7/Yap DKO mice
as assessed by immunostaining and qRT-PCR for Cd133, Cd44,
and Epcam (Fig. 3g, j).

The p62/Sqstm1-Nrf2 axis is maintained in Atg7/Yap DKO
livers. In previous studies the impairment of hepatic autophagy
leads to accumulation of p62/Sqstm1, which then stabilizes the
transcription factor Nrf2 (NFE2L2, nuclear factor erythroid-2
related factor 2) via Keap1 (Kelch-like ECH associated protein 1)
an adaptor of the ubiquitin-ligase complex21. Consequently, liver-
specific double knockout of either Atg7 or Atg5 and p62/Sqstm1
or Nrf2 abrogates hepatomegaly and attenuates tumorigenesis in
p62/Atg7 DKO mice16,18. Moreover, p62/Sqstm1 has been
recently identified as an independent oncogene in liver56.
Therefore, we analyzed if p62/Sqstm1-Nrf2-mediated signaling is
maintained in Atg7/Yap DKO mice and conversely, if Yap is
activated in Atg7/Nrf2 DKO and Nrf2 KO mice. Immunoblotting
of whole liver lysates from Atg7 KO mice, Atg7/Yap KO mice,
Atg7/Nrf2 DKO, and Nrf2 KO mice57 demonstrated increased
Nrf2 and p62/Sqstm1 protein in Atg7 KO and Atg7/Yap DKO,
but not in Atg7/Nrf2 DKO or Nrf2 KO (Fig. 4a, b). By qRT-PCR
analysis of whole liver RNA, Nrf2 downstream targets (Nqo1,
Srxn1) were increased in both Atg7 KO and Atg7/Yap DKO mice
consistent with preserved Nrf2 activation (Fig. 4c). These results
indicate intact p62/Sqstm1-Nrf2 mediated signaling in Atg7/Yap
DKO and establish Yap as a separate driver of HCC in
autophagy-impaired livers. Our results point to an important role
of Nrf2 in p62/Sqstm1 homeostasis and Yap activation as Atg7/
Nrf2 DKO mice exhibited Yap levels comparable to control mice
and did not have evidence of p62/Sqstm1 increase. On mRNA
level, Yap target genes Cyr61 and Areg were significantly
decreased in Atg7/Yap DKO compared to Atg7 KO mice, indi-
cating that loss of Yap is sufficient to decrease Hippo pathway
target gene expression despite Taz/Wwtr1. This finding is

Fig. 3 Yap deletion in Atg7 KO mice attenuates hepatomegaly, altered tissue architecture and hepatocarcinogenesis. a Control and TAM-inducible,

hepatocyte-specific Atg7 KO (ERT2-Alb-CRE:Atg7F/F) and Atg7/Yap het DKO (ERT2-Alb-CRE:Atg7 F/F, Yap F/wt) and Atg7/Yap DKO (ERT2-Alb-CRE:Atg7F/

F, YapF/F) were analyzed 1 week, 2 weeks, 4 weeks, and 12 months after TAM injection. TAM tamoxifen. N= 15, 12, 17, and 8 animals respectively. b Gross

liver morphology in control, Atg7 KO and Atg7/Yap DKO after 12 months of TAM injection. c Liver/body weight ratio 1 week, 2 weeks, 4 weeks, and

12 months after TAM injection of control, Atg7 KO and Atg7/Yap DKO. Stars indicate significant differences between Atg7 KO and Atg7/Yap DKO at the

respective time points by one-way ANOVA and Tukey’s HSD. ***P= 0.0001. d Liver/body weight ratio in control, Atg7 KO and Atg7 KO/Yap het DKO,

Atg7/Yap DKO mice 12 months after TAM induction. ***P < 0.0005. e Absolute tumor number per mouse in control, Atg7 KO and Atg7 KO/Yap het DKO,

Atg7/Yap DKO mice 12 months after TAM induction. f Size of largest tumor size per mouse in control, Atg7 KO and Atg7 KO/Yap het DKO, Atg7/Yap

DKO mice 12 months after TAM induction. g Immunostaining for β-catenin, HNF4α, Epcam, Cd44 in controls, Atg7 KO and Atg7/Yap DKO 12 months

after TAM injection. Scale bar indicates 100 µm. h Quantitative analysis of individual hepatocyte areas in controls, Atg7 KO and Atg7/Yap DKO 12 months

after TAM injection. n= 238, 242, and 273 cells were analyzed, respectively. i Frequency distribution analysis of hepatocyte size in controls, Atg7 KO and

Atg7/Yap DKO. j qRT-PCR analysis of whole liver mRNA from control, Atg7 KO, Atg7/Yap DKO for Albumin, Epcam, Cd133, and Cd44, normalized to Tbp

expression. N= 7, 12, and 8 animals, respectively. Data represent mean ± SD. P-values analyzed by one-way ANOVA and Tukey’s HSD. *P < 0.05, **P <

0.005, ***P < 0.001, ****P < 0.0001 unless indicated otherwise. ns, not significant
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consistent with reports that Yap inactivation likely has a greater
impact on cellular physiology than Taz/Wwtr158.

Yap is a potentially druggable driver of HCC in Atg7 KO. To
assess if Yap-dependent proliferation in autophagy-impaired
livers (Supplementary Fig. 5G, H) is targetable, we tested the
effect of verteporfin, a small molecule Yap-Tead4-inhibitor59 in
culture and in vivo. Verteporfin has also been shown to be safe in
phase I/phase II clinical trials60. In vivo, treatment of Atg7 KO
mice with verteporfin for 21 days significantly decreased the
number of Ki67+ nuclei in Atg7KO mice (Fig. 5b, c), which was
also associated with reduced expression of the Yap target gene
Cyr61 (Fig. 5d). In cultured scram- and shAtg7-AML12 cells,
verteporfin significantly decreased proliferative activity (Fig. 5e).
Similarly, verteporfin significantly diminished Tead4-Luciferase
activity in scram- and shAtg7-AML12 cells (Fig. 5f).

Atg7-KO gene signature aligns with human NASH and HCC
profiles. To analyze the relevance of our findings to human liver
disease and hepatocarcinogenesis, we defined a Atg7-KO gene
signature (differentially expressed genes in liver tissues from
Atg7-KO mice compared to control mice) and compared it to the
transcriptome profile of 72 human non-alcoholic fatty liver dis-
ease (NAFLD) liver tissues with known disease severity. GSEA
analysis showed significant enrichment of the Atg7-KO gene
signature in NAFLD samples that were comprised primarily of
samples from advanced NAFLD (F3 or F4), along with enrich-
ment for YAP target genes (Fig. 6a). Similarly, analysis of 374
human HCC transcriptome profiles indicated simultaneous
enrichment of the Atg7-KO gene signature and YAP activation in
42.2% (158/374) of HCCs as well (Fig. 6b). Integrative tran-
scriptomic analysis of HCCs has indicated that these tumors may

be classified according to three molecular subclasses, S1, S2, and
S361. Interestingly, HCC subclass S1, which is characterized by
steatohepatitic HCCs, a histological subtype which arises in
NAFLD/NASH62 and immune cell infiltration63, was significantly
enriched for the Atg7-KO gene signature, whereas subclass S3
had no such alignment with the autophagy-deficient signature.
Immunofluorescence analysis of human HCCs with known
molecular subclass showed nuclear YAP staining and enhanced
cytoplasmic staining for p62/SQSTM1 within the same cells
(Fig. 6c), indicating that impaired autophagy flux and con-
comitant YAP activation occur in human disease.

Discussion
By utilizing a regulable hepatocyte-specific promoter to analyze
Atg7−/− mice, we have uncovered autophagy as the gatekeeper of
hepatic differentiation, growth regulation and carcinogenesis by
controlling degradation of Yap. Hepatocyte-specific Atg7−/− mice
display enhanced Yap target gene expression and increased Yap
protein that drives hepatocyte proliferation, leading to gross hepa-
tomegaly. These abnormalities are significantly attenuated by het-
erozygous and homozygous loss of Yap allele(s) in Atg7/Yap Het
and Atg7/Yap DKO double knockout mice. Thus, Yap is a driver of
tissue remodeling and carcinogenesis when autophagy is impaired.

Dysregulation of liver growth regulation in Atg7 KO mice is
due to increased cell size (hypertrophy) and Yap-dependent
increase in cell number (hyperplasia). Hepatomegaly in Atg7 KO
mice was previously attributed to accumulation of non-degraded
cell components including proteins, lipids and damaged
organelles17,18,41. However, our data demonstrate that inhibiting
Yap-mediated hepatocyte proliferation and hyperplasia in Atg7/
Yap DKO mice can significantly attenuate the increased liver size
and significantly decrease tumorigenesis.
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Unlike previous studies20,21 the dramatic phenotype con-
sequences of autophagy loss in liver occurs independent of p62/
Sqstm1-KEAP1-NRF2 signaling in our study. p62/Sqstm1 stabilizes
Nrf2 by negatively regulating Keap1, thereby abrogating poly-
ubiquitination and proteasomal degradation of Nrf221; this stabi-
lizes Nrf2 and allows its nuclear translocation. In previous studies,
Atg7/p62 (Alb-CRE:Atg7F/F, p62−/−) and Atg7/Nrf2 (Mx1-CRE:
Atg7 Atg7F/F, Nrf2−/−) double knock-out mice reportedly rescue
the dramatic liver phenotype, associated with a significant decrease
in ubiquitinated proteins consistent with improved proteostasis
despite inhibition of autophagy18,21. In Atg7/p62 double knock-out
mice there is decreased tumorigenesis in aged Atg7/p62 DKO
animals. Thus, the contribution and relationship of p62/Sqstm1,
Nrf2, and Yap in the context of autophagy impairment to liver
injury, liver growth regulation and hepatocarcinogenesis remains to
be clarified. p62/Sqstm1 is an independent oncogenic driver in
AAV-p62/Sqstm1-infected hepatocytes through oncogenic effects of
mTOR and Nrf2 signaling. In contrast, Atg7/Yap double knock-
out significantly attenuates hepatocarcinogenesis despite
increased expression of p62/Sqstm1 and Nrf2, and Nrf2 down-
stream targets. Thus, Yap is a significant driver of hepatocarcino-
genesis when autophagy is impaired. However, tumorigenesis was
not completely abrogated in Yap/Atg7 double knock-out mice and
the remaining tumorigenesis could be due to p62/Sqstm1-
Nrf2 signaling. A contribution of the Yap paralog Taz/Wwtr1
cannot be excluded, however immunostaining demonstrates an
increase in Taz/Wwtr1 in non-parenchymal cells, and qPCR ana-
lysis showed significant decrease in Hippo downstream targets

Cyr61 and Areg, indicating efficient suppression of Yap/Taz targets
in Atg7/Yap DKO mice.

Autophagy is clearly a tumor-suppressive pathway in our
models. In previous studies autophagy has been ascribed a
bifunctional role in tumorigenesis—tumor suppressive in the
initial phase and tumor promoting in advanced stages8. Pre-
viously, tumors in hepatic Atg7 KO mice have been described as
benign adenomas17; however, tumors in ERT2-Alb-CRE:Atg7F/F

and Alb-CRE:Atg7F/F mice fulfill characteristics of HCCs. Dif-
ferences in the genetic background and microbial environment
might contribute to the observed phenotypic differences between
ours and previous studies, as the microbiome can affect hepato-
carcinogenesis, but future studies will need to clarify the under-
lying mechanisms.

Our results provide an important link between metabolic
alterations and mechanisms for Yap activation in hepatocarci-
nogenesis. With the epidemic of obesity and metabolic syndrome,
hyperlipidemia and insulin resistance are frequently observed
concomitant to chronic viral hepatitis and NASH2 and have
been shown to decrease hepatic autophagic and lysosomal
degradation40. Comprehensive integrative molecular analyses
(transcriptomic, genomic and epigenomic data) as well as
immunological analyses have provided a molecular and immu-
nological classification of HCCs which can be differentiated into a
proliferative (S1 and S2) and non-proliferative class39,64–66. Of
these, S1 subclass is associated with poor prognosis, chromosomal
instability and activation of pathways associated with cell pro-
liferation and survival and immune exhaustion66. Enrichment

VP or Veh

21 days

Control (Atg7F/F)

Atg7 KO (Alb-CRE:Atg7F/F)

V
P

V
e
h
ic

le

Control

Analysis

b
Atg7 KO

K
i6

7

c d

Atg7 KO

mice

Control Atg7 KO

mice

Control

Veh VP Veh VP Veh VP Veh VP

a

shAtg7Scram shAtg7Scram

Veh VP Veh VP Veh VP Veh VP

e f

> 8 weeks

Cells Cells

0

100

200

300

400

K
i6

7
+
 n

u
c
le

i/
1
0
0
x
 f
ie

ld

ns

*** ***

0

2

4

6

8

10

12

R
e
la

ti
v
e
 C

y
r6

1
 m

R
N

A

ns*
ns

[3
H

]-
th

y
m

id
in

e
 i
n
c
o
rp

o
ra

ti
o
n

(A
U

)

0.0

0.5

1.0

1.5

2.0 **

*

****

P P

0

50

100

150

T
e
a
d
4
-l
u
c
if
e
ra

s
e
/r

e
n
ill

a

(A
U

)

*

**** ****
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and alignment of the Atg7 KO gene signature in HCCs of the
S1 subclass indicates that metabolic pathways of Yap activation
might contribute to this subclass.

Our results have uncovered a mechanism of autophagy-
dependent degradation of Yap which, when impaired, promotes
dedifferentiation, inflammation, fibrosis, and hepatocarcinogen-
esis. Because Yap activity is strongly implicated in human
hepatocarcinogenesis, our studies provide a rationale for che-
mopreventive or anti-tumorigenic strategies through inhibition of
Yap or enhancement of autophagy by drugs such as verteporfin60

or carbamazepine, which is currently in phase II trial for
α1-antitrypsin deficiency (NCT01379469) and has anti-fibrotic
effects in murine disease models67.

Methods
Animals. Alb-CREmice (Jax 003574) were purchased from Jackson Laboratory and
crossbred with conditional Atg719. Nrf2−/−21 were crossed with Alb-CRE:Atg7F/F to

generate Atg7/Nrf2 DKO mice. ERT2-Alb-CRE mice46 crossed with conditional
Atg719 and/or, conditional Yap mice54,21mice were utilized in this study. Age-
matched, male and female mice were used and did not show sex-bias differences.
ERT2-Alb-CRE mice (6–8 weeks) and respective controls were given 0.1 mg
tamoxifen (Sigma) (diluted in corn oil) for 5 consequential days. Verteporfin
(Sigma) diluted in DMSO and injected i.p. (50 mg kg−1) every other day for
21 days. All animal studies and procedures were approved by the Animal Care and
Use Committee of Icahn School of Medicine at Mount Sinai.

Immunohistochemistry. For immunohistochemistry, liver samples were fixed in
10% formalin overnight, transferred to 70% ethanol and processed for paraffin
embedding. For immunostaining, samples were deparaffinized and heat induced
antigen retrieval performed with either 10 mM sodium-citrate, pH 6 or Tris-EDTA,
pH 9 or DAKO target retrieval solution (Dako, S2375) depending on the antigen.
Chromogen development after incubation with primary and secondary antibodies
was performed using the Dako Envision Kit (Dako). For immunofluorescence
studies, AML12 cells, THLE5b cells or primary murine hepatocytes were grown on
coverslips, fixed with acetone or 50% acetone/50% methanol for 10 min and
rehydrated in PBS. Liver sections from either 4% PFA-perfused livers and
sequential sucrose-cryopreservation were analyzed, fixed with acetone, or 50%
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HCC tissue for YAP and P62/SQSTM1. Large insets present magnification of small insets. Scale bar indicates 100 µm
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acetone/50% methanol or 4% PFA depending on the antigen, washed and incu-
bated with primary antibodies overnight. After washing, cells were incubated with
secondary antibodies, embedded and imaged. Primary antibodies and secondary
antibodies with dilutions are indicated in Supplementary Table 1. Reticulin staining
was performed with the Hito Biotek Kit (HTKCS0102) according to the manu-
facturer’s instructions. For Sirius Red staining, FFPE-slides were deparaffinized,
incubated for 15 min in 0.01% fast green in picric acid, washed and then incubated
in 0.04% fast green 0.1% Sirius red in picric acid for 45 min. After washing and
dehydration, slides were embedded, dried, and imaged. For quantification of Ki67+

hepatocytes, ten fields per mouse were imaged and analyzed. For histological
scoring, slides were analyzed by a liver pathologist (MIF) in a blinded manner and
graded (0–3 points) analyzing five 200x fields per mouse. Images were analyzed
with a Zeiss Axiovision microscope. For confocal live imaging, cells were grown on
a glass bottom plate, transfected with Yap-DsRed (addgene 19057) by Lipofecta-
mine 2000 (Roche) and incubated with 100 nM LysoTracker®Green DND-26
(ThermoFisher L7256) in complete medium with 100 µM Leupeptin or vehicle for
2 h prior to imaging. For coimmunofluorescence, cells were transfected with GFP-
LC3 via Lipofectamine 2000 (Roche) and incubated with 100 µM Leupeptin/20 mM
NH4Cl or vehicle for 2 h prior to imaging. Microscope was performed at the
Microscope CoRE at the Icahn School of Medicine at Mount Sinai.

Morphometric quantitative analysis of cell size and nucleus size from liver
sections was performed by ImageJ analysis. Two hundred ten to 270 cells per
genotype (n= 3) were analyzed and plotted by frequency distribution analysis
(Prism 7). Colocalization analysis was performed by ImageJ analysis software
(plugin JACoP v2).

Cytoplasmic and nuclear fractionation. For cytoplasmic and nuclear fractiona-
tion, AML12 cells were grown to 100% confluency, washed twice with ice-cold PBS
and incubated with buffer A (10 mM HEPES, 10 mM KCl, 0.1 mM EDTA, 0.1 mM
EGTA, pH 7.9, PMSF 50 µg ml−1, Na-Orthovanadate 1 mM, DTT 1mM, NP-40
(0.6%), HALT-Phosphatase inhibitor (Thermoscientific) 1:1000, complete
Protease-inhibitor tablet (Thermoscientific)) on ice for 15 min. Cells were collected
and centrifuged for 5 min at 14,000 × g. Supernatant (cytoplasmic fraction) was
collected and saved. The pellet was processed further for nuclear extraction by
washing with buffer A without NP-40, followed by resuspension in buffer
C (10 mM HEPES, 0.4 mM NaCl, 1 mM EDTA, 1 mM EGTA, pH 7.9, PMSF
50 µg ml−1, Na-Orthovanadate 1 mM, DTT 1 mM, NP-40 (0.6%), HALT-
Phosphatase inhibitor (Thermoscientific) 1:1000, complete Protease-inhibitor
tablet (Thermoscientific)) and incubation on ice for 15 min, vortexing every
minute. Fraction was centrifuged at 14,000 × g for 8 min and supernatant (nuclear
fraction) collected.

Immunoblotting. Fifty micrograms of snap frozen liver were homogenized by
Qiagen TissueLyser in RIPA buffer containing proteinase inhibitors (Roche com-
plete Mini proteinase inhibitor, 2 tab/10 ml buffer) and 1x HALT phosphatase
inhibitors (Thermoscientific, #78428). Lysates were sonicated and then centrifuged
for 10 min at 18,800 × g. THLE5B and AML12 cells were lysed directly in RIPA
buffer containing inhibitors, sonicated and centrifuged. Protein concentration of
supernatants were determined by BioRad protein assay (BioRad). For immunoblot
analysis, 30–50 µg of protein were analyzed per SDS-PAGE and tank blotting.
Antibodies and dilutions used are indicated in Supplementary Table 1. Semi-
quantitative band densitometry was performed using ImageJ software. Uncropped
scans of blots are provided in the Supplementary Information.

Hepatocyte isolation and cell culture. The AML12 cell line was obtained from
ATCC (CRL2254) and the THLE5b cells had been obtained from Dr. Yujin
Hoshida. The THLE5b cells have been authenticated by short-tandem repeat (STR)
profiling. Cell lines were tested for mycoplasma with the Venor GeM Mycoplasma
Detection Kit (Sigma, MP0025-1KT) according to the manufacturer’s instructions.
AML12 cells were cultured in DMEM/F12 medium supplemented with insulin/
transferrin/selenium (Invitrogen 51300-044), 40 µg ml−1 Dexamethasone (Sigma
D2915) and 10% FBS. AML12 cells were infected with lentiviral shAtg7 or
scrambled-shRNA50 and stable clones selected with puromycin (1.25 µg ml−1).
Upon establishing stable clones, cells were maintained without puromycin and
stable knock down of Atg7 verified over several passages. THLE5B68 cells were
cultured in DMEM medium supplemented with 10% FBS and infected with
shATG5 or scrambled-shRNA (Santa Cruz, sc-41445 and sc-108080, respectively)
according to the manufacturer’s instructions. Stable clones were selected with
puromycin. Primary hepatocytes were isolated by in situ perfusion with Liver
Perfusion Medium (Thermo Scientific, 17701038) followed by collagenase B per-
fusion (Roche, 11088831001, 0.05%) and low grade centrifugation (50 × g).
Hepatocytes were plated on collagen-coated plates (BD Biosciences, 354249) at
1 mio cells/6-well and cultured in Williams E medium (10% FBS, 1% L-glutamine,
1% penicillin/streptomycin, hydrocortisone (50 µM), insulin (5 µg ml−1)). Cells
were incubated in verteporfin (Sigma SML0534, 10 µg ml−1 final concentration),
cycloheximide (Enzo Life Sciences, 50 µM final concentration) or the respective
vehicles (polyethylene glycol 300 (PEG 300) or DMSO respectively).

Luciferase assays. AML12 and THLE5B cells were transfected at 70% confluency
using Mirus TransIT-LT1 transfection reagent and analyzed at 100% confluency to
control for cell-contact mediated inhibition of Hippo pathway by Dual-Glo Luci-
ferase Assay (Promega). pRL-Tead4-Luciferase and Renilla control plasmid were
gifts of Yimlamai and Camargo35. Incubation with verteporfin (10 µg ml−1) or
vehicle (PEG300) were carried out for 24 h.

Cycloheximide chase assay. AML12 cells were incubated at 90% confluency in
complete growth media containing the protein synthesis inhibitor cycloheximide
(Enzo Life Sciences) (50 µM final concentration) or vehicle (DMSO). Cells were
collected in RIPA buffer (50 mM Tris/HCl, pH 7.4, 150 mM NaCl, 1% Igepal, 0.5%
Na-Deoxycholate, 0.1% SDS) containing proteinase inhibitors (ThermoScientific
Protease-Inhibitor tablets, 2 tablet/10 ml buffer) at 0, 2, 4, 6, 8, and 24 h after
incubation. The lysate was sonicated, centrifuged for 10 min at 18,800 × g and the
resulting supernatants analyzed by immunoblotting.

Proteasomal activity assay. AML12 cells were incubated in cell lysis buffer (50
mM HEPES, pH 7.5; 5 mM EDTA, 150 mM NaCl and 1% Triton X-100) for 30 min
on ice, vortexing every 10 min. Lysates were centrifuged at 20,600 × g for 15 min.
Protein concentration of the supernatant was determined via Biorad Protein Assay.
Protein lysates (10 µg) were diluted with 10x assay buffer (250 mM HEPES (pH
7.5), 5 mM EDTA, 0.5% NP-40, 0.01% SDS) and samples incubated with protea-
some substrate at 37˚C for 90 min. Concentration of proteasome substrates were
100 µM for caspase-like activity (Ac-Gly-Pro-Leu-Asp-AMC, Biomol, AW9560),
10 µM for chymotrypsin-like activity (Proteasome substrate III, Calbiochem,
#539142) and 100 µM for trypsin-like activity (Biomol, AW 9785). Release of free
hydrolyzed 7-amino-4-methylcoumarin (AMC) groups was measured using an ISS
Counter with an excitation filter of 380 nm and an emission filter of 460 nm.

qRT-PCR and primer sequences. For qRT-PCR analysis, RNA was extracted from
snap frozen liver or cells by Trizol (Ambion) followed by purification using the
RNeasy Kit (Qiagen). One to 5 µg RNA were transcribed to cDNA using the RNA
to cDNA EcoDry Premix (Clontech). IQ SYBR Green Supermix (Biorad) was used
for quantitative PCR on the LightCycler480 System (Roche Diagnostics). Samples
were analyzed in triplicates. Data are represented as the relative expression after
normalizing to housekeeping genes (Gapdh, β-actin, 18S, Tbp) expression,
respectively. Primer sequences are listed in Supplementary Table 2.

Gene expression analysis. Liver tissue was incubated in RNAlater (Ambion) and
RNA extracted by Trizol (Ambion) according to the manufacturer’s instructions,
and further purified by the RNeasy Kit (Qiagen). RNA from 2 month old, female
and male, age-matched Alb-CRE:Atg7F/F and CRE-negative littermates (n= 4 per
group) were analyzed on a MouseWG-6 v2.0 Expression BeadChip according to
the manufacturer’s protocol. Raw scanned data were normalized by using cubic
spine algorithm implemented in the GenePattern genomic analysis toolkit (www.
broadinstitute.org/genepattern). Probe-level expression data were collapsed into
gene-level by calculating the median of multiple probes, and converted to human
genes based on an orthologous mapping table provided by the Jackson laboratory
(www.informatics.jax.org). Gene expression analysis was determined by R software
and expressed as row z-score.

Bioinformatics and statistical data. Molecular pathway deregulations were
determined in the genome-wide transcriptome dataset by surveying a compre-
hensive collection of pathway gene sets in Molecular Signature Database (MSigDB,
www.broadinstitute.org/mdigdb) and a collection of liver cancer-related gene sig-
natures in literature using Gene Set Enrichment Analysis (GSEA, www.
broadinstitute.org/gsea).

Transcriptome profiles of 72 NAFLD-affected liver tissues were obtained from
NCBI Gene Expression Omnibus database (www.ncbi.nlm.nih.gov/geo, accession
number GSE49541). Genome-wide transcriptome profiles of 374 human HCC
tissues were obtained from The Cancer Genome Atlas data portal (https://gdc.
cancer.gov). Transcriptomic molecular HCC subtypes we were determined using
Nearest Template Prediction (NTP) algorithm as previously described61,69. Atg7-
KO gene signature was defined as differentially expressed genes in liver tissues from
the Atg7-KO mice compared to control mice by t-test-based LOOCV validation
(four biological replicates for Atg7-ko and control group, respectively).
Transcriptional target genes of Hippo pathway
(REACTOME_SIGNALING_BY_HIPPO), transcriptional target genes of Yap1
(CORDENONSI_YAP_CONSERVED_SIGNATURE) were obtained from
Molecular Signature Database (MSigDB) (www.broadinstitute.org/msigdb).
Modulation of the gene sets in each individual sample was determined by modified
gene set enrichment analysis70.

Human HCC samples. Formalin-fixed, paraffin-embedded (FFPE) HCC tissues
(n= 8) were analyzed by immunohistochemistry. The de-identified human HCC
samples were obtained from Mount Sinai Biorepository with IRB-approved written
informed consents from patients. The study had been approved by the Institutional
Review Board of Icahn School of Medicine at Mount Sinai.
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Data availability
The Gene Expression Omnibus accession number for the transcriptome profiles
reported in this paper is GSE67676. The Gene Expression Omnibus accession
number for 72 NAFLD-affected livers is GSE49541. Genome-wide transcriptome
profiles of 374 human HCC tissues were obtained from The Cancer Genome Atlas
data portal (https://gdc.cancer.gov).
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